
Dynamic Factor Models with Smooth Loadings for

Analyzing the Term Structure of Interest Rates

Borus Jungbacker (a) Siem Jan Koopman(a,b) Michel van der Wel (b,c)

(a) Department of Econometrics, VU University Amsterdam

(b) Tinbergen Institute

(c) Erasmus School of Economics, ERIM Rotterdam and CREATES, Aarhus

Some keywords: Fama-Bliss data set; Kalman filter; Maximum likelihood; Yield curve.

JEL classification: C32, C51, E43.

Acknowledgments

We thank Francis X. Diebold for making the dataset available on his website. More details

of our estimation results generated for this paper are available from the authors upon re-

quest. Remaining errors are our own. Michel van der Wel acknowledges the support from

CREATES, funded by the Danish National Research Foundation.

Address of correspondence: S.J. Koopman, Department of Econometrics, VU University

Amsterdam, De Boelelaan 1105, NL-1081 HV Amsterdam, The Netherlands.

Emails : bjungbacker@feweb.vu.nl s.j.koopman@feweb.vu.nl vanderwel@ese.eur.nl

0



Dynamic Factor Models with Smooth Loadings for

Analyzing the Term Structure of Interest Rates

Borus Jungbacker, Siem Jan Koopman and Michel van der Wel

Abstract

We propose a new approach to the modelling of the term structure of interest rates.

We consider the general dynamic factor model and show how to impose smoothness

restrictions on the factor loadings. We further present a statistical procedure based on

Wald tests that can be used to find a suitable set of such restrictions. We present these

developments in the context of term structure models, but they are also applicable in

other settings. We perform an empirical study using a data set of unsmoothed Fama-

Bliss zero yields for US treasuries of different maturities. The general dynamic factor

model with and without smooth loadings is considered in this study together with

models that are associated with Nelson-Siegel and arbitrage-free frameworks. These

existing models can be regarded as special cases of the dynamic factor model with

restrictions on the model parameters. For all model candidates, we consider both

stationary and nonstationary autoregressive processes (with different numbers of lags)

for the latent factors. Finally, we perform statistical hypothesis tests to verify whether

the restrictions imposed by the models are supported by the data. Our main conclusion

is that smoothness restrictions can be imposed on the loadings of dynamic factor models

for the term structure of US interest rates but that the restrictions implied by a number

of popular term structure models are rejected.
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1 Introduction

Many time series models for the term structure of interest rates assume that the yield curve

for different times to maturity is driven by a small set of unobserved stochastic processes.

In this paper we consider specifically the use of dynamic factor models for modelling the

time series dynamics of the term structure of interest rates. In a dynamic factor model, the

relationships between the yields and the unobserved processes are linear. It is customary in

the dynamic factor literature to refer to the unobserved processes as the common factors and

to refer to the coefficients that link the factors with the observed time series as the factor

loadings. The term structure of interest rates tends to be a smooth function of time to

maturity. It is therefore reasonable to assume that the factor loadings are smooth functions

of time to maturity as well. Many dynamic factor models for the term structure impose

such a smoothness restriction on the factor loadings. The form of the restrictions is often

motivated by a no-arbitrage argument. The primary aim of this paper is to find empirical

evidence to support the assumption of smooth factor loadings.

To investigate whether smoothness restrictions can be imposed on the factor loadings,

we analyze the data set of unsmoothed Fama-Bliss zero yields. As part of the analysis we

propose a new type of dynamic factor models: the smooth dynamic factor model. The

smooth dynamic factor model allows us to impose smoothness restrictions on the factor

loadings in a straightforward manner. We present a statistical procedure based on Wald

tests that can be used to find a suitable set of restrictions. Further, we consider a number of

popular term structure models that can be seen as dynamic factor models with smoothness

restrictions imposed on the factor loadings. Since all these models are nested in the general

dynamic factor model, we can test the validity of these restrictions using a likelihood ratio

test. The alternative hypothesis of the likelihood ratio test is the unrestricted dynamic

factor model as the true data generating process. In the empirical analysis we consider

a wide variety of different stationary and nonstationary autoregressive specifications with

different numbers of lags.

Our main empirical finding is the high precision level at which the factor loadings of an

unrestricted dynamic factor model for the yield curve can be estimated. The high level of
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precision implies that a restricted model must be sufficiently flexible to match its estimated

loadings with those of the unrestricted model. Although the estimated factor loadings for

all time series models considered are close to those for the unrestricted model, they are not

sufficiently close to be accepted by the likelihood ratio test. Our proposed smooth dynamic

factor model is the only exception. Based on the statistical procedure as developed in this

paper, we construct a parsimonious time series model that is not rejected by the likelihood

ratio test while it imposes considerable smoothness on the factor loadings.

The dynamic factor model plays a central role in this paper. Early contributions to

the literature on dynamic factor models can be found in Sargent and Sims (1977), Geweke

(1977), Engle and Watson (1981), Watson and Engle (1983), Connor and Korajczyk (1993)

and Gregory, Head, and Raynauld (1997). Most of these papers consider time series panels

with limited panel dimensions. The increasing availability of high-dimensional data sets

has intensified the quest for computationally efficient estimation methods. The strand of

literature headed by Forni, Hallin, Lippi, and Reichlin (2000), Stock and Watson (2002)

and Bai (2003) led to a renewed interest in dynamic factor analysis. These methods are

typically applied to high dimensional panels of time series. Exact maximum likelihood

methods such as proposed in Watson and Engle (1983) have traditionally been dismissed as

too computationally intensive for such high dimensional panels. Jungbacker and Koopman

(2008) however present new results that allow the application of exact maximum likelihood

methods to large panels. Examples of recent papers employing likelihood-based methods for

the analysis of dynamic factor models are Doz, Giannone, and Reichlin (2006) and Reis and

Watson (2007).

The Nelson-Siegel class of factor models for the term structure is based on the seminal

paper of Nelson and Siegel (1987) in which a yield curve is approximated by a weighted sum

of three smooth functions. The form of these three functions depends on a single parame-

ter. Diebold and Li (2006) use the Nelson-Siegel framework to develop a two-step procedure

for the forecasting of future yields. They show that forecasts obtained from this procedure

are competitive with forecasts obtained from other standard prediction methods. Diebold,

Rudebusch, and Aruoba (2006) integrate the two-step approach into a single dynamic fac-
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tor model by specifying the Nelson-Siegel weights as an unobserved vector autoregressive

process. Generalizations of this state space approach are considered by De Pooter (2007)

and Koopman, Mallee, and Van der Wel (2009). The former considers more coefficients

for the yield curve while the latter allows the parameter governing the shape of the three

Nelson-Siegel functions to vary over time and includes conditional heteroskedasticity in the

innovations. A different approach is proposed by Bowsher and Meeks (2008). In their model

the term structure is represented as a cubic spline that is observed with measurement noise.

The parameters controlling the shape of the spline are modelled by a cointegrated vector au-

toregressive process. This approach of modelling smooth functions that vary stochastically

over time was introduced in Harvey and Koopman (1993).

Many contributions are concerned with the construction of models for the yield curve

dynamics that incorporate the restriction that the market is free of arbitrage opportunities,

see, for example, Brigo and Mercurio (2006) for an extensive overview. Similarly to the time

series models discussed above, the arbitrage-free models are generally specified in terms of

a small number of unobserved stochastic processes. However, many of these models imply

a nonlinear relation between the unobserved factors and the yields. An exception is the

class of affine term structure models presented in Duffie and Kan (1996). The Gaussian

specifications contained in this class of models can be shown to be special cases of the

dynamic factor model. A closely related model is the arbitrage-free version of the Nelson-

Siegel dynamic factor model proposed by Christensen, Diebold, and Rudebusch (2007). We

consider both the arbitrage-free version of the Nelson-Siegel model and the Gaussian affine

term structure model in our empirical study.

The structure of the paper is as follows. The general dynamic factor model is presented

and discussed in section 2. The new methodology to construct dynamic factor models with

smooth factor loadings is developed in section 3. Section 4 discusses a selection of existing

term structure models that can be regarded as restricted versions of the general dynamic

factor model. In section 5 we give a description of the data set and give the results of a

preliminary data analysis. Section 6 presents the results of our empirical study. Section 7

concludes and provides suggestions for future research.
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2 The dynamic factor model

We consider a monthly time series panel of treasury yields for a set of N different maturities

τ1, . . . , τN . The yield at time t of the treasury with maturity τi is denoted by yt(τi) for

t = 1, . . . , n. The N × 1 vector of all yields at time t is given by

yt =





yt(τ1)
...

yt(τN)




, t = 1, . . . , n.

We denote the vector of all observations by y = (y′1, . . . , y
′
n)

′.

The general dynamic factor model is given by

yt = µy + Λft + εt, εt ∼ N(0, H), t = 1, . . . , n, (1)

where µy is an N × 1 vector of constants, Λ is the N × r factor loading matrix, ft is an

r-dimensional stochastic process, εt is the N × 1 disturbance vector and H is an N × N

variance matrix. Throughout this paper we restrict the variance matrix of the observation

disturbances H to be diagonal. This means that covariance between the yields of different

maturities is explained solely by the common latent factor ft. These latent factors are given

by

ft = Uαt, (2)

where the r × p matrix U contains appropriate weights that link ft to a p-dimensional

unobserved state vector. This state vector αt is modelled by the dynamic stochastic process

αt+1 = µα + Tαt +Rηt, ηt ∼ N(0, Q), t = 1, . . . , n, (3)

where µα is the p × 1 vector of constants, T is the p × p transition matrix, R is the p × q

selection matrix (typically consisting of ones and zeros), ηt is the q × 1 disturbance vector

5



and Q is an q × q variance matrix. For the p× 1 initial state vector we assume

α1 ∼ N(a1, P1), (4)

with p× 1 mean vector a1 and p× p variance matrix P1. Generally, we set the mean of the

initial state a1 to zero and choose the initial variance matrix P to be a function of the system

matrices. The Gaussian disturbances εt and ηs are serially and mutually uncorrelated for

t, s = 1, . . . , n and are assumed independent of α1. Although dimensions N , p, q and r can

be chosen freely we can assume without loss of generality that r ≤ p and p ≥ q. Also, since

the motivation of the dynamic factor model is to explain a multivariate time series using a

small number of common components, we will generally have N >> r. The vectors µy and

µα and the matrices Λ, H , U , T and Q are referred to as system matrices. This general

dynamic factor model can be regarded as a specific case of the state space model, see Harvey

(1989) and Durbin and Koopman (2001).

