DOES INTELLIGENCE BOOST HAPPINESS?
Smartness of all pays more that being smarter than others

Ruut Veenhoven and Yowon Choi

In: International Journal of Happiness and Development, ISSN 2049-2804
2012 1:5-27

ABSTRACT:
We invest much in maximizing intelligence and we get ever smarter: But does this make us any happier? The relation between intelligence and happiness is explored on two levels, at the micro-level of individuals and at the macro-level of nations. At the micro-level, we looked at the results of 23 studies and found no correlation between IQ and happiness. At the macro level, we assessed the correlation between average IQ and average happiness in 143 nations and found a strong positive relationship. Together these findings mean that smartness of all pays more than being smarter than others.

1 INTRODUCTION

It is commonly assumed that smart people cope better with life and will therefore be happier, especially in a modern meritocratic society. This belief is one of the reasons why many parents force their children to spend more time on learning than they might like, with a hope that more education will make the child more intelligent and thus happier in later life. Are smarter people really happier? There are also notions such as unworldly wisdom, creating unhappy eggheads (Lecklider, 2010). And the years spent in school may be less happy than years spent in real life.

It is generally believed that an intelligent populace will be lead to a better society and hence to a higher level of public happiness. This is one of the reasons why many politicians plea for more education than is already standard in modern societies. There are also counter notions, such as the idea that society has become too rational and that non-cognitive potential is underdeveloped in modern education.

These ideas are discussed in more detail in this paper, taking into account the available data on the relationship between intelligence and happiness.

1.1 Views on the relationship between intelligence and happiness
The belief that intelligence links to happiness has several roots. One is that both are manifestations of a healthy mind. Another view is that intelligence and happiness are conceptually different but causally related, intelligence being instrumental to happiness and, possibly, that happiness facilitates intellectual development. In the skeptical view,
intelligence and happiness are also conceptually different and causal relations may be non-existent or negative. These views are dealt with in more detail below.

Intelligence and happiness as manifestations of a healthy mind

Intelligence is often recognized as ‘wisdom’, especially in the areas of philosophy and religion. In this view wisdom is overlapped by happiness, at least by happiness in the sense of ‘eudaimonia’, which Aristotle associated with intellectual activity (Schwartz & Sharpe, 2006). In the same vein, intelligence and happiness figure jointly in notions of positive mental health, e.g. in the discussion of ‘ego resilience’ by Block and Kremen (1966).

Intelligence generates happiness

The view that intelligence is conductive to happiness has been proclaimed by many scholars. For instance, Helen Adam Keller (1880-1968) wrote, “Knowledge is happiness, because to have knowledge — broad deep knowledge — is to know true ends from false and lofty things from low”…. “To know the thoughts and deeds that have marked man’s progress is to feel the great heart beats of humanity through the centuries; and if one does not feel in these pulsations a heavenward striving, one must indeed be deaf to the harmonies of life” (Keller, 2003). In this view, intelligence means knowledge that is acquired through education.

Studies into the long-term effects of intelligence also suggest that it has positive effects on happiness. High scores in intelligence tests at school age are predictive of later achievements in education and occupation (e.g. Rutter, 1989), and a long-term follow-up of American children who scored higher than 135 on an IQ test has shown that these master minds maintained also better health (Terman, 1959). A recent meta-analysis of follow-up studies has confirmed that IQ is a powerful predictor of socio-economic success, but that it has little more power than parental social economic status or school grades to do this (Stenze, 2007).

Intelligence affects happiness at best marginally

Critics of IQ-testing argue that IQ tests were developed to predict success in school and predict little more than that, certainly not happiness. Several findings support this view: e.g. IQ appears to be unrelated to adjustment to military life (Zingler & Seitz, 1982) and the mental abilities necessary for succeeding as a manager appear to be very different from the skills assessed in IQ tests (Klep & McClelland, 1986). Likewise, the relation between IQ and performance at work appears to reduce over the years and it has been found that experienced low-IQ workers can outperform co-workers with higher IQ scores after 4.5 years (Kamin, 1995).

Another criticism leveled at IQ testing is that there is no such thing as 'general intelligence', and that one might better think of 'multiple intelligences' that relate in different ways to performance on different tasks (Gardner, 1984). The idea of ‘emotional intelligence’ (EI) has been put forward to support the criticism that IQ is limited to the cognitive process of human mental power (Salovey & Mayer, 1990).

In this school of thought, happiness is more likely to depend on situational relevant abilities than on a standard set of school related abilities.
Intelligence brings happiness down

There is also the opposing view that intelligence can decrease happiness. Some of the reasoning behind this view is that understanding can hurt, in particular because it brings life’s imperfections to ones awareness. A common stereotype holds that gifted people are apt to have tragic lives. This view is reflected in popular sayings, such as “From ignorance our comfort flows, only the wretched are the wise”, “In much wisdom is much vexation”, and “Where ignorance is bliss, 'This folly to be wise"

Another line of reasoning concerns 'school-intelligence' in particular and holds that the cultivation of this type of intelligence comes at the cost of other capabilities that are more required to lead a happy life. Illich (1970) is a proponent of this view and advocates the 'de-schooling' of society.

Happiness breeds intelligence

There is a growing body of literature on the consequences of happiness (Lyubomirsky, Diener & King 2005) and some of this literature suggests that happiness has a positive effect on cognitive development. For example, people who have been induced to feel happy perform better at complex mental task (Isen & Means, 1983), people in a positive mood are more likely to have richer associations within existing knowledge structures and to use more frequent heuristics, and are more likely to be flexible and creative (Isen, 2000). Fredrickson’s (2001) ‘broaden and build theory’ suggests that the experiencing of positive emotions expands people’s momentary thought-action repertoires and builds up personal resources, including intellectual resources.

The opposite view is that happiness may thwart intellectual development. In this context a common argument is that happiness makes people lazy and uncritical, and therefore less apt to train their brain. This view fits with the idea of ‘depressive realism’; mildly depressed people are more accurate in their perceptions of how others see them than those who are not depressed (Alloy & Abramson, 1979). It also matches the finding that performance of some tasks tends to be lower in induced positive affect states, among which is the task of solving logical problems (Melton, 1995).

