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 Measurements of ambiguity attitudes have so far focused on artificial events, 

where subjective beliefs can be derived from symmetry assumptions.  For natural 

events such assumptions usually are not available, creating a difficulty in calibrating 

subjective beliefs and, hence, in measuring ambiguity attitudes.  This paper introduces 

a simple control for subjective beliefs even when they are unknown.  We thus allow 

for a tractable and completely revealed-preference based measurement of ambiguity 

attitudes for all events, including natural ones.  We introduce indexes of ambiguity 

aversion and ambiguity perception (or understanding) that generalize and unify many 

existing indexes.  Our indexes are valid under many ambiguity theories.  They do not 

require expected utility for risk, which is desirable for empirical purposes.  

Furthermore, they are easy to elicit in practice.  An experiment on ambiguity under 

time pressure shows the tractability of our method.  It gives plausible results, 

supporting the validity of our indexes. 

 

JEL-CLASSIFICATION: D81, C91 

KEYWORDS: subjective beliefs; ambiguity aversion; Ellsberg paradox; sources of 

uncertainty; time pressure 
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1.  INTRODUCTION 

  Ambiguity (unknown probabilities) is central in many practical decisions 

(Keynes 1921; Knight 1921).  Ellsberg’s paradox (1961) shows that fundamentally 

new models are needed to handle ambiguity.  Since then many models have been 

proposed, not only to accommodate Ellsberg’s paradox but also to explain anomalies 

in practice (Easley & O’Hara 2009; Guidolin & Rinaldi 2013).  However, 

measurements of ambiguity have been lagging behind, using artificial laboratory 

events as in Ellsberg’s paradox rather than the natural events that occur in practice. 

 To properly measure ambiguity aversion we need to control for subjective 

likelihood beliefs in the events of interest, which we need for calibrating the 

benchmark of ambiguity neutrality.  But this control is difficult to implement for 

natural events.  For example, consider a person who would rather receive $100 under 

the ambiguous event A of the copper price going up by at least 0.01% tomorrow, than 

under the event K (with known probability 0.5) of heads coming up in a coin toss 

tomorrow.  This preference need not reflect ambiguity seeking; instead, it may have 

been induced by beliefs.  The person may be ambiguity neutral but assign a higher 

subjective likelihood to A than K’s probability of 0.5.  Therefore, without proper 

control of subjective likelihoods, no conclusive implications can be drawn about 

people’s ambiguity attitudes.  However, how to control for subjective likelihood 

beliefs in a tractable manner has been unknown so far for naturally occurring events. 

 Controlling for subjective likelihoods is much easier for artificial events 

generated in the lab.  Such events concern Ellsberg urns with color compositions kept 

secret from the subjects, or subjects only being informed about experimenter-specified 

intervals of possible probabilities of events.  For these events, likelihoods can be 

derived from symmetry of colors or from symmetry about the midpoints of 

probability intervals.  This explains why measurements of ambiguity have as yet 

focused on artificial cases. 

 Several authors warned against the focus on artificial ambiguities, arguing for the 

importance of natural events (Camerer & Weber 1992 p. 361; Ellsberg 2011 p. 223; 

Heath & Tversky 1991 p. 6).  The difficulty to identify subjective likelihoods of such 

events from revealed preferences has as yet been taken as a problematic obstacle 
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though.  This paper introduces a simple method to measure ambiguity attitudes for 

natural events.  The solution to the aforementioned problem is surprisingly easy: we 

control for likelihoods not by directly measuring them but by making them drop from 

the equations irrespective of what they are.  The resulting method is tractable and easy 

to implement, as we demonstrate in an experiment.  Hence, it can for instance be 

easily used as an add-on in large-scale surveys and field studies.  Using natural events 

will increase external validity (Camerer & Weber 1992 p. 361 penultimate para). 

 We introduce two indexes of ambiguity attitudes that unify and generalize several 

indexes proposed before (§3).  Empirical studies, discussed later, have shown that 

ambiguity is a rich phenomenon and that two indexes are needed to capture it.  The 

first index measures the well-known aversion to ambiguity.  The second index 

measures the degree of ambiguity, i.e., the perceived level of ambiguity.  Hence 

Dimmock et al. (2015) called their special case of this index perceived level of 

ambiguity.  The higher this level is, the less the decision maker discriminates between 

different levels of likelihood, and the more these levels are treated alike, as a blur.  

Hence the second index also reflects insensitivity toward likelihood changes, which is 

why the term a(mbiguity generated) insensitivity can be used (Maafi 2011; Baillon, 

Cabantous, & Wakker 2012).  Our indexes generalize their predecessors by: (a) being 

directly observable; (b) not requiring expected utility for risk; (c) being valid for a 

large number of ambiguity theories; (d) requiring no assessment of subjective 

likelihoods and, hence, (e) being applicable to natural ambiguities that were not 

constructed artificially. 

 Dow and Werlang (1992), MacCrimmon & Larsson (1979), and others that we 

discuss later used a special case of our method, considering both an event and its 

complement so as to neutralize for unknown beliefs.  We make this method 

operational, and theoretically and empirically valid, for ambiguity aversion.  We 

further extend it to insensitivity.  Because insensitivity has been less known than 

aversion to ambiguity, and different interpretations are possible for our insensitivity 

index, we test how our two indexes react to cognitive manipulations.  Imposing time 

pressure (TP) is a well-known method for manipulating cognitive limitations.  Hence 

our experiment investigates the effect of TP on ambiguity attitudes, where the 

ambiguity concerns a natural event (about the performance of the AEX—Amsterdam 

stock exchange—index).  Despite the importance of TP in its own right, and the many 

studies of it under risk (known probabilities; see §4) there have not yet been studies of 
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TP under ambiguity.  This provides an additional contribution of our paper.  Our 

findings corroborate the interpretation of the indexes, supporting the validity of our 

method.  In particular, they illustrate the usefulness of our second index. 

 The outline of this paper is as follows.  Section 2 gives formal definitions of our 

ambiguity indexes and informal arguments for their plausibility.  We present the 

indexes prior to assuming any decision theory so that empirically oriented readers can 

readily use them without need to study such a theory.  Further, this way we show that 

the indexes have intuitive appeal without necessity to commit to one or other of the 

many ambiguity theories popular today.  Section 3 gives formal arguments by proving 

the validity of our indexes under many ambiguity theories.  Sections 4-5 demonstrates 

the validity of our indexes empirically, and Section 6 concludes.  Proofs and 

experimental details are in the appendix, with further details in a web appendix. 

 

2.  MEASURING AMBIGUITY ATTITUDES WITHOUT 

MEASURING SUBJECTIVE LIKELIHOODS: DEFINITIONS 

OF OUR INDEXES 

 We focus on gain outcomes throughout this paper.   Formally speaking, 

ambiguity does not concern just a single event 𝐸, but a partition, such as {𝐸, 𝐸𝑐}, or, 

more generally, a source of uncertainty.  We assume a minimal degree of richness of 

the sources of uncertainty considered: there should at least be three mutually 

exclusive and exhaustive nonnull events 𝐸1, 𝐸2, and 𝐸3.  In most situations where we 

start from a partition with two events we can extend it by properly partitioning one of 

those two events.  For example, in the two-color Ellsberg urn we can involve other 

features of the ball to be drawn, such as shades of colors or numbers on the balls. In 

our experiment the events refer to the AEX stock index.  For instance, in Part 1 of the 

experiment, 𝐸1 = (−∞, −0.2), 𝐸2 = [−0.2, 0.2], and 𝐸3 = (0.2, ∞), where intervals 

describe percentage increases of the AEX index.  Thus they concern natural events 

with uncertainty that really occurred and that was of practical relevance to financial 

traders.  𝐸𝑖𝑗 denotes the union 𝐸𝑖 ∪ 𝐸𝑗 where 𝑖 ≠ 𝑗 is implicit.  We call every 𝐸𝑖 a 

single event and every 𝐸𝑖𝑗 a composite event. 
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 Dimmock, Kouwenberg, & Wakker (2016, Theorem 3.1) showed that matching 

probabilities are convenient for measuring ambiguity attitudes.  Karni (2009) 

discussed their elicitation.  Matching probabilities entirely capture ambiguity 

attitudes, free of the complications of risk attitudes, as those drop from the equations 

and need not be measured.  In particular, our measurements are not affected by the 

often-discussed heterogeneity of risk attitudes (Bruhin, Fehr-Duda, & Epper 2010).  