The dynamic specification for ft is general. All vector autoregressive moving average

processes can be formulated as (2) and (3) which is known as the companion form; see, for

example, Box, Jenkins, and Reinsel (1994). The family of time series processes that can be

formulated as (2) and (3) is however much wider and includes a broad range of nonstationary

time series processes. In this paper, however, we focus on models where ft is either a vector

autoregression or a cointegrated vector autoregression. We discuss the form that U , T and

R take for these two specifications in sections 2.1 and 2.2.

The elements of the system matrices µy, Λ, H , µα, T and Q will generally contain

parameters that need to be estimated from the data. To ensure identification we need to

impose two sets of restrictions on respectively the parameters in the means of the yields,

determined by µy and µα, and the parameters in Λ, T and Q that govern the covariance

structure.

First, we cannot estimate both vectors µy and µα without restrictions. Diebold, Rude-

busch, and Aruoba (2006) and Bowsher and Meeks (2008), among others, assume that µy

is zero and proceed by estimating µα only. Additional restrictions need to be imposed on
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µα in case the dynamic process of ft is nonstationary, see Bowsher and Meeks (2008). In

this paper we leave µy unrestricted and set µα to zero. We choose this more general model

because our main concern is inference on the loading matrix Λ and therefore we prefer to

avoid additional restrictions on the remaining parameters.

Second, restrictions on Λ are needed because only its column space can be identified

uniquely. Several restrictions on Λ can be considered. We choose to set a selection of r rows

of Λ equal to the rows of the r × r identity matrix. In case r = 3 and N > r, we may have

Λ =





1 0 0

0 1 0

0 0 1

λ4,1 λ4,2 λ4,3

...
...

...

λN,1 λN,2 λN,3





. (5)

In this example, we can interpret the elements of ft as being a set of hypothetical mean-

adjusted ‘true’ yields for the maturities τ1, . . . , τr which are observed at time t subject to

measurement noise in εt. We do not necessarily have to restrict the first r rows. We can

choose to impose the restrictions on each set of r rows of Λ to obtain a dynamic factor

model that is observationally equivalent to the model with Λ of the form (5). Since the rows

of Λ correspond to fixed maturities we prefer to distribute the rows of the identity matrix

evenly over the full range of rows. This allows us to interpret the factors as short-term,

medium-term and long-term components. If ft is a vector autoregression or a cointegrated

vector autoregression, as we assume throughout this paper, this choice of restrictions for Λ

allows us leave the parameters in T and Q unrestricted.
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2.1 Stationary specification

Our stationary dynamic factor model for time series of yields is defined by (1) where the

r × 1 vector ft is modelled by the vector autoregressive process

ft+1 =
k−1∑

j=0

Γjft−j + ζt, ζt ∼ NID(0, Qζ), (6)

with r× r coefficient matrices Γj for j = 0, . . . , k− 1 and variance matrix Qζ . The dynamic

process (6) is commonly known as a VAR(k) model. We will refer to a dynamic factor

model with VAR(k) factors as a DFM-VAR(k) model. We denote by Γ(z) the characteristic

polynomial of the VAR(k) process given by Γ(z) = I − ∑k−1
j=0 Γjz

j . The stationarity of ft is

ensured by imposing the restriction that |Γ(z)| = 0 has all roots outside the unit circle. The

process ft is straightforwardly written in the form (2) – (3). In case k = 1, we have αt = ft,

U = R = Ir, T = Γ0 and Q = Qζ where Im is the m×m identity matrix. In case k > 1, we

have

αt =





ft
...

ft−k+1




, U = R′ =

(
Ir 0 · · · 0

)
, T =



 Γ0:k−2 Γk−1

Ir(k−1) 0



 , (7)

and Q = Qζ where Γi:j = (Γi · · · Γj) for i, j = 0, . . . , k − 1 and i < j. We choose the

variance P1 of the initial state α1 to be equal to the variance of the invariant distribution of

αt. This implies that P1 is the solution to the equation P1 = TP1T
′ +Q. The mean of the

initial state is set to zero.

2.2 Nonstationary specification

For nonstationary dynamic factor models for time series of yields we assume that the factors

ft are generated by a cointegrated vector autoregressive process. In this case the factors are
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given by the error-correction specification of the VAR(k) process

∆ft+1 = βγ′ft +

k−1∑

j=1

Γj∆ft−j + ζt, ζt ∼ N(0, Qζ), (8)

where ∆ is the difference operator (∆ft+1 = ft+1 − ft) and r × s matrices β and γ have

full column rank. The remaining matrices are defined as in (6). The matrices β and γ are

usually subject to a set of identifying and normalizing restrictions. Let Γ(z) denote the

characteristic polynomial associated with the process (8). To ensure that the factors are

integrated of order one and γ′ft is stationary we need to impose the additional restrictions

that all roots of |Γ(z)| = 0 are outside or on the unit circle and that

det [β ′
⊥Γ(1)γ⊥] 6= 0,

where β⊥ and γ⊥ are r× (r− s) matrices with their column spaces spanning the null spaces

of β ′ and γ′, respectively. A more detailed discussion of error-correction models is given by

Johansen (1995). We will refer to (8) as the CVAR(k) model and to the dynamic factor

model with CVAR(k) factors as the DFM-CVAR(k) model.

All elements of ft are nonstationary processes when s < r. From a practical perspective

it is advantageous to have a specification that decomposes the r factors in ft into s stationary

and r − s nonstationary components. For this purpose we propose an alternative but ob-

servationally equivalent specification for ft via factor rotation. The alternative specification

changes the interpretation of the factors but does not alter the dynamic properties of the

model. The factors of the new model are given by

f̄t =



 f̄Nt

f̄St



 =
[
β⊥ γ

]′
ft, (9)

where (r − s) × 1 vector f̄Nt is the nonstationary component and s × 1 vector f̄St is the
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stationary component. The process f̄t can be represented by the CVAR(k) model

∆f̄t+1 = Af̄t +

k−1∑

j=1

Γ̄j∆f̄t−j + ζ̄t, ζ̄t ∼ N(0, Q̄ζ), (10)

where the r × r matrix A is given by

A =



 0 0

0 Γ̄0



 , (11)

and Γ̄0, . . . , Γ̄k−1 and Q̄ζ are functions of β, γ, Γ1, . . . ,Γk−1 and Qζ . To ensure that the

model remains observationally equivalent we also need to construct a new loading matrix Λ̄

by rotating the original matrix Λ into

Λ̄ =
[

Λ̄N Λ̄S

]
, (12)

where N × (r− s) matrix ΛN and N × s matrix ΛS are both of the form (5). We notice that

the rotation transfers parameters from the transition equation to the factor loading matrix.

The observation equation is given by

yt = µy + Λ̄N f̄Nt + Λ̄S f̄St + εt, εt ∼ N(0, H), (13)

for t = 1, . . . , n. We use this specification to estimate the nonstationary models, but to

facilitate comparison with the stationary models we generally present the results for the

model with factors given by (8) and loadings given by (5). Note that the maximum likelihood

estimators for this second model can be easily obtained from the estimators for the model

given by (13). The factors f̄t can be written in the form (3) by choosing the state vector

as follows αt =
(
f̄ ′
t ∆f̄ ′

t · · · ∆f̄ ′
t−k+1

)′
and, for k > 1, taking the system matrices Q = Q̄ζ ,
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U = (Ir 0 · · · 0) and

T =





Ir + A Γ̄1:k−2 Γ̄k−1

A Γ̄1:k−2 Γ̄k−1

0 Ir(k−1) 0




, R =

(
Ir Ir 0 · · · 0

)′

,

where Γ̄i:j =
(
Γ̄i · · · Γ̄j

)
for i, j = 0, . . . , k − 1 and i < j. The representation for k = 1

follows immediately.

If αt is nonstationary we cannot specify α1 as in section 2.1. Rosenberg (1973) advocates

to consider the nonstationary part of the initial state as an additional set of parameters

which can be estimated by maximum likelihood methods. If we choose specification (10) for

the factors, only the first r − s elements of αt are nonstationary. Therefore, if we adopt the

approach of Rosenberg (1973) we can set the first r − s rows and columns of the variance

of α1, P1, to zero. The remaining rows and columns of P1 are set equal to the variance of

the invariant distribution of the stationary elements of αt. Further, since µy is unrestricted,

we also set the means of the elements of α1 corresponding to nonstationary components to

zero. We take this approach in the empirical section of this paper. Alternatively, we can

choose a reference or diffuse prior for the initial state of the nonstationary components, see

the discussion in Durbin and Koopman (2001, Chapter 5). In this case we need to restrict

the first r − s elements of µy to be zero.

2.3 Parameter estimation and signal extraction

The dynamic factor model consisting of (1), (2) and (3) can be regarded as a special case

of the linear state space model. Given the set of system matrices, we can use the Kalman

filter and related methods to evaluate minimum mean square linear estimators (MMSLE) of

the state vector at time t given the observation sets {y1, . . . , yt−1} (prediction), {y1, . . . , yt}
(filtering) and {y1, . . . , yn} (smoothing). A detailed treatment of state space methods is

given by Durbin and Koopman (2001).

For a given set of system matrices the Kalman filter can also be used to evaluate the
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loglikelihood function via the prediction error decomposition. The maximum likelihood

estimators of the model parameters can then be obtained by numerical optimization. To

generate the results in this paper we used the BFGS algorithm to perform the optimization,

see for example Nocedal and Wright (1999). An alternative approach would be to use the

EM algorithm as developed for state space models by Watson and Engle (1983).