1.2 Plan of this paper

Which of these views fits reality best? Below we report on two studies that give some answers to this question. Study 1 was a synthesis of the available research findings at the micro level. We considered the results of 23 studies on the relationship between IQ and the happiness of individuals. Study 2 was a new study at the macro level in which average IQ and happiness were compared across nations. We analyzed data from 139 contemporary nations. Two preliminary steps were to define the concepts of intelligence and happiness and then to select of appropriate measures of these.
2 CONCEPTS AND MEASURES

The terms 'intelligence' and 'happiness' are used in different ways in different fields. Hence our first step was to define how we will use these terms.

2.1 Intelligence

A common definition of intelligence is “the ability to understand complex ideas, to adapt effectively to the environment, to learn from experience, to engage in various forms of reasoning, to overcome obstacles by taking thought” (Neisser et al., 1996). This broad definition covers several more specific notions of intelligence that link with different methods of measurement.

School intelligence

Mostly, the word intelligence is used to denote a set of school-related mental capabilities that can be measured using an IQ test. These tests were initially developed as a means to predict school success (Binet & Simon, 1916) and hence they are designed largely to measure the same capabilities as actual school performance, such as quantified in GPA scores. There is a massive research literature on this kind of intelligence (Sternberg, 2000a).

Other mental abilities

The term intelligence is also used to denote mental capabilities that are less central to school education, such as the ability to find new solutions (creativity) and the ability to read other people's feelings (empathy). These matters are not easily 'tested' using performance on tasks and therefore several investigators have resorted to using self-estimates (Bar-On, 1997). This technique is dubious however (Derksen, Kramer & Katzko, 2002) and certainly not suited to assess the relationship of intelligence with happiness, since happy people typically have higher self-esteem and are thus likely to be more positive about their skills. Although there is considerable research on the relationships between these types of intelligence with happiness, we will not consider this in this paper.

Wisdom

Intelligence is sometimes denoted as 'wisdom' and in this case the term is used to cover a broad range of mental proficiencies and attitudes, among which are a distanced view on life and moral maturity. There have been some attempts to approach wisdom systematically as a psychological variable (Baltes & Staudinger, 2000; Sternberg, 2000b), and even to measure this, using lengthy self report inventories (Hawley, 1999; Ardelt, 2003). Scores on such self reports are related to self reported happiness (Bergsma & Ardelt, 2011), but the correlation could be the spurious result of a positive view on oneself. There are also attempts to assess wisdom using objective assessment of core capabilities, such as clinical ratings of insight in oneself, accurate use of personal information in making choices and systemizing goals plans and life stories (Mayer, 2009). Yet the meaning of the subject matter covered is not too clear and data are scarce.
Given these constraints, we will define intelligence in the narrow sense as school intelligence, and use IQ-tests and school grades as indicators of intelligence. The issue is thus reduced to the question of whether further cultivation of school related abilities will make us happier.

2.2 Happiness

Happiness is defined as the 'subjective enjoyment of one's life-as-a-whole' and is also called 'life-satisfaction'. This concept is delineated in more detail in Veenhoven (1984: 22-37, 2010a). Happiness in this sense concerns one’s subjective appraisal of life and does not overlap with intelligence when seen as objective mental capability.

Since happiness is something we are aware of, it can be measured using self-report. Various questions and questionnaires have been used for this purpose, but not all of these address the matter equally well. Some questions concern subtly different things, such as whether one thinks one-self to be happier than average, and most multi-item inventories reduce the evaluation of life-as-a-whole to the sum of one’s satisfaction with a set of specific life-domains. Still, there are many acceptable measures and these are listed in the collection ‘Measures of Happiness’ that is part of the World Database of Happiness (Veenhoven, 2010a).

3 STUDY 1

Synthesis of studies at the individual level

Studies on the relationship between intelligence and happiness at the level of the individual were selected from the Bibliography of Happiness (Veenhoven, 2010b), subject section ‘cognitive abilities’ (code Ic04.02). We found 23 empirical studies. These studies were done in ten different nations and involved 15,827 respondents. We extracted 61 findings from the reports. The findings on earlier intelligence and current happiness are reported in Appendix A1-2. The findings on current intelligence and current happiness are reported in Appendix B1-4. The findings were too diverse to make a quantitative meta-analysis. We will thus present a narrative account of the findings below.

Earlier intelligence and present happiness

In six follow-up studies among normal people the relationship between initial intelligence and later happiness was assessed. Four of these studies found no greater happiness among initially smarter people. One of the studies shows the reverse, managers who scored high on IQ tests when entering a company in their twenties, appeared to be less happy in their forties than colleagues who had scored lower. Another study found a positive effect of earlier verbal ability on happiness, but no effect for earlier mathematical ability (Appendix A1).

A long-term follow-up of a cohort of exceptionally intelligent schoolchildren also does not show a positive effect for intelligence on happiness, forty years on the ‘very gifted (IQ>180) appeared to be no happier than the ‘just’ gifted (IQ>140). See appendix A2.
Current intelligence and current happiness

In nineteen of the studies researchers had assessed the relationship between current intelligence and current happiness. In eight of these studies overall IQ scores were used. No positive relationships were found between IQ and happiness and in one case a negative correlation appeared, again in the study among managers (Appendix B1).

In ten of the studies specific intellectual abilities were considered and few significant correlations were found. The scores of subjects tested on perceptual and mathematical ability appeared to be unrelated to happiness. At best there are indications that performance in memory tasks and idea generation is related to happiness. In one of these studies the researchers controlled for other predictors of happiness and this reduced the correlation to insignificance (Appendix B2).

No correlation was found in six studies where researchers considered the relationship of a subject’s current verbal ability and happiness (Appendix B3).

Finally in three studies the subjects were individuals with intellectual disabilities. The degree of disability appeared to be unrelated to happiness, but those with an intellectual disability appeared to be happier than normal people (Appendix B4).

These findings fit an earlier meta-analysis by DeNeve & Cooper (1998) who found almost no correlation between intelligence and happiness in a series of 19 studies, most of which were also used in the present analysis.