We will therefore use matching probabilities.  For any fixed prize, €20 in our 

experiment, we define the matching probability 𝑚 of event E through the following 

indifference: 

   Receiving €20 under event E is equivalent to receiving €20 with probability 𝑚. (2.1) 

In each case it is understood that the complementary payoff is nil.  Under ambiguity 

neutrality the matching probability of an event, say 𝑚(𝐸1), and its complement, 

𝑚(𝐸23), will add to 1, but under ambiguity aversion the sum will fall below 1.  Its 

difference with 1 can then be taken as degree of aversion.  We will take the average of 

this difference over the three events.  We write 𝑚𝑖 = 𝑚(𝐸𝑖), 𝑚𝑖𝑗 = 𝑚(𝐸𝑖𝑗), 𝑚𝑠̅̅ ̅̅ =

(𝑚1 + 𝑚2 + 𝑚3)/3 for the average single-event matching probability, 𝑚𝑐̅̅ ̅̅ = (𝑚23 +

𝑚13 + 𝑚12)/3 for the average composite-event matching probability, and define: 

 

DEFINITION 2.1.  The ambiguity aversion index is 

 𝑏 = 1 − 𝑚𝑐 ̅̅ ̅̅ ̅ 𝑚𝑠̅̅ ̅̅̅. (2.2) 

 

Under ambiguity neutrality, 𝑚𝑖 = 𝑃(𝐸𝑖) and 𝑚𝑖𝑗 = 𝑃(𝐸𝑖) + 𝑃(𝐸𝑗) for additive 

subjective probabilities 𝑃.  Then 𝑚𝑠̅̅ ̅̅ = 1/3 and 𝑚𝑐̅̅ ̅̅ = 2/3, implying 𝑏 = 0.  We have 

thus calibrated ambiguity neutrality, providing control for subjective likelihoods 

without knowing them.  This happens because the subjective likelihoods drop from 

the equations irrespective of what they are.  This observation is key to our method.  

Maximal ambiguity aversion occurs for 𝑏 = 1, when matching probabilities for all 

events are 0.  Ambiguity aversion is minimal for 𝑏 = −1, when matching 

probabilities for all events are 1. 

 For the ambiguity aversion index, it is not necessary to consider a three-event 

partition.  To reduce the measurement effort, we could also focus on only one event 𝐸𝑖 
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and its complement 𝐸𝑖
𝑐, and substitute 𝑚(𝐸𝑖) for 𝑚𝑠̅̅ ̅̅  and 𝑚(𝐸𝑖

𝑐) for 𝑚𝑐̅̅ ̅̅  in Eq. 2.2, 

maintaining the control for likelihood.  This reduction is at the cost of reliability, but it 

makes it possible to elicit the first index even when the source has only two nonnull 

events.  For the insensitivity index we essentially need three events. 

 Using only the first index to capture people’s ambiguity attitude can be 

misleading, especially for low likelihood events.  Empirical findings suggest a 

dependency of ambiguity aversion on likelihood: aversion peaks at certainty but drops 

as the likelihood of the uncertain event decreases.  For moderate likelihoods, there is 

much ambiguity neutrality, and for low likelihoods ambiguity seeking is prevailing 

(reviewed by Trautmann & van de Kuilen 2015).  Therefore, a prediction of universal 

ambiguity aversion based solely on the first index alone can even be in the wrong 

direction for low likelihoods.  Our second index of ambiguity allows accommodating 

the aforementioned dependence of ambiguity aversion on likelihood.  It can be 

interpreted as perceived level of ambiguity (Baillon et al. 2015; Dimmock et al. 2015) 

or as insensitivity to likelihood (Abdellaoui et al. 2011; Dimmock, Kouwenberg, & 

Wakker 2016). 

 The second index captures the extent to which matching probabilities (and event 

weights as defined in §3) regress towards fifty-fifty, with low likelihoods overvalued 

and high likelihoods undervalued.  This leads to reduced differences 𝑚𝑐̅̅ ̅̅   𝑚𝑠̅̅ ̅̅ .  In the 

most extreme case of complete ambiguity and, correspondingly, complete 

insensitivity (Cohen & Jaffray 1980), no distinction at all is made between different 

levels of likelihood (e.g. all events are taken as fifty-fifty), resulting in 𝑚𝑐̅̅ ̅̅ 𝑚𝑠̅̅ ̅̅  = 0.  

These observations suggest that the second index can be interpreted as a cognitive 

component (Budescu et al. 2014 p. 3; Dimmock et al. 2015; Dimmock, Kouwenberg, 

& Wakker 2016; Einhorn & Hogarth 1985; Gayer 2010), an interpretation well 

supported by our results. 

 Dimmock et al. (2015) referred to their version of the second index as perceived 

level of ambiguity.  Dimmock et al.’s term, and the multiple priors model underlying 

it, assume expected utility for risk and may serve best for normative applications.  We 

allow for deviations from expected utility under risk, which is desirable for 

descriptive applications, the main purpose of this paper.  For risk, insensitivity (i.e., 

inverse-S probability weighting) has been commonly found (Fehr-Duda & Epper 

2012; Gonzalez & Wu 1999).  Our second index naturally extends this insensitivity 
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found under risk to ambiguity, where empirical studies have found that it is usually 

reinforced (Trautmann & van de Kuilen 2015).  Hence, we follow Maafi (2011) and 

Baillon, Cabantous, & Wakker (2012) and use the term ambiguity-generated 

insensitivity (a-insensitivity) to refer to it.  For this index, the following rescaling of 

𝑚𝑐̅̅ ̅̅ 𝑚𝑠̅̅ ̅̅  is convenient. 

 

DEFINITION 2.2.  The ambiguity-generated insensitivity (a-insensitivity) index1 is 

 𝑎 = 3  (1/3  (𝑚𝑐̅̅ ̅̅ 𝑚𝑠̅̅ ̅̅ )) . (2.3) 

Under ambiguity neutrality, with perfect discrimination between single and composite 

events, or under absence of ambiguity, 𝑚𝑐̅̅ ̅̅ = 2/3 and 𝑚𝑠̅̅ ̅̅ = 1/3, and their difference 

is 1/3.  Index 𝑎 measures how much this difference falls short of 1/3.  We multiplied 

by 3 to obtain a convenient normalization with a maximal value 1 (maximal 

insensitivity, with 𝑚𝑐̅̅ ̅̅  = 𝑚𝑠̅̅ ̅̅ ). 

 Ambiguity neutrality gives 𝑎 = 0.  We have again calibrated ambiguity neutrality 

here, controlling for subjective likelihoods by letting them drop from the equations.  

Empirically, we usually find prevailing insensitivity, 𝑎 > 0, but there are subjects 

with 𝑎 < 0.  Hence it is desirable for descriptive purposes to allow 𝑎 < 0, which we 

do.  The 𝛼-maxmin model, however, does not allow 𝑎 < 0 (§3), which is no problem 

for normative applications that take 𝑎 < 0 to be irrational. 

 There have as yet only been a few studies measuring ambiguity attitudes for 

natural events.  Many did not control for risk attitudes and therefore could not 

completely identify ambiguity attitudes (Baillon et al. 2015; Fox, Rogers, & Tversky 

1996; Fox and Tversky 1998; Kilka & Weber 2001).  Abdellaoui et al. (2011) 

measured indexes similar to ours but had to use complex measurements and data 

fittings, requiring measurements of subjective probabilities, utilities, and event 

weights.  As regards the treatment of unknown beliefs, Brenner & Izhakian (2015) 

and Gallant, Jahan-Parvar, & Liu (2015) are close to us.  They do not assume beliefs 

given beforehand, but, like Abdellaoui et al. (2011), derive them from preferences.  

We do not need such a derivation.  Brenner & Izhakian (2015) and Gallant, Jahan-

Parvar, & Liu (2015), deviate from our approach in assuming second-order 

                                                 

1 Under multiple prior theories, this index can be called “perceived level of ambiguity.” 
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probabilities to capture ambiguity.  They make parametric assumptions about the first- 

and second-order probabilities (assuming normal distributions), including expected 

utility for risk with constant relative risk aversion, and then fit the remaining 

parameters to the data for a representative agent.  Maccheroni, Marinacci, & Ruffino’s 

(2013)  theoretical analysis follows a similar approach. 

 Baillon & Bleichrodt (2015) used a method similarly tractable as ours.  They, 

however, used different indexes2, and they did not establish a control for likelihood.  

Several papers used indexes similar to those presented above but provided no controls 

for likelihoods, so that they had to use probability intervals or Ellsberg urns (Baillon, 

Cabantous, & Wakker 2012; Dimmock, Kouwenberg, & Wakker (2016), Dimmock et 

al. 2015, 2016).  Li (2015), a follow-up of this paper, used our method. 

 

3.  RELATING OUR INDEXES TO EXISTING INDEXES 

 We defined our indexes in §2 without specifying any ambiguity theory.  This 

section shows that our indexes are valid under many popular ambiguity theories 

because they generalize indexes proposed there.  Empirically oriented readers who are 

willing to take our indexes at face value can skip this section.  The section is essential 

though for the claims that our indexes are not ad hoc but theoretically founded, and 

that they generalize and unify many existing indexes. 