Efficient versions of the Kalman filter have been developed for multivariate models, see for

example, Koopman and Durbin (2000). Furthermore, we can achieve considerable compu-

tational savings using the methodology of Jungbacker and Koopman (2008). Their method

first maps the set of observations yt into a set of vectors which have the same dimensions

as the latent factors ft in (2). We can then apply the Kalman filter to a typically much

lower dimensional set of ‘observations’. We have implemented this approach for all models

discussed in sections 3 and 4. These efficient Kalman filter methods are also used to evaluate

the closed form expressions for the score function given in Koopman and Shephard (1992)

and Jungbacker and Koopman (2008). Despite of the large number of parameters involved,

this combination of efficient Kalman filter methods and analytical score allows us to estimate

all the models considered in this paper in a matter of seconds.

3 Dynamic factor model with smooth factor loadings

The observation equation (1) of the dynamic factor model for the yields yt(τi) can be written

as

yt(τi) = µy,i +

r∑

j=1

λijfjt + εit, t = 1, . . . T, i = 1, . . . , N, (14)

where λij is the factor loading of maturity i and factor j, fjt is the jth element of ft and

εit is the ith element of εt. We propose to specify the model in terms of a set of functions

g1(·), . . . , gr(·) defined on the interval [τ1, τn] and then define the factor loadings as follows

λij = gj(τi), i = 1, . . . , N, j = 1, . . . , r. (15)
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Since the yield curves tend to be relatively smooth functions of time to maturity and the dis-

turbances εit are mutually uncorrelated, it is reasonable to assume that the loading functions

g1(·), . . . , gr(·) are also smooth functions of time to maturity τi. In this section we develop a

dynamic factor model that is directly specified in terms of a set of functions g1(·), . . . , gr(·).
The model provides means to let the factor loadings be smooth over time to maturity in

a straightforward and intuitive manner. We further show how to test for the validity of

smoothness restrictions using a series of Wald tests. The resulting model will be referred to

as the smooth dynamic factor model (SDFM).

3.1 Model specification

The main assumption of our smooth dynamic factor model is that the loading functions

are specified as cubic splines. Specifically, we assume that there is a set of r cubic splines

g1(·), . . . , gr(·) defined on [τ1, τn] such that λij = gj(τi) for i = 1, . . .N and j = 1, . . . , r.

Such cubic splines can capture a wide variety of different shapes. It is therefore reasonable

to assume that even if the loading functions of the data generating process are not truly

cubic splines, they can still be very closely approximated by functions of this form.

A cubic spline is specified by selecting a set of knots and choosing the function values

of the spline at each of these knots. The cubic spline is uniquely defined as the function

that is (i) equal to a third-order polynomial between the knots and (ii) twice continuously

differentiable at the knots; see, for example, Monahan (2001). It is therefore the location of

the knots that determines how the factor loadings behave for varying maturities. In case a

small number of knots for a column of Λ is chosen, the corresponding loadings lie on the same

cubic polynomial for a considerable number of adjacent maturities. In case we choose the

set of knots equal to the set of maturities, no restrictions are imposed on the factor loadings

λij and the model reduces to the general dynamic factor model of section 2. We can choose

a different set of knots for each of the functions g1(·), . . . , gr(·). To ensure a well-defined

spline on the interval [τ1, τN ], the first and last maturities τ1 and τN are taken as knots for

all functions g1(·), . . . , gr(·).
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In practice, it is convenient to formulate the splines that determine the factor loadings as

linear functions of a set parameters which correspond to the unknown values of the splines

at their respective knots. Denote the kth knot for the jth column of Λ by sjk and suppose

that the knots for each column are ordered by time to maturity, that is

τ1 = sj1 < · · · < sjKj
= τN , j = 1, . . . , r,

where Kj is the number of knots for the jth column of Λ. Following Poirier (1976), we can

specify the loading function gj(τi) as a linear function, that is

gj(τi) = wijδj , δj =





gj(s
j
1)

...

gj(s
j
Kj

)




, j = 1, . . . , r, (16)

where wij is a 1×Kj vector that only depends on the location of the knots sj1, . . . , s
j
Kj

and δj

is treated as a Kj × 1 unknown parameter vector that needs to be estimated. The resulting

factor loading matrix Λ of the smooth dynamic factor model is given by

Λ =
[
W1δ1 · · · Wrδr

]
, Wj =





w1j

...

wNj




, (17)

for j = 1, . . . , r. Although the specification (17) of Λ is more parsimonious, we still need to

impose restrictions on Λ such as in (5) to ensure that the model is identified.

3.2 Selecting knots via a Wald test procedure

In this section we develop a statistic to test if a subset of knots is significantly contributing to

model fit. We use the test statistic to systematically search for a suitable set of restrictions

for the loading matrix Λ in the smooth dynamic factor model.

Suppose we have r sets of knots Sj = {sj1, . . . , sjKj
} for j = 1, . . . , r. We denote the
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class of all splines associated with the set Sj by Gj. We assume that the sets S1, . . . , Sr are

sufficiently rich to capture the form of Λ of the data generating process. More formally, if

gj(·) denotes the function that generates the jth column of Λ in the true data generating

process, then gj(·) ∈ Gj for j = 1, . . . , r. Our aim is to test whether a subset of knots can be

removed from a given set Sj. Consider a new set of K∗
j knots denoted by S∗

j such that S∗
j is

a subset of Sj . We assume that the set S∗
j is strictly smaller than Sj and therefore K∗

j < Kj.

Denote the family of splines determined by the knots in S∗
j by G∗

j . It follows that G∗
j ⊂ Gj.

For our purpose, the null-hypothesis H0 and the alternate hypothesis H1 are given by

H0 : gj(·) ∈ G∗
j , H1 : gj(·) /∈ G∗

j . (18)

The null-hypothesis is specifically for the jth spline (or the jth column of Λ) but it can be

extended to more general settings and to all r splines jointly. Each spline function in Gj is

uniquely determined by the value of δj which represents the values of gj(·) at the knots in

Sj. It can therefore be shown that testing the hypotheses of (18) is equivalent to testing

linear restrictions on δj .

Denote the jth column of Λ by gj(τ) = [gj(τ1), . . . , gj(τN )]′. Then the null-hypothesis

can be written as

gj(τ) = W ∗
j δ

∗
j , (19)

where W ∗
j is the spline weight matrix defined in (17) for set of knots S∗

j and δ∗j contains the

values of the spline at the knots in S∗
j . Since we assumed that gj(·) is an element of Gj we

can also write gj in terms of Wj, the weight matrix associated with Sj,

gj(τ) = ( Wj\c Wj\∗ ) δ†j , δ†j =



 δ∗j

δj\∗



 , (20)

where matrix Wj\∗ consist of columns of the spline weight matrix Wj that correspond to

knots that are in Sj but not in S∗
j , matrix Wj\c consists of the (remaining) columns in Wj

corresponding to knots in S∗
j only and δj\∗ is a vector containing the value of gj(·) at the
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knots in Sj that are not in S∗
j . Since a spline is uniquely determined by its value at the

knots, the two expressions in (19) and (20) are equivalent if and only if

δj\∗ = Bjδ
∗
j ,

where matrix Bj consists of rows of Wj\∗ corresponding to knots at maturities that are in

Sj but not in S∗
j . The hypotheses in (18) reduce to the linear hypotheses

H0 : Rjδ
†
j = 0, H1 : Rjδ

†
j 6= 0, Rj = ( Bj − I ) . (21)

Testing linear restrictions of the form (21) is standard in the context of maximum likelihood

estimation; see, for example, Engle (1984). For our purposes, a Wald test is particularly

convenient. Denote by δ̂†j the maximum likelihood estimator of δ†j and by V̂j a consistent

estimator of the asymptotic variance of
√
nN

(
δ̂†j − δ†j

)
. Under the null-hypothesis we have

n ·N · δ̂†jR′
j(RjV̂jR

′
j)

−1Rj δ̂
†
j

a.∼ χ2
(
Kj −K∗

j

)
, (22)

where Kj −K∗
j is the number of restrictions imposed under the null-hypothesis. In practice

a suitable estimator V̂j can be constructed from the Hessian matrix of the log-likelihood

function at the maximum likelihood estimator for δ†j .

The most important special case of (22) is the situation where Kj − K∗
j = 1, meaning

that Sj and S∗
j differ by a single knot. We propose to use this test statistic to select the

number of knots and their location by means of an iterative general-to-specific approach. At

each step we calculate for all the knots in each column a Wald test with the null-hypothesis

that the knot is not needed to form the true vector of factor loadings. We then remove the

knot that has the smallest non-significant statistic among all the knots used to construct

the loading matrix. The procedure is repeated until all selected knots have a statistically

significant statistic. We start this iterative testing process with the unrestricted dynamic

factor model.
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3.3 A more general version

In this section we have focussed on the application of the smooth dynamic factor model to

yield curve data. However, this framework has a much wider applicability. We can use this

model for any multivariate time series where we observe a smooth function varying over time.

Panels of implied volatilities, calculated from call and put contracts on a stock or index with

different strikes, are examples of such data sets. These volatility smiles vary over time but

tend to be smooth functions of time to maturity. With a slightly more general version of

the model discussed in section 3.1 we can also handle a whole different class of problems.

Suppose we have an N dimensional time series z1, . . . , zn, where zt = (z1t, . . . , zNt) for

t = 1, . . . , n and we model this time series using a dynamic factor model with r underlying

latent factors. Even if there is no smooth functional relationship apparent between the

elements of (z1t, . . . , zNt), we might still be able to model the time series very effectively

using a SDFM. Suppose that zt is a very large time series panel containing house prices and

let f1t be the factor representing the business cycle. It is likely that houses that are alike

have very similar factor loadings for f1t. We can model this by assuming that

hit = g1(pit), i = 1, . . . , N, t = 1, . . . , n,

where hit is the factor loading for house i and factor 1 at time t, pit is a regression variable

that indicates the type of house and g1(·) is a smooth function defined for all values of pit.

The variable pit might for example contain the last price at which house i was sold. Just as

before we can impose the smoothness restriction on the factor loadings function by assuming

that g1(·) is a cubic spline with a limited set of knots. The general form of this type of SDFM

is as follows

zit = µy,i +

r∑

j=1

gj(xijt)fjt + εit,

where xijt are regression variables for i = 1, . . . , N , j = 1, . . . , r and t = 1, . . . , n and

g1(·), . . . , gr(·) are cubic splines. Note that this reduces to the model presented in section

3.1 if we set xijt = τi for j = 1, . . . , r and t = 1, . . . , n. This type of model can be especially
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useful for very large datasets, since it allows us to greatly reduce the number of parameters

in the loadings matrix without having to impose the potentially unrealistic assumption that

large sets of loadings are equal.