Self-perceived intelligence and happiness

Although little correlation has been found between actual intelligence and happiness, several studies have found strong correlations between self-perceived intelligence and happiness. These data are not shown here, but can be found on the collection of ‘Correlational Findings’ of the World Database of Happiness (Veenhoven, 2010c), subject section ‘Happiness and Self perceived intelligence’ (code I3.2.3). This finding fits our reservations about self-report measures of wisdom and emotional intelligence.

Scheme 1

4 STUDY 2

Average IQ and happiness in nations

Study 1 showed that school-smart individuals are not happier. Still it could be that in smart populaces the group profits from abilities that are not profitable for individual members. We investigated this with in an analysis of average intelligence and happiness in 139 nations.

Data

Findings on IQ scores in nations were gathered by Lynn & VanHanen (2002, 2006), who found comparable data for 192 nations for the second half of the 20th century. Most of these data resulted from the application of a Raven Progressive Matrices Test to representative samples. The data were adjusted for the Flynn effect so that scores obtained in different periods could be combined.

Data on average happiness in these nations were taken from the World Database of Happiness; collection ‘Happiness in Nations’ (Veenhoven, 2010d). These data are
based on surveys in the general population in various nations over the years 2000 to 2009 and cover 150 nations. In most of these countries happiness was measured using the following question: *All things considered, how satisfied or dissatisfied are you with your life as-a-whole these days?* Responses were rated on a numerical scale ranging from 0 (not satisfied) to 10 (very satisfied). Rating ranged from 1 to 10 in some of the surveys and these scores were stretched linearly Details are reported in Veenhoven (2010d).

The IQ and the happiness variables are available for 143 nations, which covers about 95% of the world’s population. The large number of nations for both variables was crucial. Earlier analyses using smaller numbers of nations have yielded different results (Choi & Veenhoven 2005, Lynn 2008).

Scheme 2

4.2 Results

There is a strong correlation between IQ and happiness in nations: $r = +.60^5$. This relation is depicted graphically in [scheme 3](#). The correlation is largely driven by the cluster of nations that pair low IQ with low happiness at the bottom left of the scattergram. These are mainly African nations, where data was not available for earlier studies on this matter, e.g. Zimbabwe (ZW) and Mozambique (MZ). The pattern is less clear in the bigger cluster at top-right, where the average IQ is higher than 80. This is why earlier studies found no relationship between IQ and happiness (Choi & Veenhoven, 2005, Lynn 2008). In this context the position of the industrialized Asian nations is noteworthy. China (CN), Hong Kong (HK), South Korea (KR), Japan (JP) and Singapore (SG) score highest on IQ, but not on happiness. At first sight this would suggest that there is a pattern of diminishing returns, i.e. smart countries do not become much happier as they get even smarter. Yet particular circumstances may depress the correlation in this cluster as we will argue in the discussion section.

Control for economic development

Typically IQ is higher in the more developed nations and the higher happiness in these nations may be due to related matters such as economic prosperity, political democracy and personal freedom. We checked for this possibility by controlling for buying power per head, which is a good proxy for societal development. The correlation is halved: the partial correlation being $.35$. To get a closer view we also ran separate analyses for subsets of poor nations, with a buying power per head lower than 8000, and rich nations where buying power is more than this. Among the poor nations we found a positive correlation, $r = +.52$. Among rich nations a lower correlation emerged: $r = +.17^7$.

Split-up by culture

The correlation found between IQ and happiness in nations could also be the spurious result of cultural differences, for instance because Western cultures value intellectual development and also happen to nurture happiness. We checked for this in a separate analysis of six subsets of nations: African nations, Asian nations, Middle East nations, Ex-communist East-European nations, Latin America and Western nations. We found high positive correlations in the following regions: Asia, Latin America, Middle East and
western nations. No correlation appeared among African nations and former communist
East European nations. See scheme 4.

This latter test of the correlation in different cultures suggests that there is a robust
statistical relationship between average IQ and happiness in nations, which tends to be
disguised when all cultures are put in one hat. This is another reason why our result
differs from the earlier analysis by Lynn (2008).

5 DISCUSSION

No correlation between IQ and happiness was found at the individual level (study 1) but a
strong correlation between the two was found at the nation level (study 2). How can that
be? Let us first consider these findings separately and then the contradiction.

5.1 Why are smarter people not happier?
In study 1 we found no correlation between IQ and happiness, neither for childhood IQ
and present day happiness, nor for current IQ and current happiness. The following
explanations come to mind.

Trivial?
One explanation could be that intelligence is too trivial to affect happiness. In this
approach one can argue that IQ tests measure a rather narrow range of cognitive abilities
that predict success in school better than success in life. Yet there is good evidence that
IQ predicts more than performance in school, it also predicts success at work and a high
IQ is even predictive of health and longevity (Terman & Oden, 1959; Rutter, 1989;
Herrnstein & Murray, 1994; Hartog & Oosterbeek, 1998; Singh-Manonx et al., 2005;
Strenze, 2007). In this light a more probable explanation would seem to be that the
evident rewards of intelligence are counterbalanced in some way. The question is then: In
what ways?

Negative concomitants of IQ
One offset could be in expectations. School-smart people could expect more of life and
therefore end up equally happy as the less smart, who expect less. A related drawback
could be that gifted people must live up to the high expectations of their kin (Holahan et
al., 1999).

This explanation is also used to account for the low correlation between education
and happiness (Diener & Biswas-Diner, 2002; Hartog, 1998). However, one could as well
assume that the expectations of intelligent people are more realistic, which should give
rise to greater happiness. At a more basic level, the cognitive theory behind this
explanation can be criticized. Happiness is mostly not ‘calculated’ from the difference
between ideal and reality, but is rather ‘inferred’ from affective experience, which in its
turn reflects the gratification of basic needs (Veenhoven, 2009).

Another explanation holds that knowledge hurts, because it confronts us with the
imperfections of this world and our-self. In this view ignorance is bliss. Yet this account
does not fit the fact that happy people are typically well informed and open to acquiring
more information (Isen, 2002).
A more plausible explanation would seem to be that the cultivation of school-intelligence involves costs. These costs can be in hours spent in school, not spent on sports or socializing and thus in underdevelopment of other capabilities required to lead a satisfying life. In this light Diener & Seligman (2002) warn against sacrificing the time required to develop satisfying relationships with friends and family. The unhappy ‘nerd’ who is good with books but clumsy in social life may be exemplary of a wider phenomenon. A related explanation is that smart pupils have to live up to high expectations (Holahan, Holahan & Wonacott, 1999). These explanations link up with criticism of school systems that focus too much on test performance, such as the competitive school systems of Japan and South Korea, where children are often required to take extra out of hours classes to succeed.

