Data Van de Kuilen & Wakker (2006)
This page presents the data used in:
Van de Kuilen, Gijs & Peter P. Wakker (2006),
"Learning in the Allais Paradox,"
Journal of Risk and Uncertainty 33,
155-164.
Codebook
Each case (= participant) consists of two lines. The three entries on each first line indicate the following:
1: Participant's number
2: Treatment (1 = with feedback, 2 = without feedback)
3: Gender (Male/Female)
The fifteen entries on each second line indicate the choices made by each participant in each of the fifteen common-ratio choice pairs. 1 denotes a safe choice (prospect S) and 0 denotes a risky choice (prospect R); see paper p. 157 and 159. The first entry corresponds to the choice made in the non-reduced choice pair and the second entry corresponds to the choice made in the reduced choice pair; see paper p. 159. For example, 10 denotes a choice for prospect S in the non-reduced choice pair and a choice for prospect 0 in the reduced choice pair.
The Data Used in the Analyses of the Paper
1 1 F
01 00 10 00 01 00 01 01 01 10 11 00 01 00 11
2 1 M
01 01 10 00 01 00 01 01 01 00 00 00 00 00 00
3 1 M
10 10 10 11 11 11 10 11 11 11 11 11 11 11 11
4 1 M
00 01 01 10 10 11 01 00 11 11 10 00 11 10 00
5 1 F
10 10 10 00 00 00 01 00 01 00 00 10 00 10 00
6 1 M
10 00 01 10 10 11 00 00 10 00 00 00 00 00 00
7 1 F
00 00 00 00 00 00 00 01 00 00 00 00 00 00 00
8 1 F
11 11 11 11 11 11 11 11 11 11 11 11 11 11 11
9 1 F
10 11 10 10 10 11 11 11 10 11 10 10 11 11 10
10 1 M
11 10 11 00 00 10 00 00 00 00 01 00 00 00 01
11 1 M
11 11 10 11 10 10 10 10 10 10 10 10 10 11 11
12 1 M
10 10 10 00 10 10 00 00 11 11 10 10 00 10 10
13 1 M
01 10 01 01 00 00 00 01 10 00 00 10 00 10 00
14 1 M
11 01 01 01 01 00 11 00 00 00 00 00 00 00 00
15 1 M
10 10 10 10 00 00 01 10 10 10 10 10 11 11 11
16 1 M
00 00 10 00 00 00 10 00 00 00 00 00 00 00 00
17 1 F
10 01 01 01 01 01 01 00 00 01 01 00 01 01 00
18 1 F
11 11 11 11 11 11 11 11 11 11 11 11 11 11 11
19 1 M
01 01 10 00 00 00 00 00 01 00 00 00 00 00 00
20 1 F
11 10 11 10 11 11 01 00 00 01 01 01 00 01 01
21 1 M
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
22 1 F
11 10 00 01 01 10 10 01 10 00 11 10 11 11 10
23 1 M
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
24 1 M
10 11 00 00 01 00 01 00 10 01 01 10 10 11 11
25 1 F
00 00 00 11 10 00 10 10 10 10 10 00 10 10 10
26 1 M
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
27 2 F
01 00 00 00 10 00 10 10 00 10 10 00 10 10 00
28 2 M
10 10 00 11 00 00 01 00 11 00 00 10 01 10 10
29 2 F
00 10 01 11 00 10 11 01 11 10 10 00 01 11 10
30 2 F
00 01 10 10 01 10 00 00 00 00 00 00 10 00 10
31 2 F
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
32 2 F
11 10 10 10 10 10 10 10 10 10 10 10 10 10 10
33 2 M
01 01 00 01 01 01 01 01 01 01 01 01 01 01 01
34 2 F
10 00 01 10 10 11 11 11 10 10 10 10 00 10 10
35 2 M
10 10 11 11 11 11 11 11 11 11 11 11 11 11 11
36 2 F
10 00 00 10 01 01 01 00 01 01 00 00 01 01 01
37 2 F
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
38 2 F
01 00 01 10 00 01 10 00 01 00 01 00 01 10 00
39 2 M
00 10 10 10 11 11 10 10 10 10 10 10 10 00 01
40 2 F
10 11 11 00 10 10 10 10 10 10 10 10 10 10 10
41 2 M
11 11 11 10 01 11 11 00 00 10 00 01 11 11 10
42 2 F
11 11 10 01 10 11 00 10 00 11 00 10 10 10 10
43 2 M
01 10 00 10 01 00 10 01 01 10 00 00 10 10 00
44 2 F
00 01 01 10 10 00 01 10 11 00 11 11 01 01 01
45 2 F
10 10 11 10 11 10 01 10 11 01 10 11 10 11 11
46 2 F
10 00 11 01 00 01 10 00 00 01 00 10 00 10 00
47 2 M
10 01 11 00 10 01 11 00 01 10 01 00 10 01 11
48 2 M
00 00 10 10 10 10 10 10 10 10 10 10 10 10 10
49 2 F
01 00 01 10 01 11 01 01 01 01 01 01 01 01 01
50 2 M
10 11 01 10 10 11 01 11 01 00 01 00 01 01 00
51 2 F
01 00 00 01 11 01 01 01 01 01 01 01 01 01 00
52 2 M
01 01 11 00 01 00 10 00 00 10 11 11 11 10 11