4 Dynamic factor models for the term structure

In this section we review a number of alternative models for the term structure of interest

rates that have appeared in the literature. All of these models can be regarded as special

cases of the general formulation (1) – (3) with different restrictions imposed on the loading

matrix Λ. For some models, restrictions on the dynamics of the factors and the mean vector

µy are also required. We consider both the stationary specification for ft as in (6) as well as

the nonstationary specification for ft as in (8).

4.1 Functional Signal Plus Noise Model

The functional signal plus noise (FSN) model is recently proposed by Bowsher and Meeks

(2008) as a promising way to model the term structure. The FSN model is also based on

cubic splines, just as the model of section 3, but it is used in a different and less flexible

way. Consider Sf as a set of r knots and let Wf denote the N × r spline weight matrix

of Poirier (1976). The spline function is then defined by gf(τ) = Wfδf where vector δf

contains the values of the spline function at the knot positions in Sf and is treated as a

parameter vector. Instead of using the spline function g(·) to smooth the loadings in each

column of Λ, as proposed in the previous section, the spline can also be used to smooth the

yield curve directly. In this case, the loading matrix Λ is set equal to the weight matrix W

and parameter vector δf is replaced by ft. As a result Bowsher and Meeks (2008) obtain a

time-varying cubic spline function for the yield curve. The FSN model is then given by

yt = µy +Wft + εt, εt ∼ NID(0, H), (23)
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where µy is the vector of intercepts, ft is the r-dimensional factor process and H is assumed

diagonal. The observed yield curve yt is now a noisy observation of an unobserved “true”

term structure which is modelled by a stochastically time-varying cubic spline function.

Finally we notice that by construction the weight matrix W has the same form as Λ in (5).

The rows of W that correspond to knots are equal to rows of the identity matrix.

Bowsher and Meeks (2008) consider the CVAR(k) specifications for the unobserved factor

ft with additional restrictions imposed on the cointegration vectors. In this paper we consider

both stationary as well as nonstationary specifications for ft. In case of the nonstationary

CVAR(k) specification, we assume that ft is of the form (10). The decomposition of ft into

stationary and nonstationary components is achieved as in (9) where ft is transformed to f̄t

which consists of a nonstationary part f̄Nt and a stationary part f̄St . The loading matrix for

f̄t is then given by Λ̄ = WL where L is the r × r matrix that transforms the factors f̄t to

the process ft. This matrix L contains parameters that need to be estimated and is of the

same form as Λ̄ in (12). This decomposition of ft is useful for interpretation purposes and

for the exact handling of the initial state in the implementation of the Kalman filter and

related methods.

When certain restrictions are imposed on the smooth dynamic factor model of section 3,

it reduces to the FSN model. The key restriction is that all sets of knots Sj for the columns

of Λ are set equal and that the number of knots is equal to the number of factors. The

restriction that the number of knots equals the number of factors in ft is strong in practice.

For example, Bowsher and Meeks (2008) find that 6 or 7 knots are required to adequately

fit the shapes of the term structure typically observed in financial markets. The FSN model

therefore requires a vector ft with at least 6 factors. This number contrasts sharply with

empirical studies of, for example, Litterman and Scheinkman (1991) who argue that 3 factors

are sufficient to describe the dynamics of the term structure. The SDFM of section 3 has the

advantage that the number of factors and the number of knots can be chosen separately and

the different sets of knots can be selected more flexibly. Furthermore, a general statistical

methodology is provided for the selection of the knots. As a result, we can obtain a better

fit using a relatively small number of factors.
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4.2 Nelson-Siegel model

In an important contribution Nelson and Siegel (1987) have shown that the term structure

can surprisingly well be fitted by a linear combination of three smooth functions. The

Nelson-Siegel yield curve, denoted by gns(τ), is given by

gns(τ) = ξ1 + λS(τ) · ξ2 + λC(τ) · ξ3, (24)

where

λS(τ) =
1 − e−λτ

λτ
, λC(τ) =

1 − e−λτ

λτ
− e−λτ , (25)

and where λ, ξ1, ξ2 and ξ3 are treated as parameters. The yield curve depends on these pa-

rameters which can be estimated by a least squares method based on the nonlinear regression

model

yt(τi) = gns(τi) + uit, i = 1, . . . , N, t = 1, . . . , n,

where uit is noise with zero mean and possibly different variances for different time to ma-

turities τi. One of the attractions of the Nelson-Siegel curve is that the ξ parameters have

a clear interpretation. The parameter ξ1 clearly controls the level of the yield curve. The

parameter ξ2 can be associated with the slope of the yield curve since its loading λS(τ) is

high for a short maturity τ and low for a long maturity. The loadings λC(τ) for different

time to maturities τ form an inverted U-shaped function and therefore ξ3 can be interpreted

as the curvature parameter of the yield. The decomposition of the yield curve into level,

slope and curvature factors has also been highlighted by Litterman and Scheinkman (1991).

The Nelson-Siegel yield curve can also be incorporated in a dynamic factor model by

treating the ξ parameters as factors. We obtain

yt = µy + Λnsft + εt, εt ∼ NID(0, H), (26)

where ft is a 3 × 1 vector (r = 3) and H is a diagonal variance matrix. The loading matrix

Λns consists of the three columns (1, . . . , 1)′, λS(τ) and λC(τ) respectively. We note the
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similarity between the Nelson-Siegel dynamic factor model and the smooth dynamic factor

model (14). The slope and curvature loadings in the Nelson-Siegel model both depend on

a single parameter λ and this framework is therefore somewhat more restrictive than the

SDFM.

The dynamic factor representation of the Nelson-Siegel model is proposed by Diebold,

Rudebusch, and Aruoba (2006). Their specification is slightly different as they set µy in (26)

to zero and include an intercept in the specification of the factors ft. Furthermore, they

specify a stationary vector autoregressive model similar to (6) for the 3-dimensional factor

ft. We will also consider a nonstationary Nelson-Siegel model with ft of the form (10) and

with ft transformed to f̄t as in (9). The loading matrix for f̄t is then given by Λ̄ = ΛnsL

where L is the matrix that transforms f̄t to ft, see also the discussion of the previous section.

4.3 Arbitrage-free Nelson-Siegel model

Absence of arbitrage opportunities imposes strict restrictions on the stochastic properties

of the yield curve; see, for example, the discussion in Cox, Ingersoll, and Ross (1985).

The dynamic factor models in this paper so far do not satisfy such restrictions. This is

unsatisfactory if we believe that such arbitrage possibilities do not exist in the real world. In

this case imposing the no-arbitrage restrictions on the model might improve its performance.

This was the motivation for Christensen, Diebold, and Rudebusch (2007) to develop an

arbitrage-free version of their Nelson-Siegel dynamic factor model discussed in the previous

section.

If the arbitrage-free Nelson-Siegel model is the true underlying data generating process

then each yt(τi) is given by

yt(τi) = µy,i + f1t + λS(τi)f2t + λC(τi)f3t, (27)

where µy,i is a correction term that is a deterministic function of the parameters determining

the dynamics of the factors, see Christensen, Diebold, and Rudebusch (2007, p. 18) for

details. The absence of measurement noise in (27) implies that the corrected yields can be
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exactly fitted using only f1t, f2t and f3t. Since observed yields never satisfy this restriction

in practice it is customary to include measurement errors εt in the model. Christensen,

Diebold, and Rudebusch (2007) model the factors f1t, f2t and f3t in continuous-time as a

multivariate Gaussian process. For evenly spaced observations in discrete time this process

can be written as a stationary VAR(1)

ft+1 = µ∗
f + Γ∗

0(ft − µ∗
f) + ζt, ζt ∼ N(0, Q∗

ζ),

where µ∗
f is a 3 × 1 mean vector, Γ∗

0 is the 3 × 3 autoregressive coefficient matrix and Q∗
ζ is

the 3 × 3 variance matrix. For estimation purposes, it is in practice necessary to formulate

the VAR(1) process in terms of the parameters of the original continuous-time process as

these parameters appear in µy,i. We refer the reader to Christensen, Diebold, and Rudebusch

(2007) for the functional relationship between these parameters and the VAR(1) matrices.

We consider the most general form of the model proposed by Christensen, Diebold, and

Rudebusch (2007). This model imposes no restrictions on the intercept µ∗
f , the transition

matrix Γ∗
0 and the variance matrix Q∗

ζ . Note that this model can be seen as a restricted

version of the standard Nelson-Siegel model. Specifically, the AFNS model imposes N − 3

restrictions on the intercept µy and restricts the factors to be generated by a VAR(1).

4.4 Gaussian Affine Term Structure Model

Let rt denote the short rate. The short rate can be thought of as the yield of a zero-coupon

bond with infinitesimally short time to maturity. For models in the class of affine term

structure (AfTS) models, Duffie and Kan (1996) assume that the short rate rt is an affine

function of an unobserved r × 1 dimensional stochastic process ft

rt = g1 + g′2ft,

where g1 is a scalar parameter and g2 is a r × 1 vector of parameters. Using a no-arbitrage

argument, they proceed to show that if the factors belong to a class of diffusions with affine
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volatility structure and the market price of risk for each factor is proportional to its volatility,

the yields are given by

yt(τ) = F1(τ) + F2(τ)rt, (28)

where the functions F1(τ) and F2(τ) can be obtained from a set of ordinary differential

equations, depending on the parameters governing the factor dynamics.

The class of affine term structure models includes a broad range of Gaussian and non-

Gaussian specifications. In this paper we focus on the Gaussian case. For the Gaussian

specifications it is possible to obtain closed form expressions for F1(τ) and F2(τ); see equa-

tions (3.9) and (3.10) in Duffie and Kan (1996) or equations (9) and (10) in De Jong (2000).

In discrete time we can write the factors as a VAR(1) process, after imposing suitable identi-

fying restrictions, see De Jong (2000). This VAR process is of zero mean and has a diagonal

transition matrix. Note that this implies that g1 is the only free parameter in the intercept.