In the same vein there could be costs involved in intellectual work, such as overburdening the brain and lack of physical effort. Though symbol-manipulation is a specialty of the human species, the human repertoire is broader. There may also be attendant costs such as working in an alienating bureaucracy. To our knowledge this matter has not been investigated to any extent, possibly because investigators tend to value brainwork too highly.

Selectiveness

Another explanation could be that unhappy people are more apt to cultivate their brains and that this selection veils an otherwise positive effect of intelligence on happiness. A check of this explanation would require follow-up of a cohort from childhood on. The follow-ups reviewed in study 1 can not answer this question, since happiness was not assessed at baseline. To our knowledge there are no studies that meet this requirement.

In conclusion: we have a clear outcome, but no definite way to account for it; and what we are left with is a relevant issue for further research.

5.2 Why still greater happiness in smarter nations?

In study 2 we found a strong correlation between average IQ and average happiness in nations. Study 1 showed that this cannot be due to the greater happiness of smarter individuals. What else can explain this result?

Spurious correlation?

One possible explanation is that average IQ and average happiness depend on the same social conditions. One such condition can be the availability of adequate nutrition and health care, since both intelligence and happiness benefit from a healthy body, in particular from healthy pre- and post natal conditions. Likewise, the modernizing of society can boost both intelligence and happiness. Societal modernization enhances intelligence for several reasons, one of which is that use of technology sets high demands on symbol manipulation. Modernization of society can also enhanced happiness (Veenhoven & Berg, submitted), one of the reasons being that it involves individuals having more choice. Together these developments can create a positive correlation, while intelligence does not add to happiness or may even detract from it.

Much of this common variance should be removed when the degree of modernity is partialled out. We did that check in section 4.2. The correlation was halved, but
remained substantial: partial r being +.35. Splitting the poor and rich nations also did not wipe out the correlation. So this cannot be the whole story. What is more, modernity can also be a causal link between average intelligence and happiness in nations, as we will see below.

Should more nation characteristics be controlled, as a reviewer suggested? Controls make sense only if there are good reasons to expect that a variable distorts the picture and we do not see plausible candidates. It is easier to think of variables that mediate the relation between average intelligence and happiness in nations.

Possible causal effects
For society to function its members require various abilities and these abilities differ as to society evolves: e.g. physical skill will be, generally, more important in a hunter-gatherer society than in a present day industrial society. The abstract mental abilities that we call ‘intelligence’ are particularly essential for the functioning of modern society, which is characterized by a fine grained division of labor and continuous technological development. It is for this reason that all modern societies have developed extensive education systems (Nolan & Lenski, 2009).

As noted above, a modern society breeds more happiness than a pre-modern society does; in the most modern nations of this time we now live longer and happier than ever before in human history. Various causal mechanisms are involved, such as a stable social environment that allows much individual autonomy, produces less violent conflict, provides for more material comfort, offers better health care, all set in a competitive economy that keeps us going (Veenhoven, 2006, 2010e). Seen in this context, a high level of intelligence is instrumental for this type of society that in its turn is instrumental to happiness. In this way the average intelligence of the population in a country can give rise to greater happiness indirectly, with its effect being mediated by societal conditions.

This explanation predicts that the correlation will largely disappear when societal development is controlled. This appears to be the case indeed. As noted above, the correlation is reduces to +.35 when income per head is partialled out. In this line one can also expect that average intelligence in a country is also instrumental to the proper functioning of institutions in his complex type of society. Additional control for government effectiveness and rule of law reduces indeed the correlation to +.27.

Since societal development does not explain all the common variance of average intelligence and happiness in nations, there are apparently more causal effects involved. One of these could be the reduction of conflict, intelligent populations being less apt to stereotyping and more inclined to peaceful conflict resolution. If so, that should materialize in less violent conflict, greater trust and more tolerance. Additional control for these variables should therefore reduce the correlation even further. This implication cannot be checked as yet, because we lack data on that matter for the African nations where intelligence is lowest.

5.3 Why no stronger correlation among developed nations?
If intelligence is more functional in developed society, one would expect that the correlation between average IQ and happiness is stronger among the most developed nations than among the least developed nations. Scheme 4 provides mixed support for
this prediction. The correlation between average IQ and average happiness is indeed lowest among the least developed African nations. Yet among all the poor nations together, the correlation is higher than among the rich nations.

Possibly this is a historical coincidence. All the nations at the right part of the scheme are developed nations with strong schooling systems that produce an intelligent populace. Yet in some of these countries the level of happiness is lower than characteristic for developed nations. In the East-European nations, happiness is temporarily depressed by the legacy of communism and the rapid transformation since 1990. Happiness is picking up in these countries (Baltatescu, 2006), but that does not yet reflect the scores used here, which draw on surveys between 2000 and 2009. Average happiness is also relatively low in Asian ‘Tiger’ nations and this pattern may also be due to social transitions, among which the change from traditional collectivism to modern individualism (Stam & Veenhoven, 2007). If so, the correlation between average IQ and happiness will get stronger in this part of the world in the years coming.