 Our analysis applies to any theory using the evaluation 

 𝑥𝐸0 → 𝑊(𝐸)𝑈(𝑥) (3.1) 

for prospects with one nonzero outcome.  The prospect 𝑥𝐸0 yields outcome 𝑥 under 

event 𝐸 and outcome 0 under the complementary event 𝐸𝑐.  𝑈 is the utility function 

with 𝑈(0) = 0 and 𝑊 is a nonadditive (event) weighting function; i.e., 𝑊 is 0 at the 

empty event, 1 at the universal event, and it is set-monotonic (𝐴 ⊃ 𝐵 then 𝑊(𝐴) ≥

𝑊(𝐵))).  Our analysis includes binary RDU3, also known as biseparable utility, which 

includes many theories such as Choquet expected utility or rank-dependent utility, 

                                                 

2 They used five event-dependent indexes similar to Kilka & Weber (2001), and based on preference 

conditions of Tversky & Wakkers (1995), and adapted them to matching probabilities. 

3 RDU abbreviates rank-dependent utility. 
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prospect theory (because we only consider gains), multiple priors, and 𝛼-maxmin 

(Ghirardato & Marinacci 2002; Wakker 2010 §10.6).  Eq. 3.1 additionally includes 

separate-outcome weighting theories (𝑥𝐸𝑦 → 𝑊(𝐸)𝑈(𝑥) + 𝑊(𝐸𝑐)𝑈(𝑦)), 

Chateauneuf & Faro’s (2009) confidence representation if the worst outcome is 0, and 

Lehrer & Teper’s (2015) event-separable representation.  Based on the heuristic 

considerations in §2 we conjecture that our indexes also capture features of ambiguity 

well under ambiguity theories not included here, but leave this as a topic for future 

research. 

 Our first index generalizes indexes by Abdellaoui et al. (2011), Chateauneuf et al. 

(2007), Dimmock et al. (2015, 2016), Dimmock, Kouwenberg, & Wakker (2016), 

Dow & Werlang (1992), Gajdos et al. (2008), Klibanoff, Marinacci, & Mukerji (2005 

Definition 7), and Schmeidler (1989).  Our second index generalizes indexes by 

Abdellaoui et al. (2011), Chateauneuf et al. (2007), Dimmock et al. (2015), Dimmock, 

Kouwenberg, & Wakker (2016), and Gajdos et al. (2008).  The following subsections 

will provide an elaborate examination for various theories. 

3.1.  Choquet Expected Utility 

 We start with the first axiomatized ambiguity model: Schmeidler’s (1989) 

Choquet expected utility.  Schmeidler (1989) suggested the following index of 

ambiguity aversion in his example on pp. 571-572 and p. 574, assuming expected 

utility for risk: 

 𝑏∗ = 1 − 𝑊(𝐸) − 𝑊(𝐸𝑐). (3.2) 

Here W is a general event weighting function.  Dow & Werlang (1992) proposed to 

use Eq. 3.2 in general, and this proposal has been widely followed since, always in 

models assuming expected utility for risk.4  Eq. 3.2 already contains the basic idea of 

correcting for unknown beliefs by considering both an event and its complement.  

This was also used in the more general concept of source preference (Tversky & 

Wakker 1995).  

                                                 

4 References include Chateauneuf et al. (2007), Dimmock et al. (2015, 2016), Gajdos et al. (2008), and 

Klibanoff, Marinacci, & Mukerji (2005 Definition 7).  Applications include Dominiak & Schnedler 

(2011), Ivanov (2011), and many others. 
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OBSERVATION 3.1.  Under expected utility for risk, our ambiguity aversion index 

agrees with Eq. 3.2.  That is, index 𝑏 is Eq. 3.2 averaged over the events 𝐸1, 𝐸2, 𝐸3.  In 

Schmeidler’s (1989) model, ambiguity aversion5 implies 𝑏 > 0, ambiguity neutrality 

implies 𝑏 = 0, and ambiguity seeking implies 𝑏 < 0.   

 

 Two contributions of Observation 3.1 to Choquet expected utility are: (1) index 𝑏 

is also valid if expected utility for risk is violated; (2) ambiguity aversion 𝑏 can be 

measured easily, with no need to further measure 𝑈 or 𝑊.  A difficulty when applying 

Eq. 3.2 is, for instance, that in general there is no direct way to measure 𝑊.  Because 

of contribution (1), our method also works for the general Choquet expected utility 

model in Gilboa (1987) which, unlike Schmeidler (1989), does not assume expected 

utility for risk. 

3.2.  The Source Method 

 Choquet expected utility and prospect theory (Tversky & Kahneman 1992), 

which are equivalent because we consider only gains, are considered to be too general 

because there are too many nonadditive weighting functions for large state spaces.6  

Abdellaoui et al.’s (2011) source method is a specification that is more tractable.  The 

specification essentially consists of adding Chew & Sagi’s (2008) conditions, 

implying the existence of a-neutral probabilities defined later. 

 Although, based on Ellsberg’s paradoxes, it was long believed that ambiguity 

aversion cannot be modeled using probabilities of any kind, Chew & Sagi (2008) 

showed that this is still possible, by allowing decision attitudes to depend on the 

source of uncertainty.  For example, we can assign probability 0.5 to an ambiguous 

event and still prefer gambling on it less than gambling on an objective probability 

0.5, by weighting the former probability more pessimistically than the latter.  This 

way, ambiguity aversion and Ellsberg’s paradox can be reconciled with the existence 

                                                 

5 Schmeidler used the term uncertainty aversion. 

6 The findings of Hey, Lotito, & Maffioletti (2010) suggest to us that three states is already problematic 

for empirical purposes.  Kothiyal, Spinu, & Wakker (2014) showed that the specification of the source 

method then is specific enough. 
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of subjective probabilities.  Because the term subjective probability has too many 

connotations, we call the probabilities resulting from Chew & Sagi’s model 

a(mbiguity)-neutral probabilities.  An ambiguity neutral decision maker would indeed 

be entirely guided by these probabilities, irrespective of the underlying events. 

 The only implication of Chew & Sagi’s conditions needed for our analysis is that 

Eq. 3.1 can be rewritten as: 

 𝑊(𝐸) = 𝑤𝑆𝑜(𝑃(𝐸)) .  (3.3) 

Here 𝑃 is Chew & Sagi’s a-neutral probability and 𝑤𝑆𝑜 is a (probability) weighting 

function (𝑤𝑆𝑜(0) = 0, 𝑤𝑆𝑜(1) = 1, and 𝑤𝑆𝑜 is nondecreasing).  Crucial is that 𝑤𝑆𝑜 

can depend on the source 𝑆𝑜 of uncertainty: 𝑤𝑆𝑜(0.5) can be different for the known 

and the unknown Ellsberg urn.  Tversky introduced the idea of sources of uncertainty 

(Heath & Tversky 1991; Tversky & Fox 1995).  A source of uncertainty is a group of 

events generated by the same uncertainty mechanism.  The unknown Ellsberg urn is a 

different source than the known urn, and the AEX index is a different source than the 

Dow Jones index.  Different sources will have different weighting functions 𝑤𝑆𝑜 and, 

correspondingly, 𝑊 will have different properties for them.  We study these 

properties for binary RDU models.  For other models, such as the smooth model of 

ambiguity (Klibanoff, Marinacci, & Mukerji 2005), it will similarly be of interest to 

allow for different attitudes and perceptions for different sources of ambiguity, but 

this is beyond the scope of this paper.   

 In their calculations, the two papers Abdellaoui et al. (2011) and Dimmock, 

Kouwenberg, & Wakker (2016), abbreviated AD in this section, used best 

approximations of functions on the open interval (0,1).  This is done here for 

matching probabilities 𝑚(𝐸): 

  𝑚(𝐸) = 𝜏 + 𝜎𝑃(𝐸) for 0 < 𝑃(𝐸) < 1,  (3.4) 

say by minimizing quadratic distance (as in regular regressions) where 𝜎 ≥ 0 and 𝜏 

are chosen to minimize that distance.  𝑃 is again Chew & Sagi's (2008) a-neutral 

probability.  Although our indexes were devised to avoid specifications of a-neutral 

probabilities 𝑃(𝐸), we do consider such probabilities here because otherwise the 

approaches of AD cannot be applied.  AD defined 

 𝑏´ ∶= 1 − 2𝜏 − 𝜎, 𝑎´ ∶= 1 − 𝜎  (AD indexes). (3.5) 
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Here 𝑏´ is an index of pessimism that reflects ambiguity aversion in our case (which 

concerns matching probabilities), and 𝑎´ is an index of insensitivity, reflecting lack of 

discriminatory power.  We write 𝑝𝑖 = 𝑃(𝐸𝑖) and 𝑝𝑖𝑗 = 𝑃(𝐸𝑖𝑗). 