Just as for the AFNS model it is unlikely that the observed term structure of interest rates

can be fitted exactly by the relation (28). In practice we therefore include a vector of in-

dependent Gaussian measurement errors. These measurement errors are allowed to have a

different variance for each maturity. The resulting factor model is clearly a restricted version

of the DFM model of section 2. For more details on the formulation of the Gaussian AfTS

model in dynamic factor form we refer the reader to De Jong (2000).

5 Data description

The empirical study of the next section is based on the same data set considered in Diebold

and Li (2006) who constructed a monthly data set of zero yields from the CRSP unsmoothed

Fama and Bliss (1987) forward rates. We refer to Diebold and Li (2006) for a detailed

discussion of the method that is used for the creation of this data set. We follow Diebold and

Li (2006) in considering a subset of the data. Our resulting data set consists of 17 maturities

over the period from January 1985 up to December 2000. The maturities we analyze are 3,

6, 9, 12, 15, 18, 21, 24, 30, 36, 48, 60, 72, 84, 96, 108 and 120 months. This dataset has
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also been considered by Diebold, Rudebusch, and Aruoba (2006), Christensen, Diebold, and

Rudebusch (2007) and Bowsher and Meeks (2008), though sometimes for different sample

periods and number of maturities.

In Panel A of Figure 1 we present a three-dimensional plot of the data set. The data plot

suggests the presence of an underlying factor structure. Although yields vary wildly over

time for each of the maturities there is a strong common pattern in the way in which the

17 series develop over time. For most months, the yield curve is an upward sloping function

of time to maturity. The overall level of the yield curve is mostly downward trending in our

sample period. These findings are supported by the time series plots in Panel B of Figure 1.

In these plots we also observe that volatility tends to be lower for the yields of bonds with

a longer time to maturity.

Table 1 provides summary statistics for our dataset. For each of the 17 time series we re-

port mean, standard deviation, minimum, maximum and a selection of autocorrelation and

partial- autocorrelation coefficients. The summary statistics confirm that the yield curve

tends to be upward sloping and that volatility is lower for rates on the long end of the yield

curve. In addition, there is a very high persistence in the yields: the first order autocorre-

lation for all maturities is above 0.95 for each maturity. Even the twelfth autocorrelation

coefficient can be as high as 0.57. The partial-autocorrelation function suggests that autore-

gressive processes of limited lag order will fit the data well since only the first coefficient is

significant for most maturities (to preserve space we do not display all coefficients). In Panel

B of the Table 1 we present the sample correlations between yields of a selected number of

maturities. The correlations are all well above 0.5, in accordance with the strong common

pattern in the movements of the different yields that we have observed in Figure 1.

From the data plot in Figure 1, we observe some large breaks in the time series, specifically

for the months of May 1985 and October 1987. In both cases, the breaks are apparent in

the yield for all maturities and we even observe a drop of more than 1.25% for one of the

yields. Also, in both cases the breaks in the yields have lasted for at least a few months.

Finally, Table 1 also provides some information that is relevant for the question whether

the yield series are stationary. For this purpose we report Augmented Dickey-Fuller tests for
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Figure 1: Yield Curves from January 1985 up to December 2000
In this figure we show the U.S. Treasury yields over the period 1985-2000. We examine
monthly data, constructed using the unsmoothed Fama-Bliss method. The maturities we show are
3, 6, 9, 12, 15, 18, 21, 24, 30, 36, 48, 60, 72, 84, 96, 108 and 120 months. Panel A presents a 3-dimensional plot,
Panel B provides time-series plots for selected maturities.
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Table 1: Summary Statistics
The table reports summary statistics for U.S. Treasury yields over the period 1985-2000. We examine
monthly data, constructed using the unsmoothed Fama-Bliss method. Maturity is measured in months. In
Panel A we show for each maturity mean, standard deviation (Sd), minimum, maximum and two (1 month
and 12 month) autocorrelation (Acf, ρ̂(1) and ρ̂(12) respectively) and partial-autocorrelation (Pacf, α̂(1) and
α̂(12)) coefficients. In addition we show the test-statistic and p-value from the Augmented Dickey-Fuller
(ADF) unit-root tests. In Panel B we show the correlation matrix for some selected maturities.

Panel A: Summary Statistics

Acf Pacf Unit-root

Maturity Mean Sd Min Max ρ̂(1) ρ̂(12) α̂(1) α̂(12) ADF p-value

3 5.63 1.48 2.73 9.13 0.98 0.57 0.98 0.01 -2.06 0.26
6 5.78 1.48 2.89 9.32 0.98 0.55 0.98 0.00 -2.46 0.13
9 5.91 1.49 2.98 9.34 0.97 0.54 0.97 0.01 -2.54 0.11
12 6.07 1.50 3.11 9.68 0.97 0.54 0.97 -0.02 -2.01 0.28
15 6.23 1.50 3.29 9.99 0.97 0.53 0.97 -0.01 -2.75 0.07
18 6.31 1.49 3.48 10.19 0.97 0.51 0.97 0.00 -2.85 0.05
21 6.37 1.48 3.64 10.27 0.96 0.50 0.96 0.00 -2.82 0.06
24 6.40 1.46 3.78 10.41 0.96 0.48 0.96 -0.01 -2.95 0.04
30 6.55 1.46 4.04 10.75 0.96 0.48 0.96 0.03 -3.03 0.03
36 6.64 1.44 4.20 10.79 0.96 0.47 0.96 -0.00 -3.04 0.03
48 6.84 1.44 4.31 11.27 0.95 0.46 0.95 0.00 -2.44 0.13
60 6.93 1.43 4.35 11.31 0.95 0.46 0.95 -0.00 -2.37 0.15
72 7.08 1.45 4.38 11.65 0.95 0.45 0.95 0.01 -2.36 0.16
84 7.14 1.42 4.35 11.84 0.95 0.45 0.95 0.01 -2.53 0.11
96 7.23 1.41 4.43 11.51 0.95 0.47 0.95 0.03 -2.20 0.21
108 7.27 1.42 4.43 11.66 0.95 0.48 0.95 -0.00 -2.27 0.18
120 7.25 1.43 4.44 11.66 0.95 0.47 0.95 0.02 -2.23 0.20

Panel B: Correlation Matrix
for Selected Maturities

Maturity 3 12 36 60 120
3 1.00 0.97 0.88 0.80 0.66
12 1.00 0.95 0.88 0.75
36 1.00 0.98 0.91
60 1.00 0.97
120 1.00
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each of the series, see Dickey and Fuller (1979). At a 5% significance level we reject the null

hypothesis of a unit root for only 3 out of the 17 time series. We reject the null hypothesis

for none of the time series if the significance level is lowered to 1%. These findings suggest

that a nonstationary dynamic factor model might be a better representation of the yield

curve data than a stationary model.

6 Empirical results

In this section we investigate whether the restrictions imposed by the models presented in

sections 2 – 4 are supported by the data presented in section 5. For ease of reference we

present in Table 2 the most important details of the models discussed thus far. The results of

our empirical study are presented as follows. In section 6.1 we review the general assumptions

that are applicable to all models. In section 6.2 we discuss the estimation results for the

general DFM. In section 6.3 we report the estimation results for the SDFM that is based on

a suitable set of smoothing restrictions for the factor loadings as obtained from our Wald

test procedure. Section 6.4 discusses the estimation results for the NS and FSN models as

well as the arbitrage-free AFNS and AfTS models. In section 6.5 we assess the in-sample fit

of the different models by investigating the properties of the residuals. Finally, in section 6.6

we test the validity of the different restrictions by performing a set of likelihood ratio tests.

In the remainder of this section we will refer to the models by their acronyms which are

listed in Table 2. The dynamic specification for the factors in (6) is referred to as VAR(k)

while the nonstationary specification in (10) is referred to as CVAR(k).

6.1 General model assumptions

We start by discussing some general assumptions. To facilitate a fair comparison with the

Nelson-Siegel model, we restrict all models to include a total of three latent factors, that is

r = 3. We can justify this assumption by referring to a growing number of studies that find

three factors adequate for explaining most of the variation in the cross-section of yields, see

e.g. Litterman and Scheinkman (1991), Bliss (1997) and Diebold and Li (2006). However,
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Table 2: Model Summary
This table gives a summary of all the models considered in this paper. We give the acronym used to refer to the model in the text and the
section in which the model specification is first discussed. An asterisk in one of the columns with headings µy, Λ and T means that respectively
the intercept, loading matrix and transition matrix, as defined in section 2, is restricted. An asterisk in the column with heading VAR(1) means
that not all CVAR(k) and VAR(k) are allowed but only a VAR(1) specification.

Summary of Models and Restrictions

Restrictions

Model Acronym Section µy Λ T VAR(1)

Dynamic Factor Model DFM 2
Smooth Dynamic Factor Model SDFM 3.1 *
Functional Signal plus Noise Model FSN 4.1 *
Nelson-Siegel Model NS 4.2 *
Arbitrage-Free Nelson-Siegel Model AFNS 4.3 * * *
Gaussian Affine Term Structure Model AfTS 4.4 * * * *
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some other studies have recommended more factors, see the discussion in De Pooter (2007).

For the DFM, SDFM, NS and FSN models the choice of the factor dynamics is arbitrary.

To keep the discussion general, we consider VAR(k) as well as CVAR(k) factors for these

models. Further, we assume for the CVAR specification that there are two cointegrating

vectors for the factors. This means that there is only one random walk present in the cross-

section of yields. This is the same assumption as made by Bowsher and Meeks (2008) and

is consistent with the findings in Hall, Anderson, and Granger (1992). We will make no

assumption on the lag order of the CVAR and VAR processes. Instead, we determine the

optimal lag order by minimizing the Akaike Information Criterium (AIC). In this empirical

study we will find that the dynamic properties of the factors do not depend on the functional

form of the factor loadings.

To account for the large shocks in the yield curve data for the months of May 1985 and

October 1987, we include two sets of dummies in each of the models. Since the shocks were

persistent and influenced the entire yield curve we included the dummies as intercepts in the

unobserved factors. This adds a total of six parameters to each of the model specifications.