6 CONCLUSION

Smart people are not happier than their less smart fellow citizens, but average smartness of compatriots goes together with average happiness in nations. This suggests that intelligence adds to happiness only indirectly through its effects on society. Educators should acknowledge this counter intuitive finding.
Scheme 1
Summary of findings

<table>
<thead>
<tr>
<th>Kind of intelligence</th>
<th>Correlation with happiness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Older</td>
<td></td>
</tr>
<tr>
<td>Actual intelligence</td>
<td></td>
</tr>
<tr>
<td>Earlier</td>
<td></td>
</tr>
<tr>
<td>IQ of normal persons</td>
<td>+/-</td>
</tr>
<tr>
<td>Very high IQ (vs. high)</td>
<td>0</td>
</tr>
<tr>
<td>Current</td>
<td></td>
</tr>
<tr>
<td>General IQ</td>
<td>0</td>
</tr>
<tr>
<td>Specific abilities</td>
<td>0</td>
</tr>
<tr>
<td>Normal (vs. disabled)</td>
<td>-</td>
</tr>
<tr>
<td>Self-perceived intelligence</td>
<td>++</td>
</tr>
</tbody>
</table>
Scheme 2
Data on IQ and happiness in 143 nations

<table>
<thead>
<tr>
<th></th>
<th>Actual range</th>
<th>M</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>IQ</td>
<td>59 – 108</td>
<td>84,7</td>
<td>11,8</td>
</tr>
<tr>
<td>Happiness</td>
<td>3.2 - 8.5</td>
<td>5,9</td>
<td>1,3</td>
</tr>
</tbody>
</table>
Scheme 3
Average IQ and average happiness in 143 nations

Does intelligence boost happiness?
Scheme 4
Correlation between average IQ and happiness in different sets of nations

<table>
<thead>
<tr>
<th>Set of nations</th>
<th>r</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>All nations</td>
<td>+.60</td>
<td>143</td>
</tr>
<tr>
<td>Rich nations > 8000</td>
<td>+.17</td>
<td>65</td>
</tr>
<tr>
<td>Poor nations < 8000</td>
<td>+.52</td>
<td>75</td>
</tr>
<tr>
<td>African nations</td>
<td>+.06</td>
<td>35</td>
</tr>
<tr>
<td>Asian nations</td>
<td>+.62</td>
<td>20</td>
</tr>
<tr>
<td>East-European nations</td>
<td>+.02</td>
<td>25</td>
</tr>
<tr>
<td>Middle-East nations</td>
<td>+.20</td>
<td>15</td>
</tr>
<tr>
<td>Latin American nations</td>
<td>+.47</td>
<td>24</td>
</tr>
<tr>
<td>Western nations</td>
<td>+.43</td>
<td>23</td>
</tr>
</tbody>
</table>
NOTES

1 Prior, 17C

2 Gray, 1747.

3 That research is summarized in the World Database of Happiness, collection 'Correlational Findings' (Veenhoven 2010c). Look under: Creativity (subject code C10)

4 These data on average IQ and average happiness in nations are available in the data file ‘States of Nations’ (Veenhoven 2010c), which contains much more data on nation characteristics, among which data on income per head. This data file is available on request. The variable codes are respectively IQ_2006 and HappinessLS10.11_2000s.

5 Unlike most cross-national studies we do not report significance of correlations. Significance-statistics provide information about the likelihood that the correlation observed in a sample exists in the wider population and assumes probability sampling. Since this set of nations does not represent a representative sample of all nations of the world, such statistics make no sense here.

6 In this set of 140 nations buying power per head is highly correlated with other manifestations of modernity, such as share of the service sector (r = +.53), urbanization (r =+.64), women emancipation (r = +.76) and globalization (r = +.78)

7 Different cut-off points between rich and poor produce similar results.

8 A reviewer suggests that we control the level of education in a country, using literacy as an indicator. Control for enrolment in education reduces the indeed the correlation between average intelligence and happiness in nations, but does not demonstrate a spurious effects, Schooling and intelligence are two sides of the same coin and hence controlling one wipes out the other.

9 Variables in data file States of Nations: GovDemocraticQuality_2006 and GGovEffectiveness_2066

10 Variable in data file States of nations: RuleLaw_2006

11 Association expressed in Ordered Probits, which do not allow interpretation of absolute effect size

12 Chi value not reported

13 Somers d computed from frequency distribution
REFERENCES

References marked with an asterisk indicate studies included in the data analysis

Alloy, L. B., & Abramson, L. Y. (1979)
Judgment of contingency in depressed and non-depressed students: Sadder but wiser
Journal of Experimental Psychology, 108: 441-85

The role of psychosocial context, age and intelligence in memory performance of older men
Psychology and aging, 7: 25-36

Empirical assessment of a three-dimensional wisdom scale
Research on Aging, 25: 275 - 324

Youth in transition Vol. II: The impact of family background on intelligence in 10th-grade boy.
University of Michigan, Ann Arbor, Michigan: Institute for Social Research

Transition is over, wait to see the benefits. A comparative evaluation of the effects of post-communist transitions on life-satisfaction
Paper presented at the conference ‘End of Transition’, Budapest, Hungary

Wisdom: a meta-heuristic (pragmatic) to orchestrate mind and virtue towards excellence
American Psychologist, 55: 122-36

Bar-On, R (1997)
The Emotional Quotient Inventory (EQ-i)
Technical Manual. Toronto Multi Health Systems

Bergsma, A. & Ardelt, M (2011)
Self reported wisdom and happiness: an empirical investigation
Journal of Happiness Studies, on-line since 26-05-2011

Binet, A. & Simon, T (1916)
The development of intelligence in children
Williams & Wilkins Company, Baltimore, USA
IQ and ego-resilience: conceptual and empirical connections and separateness

Bray, D.W. & Howard, A. (1980)
Competence and coping during adulthood
Hanover, New Hampshire: University Press of New England (pp. 258-287)

Cameron, P. (1975)
Mood as an Indicant of Happiness: Age, Sex, Social Class and Situational Differences

IQ and happiness
Working paper, Happiness research group, Erasmus University Rotterdam

Constantinople, A.P. (1965)
Some correlates of happiness and unhappiness in college students
Unpublished dissertation, University of Rochester, USA

The happy personality: a meta-analysis of 137 personality traits and subjective wellbeing
Psychological Bulletin, 124: 197-229

Does a self report measure of emotional intelligence measure something different than general intelligence?
Personality and Individual Differences 32: 37-48

Will money increase subjective well-being? A literature review and guide to needed research
Social Indicators Research, 57: 119-169

Very happy people
Psychological Science, 13, 80–83

A follow-up of subjects scoring above 180 IQ in Terman's "Genetic Studies of Genius"
Exceptional Children, 51: 518-523

Fredrickson B.L. (2001)
The role of positive emotions in positive psychology: The broaden and build theory of positive emotions
American Psychologist, 56: 218-226

Gorman, B.S. (1971)
A multivariate study of the relationship of cognitive control and cognitive style principles to reported daily mood experiences
Dissertation, City University of New York, USA

Lifetime intellectual function and satisfaction with life in old age: longitudinal cohort study
British Medical Journal, 331, 141-142

Health, Wealth and Happiness. Why Pursue a Higher Education?
Economics of Education Review, 17: 245 - 256

The Bell Curve: Intelligence and Class Structure in American Life
New York: Free Press

Measures of Psychosocial Development
Odessa, FL: Psychological Assessment Resources

Self-appraisal, life satisfaction, and retrospective life choices across one and three decades Psychology and Aging, 14, 238-244

Illich, Ivan (1973)
De-schooling Society
Harmondsworth: Penguin.

