CONCLUSION
In recent textbooks about structural equation models, a multiple indicator approach is recommended for the estimation of and correction for measurement error. Although this approach is statistically correct, there are many practical and substantive problems with this approach. First of all, it is rather expensive to measure each theoretical variable at least in two different ways. It means that one doubles the interview time, which usually is quite costly. Secondly, it is difficult to ask the same question twice in one interview. Although it is possible, it is not easy to organize, and one risks the irritation of respondents who notice the repetition. As a substitute, researchers often vary the formulation of the repeated question. However, Heise (1969) and Saris (1982) have argued that variation in question wording might change the meaning of the variable one measures. There are also many studies that demonstrate this point even for the mean and variance of the variables (see studies of Schuman and Presser, 1981; Belson, 1981). Consequently, it is not clear what a multiple indicator model in such a situation represents. The latent variable will be a common factor of two or more indicators, but because these indicators are substantively different, it is unclear what this common factor stands for. On the other hand, correction for measurement error seems to be a necessity as we have tried to indicate. Corrected correlation coefficients are more comparable, not only across different methods within one study, but also across different studies and countries. Also, the correction for measurement error provides a better estimate of the explained variance in each equation. This is important for the evaluation of the quality of different explanatory models.

We hope to have indicated in this chapter that the procedure used in this book allows correction for measurement error even if only one indicator is used for each theoretical variable. When large methodological studies as described in Scherpenzeel and Saris (1996) have been done, and Tables like Table 6 in this chapter are constructed for other topics than life satisfaction as well (see for example Andrews, 1984; Rodgers et al., 1992; Költringer, 1993; Scherpenzeel, 1995), the procedure described here can be used for any correlation matrix and any structural equation model. This is what makes it an attractive approach for our study and any other study. The results of this approach will be further demonstrated in this book because in all chapters these corrections have been made.