6.2 Estimation results for the DFM

In this section we discuss results obtained from the maximum likelihood estimation of the

general dynamic factor model. In Table 3 we give the values of the maximized loglikelihood

functions for the VAR(k) and CVAR(k) factor specifications together with the corresponding

Akaike Information Criterium (AIC) values for k = 1, 2, 3, 4. The maxima of the loglikelihood

functions for the models with k = 2 are considerably higher than the corresponding values

for k = 1. The improvements from additional lags (k = 3, 4) are however much smaller. The

VAR(2) and CVAR(2) factor specifications give the smallest AICs values. We will therefore

restrict ourselves to these two specifications in the remainder of the section.

Since we are mainly interested in the restrictions imposed on the factor loadings, it is

of interest to investigate how the estimated factor loadings change with different choices

of k. In Panel A of Figure 2 we plot the estimated factor loadings for the DFM model
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Table 3: Likelihoods and AICs for DFM
This table presents maximum likelihood estimation results for the dynamic factor model (DFM) with VAR
factors and the DFM with CVAR factors. The models were estimated on the dataset discussed in section
5. We show the value of the loglikelihood evaluated at the maximum likelihood estimates, denoted by ℓ(ψ̂),
and the value of the Akaike Information Criterium (AIC ).

Likelihoods and AICs for DFM

VAR CVAR

Model ℓ(ψ̂) AIC Model ℓ(ψ̂) AIC

VAR(1) 3894.5 -7595 CVAR(1) 3899.0 -7606
VAR(2) 3918.5 -7625 CVAR(2) 3923.7 -7637
VAR(3) 3922.6 -7615 CVAR(3) 3927.7 -7627
VAR(4) 3932.2 -7616 CVAR(4) 3937.3 -7628

with CVAR(k) factor specifications, for k = 1, . . . , 4, as functions of time to maturity. The

loading matrix Λ is restricted to be of the form (5), with the rows of the identity matrix

placed at the rows associated with the maturities of 3, 30 and 120 months. The estimated

loadings are nearly identical for different values of k. We have found similar results for the

stationary DFM models. We therefore may conclude that the increase of the loglikelihood

due to adding extra lags in the VAR and CVAR models for the latent factors is mainly due to

a better fit of the time series dynamics. The fit of the yield curve is not affected by different

lag orders.

To clarify the effect of an increasing k on the dynamics, we also present the factor loadings

for the dynamic factor model with factor specification (10). Here the two stationary factors

are separated from the random walk component. The resulting loadings are presented in

Panel B of Figure 2. We now obtain clear differences between the factor loadings when the

lag order k changes. The loadings for the first (nonstationary) component shifts downward

as k increases. It implies that yield variation that is explained in the CVAR(1) model by

a nonstationary factor is captured by a highly persistent but stationary component in the

CVAR(k) model with k > 1. We interpret such shifts as additional evidence that a CVAR(1)

model cannot adequately capture the observed yield curve dynamics.
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Figure 2: Maximum Likelihood Estimates Loadings for DFM
This figure shows the estimated factor loadings for the DFM-CVAR(k) model, for k = 1, . . . , 4 as a function
of time to maturity. In panel A we see the results for the model where the factors are modelled by (8). The
loadings are now restricted to be of the form (5) with the rows of the identity matrix at the maturities 3
months, 30 months and 120 months. Panel B shows the estimated loadings for the same model but with ft
modelled as (10). In this case the first column of the loading matrix corresponds to the nonstationary factor
and is scaled such that the first element is one. The sub-matrix consisting of the second and third columns
is now of the form (5).
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The autoregressive coefficient matrices Γj for VAR(k) and CVAR(k) processes for j =

0, . . . , k − 1 are generally difficult to interpret especially when k > 1. We therefore choose

to report eigenvalues of the estimated transition matrix T of the state space representation

(3). In Table 4 the eigenvalues of matrix T for the DFM-VAR(2) and DFM-CVAR(2) are

presented. For both models we have two eigenvalues close to one, or equal to one in the

nonstationary case, with no imaginary part and two sets of eigenvalues that do have an

imaginary component. We can therefore view the factors as a weighted sum of two highly

persistent autoregressive (AR) processes (or one AR process and a random walk) and two

cyclical components. The presence of two highly persistent factors in the estimated model

is in line with our preliminary findings in section 5. Since the highest eigenvalue for the

VAR(2) process, 0.992, is very close to one, this process is in practice almost a CVAR

process. This explains why the remaining eigenvalues of both models are close to each other

as well. Throughout this empirical section we will see that all the VAR specifications are very

close to being nonstationary. In practice this means that estimation results for stationary

and nonstationary models tend to be very similar.

6.3 Imposing the SDFM restrictions

In the previous section we have concluded that the VAR(2) and CVAR(2) factor specifications

are best in representing the yield curve data. Next we apply the methodology of section 3.2

to find a suitable set of smoothness restrictions for the factor loadings of the DFM model

with VAR and CVAR specifications.

To ensure that the SDFM specification is identified we need to impose restrictions on the

knots and associated parameters. We choose to restrict the loading matrix to be of the form

(5) where the rows of the identity matrix are placed in the rows corresponding to the 3, 30,

and 120 months of maturities. Since our interpolating cubic spline framework requires knot

positions at the begin- and end-points (3 and 120 months), it implies that the knot at 30

months cannot be removed in the course of the selection procedure. Of course, the procedure

can be repeated when the knot at 30 months is moved to another time to maturity. After
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Table 4: Eigenvalues Estimated Transition Matrices
In these two tables we present the eigenvalues of the estimated transition matrices for the DFM, SDFM, NS
and FSN models. In Panel A we show results for the stationary VAR(2) specifications and in Panel B for
the models with nonstationary CVAR(2) factors. The columns with heading ‘real’ contain the real part of
the eigenvalues and the columns with heading ‘img.’ contain the imaginary parts. Eigenvalues are sorted by
their norm in ascending order.

Panel A: Stationary models

DFM SDFM NS FSN

real img. real img. real img. real img.

1 0.154 0.163 0.164 0.159 0.156 0.166 0.216 0.143
2 0.154 -0.163 0.164 -0.159 0.156 -0.166 0.216 -0.143
3 0.597 0.058 0.607 0.134 0.593 0.056 0.642 0.259
4 0.597 -0.058 0.607 -0.134 0.593 -0.056 0.642 -0.259
5 0.963 - 0.965 - 0.964 - 0.969 -
6 0.992 - 0.992 - 0.992 - 0.993 -

Panel B: Nonstationary models

DFM SDFM NS FSN

real img. real img. real img. real img.

1 0.149 0.162 0.155 0.162 0.151 0.165 0.206 0.143
2 0.149 -0.162 0.155 -0.162 0.151 -0.165 0.206 -0.143
3 0.597 0.092 0.601 0.123 0.594 0.099 0.649 0.258
4 0.597 -0.092 0.601 -0.123 0.594 -0.099 0.649 -0.258
5 0.972 - 0.973 - 0.972 - 0.970 -
6 1 - 1 - 1 - 1 -
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Table 5: Wald-Statistics of Knots in Unrestricted SDFM specification
This table shows Wald-statistics for the knots in the unrestricted SDFM-CVAR(2) model. The symbol
− indicates that for this knot no Wald-statistic was calculated. This is the case for the restricted knots
corresponding to 3 months, 30 months and 120 months maturity. We use ∗ respectively ∗∗ to indicate that
a statistic is significant at the 5% and 1% significance level.

SDFM-CVAR(2): Wald-Statistics

Maturity Factor 1 Factor 2 Factor 3

3 - - -
6 2.65 4.22∗ 6.08∗

9 0.79 2.40 5.59∗

12 0.23 1.35 4.28∗

15 0.04 0.33 1.51
18 0.01 0.02 0.28
21 0.95 0.74 1.52
24 3.50 2.37 3.98∗

30 - - -
36 1.14 1.50 6.68∗∗

48 0.44 2.88 13.47∗∗

60 1.20 5.00∗ 18.04∗∗

72 2.59 5.76∗ 15.69∗∗

84 2.60 4.59∗ 8.82∗∗

96 0.77 1.68 1.79
108 0.01 0.06 0.00
120 - - -

some experimentation, we have concluded that our main results are not sensitive to moving

this knot to maturities in the neighborhood of 30 months.

In Table 5 we present the Wald test-statistics for each knot in the unrestricted model with

a CVAR(2) specification for the factors. We only give results for the CVAR(2) specification

as the statistics for the VAR(2) model are almost identical for reasons given at the end

of section 6.2. At the start of the procedure 12 out of 42 loading coefficients (or knots)

are significant at the 5% significance level. This suggests that the number of parameters

can be reduced enormously without affecting the fit. However, the test statistics are highly

correlated and removing one knot will generally change the statistics of the neighbouring

knots considerably. We then proceed by sequentially removing the knot with the lowest
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Table 6: Wald-Statistics of Knots in Final SDFM Specifications
This table shows Wald-statistics for the knots in the final SDFM-VAR(2) and SDFM-CVAR(2) models
obtained using the iterative procedure discussed in section 3.2. The symbol − indicates that for this knot no
Wald-statistic was calculated. This is the case for knots that have been removed and for the restricted knots
corresponding to 3 months, 30 months and 120 months maturity. We add a superscript ∗ if the statistic is
significant at the 5% significance level and ∗∗ if the statistic is significant at the 1% level.

Wald-Statistics of Final Models

SDFM-VAR(2) SDFM-CVAR(2)

Maturity Factor 1 Factor 2 Factor 3 Factor 1 Factor 2 Factor 3

3 - - - - - -
6 55.36∗∗ - - 59.08∗∗ 6.50∗ 5.24∗

9 - - 17.39∗∗ - 6.58∗ 8.92∗∗

12 - 53.72∗∗ 20.60∗∗ - 16.25∗∗ 19.62∗∗

15 - - 10.20∗∗ - 24.17∗∗ 26.83∗∗

18 - 15.86∗∗ - - - -
21 14.41∗∗ - 5.05∗ 18.55∗∗ - -
24 16.70∗∗ 4.14∗ 7.55∗∗ 23.13∗∗ - 7.35∗∗

30 - - - - - -
36 - - 25.18∗∗ - - 26.88∗∗

48 - 19.98∗∗ 45.68∗∗ - 30.07∗∗ 52.87∗∗

60 - 19.00∗∗ 47.53∗∗ - 26.79∗∗ 54.39∗∗

72 - 15.67∗∗ 40.38∗∗ - 22.80∗∗ 43.00∗∗

84 - - 18.04∗∗ - - 17.85∗∗

96 4.49∗∗ - 5.39∗ 7.68∗∗ - 5.10∗

108 - - - - - -
120 - - - - - -

Wald-statistic and re-estimating the model after each step. The procedure is terminated

when all statistics are significant at the 5% significance level.