 As a preparation, we first show that our indexes are identical to the AD indexes if 

Eq. 3.4 holds exactly.  Eq. 3.4 implies  𝑚𝑠̅̅ ̅̅ = 𝜏 + 𝜎/3 and 𝑚𝑐̅̅ ̅̅ = 𝜏 + 2𝜎/3, where we 

immediately see that a-neutral probabilities drop.  Observation 3.2 follows from 

simple substitutions. 

 

OBSERVATION 3.2.  Under Eq. 3.4, our indexes (Eqs. 2.2, 2.3) agree with the AD 

indexes (our Eq 3.5).  That is, 𝑎 =  1 − (3𝑚𝑐̅̅ ̅̅  3𝑚𝑠̅̅ ̅̅ ) = 1 − 𝜎 = 𝑎´  and  𝑏 = 1 −

(𝑚𝑐̅̅ ̅̅ + 𝑚𝑠̅̅ ̅̅ ) = 1 − 2𝜏 − 𝜎 = 𝑏´.   

 

 We now turn to the general case where Eq. 3.4 need not hold.  Proofs of the 

following results are in the appendix.  We first show that the aversion indexes 𝑏, 𝑏´ 

also agree in the general case. 

 

THEOREM 3.3.  Our index 𝑏 (Eq. 2.2) is always identical to the AD index 𝑏′ (Eq. 3.5), 

independently of 𝑝1, 𝑝2, 𝑝3, 𝜎.   

 

 Depending on the probabilities 𝑝1, 𝑝2, 𝑝3 assumed by AD, the insensitivity 

indexes 𝑎, 𝑎´ need not always be completely identical.  These indexes estimate the 

same model (Eq. 3.4) but use different optimization criteria.7  Thus the indexes can be 

slightly different, but they will not differ by much.  We next show that they are 

identical in the most important cases.  We first consider the case considered by 

Dimmock et al. (2015, 2016), Dimmock, Kouwenberg, & Wakker (2016), and most 

other studies (Camerer & Weber 1992 p. 361), where the ambiguity neutral 𝑝𝑖’s 

directly follow from symmetry. 

 

                                                 

7 AD take the best fit of Eq. 3.4 for the three partitions {𝐸𝑖 , 𝐸𝑖
𝑐} in one blow.  Our indexes can be 

interpreted as first giving best (even perfect) fit for each separate partition {𝐸𝑖 , 𝐸𝑖
𝑐}, and next taking 

averages of the three estimations (for 𝑖 = 1,2,3). 
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OBSERVATION 3.4.  Index 𝑎 is identical to AD’s 𝑎´ if events 𝐸1, 𝐸2, and 𝐸3 are 

symmetric (i.e., 𝑝1 = 𝑝2 = 𝑝3).   

 

 We next turn to general nonsymmetric cases.  We first consider the most plausible 

case, concerning the probabilities 𝑝1, 𝑝2, 𝑝3 that best fit the data.  For matching proba-

bilities, set-monotonicity means that 𝑚𝑖𝑗 ≥ 𝑚𝑖 for all 𝑖, 𝑗.  A weaker condition, weak 

monotonicity, suffices for our purposes: for all distinct 𝑖, 𝑗, 𝑘: 𝑚𝑖𝑗 + 𝑚𝑗𝑘 ≥ 𝑚𝑖 + 𝑚𝑘. 

 

THEOREM 3.5.  Assume weak monotonicity, and assume that 𝑎, 𝑏, 𝑝1, 𝑝2, 𝑝3 are such 

that Eq. 3.4 best fits by quadratic distance.  Then our index 𝑎 (Eq. 2.3) is identical to 

AD’s index 𝑎´ (Eq. 3.5).   

 

 Thus our indexes and the AD indexes are close, and in most cases identical.  This 

was confirmed in our data.  Of course, the estimates of 𝑏 and 𝑏´ always completely 

agreed.  The average absolute difference |𝑎´ − 𝑎| was 0.007.  In 91% of the cases 𝑎´ 

and 𝑎 were identical.  The remaining 9% concerned vast violations of weak 

monotonicity, with maximal absolute difference |𝑎´ − 𝑎| = 0.27 for a highly erratic 

subject.  We conclude that for all practical purposes we can assume that our indexes 

are the same as those of AD.  Our contribution to the source method is that we need 

not restrict to Ellsberg events as did Dimmock, Kouwenberg, & Wakker (2016), 

Dimmock et al. (2015, 2016), and we avoid the extensive measurement of beliefs and 

utility for natural events of Abdellaoui et al. (2011).  

3.3.  Multiple Priors 

 We next consider multiple prior models.  In maxmin expected utility (Gilboa and 

Schmeidler 1989) or 𝛼-maxmin (Ghiradato, Maccheroni, & Marinacci 2004), 

ambiguity is captured by a convex set 𝐶 of priors (probability distributions over the 

state space).  The decision maker then considers the worst expected utility over 𝐶 

(maxmin expected utility) or a convex combination of the worst and the best (𝛼-

maxmin).  As with Choquet expected utility, the multiple priors model by itself is too 

general to be tractable because there are too many sets of priors.  We start from a 

tractable subcase used in finance (Epstein and Schneider 2010) and insurance theory 
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(Carlier et al. 2003): the 𝜀-contamination model.  We take the tractable subclass 

considered by Baillon et al. (2015), Chateauneuf et al. (2007), and Dimmock et al. 

(2015), which received a preference foundation by Chateauneuf et al. (2007).  It is a 

subclass of the 𝜀-contraction model; the latter was axiomatized by Gajdos et al. 

(2008).  Kopylov (2009) axiomatized a similar model. 

 To define our subclass, we assume a baseline probability 𝑄, and an 𝜖 ∈ [0,1].  

The set of priors consists of all convex combinations (1 − 𝜀)𝑄 + 𝜀𝑇 where 𝑇 can be 

any probability measure.  The larger 𝜀, the larger the set of priors.  We call the 

resulting model 𝜀-𝛼-maxmin.  This model satisfies Chew & Sagi’s (2008) 

assumptions, with a-neutral probabilities 𝑄.  The size of the set of priors, represented 

here by 𝜀, is often taken as the level of perceived ambiguity (Alon & Gayer 2016; 

Chateauneuf et al. 2007 p. 543; Gajdos et al. 2008; Walley 1991 p. 222), and 𝛼 as the 

aversion index.  Baillon et al. (2015) and Dimmock et al. (2015) pointed out that the 

source method and ε-𝛼-maxmin are closely related, with the relations in the following 

observation between indexes.  These authors took the 𝑎 and 𝑏 indexes as in AD.  

Subsection 3.2 showed that those are essentially equivalent to our indexes, so we use 

the same notation. 

 

OBSERVATION 3.6.  Under ε-𝛼-maxmin, the ambiguity-level index ε agrees with our 

a-insensitivity index 𝑎 (ε = 𝑎), and the aversion parameter 𝛼 is a rescaling of our 

aversion index 𝑏 (𝑏 = (2𝛼1)).   

 

 For the aversion indexes 𝛼 and 𝑏 = (2𝛼1), the linear rescaling 𝑏 → 2𝛼 − 1 is 

immaterial, but the subsequent multiplication by 𝜀 is of interest.  Our index 𝑏 reflects 

the total ambiguity aversion exhibited for the event by the decision maker, and is best 

suited to calculate ambiguity premiums8.  The index 𝛼 rather is the ambiguity 

aversion per perceived unit of ambiguity, and may serve better as a potentially person-

specific and event-independent index.  At any rate, the parameters 𝑎, 𝑏 and 𝛼,𝜀 can 

readily be transformed into each other and carry the same information.  One 

restriction is that the 𝛼 maxmin model, unlike our approach, does not allow 𝑎 = 𝜀 < 0. 

                                                 

8 Schmeidler (1989 p. 574) used the term uncertainty premium for his special case of this index. 



 15 

 We next discuss the alternative interpretations of Chateauneuf et al. (2007) in 

their equivalent neo-additive model.  They assumed Eq. 3.4 for event weights rather 

than for matching probabilities.  In their remark, expected utility is assumed for risk, 

so that event weights equal matching probabilities.  Their Remark 3.2 explains that 

their model is equivalent to ε-𝛼-maxmin and, hence, Observation 3.6 applies to their 

model.  In our notation, Chateauneuf et al. interpret 𝑎 as distrust in the subjective 

expected utility model and  
𝑏+𝑎

2𝑎
  as an index of pessimism. 