Missing in Action in the AIM: Positive Affect's Facilitation of Cognitive Flexibility, Innovation, and Problem Solving
Psychological Inquiry, 13: 57-65

Positive affect and decision-making
The influence of positive affect on decision-making strategy
Social Cognition, 2: 18-31

Lies, dammed lies, and statistics

Story of my life 1911
USA: Kessinger Publishing

What characterizes intelligent functioning among senior managers?

Inventing the Egghead: The Paradoxes of Brainpower in Cold War American Culture
Journal of American Studies 1-21

Ludwig, L.D. (1971)
Elation-Depression and skill as determinants of desire for excitement
Dissertation, University of Wisconsin, USA

Lyubomirsky, S, Diener, E. & King, L. (2005)
The benefits of frequent positive affects: Does happiness lead to success?
Psychological Bulletin, 131: 803-855

IQ and the Wealth of Nations
Westport, CT: Praeger

IQ and Global Inequality
Washington Summit Publishers

Lynn, R.J. (2008)
IQs of nations and their correlates

Matikka L.M., Ojanen, M. (2002)
Happiness in persons with intellectual disabilities
Working paper of the FAMR Research Unit, Helsinki, Finland

Ruut Veenhoven Yowon Choi 20 *Does intelligence boost happiness?*
Mayer, J.D. (2009)
Personal intelligence expressed: A theoretical analysis
Review of General Psychology 13: 46-58

Bringing psychology to Capitol Hill: Briefings on child and family policy
American Psychologist, 50: 766-771

Intelligence: Knowns and unknowns
American Psychologist, 51, 77-101

Happiness and games of chance paper
Allensbach, Germany, Institut für Demoskopie.

Human Societies: An Introduction to Macrosociology
11th edition Paradigm Publishers, Colorado, USA

*Palmore, E. B. & Luikart, C. (1972)
Health and social factors related to life satisfaction
Journal of Health & Social Behavior, 13: 68-80

*Pandey, C. (1971)
Popularity, rebelliousness, and happiness among institutionalized retarded males
American Journal of Mental Deficiency, 76: 325-331

Pathways from Childhood to adult life

Emotional intelligence
Imagination, Cognition, and Personality, 9, 185-211

Practical wisdom: Aristotole meets Positive Psychology
Journal of Happiness Studies, 7: 377-395

The Role of Cognitive Ability (Intelligence) in Explaining the Association between Socioeconomic Position and Health: Evidence from the Whitehall II Prospective Cohort Study American Journal of Epidemiology, 161: 831-839
Sears, P.S. & Barbee, A.H. (1977)
Career and Life satisfactions among Terman's gifted women

Sigelman, L. (1981)
Is ignorance bliss? A reconsideration of the folk wisdom
Human Relations, 34: 965-974

Spearman, C. (1904)
General intelligence, objectively determined and measured
American Journal of Psychology, 15: 201-293

Quality of life & Happiness of people in Japan and The Netherlands
KIT Publishers, Amsterdam, Encounters Series Volume I,

Sternberg, R. (2000a)
Handbook of Intelligence
Cambridge University Press, Cambridge, USA

Sternberg, R. (2000b)
Intelligence and wisdom

Strenze, T (2007)
Intelligence and socioeconomic success: a meta-analytic review of longitudinal research
Intelligence, 35: 401-426

Terman, L.M., & Oden, M.H. (1959)
The gifted group at mid-life, thirty-five years follow-up of the superior child: Genetic studies of genius, V.3.
Stanford, CA: Stanford University Press

Tobacyk, J. (1981)
Personality differentiation, effectiveness of personality integration and mood in female college students
Journal of Personality and Social Psychology, 41: 348-356

Veenhoven, R. (1984)
Conditions of Happiness
Dordrecht/Boston: Reidel
Quality of life in modern society, Measured with Happy Life Years

Veenhoven, R. (2009)
How do we assess how happy we are?

Veenhoven, R. (2010a)
Measures of happiness
World Database of Happiness, Erasmus University Rotterdam
http://worlddatabaseofhappiness.eur.nl/hap_quer/hqi.fp.htm

Veenhoven, R. (2010b)
Average happiness in 146 nations 2000-2009.
World Database of Happiness, Erasmus university Rotterdam.

Veenhoven, R. (2010c)
Correlational findings on happiness
World Database of Happiness, Erasmus University Rotterdam
http://worlddatabaseofhappiness.eur.nl/hap_cor/cor_fp.htm

Veenhoven, R. (2010d)
States of nations: dataset for the cross-national analysis of happiness
World Database of Happiness, Erasmus University Rotterdam
http://worlddatabaseofhappiness.eur.nl/statnat/statnat_fp.htm

Veenhoven, R. (2010e)
Life is getting better: Societal evolution and fit with human nature
Social Indicators Research 97:105-122

Has modernization gone too far? Modernity and happiness in 141 countries
Paper under review
*Washburne, J. N. (1941)
Factors related to the social adjustment of college girls
Journal of social Psychology, 13: 281-189

*Watson, G. (1930)
Happiness among adult students of education
Journal of Educational Psychology, 21: 79-109

Quality of life, intelligence and mood
Social Indicators Research, 36: 287-299

*Webb, E. (1915)
Character and intelligence: An attempt at an exact study of character
London: Cambridge University Press