In Table 6 we present for both the SDFM-VAR(2) and SDFM-CVAR(2) models the Wald-

statistics for the knots that have remained after the final step. The final knot selections for

the stationary and nonstationary models are different. However, the distribution of the knots

over the interval [τ1, τN ] is similar for both models. To let a cubic spline fit a certain shape,

the distribution of the knots is generally more important than the exact location of the knots.

Furthermore, we find that the procedure is especially successful in fitting the first column
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Figure 3: Estimated Factor Loadings for SDFM Model
This figure shows the estimated factor loadings for the SDFM-VAR(2) and SDFM-CVAR(2) models, obtained
using the procedure of section 3.2, as functions of time to maturity. For ease of comparison we also show
the maximum likelihood estimates of the loadings in the DFM model. The loadings are restricted to be of
the form (5) with the rows of the identity matrix at the 3 months, 30 months and 120 months maturities.
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of factor loadings. The original set of 14 loading parameters is reduced to four remaining

knot parameters. In total we reduced the number of parameters in loading matrix Λ by 20

for the nonstationary and 21 for the stationary model, a reduction of, say, 50 percent. In

Figure 3 we show the spline estimates for the factor loadings of the final smooth dynamic

factor models. For both SDFMs the factor loadings are smooth and close to the estimated

loadings for the general DFM model. We have shown that we can achieve almost identical

loadings using a much smaller set of parameters. It confirms our prior believe that the true

factor loadings are subject to smoothness restrictions. The results for the CVAR and VAR

specifications are almost identical.

The construction of the two SDFM specifications in this section required us to estimate re-

spectively 20 and 21 different dynamic factor models each containing around 100 parameters.
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This may appear computationally intensive from the outset. However, the computationally

efficient methods, discussed in section 2.3, make such a procedure computationally feasible

even for larger models.

6.4 Estimation results for other term structure models

In this section we present estimation results for the term structure models discussed in

section 4. In Table 7 we report loglikelihood and corresponding AIC values for the NS and

FSN models with both VAR(k) and CVAR(k) specifications for k = 1, . . . , 4. To generate

these results we first need to specify a set of knots to construct the loading matrix W for the

FSN model. The location of the knots are selected using the same methodology as adopted

in Bowsher and Meeks (2008). For each possible set of three knots, we fitted a spline through

all observed yield curves. We then chose the knot configuration that produced the lowest

average mean square error. In our setting we only need to choose one knot, since the other

two knots are fixed at the first and last maturities. The results of Table 7 are consistent with

the results for the general dynamic factor model reported in section 6.2. For both models,

the AIC criteria favour both the VAR and CVAR specifications with k = 2. This is also

in accordance with the results of Bowsher and Meeks (2008) who, working with a similar

data set for a larger number of maturities, find that the FSN model with CVAR(2) factors

performs best in their class of models.

In Table 8 we report the maxima of the loglikelihood functions and their corresponding

AIC values for the AFNS and AfTS models. These loglikelihood values can only be compared

with their corresponding values in Table 3 and Table 7 for the stationary VAR specifica-

tions of the factors since AFNS and AfTS models are defined as strictly stationary models.

The maximized loglikelihood values for the arbitrage-free models are considerably smaller

when compared to the dynamic factor model, with and without smooth factor loadings, and

compared to the Nelson-Siegel model. The difference with the FSN model is however less

pronounced, especially for the AfTS.

In Table 4 we present the eigenvalues of the estimated transition matrices for the NS and
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Table 7: Likelihoods and AICs for Term Structure Models
This table presents maximum likelihood estimation results for the Nelson-Siegel Model (NS) and the Func-
tional Signal plus Noise (FSN) model. All models were estimated on the data set discussed in section 5. We

show the value of the loglikelihood evaluated at the maximum likelihood estimates, denoted by ℓ(ψ̂), and
the value of the Akaike Information Criterium (AIC ).

Panel A: NS

VAR CVAR

Model ℓ(ψ̂) AIC Model ℓ(ψ̂) AIC

VAR(1) 3784.0 -7456 CVAR(1) 3788.7 -7467
VAR(2) 3808.4 -7487 CVAR(2) 3813.5 -7499
VAR(3) 3812.5 -7477 CVAR(3) 3817.5 -7489
VAR(4) 3822.2 -7478 CVAR(4) 3827.3 -7491

Panel B: FSN

VAR CVAR

Model ℓ(ψ̂) AIC Model ℓ(ψ̂) AIC

VAR(1) 3446.9 -6784 CVAR(1) 3452.0 -6796
VAR(2) 3479.0 -6830 CVAR(2) 3483.7 -6841
VAR(3) 3483.4 -6821 CVAR(3) 3488.1 -6832
VAR(4) 3494.8 -6826 CVAR(4) 3499.6 -6837
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Table 8: Arbitrage-Free Term Structure Models: Maximum Likelihood Results
This table presents the maximum likelihood estimation results for the two arbitrage-free term structure
models: the AFNS and AfTS models. We show the maximum of the loglikelihood function in the column

with heading ℓ(ψ̂). Further we give the number of parameters in the model nψ and the Akaike information
criterium (AIC). Finally we present the eigenvalues of the estimated transition matrix T. The eigenvalues
are presented in descending order.

Arbitrage-Free Term Structure Models

Eigenvalues T

Model ℓ(ψ̂) nψ AIC 1 2 3

AFNS 3253.3 42 -6423 0.986 0.952 0.884
AfTS 3429.4 36 -6786.9 0.9997 0.998 0.984

FSN models. The nonstationary and stationary specifications for the factor produce similar

results. This finding is consistent with the results of the DFM and SDFM models. The

eigenvalues for the DFM, NS and FSN specifications are almost identical. Table 8 presents

the eigenvalues for the two arbitrage-free models. In both cases the estimated parameters

imply a high level of persistence in the factor dynamics.

Next we investigate whether the choice of the lag order in the autoregressive factor

dynamics influences the estimates of the factor loadings. This matter only applies to the

Nelson-Siegel model. The factor loadings of the FSN model only depend on the selection of

the knots and are therefore by definition independent of the dynamics of the factors. The

two arbitrage-free models are only defined for a VAR(1) process and therefore we do not

consider this issue for these models. For the Nelson-Siegel model, the factor loadings depend

on a single parameter λ. In Table 9 we report the maximum likelihood estimates of this

parameter λ for different lag orders in the dynamic process of ft. We find that the estimates

of λ are almost identical for stationary and nonstationary factor specifications. Also the

estimates of λ vary little for different choices of the lag order. We conclude that maximum

likelihood estimation of the factor loadings (here all functions of λ) is not influenced by the

dynamic specification of the factors.

In Figure 4 we present the estimated factor loadings for the NS and FSN models with
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Table 9: Maximum Likelihood Estimates of Nelson-Siegel Parameter λ
This table presents maximum likelihood estimates of the Nelson-Siegel parameter λ, defined in (24), for
models where the factors are given by VAR(p) and CVAR(p) processes and for varying values of p.

Nelson-Siegel Factor Model Parameter λ

Model p = 1 p = 2 p = 3 p = 4

VAR(p) 0.07303 0.07211 0.07216 0.07193
CVAR(p) 0.07302 0.07210 0.07213 0.07191

CVAR(2) factors. We have rotated the loadings such that the loading matrix Λ is of the form

(5). The rotation facilitates easier comparison with the estimated loadings of the general

DFM. It is clear that the rotated Nelson-Siegel loadings are similar to the smoothed versions

of the DFM loadings. This finding is surprising given that the loadings in the Nelson-Siegel

model depend on a single parameter λ while the dynamic factor model relies on 42 factor

loadings. For the FSN model, the factor loadings have generally the same shape and form

of the loadings obtained from the DFM and NS models. However, the individual factor

loadings are quite different.

In Figure 5 we display the factor loadings for the arbitrage-free models. As the loadings

of the AFNS are similar to the Nelson-Siegel model we show these of the AfTS model. These

loadings have been rotated in the same way so they have the same form as the DFM-VAR(1)

loadings. As in the case of the Nelson-Siegel model, the factor loadings in the AfTS are close

to the unrestricted estimates. It is revealing to see how close the AfTS loadings are compared

to the DFM loadings while the eigenvalues of its transition matrix (its VAR(1) coefficient

matrix) presented in Table 8 are quite different from those of the DFM, SDFM, NS and FSN

models (based on VAR(2) and CVAR(2) coefficient matrices) reported in Table 4. Also,

the factor loadings are estimated simultaneously with the parameters that govern the factor

dynamics. These findings suggest that the penalty on an incorrect yield curve specification

(determined by the loadings) is much larger than the penalty on an incorrect dynamic

specification of the factors. During the search for the optimum of the likelihood function,
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Figure 4: Estimated Factor Loadings Nonstationary Models
This figure shows the estimated factor loadings as functions of time to maturity for the DFM-CVAR(2),
NS-CVAR(2) and FSN-CVAR(2) models. The factor loadings are rotated such that loading matrix is of
the form (5), where the rows of the identity matrix are at the maturities of 3 months, 30 months and 120
months. In panel A we show the loadings for the DFM and NS model and in panel B the loadings for the
FSN model.

