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Abstract

We show a striking change in index return serial dependence across 20 major market indexes

covering 15 countries in North America, Europe, and Asia. While many studies find serial

dependence to be positive until the 1990s, it switches to negative since the 2000s. This

change happens in most stock markets around the world and is both statistically significant

and economically meaningful. Further tests reveal that the decline in serial dependence

links to the increasing popularity of index products (e.g., futures, exchange-traded funds,

and index mutual funds). The link between serial dependence and indexing is not driven by

a time trend, holds up in the cross section of stock indexes, is confirmed by tests exploiting

Nikkei 225 index weights and Standard & Poor’s 500 membership, and in part reflects the

arbitrage mechanism between index products and the underlying stocks.
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1. Introduction

Since the 1980s, many studies have examined the martingale property of asset prices

and shown positive serial dependence in stock index returns. Several explanations for this

phenomenon have been posited such as market microstructure noise (stale prices) and slow

information diffusion (the partial adjustment model). In this paper, we provide systematic

and novel evidence that serial dependence in index returns has turned significantly negative

more recently across a broad sample of 20 major market indexes covering 15 countries in

North America, Europe, and the Asia-Pacific. Negative serial dependence implies larger and

more frequent index return reversals that cannot be directly accounted for by traditional

explanations.

Our key result is illustrated in Fig. 1, which plots several measures for serial dependence

in stock market returns averaged over a ten-year rolling window. While first-order autocorrelation

[AR(1)] coefficients from daily returns have traditionally been positive, fluctuating around

0.05 from 1951, they have been steadily declining ever since the 1980s and switched sign

during the 2000s. They have remained negative ever since.

[Insert Fig. 1 about here]

This change is not limited to first-order daily autocorrelations. For instance, AR(1) coefficients

in weekly returns evolved similarly and switched sign even before 2000. Because we do

not know a priori which lag structure comprehensively measures serial dependence, we

examine a novel measure for serial dependence, multi-period autocorrelation [MAC(q)],

that incorporates serial dependence at multiple (that is, q) lags. For instance, MAC(5)

incorporates daily serial dependence at lags one through four. MAC(q) can be directly

mapped to the traditional variance ratio test that places linearly declining weights on

higher-order autocorrelations. Such a declining weighting scheme provides an asymptotically

powerful test for return serial correlation (Richardson and Smith, 1994). Fig. 1 demonstrates

that incorporating multiple lags by using MAC(5) also reveals a dramatic change in serial

dependence over time.



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

The newMAC(q) measure is estimated from a trading strategy, allowing us to demonstrate

that negative serial dependence in index returns is economically important. For instance,

a strategy that trades against MAC(5) using all indexes in our sample [or the Standard &

Poor’s (S&P) 500 index alone] would result in an annual Sharpe ratio of 0.63 (0.67) after

March 2, 1999 (the most recent date used in previous index autocorrelation studies). In

addition, serial dependence in the futures and exchange-traded funds (ETFs) covering our

equity indexes is negative ever since their inception. Similar Sharpe ratios are observed for

futures and ETFs.

Our results reveal that the decrease of index-level serial dependence into negative territory

coincides with indexing, i.e., the rising popularity of equity index products such as equity

index futures, ETFs, and index mutual funds. Panel A of Fig. 2 plots the evolution of

equity indexing for the S&P 500 based on index futures (black line), index ETFs (solid gray

line), and index mutual funds (dashed gray line). The extent of indexing is measured by the

total open interest for equity index futures, total market capitalization for ETFs, or total

assets under management for index mutual funds, all scaled by the total capitalization of the

S&P 500 constituents. Over our sample period, the total value of these index products has

increased to about 7% of the total S&P 500 market capitalization.1 To see this trend on a

global level, we plot the evolution of global equity indexing based on index futures and ETFs

in Panel B. Equity index products worldwide represented less than 0.5% of the underlying

indexes before the 1990s, but the fraction rises exponentially to more than 3% in the 2010s.

From Figs. 1 and 2, indexing and negative index serial dependence clearly are correlated.

We show that this correlation is highly significant and not simply driven by a common

time trend. While most of the existing studies focus on one market or one index product,

we examine 20 major market indexes (covering North America, Europe, and Asia-Pacific)

1We count only listed index products that directly track the S&P 500 in this number, and we ignore
enhanced active index funds, smart beta funds, index products on broader indexes (such as the MSCI country
indices), and index products on subindexes (such as the S&P 500 Value Index). Thus, this percentage errs
on the conservative side.
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and multiple index products (futures and ETFs). The broad coverage and considerable

cross-market variation in futures introduction dates, ETF introduction dates, and the importance

of indexing (relative to the index) provide independent evidence for a link between indexing

and negative serial dependence in the underlying index, in several ways.