*Wessman, A. E. & Ricks, D. F. (1966)
Mood and personality
New York: Holt

Social policy and intelligence
Appendix A1

Earlier intelligence and current happiness among normal people

<table>
<thead>
<tr>
<th>Subjects</th>
<th>N</th>
<th>Test of intelligence</th>
<th>Measure of happiness</th>
<th>Observed relationship</th>
<th>Study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male college students USA, followed 3 years</td>
<td>17</td>
<td>Scholastic aptitude test (SAT)</td>
<td>Average self report of daily mood over 3 weeks of experience sampling</td>
<td>$r = +.12$, ns</td>
<td>Wessman (1966)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mathematical aptitude test (MAT)</td>
<td></td>
<td>$r = +.17$, ns</td>
<td></td>
</tr>
<tr>
<td>High school boys USA, followed 3 years from 10th grade</td>
<td>1628</td>
<td>Quick Test of Intelligence (Amons, 1962)</td>
<td>Self-report of being a ‘happy person’ on 6 questions</td>
<td>$r = ns$</td>
<td>Bachman (1970)</td>
</tr>
<tr>
<td>Male high ranking employees of a telephone company, USA followed from their late 20th to their late 40s</td>
<td>422</td>
<td>Rating by 4 experts</td>
<td>Expert rating of ‘Pleasure in Life’, based on regular assessments</td>
<td>$r = -.34$, p<.01</td>
<td>Bray & Howard (1980)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Multiple-choice intellectual test with verbal and quantitative scales</td>
<td></td>
<td>$r = -.26$, p<.05</td>
<td></td>
</tr>
<tr>
<td>Dutch individuals born in 1940 IQ test at age 12, happiness measured at age 53</td>
<td>1893</td>
<td>Mathematical ability</td>
<td>Self report of life satisfaction on single question</td>
<td>ns^{11}</td>
<td>Hartog & Oosterbeek (1998)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Verbal ability</td>
<td></td>
<td>+ p<.05</td>
<td></td>
</tr>
<tr>
<td>Scottish individuals born in 1921 IQ test at age 11, happiness measured at age 79</td>
<td>550</td>
<td>Moray House Test number 12</td>
<td>Self report of satisfaction with life scale on 5 items (Diener’s)</td>
<td>$r = .00$, ns</td>
<td>Gow et. al. (2005)</td>
</tr>
<tr>
<td>Canadian WWII veterans</td>
<td>326</td>
<td>Army intelligence test administered 1941-1945</td>
<td>Memorial University of New Foundland Scale of Happiness (MUNSH) administered 1984-86</td>
<td>$r =+.14$, ns</td>
<td>Arbuckle et. al. (1992)</td>
</tr>
</tbody>
</table>
Appendix A2

Earlier IQ and current happiness among gifted persons

Studies based on Terman's follow-up study of people who scored high on the Standfort-Binet test at age 12 (T1) ‘Gifted’: IQ>140, ‘Very Gifted’: IQ>180 Assessments took place in 1921 (T1), 1927 (T2), 1936 (T3), 1937 (T4), 1945 (T5), 1950 (T6), 1955 (T7), 1960 (T8), 1972 (T9) and 1992 (T10)

<table>
<thead>
<tr>
<th>Subjects</th>
<th>N</th>
<th>Test of intelligence</th>
<th>Measure of happiness</th>
<th>Observed relationship</th>
<th>Study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sub-sample of males</td>
<td>34</td>
<td>Just gifted (IQ>140) vs. very gifted (IQ>180)</td>
<td>Success in reaching goals in life in 1960. Rated importance of goals multiplied by reported success in attaining that goals</td>
<td>Very gifted happier (74%) than gifted (68%)</td>
<td>Feldman (1984)</td>
</tr>
<tr>
<td>Sub-sample of females</td>
<td>18</td>
<td></td>
<td></td>
<td>Very gifted less happy (57%) than gifted (64%)</td>
<td></td>
</tr>
</tbody>
</table>
Appendix B1
Current IQ and Happiness - General IQ test

<table>
<thead>
<tr>
<th>Subjects</th>
<th>N</th>
<th>Test of intelligence</th>
<th>Measure of happiness</th>
<th>Observed relationship</th>
<th>Study</th>
</tr>
</thead>
</table>
| Graduate students in education, USA | 388 | Otis S-A test of mental ability | Self report of common mood | Males: \(r = -0.03 \)
Females: \(r = -0.09 \) | Watson (1930) |
| Female college students, USA | 238 | Ohio University psychological examination (below vs. above the 75 percentile) | Self-report of happiness and contentment on multi questions | D%\(=+\), s | Washburn (1941) |
| High school boys of 10th grade, USA | 1628 | Quick Test of Intelligence (Amons, 1962) | Self-report of being a ‘happy person’ on 6 questions | \(r = ns \) | Bachman et al. (1970) |
| Institutionalized retarded males, USA | 149 | Data from hospital records | Staff rating of cheerfulness | Open ward: \(r = +0.04 \), ns
Closed ward: \(r = -0.16 \), ns | Pandey (1971) |
| 46+ aged, USA | 502 | Wechsler Adult Intelligence scale | Self report of overall happiness on Cantril ladder | \(r = +0.05 \) | Palmore & Luikart (1972) |
| 40+ aged male managers, USA | 422 | Rating by 4 experts | Expert rating of ‘Pleasure in Life’ based on regular assessments | \(r = -0.30 \), \(p<0.01 \)
\(r = -0.25 \), \(p<0.05 \) | Bray & Howard (1980) |
| 18+aged, USA | 2650 | Shortened Thorndike Intelligence Test (verbal) | Self report of happiness on single question | $r = +.06, p<.01$
Beta = −.01, ns controlling: age, gender, race, education, family income, marital status, church attendance, political participation and health | Sigelman (1981) |
|---|---|---|---|---|---|
| Army recruits, Norway | 269 | Norwegian Armed Forced Test Battery with mathematical, verbal, and spatial section | Self-report on 1 question of happiness, 3-point happiness | $r = -.06, ns$
Self-report on 1 question of general life satisfaction, 7-point happiness | Watten et al.(1995) |
| 18-33 aged USA | 95 | Revised Wechsler Adult Intelligence Scale (WAIS-R) | Rating of ‘cheerfulness’ by 6 judges on the basis of clinical interviews | $r = +.04, ns$ (men)
$r = -.08, ns$ (women) | Block & Kremen (1996) |
Appendix B2
Current IQ and Happiness– Special ability tests