0 25 50 75 100 125

0.0

0.5

1.0
Loading 1

Panel A

DFM−CVAR(2) NS−CVAR(2) 

0 25 50 75 100 125

0.0

0.5

1.0

Panel B

FSN−CVAR(2) 

0 25 50 75 100 125
0.0

0.5

1.0
Loading 2

0 25 50 75 100 125

0.5

1.0

0 25 50 75 100 125

0.0

0.5

1.0 Loading 3

0 25 50 75 100 125

0.0

0.5

1.0

41



Figure 5: Estimated Factor Loadings Gaussian Affine Term Structure Model
This figure shows the estimated factor loadings for the Gaussian affine term structure model (AfTS) and the
DFM-VAR(1) model as functions of time to maturity. The factor loadings for the AfTS are rotated such
that the loading matrix is of the form (5), where the rows of the identity matrix are at the maturities of 3
months, 30 months and 120 months.
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the optimization algorithm can therefore almost ignore the time series dimension. The

parameters are then chosen such that the fit of the cross-section is as good as possible. The

same conclusion can be drawn from Tables 3 and 7. The difference between the maximized

loglikelihood values of the DFM-CVAR(1) and DFM-CVAR(2) models is much smaller than

the difference between the values for the DFM-CVAR(2) and NS-CVAR(2) models while the

factor loadings are very similar in all specifications, see Figure 4.
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6.5 Model fit

In case all considered dynamic factor models are good approximations of the data generating

process, we expect that the residuals are not serially correlated. To verify this, we computed

Ljung-Box statistics for all models considered and for all 17 standardized residual series.

The null hypothesis of the Ljung-Box tests is that residuals are a white noise sequence. If

the null is rejected, dynamic variation in the residuals remains to be explained by a linear

process. For a selection of the models we present the results of this procedure in Table

10. We see that the Nelson-Siegel model and to a lesser extent the DFM model are less

successful in fitting the dynamics in the interest rates associated with times to maturity

of 9 and 12 months. For these yields the FSN model seems to outperform the two other

models. The FSN appears to explain the variation in the yields quite well for all maturities

with the exception of the shortest 3 month maturity. It is not surprising that the Ljung-

Box test statistics for the SDFM model are very similar to those for the general dynamic

factor model. The arbitrage-free models perform a lot worse than the DFM, NS and FSN

models, especially for the maturities from 6 to 24 months. For both the AFNS and AfTS

models we reject the null hypothesis of the Ljung-Box test for 6 out of 17 residual series, at

the 5% significance level. This lack of fit is surprising for the AFNS model since it is very

similar to the standard Nelson-Siegel model. We can partly explain this from the restrictions

of a VAR(1) process for the factors of the AFNS model. For comparison, we also present

the Ljung-Box statistics for the standard Nelson-Siegel with VAR(1) factors in Table 10.

In this case, the model only differs from the AFNS model in its restrictions imposed on

the intercept. The NS-VAR(1) model also performs significantly worse in capturing the

dynamics compared to the NS-CVAR(2) model. We stress however that it is not caused

by the stationarity restriction of a VAR process. Ljung-Box statistics for the models with

CVAR(2) factors and the VAR(2) specifications are very similar. In case of the AfTS model,

we can explain the poor Ljung-Box statistics from the VAR(1) restriction and the estimates

of the parameters in the transition matrix, see also the discussion at the end of section 6.4.
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Table 10: Ljung-Box Statistics
This table shows Ljung-Box statistics calculated for the scaled residuals of some of the models discussed in
this paper. Separate statistics are calculated for each maturity. We chose a number of 12 lags to calculate the
test-statistics. The superscript ∗ is used to indicate rejection of the null hypothesis at the 10% significance
level and ∗∗ is used for rejection at the 5% significance level. The headings ‘CVAR(2) factors’ and ‘VAR(1)
factors’ indicate the specifications chosen for the factors.

Ljung-Box Statistics

CVAR(2) factors VAR(1) factors

Maturity DFM NS FSN SDFM NS AFNS AfTS

3 5.8 6.2 84.3∗∗ 6.0 11.6 10.5 17.9
6 7.1 7.4 11.2 7.4 12.6 11.8 33.1∗∗

9 19.2∗ 19.3∗ 11.6 18.7∗ 31.8∗∗ 39.9∗∗ 55.1∗∗

12 22.5∗∗ 29.2∗∗ 16.7 23.1∗∗ 36.2∗∗ 53.1∗∗ 52.6∗∗

15 15.9 17.8 16.0 15.6 25.7∗∗ 36.9∗∗ 28.5∗∗

18 12.8 13.0 13.2 12.7 22.2∗∗ 28.1∗∗ 22.2∗∗

21 12.2 12.0 13.8 12.2 18.8∗ 22.4∗∗ 19.1∗

24 10.2 11.2 15.3 10.6 18.9∗ 21.6∗∗ 22.0∗∗

30 9.3 9.4 10.5 9.1 17.2 15.8 16.0
36 8.7 9.1 10.3 8.3 16.1 14.8 15.2
48 6.2 6.0 7.7 5.4 12.6 11.1 11.1
60 5.9 5.7 9.2 5.6 11.5 10.3 11.2
72 5.7 5.5 8.2 5.9 11.7 10.5 10.8
84 8.4 9.4 10.4 9.1 15.3 12.9 17.4
96 7.7 7.6 8.6 7.9 11.8 10.8 14.1
108 9.2 8.6 9.0 9.2 10.5 9.7 11.6
120 10.1 9.7 6.9 11.0 9.7 9.3 12.2
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Table 11: Results Likelihood Ratio Tests
This table presents the likelihood-ratio statistics for the null-hypothesis that the restrictions of the considered
model are valid. The column k contains the number of restrictions imposed by the model. In panel A we
show the VAR(2) versions of the NS, FSN and SDFM models. Panel B gives the CVAR(2) versions of the
NS, FSN and SDFM models. Finally, we give the likelihood ratio statistics for the arbitrage-free models in
Panel C.

Panel A: Stationary Models

Model LR k p-value

NS 220.2 41 0.000
FSN 879.0 42 0.000
SDFM 23.4 21 0.32

Panel B: Nonstationary Models

Model LR k p-value

NS 220.4 41 0.000
FSN 879.8 42 0.000
SDFM 20.2 20 0.45

Panel C: Arbitrage-Free Models

Model LR k p-value

AFNS 1282.4 64 0.000
AfTS 930.2 76 0.000

6.6 Testing the restrictions on the factor loadings

In section 4 we have argued that all existing models considered in this paper can be viewed

as dynamic factor models with smoothness restrictions imposed on the parameters. Since

all models are nested in the general dynamic factor model, we can test the validity of these

restrictions by means of a likelihood ratio test. For each model we test the null hypothesis

that the restrictions are correct versus the alternative hypothesis that the true model is a

general DFM model with the same dynamic specification for the factors. In case of the

arbitrage-free models we indirectly test the restrictions on the intercepts. In Table 11 we

present the established likelihood ratio tests. For the NS and FSN models, we focus on the

VAR(2) and CVAR(2) specifications which we have selected by minimizing the AIC. Similar

results are obtained for the other dynamic specifications. For the SDFM models we consider

the final specifications presented in section 6.3.

The likelihood ratio tests suggest that we should strongly reject the restrictions implied

by NS and FSN and those implied by the arbitrage-free specifications. For the FSN model,

45



Figure 6: Estimated Factor Loadings DFM with Confidence Bounds
This figure shows the estimated factor loadings for the DFM-CVAR(2) model as functions of time to maturity
with 95% confidence intervals.
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the differences between the estimated FSN and DFM loadings may have been indicative.

However, the results reported in section 6.4 and 6.5 have shown that the loadings for the

standard Nelson-Siegel model are very close to those estimated for the general DFM model.

It is therefore somewhat surprising that the Nelson-Siegel restrictions are so strongly rejected.

To find a possible explanation, we take a close look at the factor loading estimates for the

DFM-CVAR(2) model as presented in Figure 6 together with their 95% confidence intervals.

It is clear that the factor loadings of the DFM are estimated very precisely. The confidence

intervals are very narrow, especially for the third column of the factor loading matrix Λ.

It implies that small perturbations in the maximum likelihood estimates will cause large

changes in the the loglikelihood value. This may explain why the Nelson-Siegel model is

rejected by the likelihood ratio test although it is seemingly similar to the DFM model.
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The strong rejection of these model specifications might suggest that we cannot impose

smoothness restrictions on the factor loadings in dynamic factor models for the term structure

of interest rates. However, for both the stationary as well as the nonstationary specifications,

we cannot reject the restrictions imposed by the SDFM at any reasonable significance level.

This finding confirms our believe that we can impose a certain amount of smoothness on the

factor loadings for the yield curve. We do however require more flexibility in specifying the

factor loadings than provided by the NS, FSN, AFSN and AfTS models. We have shown

that the SDFM is sufficiently flexible for this purpose. A limited number of knots is required

for each column of the factor loading matrix Λ. The exception is the third column of Λ.

A possible explanation is the very narrow confidence intervals for the third factor loadings

presented in Figure 6. It implies that a small misspecification in the third column of Λ will

severely penalize the loglikelihood value.

7 Conclusion

In this paper we have discussed term structure modelling by means of dynamic factor models

with smooth factor loadings. We introduced a new methodology to construct dynamic fac-

tor models with smooth factor loadings and proposed a statistical procedure to find suitable

smoothness restrictions. For the data set of unsmoothed Fama-Bliss zero yields for US trea-

suries we show that, using our new methodology, it is possible to construct a parsimonious

dynamic factor model with smooth factor loadings. The number of parameters in the loading

matrix of our dynamic factor model is almost 50% smaller than the number of parameters in

the loading matrix of the unrestricted dynamic factor model. Despite of this large reduction

in the number of parameters we find that the fit of our model is qualitatively the same as for

the most general dynamic factor model. The restricted model is not rejected by a likelihood

ratio test with the alternative hypothesis that the true data generating process is an unre-

stricted dynamic factor model. We also investigated the validity of the restrictions imposed

by a number of popular term structure models. For all of these models the restrictions were

strongly rejected by the likelihood ratio test. We conclude that there is clear evidence for
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the validity of smoothness restrictions on the factor loadings of dynamic factor models for

the term structure. However, a number of popular models is not flexible enough to capture

the correct shape of the loadings.

Although the analysis of interest rate term structures is of key interest in finance and

economics, we emphasize that dynamic factor models with smooth factor loadings can be

used in many different settings. In many applications of the dynamic factor model it is

possible to identify variables of which the factor loadings can reasonably be assumed to be

smooth functions. In this way we can build parsimonious dynamic factor models even for

high dimensional time series panels. We plan to explore this methodology in future work.
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