 Two contributions of Observation 3.6 to multiple priors theory, at least for the 

specification considered here, are: (1) our indexes are also valid if expected utility for 

risk is violated; (2) the ambiguity aversion and the perceived level of ambiguity can 

be measured very easily, with no need to measure utility 𝑈 or the set of priors 𝐶.  

Contribution (2) was obtained before by Dimmock et al. (2015) for Ellsberg-urn 

events with beliefs available. 

 

4.  EXPERIMENT: METHOD 

Background 

This section presents the experiment.  Appendix B gives further details.  We 

investigate the effect of time pressure (TP) on ambiguity.  The ambiguity concerns the 

performance of the AEX (Amsterdam stock exchange) index.  TP is ubiquitous in 

applications,9 and serves well to investigate ambiguity because it allows for easy 

manipulations.  There have been many studies of its effects under risk,10 but this study 

is the first for ambiguity.  Using our method, we can study TP for natural events. 

 

Subjects 

                                                 

9 A survey is in Ariely & Zakay (2001).  Recent studies include Reutskaja, Nagel, & Camerer (2011) 

for search dynamics, and Kocher & Stutter (2006), Sutter, Kocher, & Strauss (2003), and Tinghög et al. 

(2013) for game theory. 

10 See the references in Ariely & Zakay (2001), and Chandler & Pronin (2012), Kocher, Pahlke, & 

Trautmann (2013), Maule, Hockey, & Bdzola (2000), Payne, Bettman, & Luce (1996), and Young et 

al. (2012). 
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N = 104 subjects participated (56 male, median age 20).  They were all students from 

Erasmus University Rotterdam, recruited from a pool of volunteers.  They were 

randomly allocated to the control and the time pressure (TP) treatment. 

 The experiment consisted of two parts, Parts 1 and 2 (Table 1), consisting of eight 

questions each.  They were preceded by a training part (Part 0) of eight questions, to 

familiarize subjects with the stimuli.  All subjects faced the same questions, except that 

subjects in the time pressure treatment had to make their choices in Part 1 under time 

pressure.  There were 42 subjects in the control treatment and 62 in the TP treatment.  

The TP sample had more subjects because we expected more variance there. 

 

TABLE 1: Organization of the experiment 

               Within subject 

Between subject 

Part 1 Part 2 

Time pressure 

treatment 

Time pressure  No time pressure 

Control treatment No time pressure No time pressure 

Stimuli: Within- and between-subject treatments 

 

Stimuli: Choice lists 

In each question, subjects were asked to choose between two options. 

 

OPTION 1: You win €20 if the AEX index increases/decreases by more/less than XX% 

between the beginning and the end of the experiment (which lasted 25 minutes on 

average), and nothing otherwise. 

OPTION 2: You win €20 with p% probability and nothing otherwise. 

 

 We used choice lists to infer the probability p in Option 2 that leads to 

indifference between the two options.  This p is the matching probability of the AEX 

event.  For the TP treatment, a 25-second time limit was set for each choice in Part 1. 

 

Stimuli: Uncertain events 

In each part we consider a triple of mutually exclusive and exhaustive single events 

and their compositions; see Table 2. 
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TABLE 2: Single AEX-change events for different parts (unit is percentage)11 

 Event E1 Event E2 Event E3 

Part 1 (,0.2) [0.2,0.2] (0.2,) 

Part 2 (,0.1) [0.1,0.3] (0.3,) 

 

For each part, we measured matching probabilities of all six single and composite 

events, of which two were repeated to test consistency.  The order of the eight 

questions was randomized for each subject within each part. 

 

Stimuli: Further questions 

At the end of the experiment, subjects were asked to report their age, gender, and 

nationality. 

 

Incentives 

We used the random incentive system.  All subjects received a show-up fee of €5 and 

one of their choices was randomly selected to be played for real. 

 

Analysis 

We compute ambiguity aversion and a-insensitivity indexes as explained in §2.  Five 

subjects in the TP treatment did not submit one of their matching probabilities on time 

and were therefore excluded from the analysis, leaving us with 99 subjects.  Some 

subjects gave erratic answers violating weak monotonicity; see Appendix C.  We 

nevertheless kept them in the analysis.  Excluding the indexes when weak 

monotonicity is violated does not affect our conclusions (see the full results in the 

Web Appendix) unless we report otherwise. 

 Because we obtain two values of each index per subject (one for each part), we 

run panel regressions with subject-specific random effects12 to study the impact of TP 

on a-insensitivity and ambiguity aversion.  In the baseline model (Model 1 in the 

                                                 

11 In the training Part 0, the events were (,0.4), [0.4,0.1], and  (0.1,). 

12 Fixed effects would not allow us to observe the effect of the treatments because the treatment 

variable is constant for each subject. 
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result tables), we take Part 1 in the control treatment as the reference group and 

consider three dummy variables: part 2*control, part 1*TP and part 2*TP, where each 

variable takes value 1 if the observation is from the specific part in the specific 

treatment.  We then add control variables (age, gender, and nationality in Model 2) to 

assess the robustness of the results. 

 

5.  EXPERIMENT: RESULTS 

In what follows, we report only differences that are significant, with the significance 

level indicated in the corresponding tables. 

 

5.1.  Ambiguity Aversion Index 𝑏 

 Figure 1 presents all 𝑏 indexes of Part 2 as a function of the 𝑏 indexes of Part 1.  

Correlations are high (ρ = 0.76 for the control treatment and ρ = 0.89 for the TP 

treatment) and most dots are in the lower left quadrant or in the upper right quadrant.  

It shows that subjects are consistently ambiguity averse or consistently ambiguity 

seeking across parts. 

 

FIGURE 1: ambiguity aversion indexes 𝑏 

  A. Control treatment (ρ = 0.76)  B. TP treatment (ρ = 0.89) 

Percentages of observations above and below the diagonal have been indicated in the 

figures.  Correlations ρ are in the panel titles. 

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

Part 2 Part 2

Part 1 Part 1

62%

31%

34%

44%



 19 

 

 Table 3 displays the results of the panel regressions for the 𝑏 indexes.  In Part 1, 

the control subjects are slightly ambiguity seeking (0.07, reaching marginal 

significance), with the dots in panel A slightly to the left.  Regarding our main 

research question: TP has no effect.  The index 𝑏 in TP does not differ significantly 

from that in the control in Part 1, with dots in panel B not more or less to the left than 

in panel A.  The only effect we find is a learning effect for the control treatment, 

where Part 2 is a repetition of Part 1.13  Here ambiguity aversion is lower in Part 2 

than in Part 1.  There is no learning effect for the TP treatment (p = 0.14) because TP 

in Part 1 prevented the subjects to familiarize further with the task.   

 All effects described, and their levels of significance, are unaffected if we control 

for age, gender, and nationality (Dutch / non-Dutch).  There is one effect on 

ambiguity aversion though: older subjects are more ambiguity averse.14  To test if 

ambiguity aversion, while not systematically bigger or smaller under TP, would 

become more or less extreme, we test absolute values of 𝑏, but find no evidence for 

such effects (see Web Appendix). 

 

  

                                                 

13 The learning effect is not significant anymore if we exclude the subjects violating weak monotonicity 

(see Table WB.1 in Web Appendix). 

14 This effect is no more significant if we exclude violations of weak monotonicity. 



 20 

TABLE 3: ambiguity aversion indexes 𝑏 

 

 Model 1 Model 2 

intercept 0.07+ 0.02 

 (0.04) (0.06) 

part 1 * TP treatment 0.02 0.03 

 (0.05) (0.05) 

part 2 * control treatment 0.04* 0.04* 

 (0.02) (0.02) 

part 2 * TP treatment 0.00 0.01 

 (0.05) (0.05) 

male  0.08+ 

  (0.04) 

Dutch  0.07 

  (0.05) 

age – 20  0.02* 

  (0.01) 

Chi2 6.79+ 21.02** 

N 198 198 
+ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001.  Point estimates are followed by 

standard errors between brackets.  The impact of TP is in bold.  The variable age has 

been recoded as age − 20 so that the intercept corresponds to the 𝑏 index of a 20 year-

old subject (median age) 
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5.2.  A-Insensitivity Index 𝑎 

 

FIGURE  2: a-insensitivity indexes 𝑎 

 

  A. Control treatment (ρ = 0.77)  B. TP treatment (ρ = 0.70) 

Percentages of observations above and below the diagonal have been indicated in the 

figures.  Correlations ρ are in the panel titles. 