[Insert Fig. 2 about here]

First, for each index, we endogenously determine when its serial dependence changed dramatically

using a purely statistical, data-driven approach. In the cross section of indexes, we find a

highly significantly positive relation between the break date in index serial dependence and

the start of indexing measured by the introduction date of index futures. In the time series,

cumulative serial dependence follows an inverse U-shape that peaks less than five years after

the start of indexing. Hence, introducing indexing products seems to change the behavior of

the underlying stock market across indexes and over time.

Second, we present cross-sectional and time series evidence that, on average, higher levels

of indexing are associated with more negative serial dependence. Across indexes and over

time, index serial dependence is significantly lower for indexes with a larger fraction of market

capitalization being indexed. The cross-sectional relation is verified using Fama-MacBeth

regressions. In the time series, the significantly negative relation survives when we remove

the time trend, regress quarterly changes in MAC(5) on quarterly changes in indexing, or

add index fixed effects. Thus, increases in indexing are associated with decreases in serial

dependence that go beyond sharing a common time trend, and the link cannot be explained

by differences between stock markets.

The link between indexing and index-level negative serial dependence could be spurious.

For instance, higher demand for trading the market portfolio results in correlated price

pressure on all stocks, which could also make index serial dependence turn negative. In

other words, index serial dependence could have changed due to market-wide developments,

regardless of whether index products have been introduced or not. One could even argue

that the futures introduction date is endogenous and futures trading is introduced with the
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purpose of catering to market-level order flow. In this paper, we identify the impact of

indexing on the index by comparing otherwise similar stocks with very different indexing

exposure that arise purely from the specific design of the index. We do this in two ways.

First, we exploit the relative weighting differences of Japanese stocks between the Nikkei

225 index and the Tokyo Stock Price Index (TOPIX). Because the Nikkei 225 is price

weighted and the TOPIX is value weighted, some small stocks are overweighted in the Nikkei

225 when compared with their market capitalization-based weight in the TOPIX. Greenwood

(2008) finds that overweighted stocks receive proportionally more price pressure and uses

overweighting as an instrument for non-fundamental index demand that is uncorrelated

with information that gets reflected into prices. We employ the Greenwood (2008) approach

and find that overweighted Nikkei 225 stocks (relative to their underweighted counterparts)

experience a larger decrease in serial dependence as the Nikkei 225 futures is introduced,

and the wedge between the two groups widens with the relative extent of indexing between

the Nikkei 225 and TOPIX.

In an additional test, we construct an index based on the 250 smallest S&P 500 stocks

and compare it with a matching portfolio based on the 250 largest non–S&P 500 stocks.

The non–S&P stocks are larger, better traded, and suffer less from microstructure noise and

slow information diffusion, yet they are unaffected by S&P 500 index demand. We find that

before any indexing, serial dependence is less positive in large non-S&P stocks, as we expect

for larger and better traded stocks. However, as indexing rises, serial dependence in the

small and lesser traded S&P stocks decreases more than serial dependence in the (larger

and better traded) non-S&P stocks and turns negative. This evidence suggests that index

membership by itself leads to an additional decrease in serial dependence.

Negative index serial dependence suggests the existence of non-fundamental shocks such

as price pressure at the index level. The fact that serial dependence is negative for both the

index product and the index suggests that arbitrage is taking place between the two markets.

As discussed in Ben-David, Franzoni, and Moussawi (2018), such arbitrage can propagate
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price pressure from the index product to the underlying index.2 It could also operate in the

other direction by propagating price pressure from the index to index product. We confirm

the important role of index arbitrage by demonstrating that index serial dependence tracks

index product serial dependence very closely, and more so when indexing is higher. In other

words, as indexing products become more popular, index arbitrage exposes the underlying

index more to price pressure, potentially contributing to its negative serial dependence.

Our study relates to a long literature on market-level serial dependence in stock returns,

including Hawawini (1980), Conrad and Kaul (1988, 1989, 1998), and Lo and MacKinlay

(1988, 1990a). This literature offers several explanations for positive serial dependence

including time-variation in expected returns (Conrad and Kaul, 1988; Conrad, Kaul, and

Nimalendran, 1991), market microstructure biases such as stale prices and infrequent trading

(Fisher, 1966; Scholes and Williams, 1977; Atchison, Butler, and Simonds, 1987; Lo and

MacKinlay 1990a; Boudoukh, Richardson, and Whitelaw, 1994) and lead-lag effects as

some stocks respond more sluggishly to economy-wide information than others (Brennan,