<table>
<thead>
<tr>
<th>Subjects</th>
<th>N</th>
<th>Test of intelligence</th>
<th>Measure of happiness</th>
<th>Observed relationship</th>
<th>Study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female college students, USA</td>
<td>72</td>
<td>Time necessary to number backwards from 100 to 1</td>
<td>Self-report of average mood on single question</td>
<td>r = +.02, ns</td>
<td>Ludwig (1971)</td>
</tr>
<tr>
<td>Adults, Germany</td>
<td>1894</td>
<td>Open question about ideas they associate with a certain city, profession or political concept</td>
<td>Rating by interviewer of cheerful appearance</td>
<td>Cheerful looking Ss produce more associations in the interview</td>
<td>Noelle-Neumann (1980)</td>
</tr>
<tr>
<td>College students, USA</td>
<td>67</td>
<td>Hidden figure test: 16 item multiple-choice tests asking which one of five simple figures was embedded in a given complex figure.</td>
<td>Self-report of mood of the day on single question, answered every evening during six weeks</td>
<td>r = +.14, ns</td>
<td>Gorman (1971)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Self report of overall happiness on Cantril ladder</td>
<td>r = +.09, ns</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hidden pattern test: asking to check the instances in which 200 complex figures contains a given simple figure</td>
<td>r=+.23, ns</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Self-report of mood of the day on single question, answered every evening during six weeks</td>
<td>r=+.24, p<.05</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Self report of overall happiness on Cantril ladder</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year</td>
<td>Sample</td>
<td>Test 1</td>
<td>Measure 1</td>
<td>Measure 2</td>
<td>Correlation</td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
<td>--------</td>
<td>-----------</td>
<td>-----------</td>
<td>-------------</td>
</tr>
<tr>
<td>Female College students, USA</td>
<td>31</td>
<td>Rod-and Frame Test and the Embedded figures test</td>
<td>Self-report of average affect in 16 item ‘Elation-Depression Scale’ (Wessman & Ricks)</td>
<td>$r = +.05$, ns</td>
<td>Tobacyk (1981)</td>
</tr>
<tr>
<td>Canadian WW II veterans</td>
<td>326</td>
<td>digit span</td>
<td>Memorial University of New Foundland Scale of Happiness (MUNSH)</td>
<td>$+.19$ ns</td>
<td>Arbucle et. al. (1992)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>story recognition</td>
<td></td>
<td>$+.16$ ns</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cued recall</td>
<td></td>
<td>$+.08$ ns</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Free recall</td>
<td></td>
<td>$+.05$ ns</td>
<td></td>
</tr>
</tbody>
</table>
Appendix B3
Current IQ and Happiness – Verbal test

<table>
<thead>
<tr>
<th>Subjects</th>
<th>N</th>
<th>Test of intelligence</th>
<th>Measure of happiness</th>
<th>Observed relationship</th>
<th>Study</th>
</tr>
</thead>
<tbody>
<tr>
<td>High school boys, USA</td>
<td>2213</td>
<td>Test of reading comprehension</td>
<td>Self-report of being a ‘happy person on 6 questions</td>
<td>r = +.02, ns</td>
<td>Bachman (1970)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vocabulary test in General Aptitude Test Battery</td>
<td>r = +.02, ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>College students, USA</td>
<td>952</td>
<td>S.A.I.: Verbal score in the form of local percentile rank, SAT: Verbal score</td>
<td>Self-report of being a ‘happy person on 6 questions</td>
<td>Difference ns</td>
<td>Constantinople (1965)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>in the form of local percentile rank</td>
<td>r = -.00, ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>College students, USA</td>
<td>67</td>
<td>Advanced Vocabulary Test V-4</td>
<td>Self-report of mood of the day on single question, answered every evening during</td>
<td>r = +.16, ns</td>
<td>Gorman (1971)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>six weeks</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Self report of overall happiness on Cantril ladder</td>
<td>r = +.07, ns</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Assessment of mood repertoire using the number of words mentioned in 3 min</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Self-report of mood of the day on single question, answered every evening during</td>
<td>r = +.12, ns</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>six weeks</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Self report of overall happiness on Cantril ladder</td>
<td>r = +.01, ns</td>
<td></td>
</tr>
<tr>
<td>Mentally retarded males</td>
<td>149</td>
<td>Rating by staff on 7 point scale, talk unintelligently to talk well</td>
<td>Rating of general cheerfulness by 2 independent staff members who were familiar with the patient.</td>
<td>Open ward: r = -.00, ns</td>
<td>Pandy (1971)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rating by staff on 7 point scale, talk unintelligently to talk well</td>
<td>Closed ward: r = -.08, ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12 aged male school pupils, England</td>
<td>194</td>
<td>Paring opposite meaning words, reconstructing sentences</td>
<td>Peer rating of general cheerfulness</td>
<td>r = +.20, ns</td>
<td>Webb (1915)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>r = +.20, ns</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 18+ aged USA | 2650 | Shortened Thorndike Intelligence Test (verbal) | Self-report of overall happiness on single question | \(r = +.06, p<.01 \)
Beta= -.01, ns, controlling age, gender, race, education, family income, marital status, church attendance, political participation and health condition. | Sigelman (1981) |
Appendix B4

Current intelligence and current happiness: comparison of normal and learning disabled persons

<table>
<thead>
<tr>
<th>Subjects</th>
<th>N</th>
<th>Measure of intelligence</th>
<th>Measure of happiness</th>
<th>Observed relationship</th>
<th>Study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal and retarded boys, USA</td>
<td>80</td>
<td>Normal vs. retarded</td>
<td>Rating of general cheerfulness by parents</td>
<td>Retarded happier: p<.04</td>
<td>Cameron et al. (1975)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Time sampling of happy behavior by two independent observers in both a class situation and at recess.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Institutionlized retarded males, USA</td>
<td>149</td>
<td>IQ test</td>
<td>Staff rating of general cheerfulness</td>
<td>ns</td>
<td>Pandey (1971)</td>
</tr>
<tr>
<td>18-77 aged Intellectually disabled</td>
<td>376</td>
<td>Normal vs. borderline vs. moderately disabled</td>
<td>Self report of overall happiness on single question</td>
<td>d = −.07 p<.07(^{13})</td>
<td>Matikka & Ojanen (2002)</td>
</tr>
</tbody>
</table>