 

 Figure 2 depicts all individual 𝑎 indexes of Part 2 as a function of the 𝑎 indexes 

of Part 1.  Correlations are again high (ρ = 0.77 for the control treatment and ρ = 0.70 

for TP).  Table 4 displays the results of the panel regressions for the 𝑎 index.  The 

insensitivity index is between 0.15 and 0.17 for Parts 1 and 2 of the control treatment 

(no learning effect and points equally split above and below the diagonal in panel A), 

and also for Part 2 of the TP treatment.  However, there is much more a-insensitivity 

for the TP questions (Part 1 of TP treatment), with 𝑎 = 0.34 and with two-thirds of 

the dots in panel B to the right of the diagonal.  These findings are robust to the 

addition of control variables (Model 2).  Thus, we find a clear TP effect but no 

learning effect. 
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TABLE 4: a-insensitivity indexes 𝑎 

 

 Model 1 Model 2 

intercept 0.15* 0.20+ 

 (0.07) (0.11) 

part 1 * TP treatment 0.19* 0.18* 

 (0.09) (0.09) 

part 2 * control treatment 0.02 0.02 

 (0.05) (0.05) 

part 2 * TP treatment 0.02 0.01 

 (0.09) (0.09) 

male  0.05 

  (0.08) 

Dutch  0.06 

  (0.10) 

age – 20  0.02 

  (0.02) 

Chi2 17.68*** 20.64** 

N 198 198 
+ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001.  Point estimates are followed by 

standard errors between brackets.  The impact of TP is in bold.  The variable age has 

been recoded as age − 20 so that the intercept corresponds to the 𝑎 index of a 20 year-

old subject (median age) 

 

 

5.3.  Summary and Discussion of the Experiment 

 We briefly summarize the results on response time, consistency, weak 

monotonicity, and set-monotonicity that are reported in full in Appendix C: subjects 

use less time in the TP questions.  Consistency is violated only in the TP questions, 

and violations of set-monotonicity occur most frequently in the TP questions.  All 

these results confirm Ariely & Zakay’s (2001) observation that TP aggravates biases 

and irrationalities. 

 We next summarize the experimental results reported before.  TP has no effect on 

the ambiguity aversion index 𝑏, but increases the insensitivity index 𝑎.  It is plausible 

that TP harms the cognitive understanding of ambiguity, affecting the discrimination 

of likelihoods and the perception of ambiguity.  Correspondingly, TP induces more 

violations of consistency and set-monotonicity.  It does not lead to a more pronounced 

like or dislike of ambiguity.  For interpreting our results, bear in mind that ambiguity 

is the difference between uncertainty and risk.  TP may increase the aversion to 

uncertainty, but (and this is our finding), not more or less than the aversion to risk.  
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Our result on the insensitivity index shows that TP increases the lack of understanding 

of uncertainty more than that of risk. 

 Similar to our results, Young et al. (2012) also found that TP increases 

insensitivity in their context of risk (for losses, with no significance for gains).  The 

effects of TP on risk aversion are not clear and can go in either direction (Young et al. 

2012; Kocher, Pahlke, & Trautmann 2013), consistent with absence of an effect on 

ambiguity aversion in our study.  Kocher, Pahlke, & Trautmann (2013) also found 

increased insensitivity toward outcomes under TP for risk.  Our second index will 

therefore be central for future studies, nudging techniques, and policy 

recommendations regarding TP. 

 The absence of ambiguity aversion in our results is not surprising in view of 

recent studies with similar findings, especially because we used natural events rather 

than Ellsberg urns (Binmore, Stewart, & Voorhoeve 2012; Charness, Karni, & Levin 

2013; Trautmann & van de Kuilen 2015).  An additional experimental advantage of 

using natural events—that suspicion about experimenter-manipulated information is 

avoided—may have contributed to the absence of ambiguity aversion in our study.  

Finally, the increase in preference (index 𝑏) in Part 2 of the control treatment is in 

agreement with the familiarity bias (Chew, Ebstein, & Zhong 2012; Fox & Levav 

2000; Kilka & Weber 2001). 

 The events in our experiments were natural in the sense of not involving any 

artificial concealing of information.  We did not consider them in an actually 

occurring natural decision situation or in a field setting, and the decision situations 

considered were experimental.  However, we used uncertainty that actually occurred 

and that was relevant to financial traders.  

 

6.  GENERAL DISCUSSION 

 Indexes are simplifying summaries of complex realities.  Our indexes cannot be 

expected to perfectly capture ambiguity attitudes in the same way as the well-known 

index of relative risk aversion (IRR) cannot be expected to perfectly capture risk 

attitudes for every decision and every theory.  As such, the IRR perfectly describes 

risk attitudes under expected utility with CRRA utility.  In general, it will only work 
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well on restricted domains of outcomes (Wakker 2008).  Similarly, our indexes 

perfectly describe ambiguity attitudes under neo-additive event weighting for several 

ambiguity theories (§3).  In general, they will work well if none of the events in the 

partition is very unlikely.  Violations of event additivity and neo-additive weighting 

occur primarily for extreme events where no theory describes the many irregularities 

very well.15   

 Many studies used introspective likelihood measurements (de Lara Resende & 

Wu 2010; Fox, Rogers, & Tversky 1996; Fox & Tversky 1998; Ivanov 2011) to 

capture beliefs for natural events.  Professional forecasts and survey data are useful 

for establishing such beliefs (Anderson, Ghysels, & Juergens 2009). But those are not 

revealed-preference based and the beliefs may be nonadditive.  Then ambiguity 

attitudes may be captured partially by those nonadditive stated beliefs and partially by 

their weighting functions, and thus, ambiguity attitudes cannot be clearly isolated. Our 

paper focuses on revealed-preference based concepts. 

 How ambiguity attitudes are related across different sources of uncertainty, and 

across different persons, is an important topic for future research in ambiguity theory.  

The isolation of ambiguity attitudes from beliefs provided by this paper will be useful 

for such research. 

 If we have n-fold partitions in a source available with n > 3, then natural 

extensions of our indexes can be defined.  We can take average matching probabilities 

over all events to generalize the aversion index b, and average differences of matching 

probabilities between events and their subsets to generalize the insensitivity index, 

where we properly normalize these averages.  For big n such calculations quickly 

become intractable.  A more tractable approach is to take some representable three-

fold partitions, calculate the indexes for those, and then take averages of those. 

 

                                                 

15 Thus, for risk, Kahneman & Tversky (1979 pp. 282-283) explicitly refrained from specifying any 

shape of probability weighting for extreme probabilities. 
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7.  CONCLUSION 

 Measuring ambiguity attitudes from revealed preferences up to now was only 

possible for artificially created ambiguity using Ellsberg urns or probability intervals, 

with information concealed by an experimenter, or through complex model-fitting.  

We introduced indexes of ambiguity that do not have these limitations.  Our indexes 

unify and generalize several existing indexes.  They: (a) are valid for many ambiguity 

theories; (b) correct for likelihood dependence of ambiguity aversion; (c) retain 

validity if expected utility for risk is violated; (d) correct for subjective likelihoods 

also if unknown; (e) can be used for all, artificial and natural, events.  Using natural 

events will increase external validity.  We applied our method in a study on time 

pressure under ambiguity where our findings are psychologically plausible, 

confirming the validity of our indexes: time pressure affects cognitive components 

(understanding, or perceived level of ambiguity) but not motivational components 

(ambiguity aversion).  Correlations between successive measurements of our indexes 

were high, supporting the reliability of our method. 

 We can now measure ambiguity attitudes without knowing beliefs and, hence, for 

all events.  We proved this mathematically and demonstrated it empirically. 
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APPENDIX A.  PROOFS FOR §3 

PROOF OF OBSERVATION 3.1.  Under expected utility for risk, matching probabilities 

are equal to event weights; i.e., 𝑚𝑖  = 𝑊(𝐸𝑖) and 𝑚𝑖𝑗  =  𝑊(𝐸𝑖 ∪ 𝐸𝑗).  Thus our 𝑏 is 

the average of the three values 1𝑊(𝐸𝑖)  𝑊(𝐸𝑖
𝑐).  Schmeidler defined ambiguity 

aversion [neutrality; seeking] as quasiconvexity [linearity; quasiconcavity] of 

preference with respect to outcome (2nd stage probabilities) mixing, which implies 

positivity [nullness; negativity] of Eq. 3.2 for all 𝑖 and, hence, of our 𝑏.   

 

PROOF OF THEOREM 3.3.  The distance to be minimized is 

(𝑚1 − 𝜏 − 𝜎𝑝1)2 + (𝑚2 − 𝜏 − 𝜎𝑝2)2 + (𝑚3 − 𝜏 − 𝜎𝑝3)2  

+(𝑚23 − 𝜏 − 𝜎𝑝23)2 + (𝑚13 − 𝜏 − 𝜎𝑝13)2 + (𝑚12 − 𝜏 − 𝜎𝑝12)2 . (A.1) 

The first order condition of Eq. A.1 with respect to 𝜏, divided by −2, gives 

𝑚1 − 𝜏 − 𝜎𝑝1 + 𝑚2 − 𝜏 − 𝜎𝑝2 + 𝑚3 − 𝜏 − 𝜎𝑝3 + 𝑚23 − 𝜏 − 𝜎𝑝23 + 𝑚13 − 𝜏 −

𝜎𝑝13 + 𝑚12 − 𝜏 − 𝜎𝑝12 = 0 ⇒  

 𝑚𝑐 + 𝑚𝑠 = 2𝜏 + 𝜎 . (A.2) 

In words, the level of the best-fitting line, determined by 𝜏, should be such that the 

line passes through the center of gravity of the data points, being (
1

2
,

𝑚𝑐+𝑚𝑠

2
).  The AD 

index 𝑏´ is 1 − 2𝜏 − 𝜎 = 1 − 𝑚𝑐 −  𝑚𝑠 = 𝑏 .   

 

PROOF OF OBSERVATION 3.4.  We already use Eq. A.3 that will be stated in the proof 

of Theorem 3.5 for convenience.  We substitute 𝑝1 = 𝑝2 = 𝑝3 =
1

3
 in Eq. A.3: 

 2𝑚𝑐 + 𝑚𝑠 = 3𝜏 +
5

3
𝜎 . 

From Eq. A.2 we have 𝜏 = (𝑚𝑐 + 𝑚𝑠 − 𝜎 )/2.  We substitute it in the equation 

above: 

 2𝑚𝑐 + 𝑚𝑠 −
3

2
𝑚𝑐 −

3

2
𝑚𝑠 = −

3

2
𝜎 +  

5

3
𝜎 =

1

6
𝜎  

   ⇒  𝜎 = 3 (𝑚𝑐 − 𝑚𝑠). 

AD defined 𝑎’ = 1 − 𝜎  which equals to our index 𝑎.   
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PROOF OF THEOREM 3.5.  We allow 𝑝1, 𝑝2 to be any real value, so that we can apply 

first order conditions to them.  We always take 𝑝3 = 1 − 𝑝1 − 𝑝2.  Weak 

monotonicity will imply that 𝑝1, 𝑝2, 𝑝3 are still probabilities; i.e., they are 

nonnegative. 

 The first order condition of Eq. A.1 with respect to 𝜎, divided by −2, is: 

𝑝1(𝑚1 − 𝜏 − 𝜎𝑝1) +  𝑝2(𝑚2 − 𝜏 − 𝜎𝑝2) +  𝑝3(𝑚3 − 𝜏 − 𝜎𝑝3) + 

𝑝23(𝑚23 − 𝜏 − 𝜎𝑝23) + 𝑝13(𝑚13 − 𝜏 − 𝜎𝑝13) + 

𝑝12(𝑚12 − 𝜏 − 𝜎𝑝12) = 0. (A.3) 

 We first consider the case of 𝜎 = 0.  Then 𝑎´ = 1 − 𝜎 = 1.  Further, the optimal 

fit must then hold for all probabilities 𝑝1, 𝑝2, 𝑝3, because they do not affect the 

distance of the neo-additive function to the data points.  Substituting 𝑝𝑖 = 1, 𝑝𝑗 =

𝑝𝑘 = 0 (with 𝑖, 𝑗, 𝑘 distinct) in Eq, A.3 implies 𝑚𝑖 +  𝑚𝑖𝑗 +  𝑚𝑖𝑘 = 3𝜏 for all 𝑖 .  

Summing over 𝑖 gives 𝑚𝑠 + 2𝑚𝑐 = 3𝜏.  Subtracting Eq. A.2 gives 𝑚𝑐 = 𝜏.  Then 

also 𝑚𝑠 = 𝜏, and 𝑎 = 1.  Hence, if 𝜎 = 0 then 𝛼 = 𝛼´ and we are done.  From now on 

we assume 

  𝜎 ≠ 0.  (A.4) 

To substitute the probabilities in Eq. A.3, we consider the first order condition for 𝑝1, 

divided by −2𝜎: 

𝑚1 − 𝜎𝑝1 − 𝑚3 + 𝜎(1 − 𝑝1 − 𝑝2) − 𝑚23 + 𝜎(1 − 𝑝1)  

+ 𝑚12 − 𝜎(𝑝1 + 𝑝2) = 0 . (A.5) 

Then 

4𝑝1 =
𝑚1 − 𝑚3 − 𝑚23 + 𝑚12

𝜎
+ 2 − 2𝑝2 . 

Substituting 

2𝑝2 =
𝑚2 − 𝑚3 − 𝑚13 + 𝑚12

2𝜎
+ 1 − 𝑝1 . 

gives 

𝑝1 =
3(𝑚𝑐−𝑚𝑠)+3𝑚1−3𝑚23+2𝜎

6𝜎
 . (A.6) 

Similarly, 
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𝑝2 =
3(𝑚𝑐−𝑚𝑠)+3𝑚2−3𝑚13+2𝜎

6𝜎
  .  (A.7) 

  1 − 𝑝1 − 𝑝2 = 𝑝3 =
3(𝑚𝑐−𝑚𝑠)+3𝑚3−3𝑚12+2𝜎

6𝜎
  .  (A.8) 

 Substituting Eqs. A.6-A.8 in Eq. A.3, using Eq. A.2, and some tedious but 

straightforward algebraic moves (see Web Appendix) gives 

  𝜎(3𝑚𝑐 − 3𝑚𝑠 − 𝜎) = 0. 

Eq. A.4 precludes 𝜎 = 0, and therefore 

 𝜎 = 3𝑚𝑐 − 3𝑚𝑠. (A.9) 

It implies 𝑎′ = 1 − 𝜎 = 1 − (3𝑚𝑐 − 3𝑚𝑠) = 𝑎, which is what we want.  We are done 

if we show that the 𝑝𝑗’s are nonnegative, so that they are probabilities. 

 First note that weak monotonicity (𝑚𝑖𝑗 + 𝑚𝑗𝑘 ≥ 𝑚𝑖 + 𝑚𝑘), when summed over 

the three 𝑖 values, implies 𝑚𝑐 ≥ 𝑚𝑠, so 𝜎 ≥ 0.  By Eq. A.4, 𝜎 > 0. 

 We finally show that 𝑝𝑖 ≥ 0  for all 𝑖.  Substituting Eq. A.9 in Eq. A.6 yields 

𝑝1 =
𝑚12+𝑚13−𝑚2−𝑚3

2(𝑚𝑐−𝑚𝑠)
  . 

The denominator is positive and, by weak monotonicity, the numerator is 

nonnegative.  Hence, 𝑝1 ≥ 0.  Similarly, 𝑝2 ≥ 0 and 𝑝3 ≥ 0.  Because 𝑝3 ≥ 0, 𝑝1 +

𝑝2 ≤ 1.  The 𝑝𝑗’s are probabilities.   

 

PROOF OF OBSERVATION 3.6.  We prove the result for 𝛼-maxmin with α the weight 

assigned to the worst expected utility, satisfying 0 ≤ α ≤ 1.  Maxmin expected utility is 

the special case α = 1.  To determine the matching probability of an event E, we 

express outcomes in utility units and calculate the value according to the theory for 

prospect 1E0.  Because expected utility is assumed for risk, this value is m(E). 

1E0   α inf{P(E ): P ∈ C} + (1 – α) sup{P(E ): P ∈ C}   = 

   α ((1 – ε) Q + ε0) + (1 – α) ((1 – ε) Q + ε1)   = 

   (1 – ε) Q  + (1 – α) ε 

Hence, 𝑚𝑠̅̅ ̅̅  = (1 – ε) / 3 + (1 – α)ε and mc  = 2(1 – ε) / 3 + (1 – α)ε. 

Therefore, 𝑏 = 1 𝑚𝑐̅̅ ̅̅ 𝑚𝑠̅̅ ̅̅ = (21) and 𝑎 = 1 + 3(𝑚𝑠̅̅ ̅̅  𝑚𝑐̅̅ ̅̅ ) = ε.   
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APPENDIX B.  DETAILS OF THE EXPERIMENT 

Procedure 

In the experiment, computers of different subjects were separated by wooden panels 

to minimize interaction between subjects.  Brief instructions were read aloud, and 

tickets with ID numbers were handed out.  Subjects typed in their ID numbers to start 

the experiment.  The subjects were randomly allocated to treatment groups through 

their ID numbers.  Talking was not allowed during the experiment.  Instructions were 

given with detailed information about the payment process, user interface, and the 

type of questions subject would face.  The subjects could ask questions to the 

experimenters at any time.  In each session, all subjects started the experiment at the 

same time. 

 In the TP treatment, we took two measures to make sure that TP would not have 

any effects in Parts 0 and 2.  First, we imposed a two-minute break after Parts 0 and 1, 

to avoid spill-over of stress from Part 1 to Part 2.  Second, we did not tell the subjects 

that they will be put under TP prior to Part 1, so as to avoid stress generated by such 

an announcement in Part 0 (Ordonez & Benson 1997). 

 

Stimuli: Choice lists 

 Subjects were asked to state which one of the two choice options in §2 they 

preferred for different values of p, ascending from 0 to 100 (Figures B.1 and B.2).  

The midpoint between the two values of p where they switched preference was taken 

as their indifference point and, hence, as the matching probability. 

 To help subjects answer the questions quickly, which was crucial under TP, the 

experimental webpage allowed them to state their preferences with a single click.  For 

example, if they clicked on Option 2 when the probability of winning was 50%, then 

for all p > 50%, the option boxes for Option 2 were automatically filled out and for all 

p < 50% the option boxes for Option 1 were automatically filled out.  This procedure 

also precluded violations of stochastic dominance by preventing multiple preference 

switches.  After clicking on their choices, subjects clicked on a “Submit” button to 

move to the next question.  The response times were also tracked. 

 In Part 1 of the TP treatment, a timer was displayed showing the time left to 

answer.  If subjects failed to submit their choices before the time limit expired, their 
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choices would be registered but not be paid.  This happened only 5 out of the 496 

times (62 subjects  8 choices).  In a pilot, the average response time without TP was 

36 seconds, and another session of the pilot showed that, under a 30-second time 

limit, subjects did not experience much TP.  Therefore, we chose the 25 seconds limit. 

 

Figure B.1: Screenshot of the experiment software for single event E3 in Part 0 
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Figure B.2: Screenshot of the experiment software for composite event E23 in 

Part 0 

 

 

Stimuli: Avoiding middle bias 

The middle bias can distort choice lists: subjects tend to choose the options, in our 

case the preference switch, that are located in the middle of the provided range (Erev 

& Ert 2013; Poulton 1989).  TP can be expected to reinforce this bias.  Had we used a 

common equally-spaced choice list with, say, 5% incremental steps, then the middle 

bias would have moved matching probabilities in the direction of 50% (both for the 

single and composite events).  This bias would have enhanced the main phenomenon 

found in this paper, a-insensitivity, and render our findings less convincing.  To avoid 

this problem, we designed choice lists that are not equally spaced.  In our design, the 

middle bias enhances matching probabilities 1/3 for single events and probabilities 2/3 

for composite events.  Thus, this bias enhances additivity of the matching 

probabilities, decreases a-insensitivity, and moves our a-insensitivity index toward 0.  

It makes findings of nonadditivity and a-insensitivity more convincing. 
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 Table B.1 lists the AEX events that we used.  Some questions were repeated for 

consistency checks.  The corresponding events are listed twice. 

TABLE B.1: List of events on which the AEX prospects were based 

Part Event Event description 

0 

(Training) 

E1 the AEX decreases by strictly more than 0.4% 

E1 the AEX decreases by strictly more than 0.4% 

E2 the AEX either decreases by less than 0.4% or increases by less 

than 0.1% 

E3 the AEX increases by strictly more than 0.1% 

E12 the AEX either increases by less than 0.1% or decreases 

E23 the AEX either decreases by less than 0.4% or increases 

E23 the AEX either decreases by less than 0.4% or increases 

E13 the AEX either decreases by strictly more than 0.4% or 

increases by strictly more than 0.1% 

1 

E1 the AEX decreases by strictly more than 0.2% 

E2 the AEX either decreases by less than 0.2% or increases by less 

than 0.2% 

E2 the AEX either decreases by less than 0.2% or increases by less 

than 0.2% 

E3 the AEX increases by strictly more than 0.2% 

E12 the AEX either increases by less than 0.2% or decreases 

E12 the AEX either increases by less than 0.2% or decreases 

E23 the AEX either decreases by less than 0.2% or increases 

E13 the AEX either decreases by strictly more than 0.2% or 

increases by strictly more than 0.2% 

2 

E1 the AEX decreases by strictly more than 0.1% 

E2 the AEX either decreases by less than 0.1% or increases by less 

than 0.3% 

E3 the AEX increases by strictly more than 0.3% 

E3 the AEX increases by strictly more than 0.3% 

E12 the AEX either increases by less than 0.3% or decreases 

E23 the AEX either decreases by less than 0.1% or increases 

E13 the AEX either decreases by strictly more than 0.1% or 

increases by strictly more than 0.3% 

E13 the AEX either decreases by strictly more than 0.1% or 

increases by strictly more than 0.3% 

 

 

Incentives 

For each subject, one preference (i.e., one row of one choice list) was randomly 

selected to be played for real at the end of the experiment.  If subjects preferred the 

bet on the stock market index, then the outcome was paid according to the change in 

the stock market index during the duration of the experiment.  Bets on the given 

probabilities were settled using dice.  In the instructions of the experiment, subjects 



 33 

were presented with two examples to familiarize them with the payment scheme.  If 

the time deadline for a TP question had not been met, the worst outcome (no payoff) 

resulted.  Therefore, it was in the subjects’ interest to submit their choices on time. 

 

APPENDIX C.  RESPONSE TIME, CONSISTENCY, AND 

MONOTONICITY 

Analysis 

We analyze response time to verify that subjects answered faster in the TP treatment.  

To do so, we will run panel regressions for the response time as described below.  For 

some events we elicited the matching probabilities twice to test for consistency, since 

TP can be expected to decrease consistency.  For each treatment and each part, we 

compare the first and second elicitation of these matching probabilities using t-tests 

with the Bonferroni correction for multiple comparisons.  In the rest of the analysis, 

we only use the first matching probability elicited for each event. 

 By set- monotonicity, the matching probability of a composite event should 

exceed the matching probability of either one of its two constituents.  Thus, we can 

test set-monotonicity six times in each part.  Weak monotonicity is defined by  𝑚𝑖𝑗 +

𝑚𝑗𝑘 ≥ 𝑚𝑖 + 𝑚𝑘 for all distinct 𝑖, 𝑗, 𝑘.  Thus, we can test weak monotonicity three 

times in each part.  We will run non-parametric analysis (Wilcoxon tests and Mann-

Whitney U tests) to test whether time pressure had an impact on the number of weak 

and set- monotonicity violations 

 

Results 

The average response time in the training part is more than 25 seconds, but it gets 

much lower in Part 1 and then again in Part 2 for both the control and the TP 

treatment.  Understandably, subjects needed to familiarize with the task.  In Table 

C.1, the benchmark model (Model 1) shows that the average response time of the 

control subjects in Part 1 is about 17s per matching probability.  It is about 4s longer 

than for subjects under TP, even though the TP-treatment subjects could spend up to 

25s to answer.  In Part 2, the control subjects answered faster than in Part 1.  
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TABLE C.1: Response time 

 

 Model 1 Model 2 

intercept 16.63*** 16.66*** 

 (1.00) (1.62) 

part 1 * TP treatment 4.13** 4.44*** 

 (1.32) (1.33) 

part 2 * control treatment 2.33** 2.33** 

 (0.71) (0.71) 

part 2 * TP treatment 1.77 2.08 

 (1.32) (1.33) 

male  1.45 

  (1.24) 

Dutch  0.99 

  (1.43) 

age – 20  0.48 

  (0.33) 

Chi2 27.82*** 31.36*** 

N 1584 1584 
+ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001.  Point estimates are followed by 

standard errors between brackets.  The impact of TP is in bold.  The variable age has 

been recoded as age − 20 so that the intercept corresponds to the response time of a 20 

year-old subject (median age) 

 

 

 We next analyze the consistency of the matching probabilities by comparing 

repeated elicitations of matching probabilities for some events.  Pairwise comparisons 

for each pair of matching probabilities with the Bonferroni correction indicate one 

difference, in one of the two tests in Part 1 for the TP treatment: the second matching 

probability m13 is higher than the first one (mean difference = 0.04; p = 0.01).  The 

other differences are not significant. 

 A similar pattern is found within the set-monotonicity tests.  Out of 6 

monotonicity tests, the average number of violations is 0.58 in Part 1 for the TP 

treatment, while it is only 0.30 in Part 2 for the same treatment and 0.36 and 0.24 in 

Parts 1 and 2, respectively, for the control treatment.  The difference between Parts 1 

and 2 in the TP treatment is significant (within-subject Wilcoxon signed-ranks test; Z 

= −2.61, p = 0.01) and the difference between the TP and the control treatment in Part 

1 is marginally significant (between-subject Mann-Whitney U test; Z = −1.71, p = 
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0.0916).  Out of 3 weak monotonicity tests, the average number of violations is 0.16 

and 0.11 in Parts 1 and 2 for the TP treatment, and 0.17 and 0.02 in Parts 1 and 2 for 

the control treatment.  None of the differences are significant. 
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