Jegadeesh, and Swaminathan, 1993; Badrinath, Kale, and Noe, 1995; Chordia and Swaminathan,

2000; McQueen, Pinegar, and Thorley, 1996). We determine that serial dependence has since

turned negative as index products became popular, a finding that cannot be explained by

these theories but could be explained by the index-level price pressure arising from the index

arbitrage that index products enable. Empirically, our story is in line with Duffie (2010),

who presents examples from various markets of negative serial dependence due to supply

and demand shocks. Furthermore, a related literature exists on short-term return reversal

phenomena at the stock level (Avramov, Chordia, and Goyal, 2006; Lehmann, 1990; Hou,

2007; Nagel, 2012; Jylhä, Rinne, and Suominen, 2014). Our study appears related to studies

documenting that individual stock returns are negatively autocorrelated, but focuses on

2This mechanism is underpinned by theory in Leippold, Su, and Ziegler (2015). Bhattacharya and O’Hara
(2015) demonstrate theoretically that similar shock propagation can occur due to imperfect learning about
informed trades in the index product. For further intuition on the arbitrage mechanism, see Ben-David,
Franzoni, and Moussawi (2018) Fig. 1, and Greenwood (2005).
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serial dependence at the index level. The key distinction is that stock-specific shocks can

drive stock-level short-term return reversal, but contribute only marginally to portfolio-level

serial dependence for any well diversified stock index or portfolio.

Our paper also relates to existing work that links indexing to side effects such as the

amplification of fundamental shocks (Hong, Kubik, and Fishman, 2012), non-fundamental

price changes (Chen, Noronha, and Singal, 2004), excessive co-movement (Barberis, Shleifer,

and Wurgler, 2005; Greenwood, 2005, 2008; Da and Shive, 2017), a deterioration of the firm’s

information environment (Israeli, Lee, and Sridharan, 2014), increased non-fundamental

volatility in individual stocks (Ben-David, Franzoni, and Moussawi, 2018), and reduced

welfare of retail investors (Bond and García, 2017). Our results indicate a balanced perspective

on the effects of index products. On the one hand, they point to positive features of index

products, which are generally easier to trade than the underlying stocks. Also, because

futures traders have higher incentives to collect market-wide information (Chan, 1990, 1992),

indexing allows for faster incorporation of common information and, therefore, reduces the

positive index serial dependence. On the other hand, significantly negative index serial

dependence can be explained only by short-term deviations from fundamental value and

subsequent reversal, and it reflects the existence of non-fundamental shocks even at the

index level. This result is consistent with the view in Wurgler (2011) that too much indexing

can have unintended consequences by affecting the general properties of markets and even

triggering downward price spirals in an extreme case (e.g., Tosini, 1988).

This paper proceeds by describing the data in Section 2. In Section 3, we use several

measures for serial dependence to show that index-level serial dependence has changed over

time from positive to negative. In Section 4, we show that this decrease in serial dependence is

associated with increased popularity of index products. In Section 5, we argue that negative

serial dependence arises because of indexing, and that index arbitrage spreads negative serial

dependence between index products and the underlying index. We conclude in Section 6.
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2. Data

To examine serial dependence in index returns and the effect of indexing, we collect data

for the world’s largest, best traded, and most important stock indexes in developed markets

around the world, as well as for their corresponding futures and ETFs. To avoid double

counting, we exclude indexes such as the Dow Jones Industrial Average whose constituents

are completely subsumed by the constituents of the S&P 500. We also verify, in the Online

Appendix, that our results are similar when we consider only one index per country. The

sample period runs from each equity index’s start date (or January 1, 1951, whichever comes

later) up to December 31, 2016 or when all futures on the index have stopped trading (this

happens for the NYSE futures on September 15, 2011). We thus can examine a cross section

of major indexes that vary considerably in index, futures, and ETF characteristics.

We use Bloomberg data to obtain market information on equity indexes (index prices,

total returns, local market capitalizations, daily traded volume, dividend yields, and local

risk free rates), equity futures (futures prices, volume, open interest, and contract size to

aggregate different futures series on one index), and ETFs (ETF prices, market capitalization,

volume, and weighting factors for leveraged or inverse ETFs, or both). Because an ETF for

a given index typically trades at many different stock markets, we obtain a list of existing

equity index ETFs across the world based on ETFs on offer from two major broker-dealers.

Because we focus on index products that closely track the underlying index, we do not include

ETFs on a subset of index constituents, active ETFs, or enhanced ETFs (e.g., smart beta,

alternative, factor-based, etc.). Finally, for the analysis in Section 5, we obtain information

on Nikkei 225 and S&P 500 index membership from Compustat Global’s Index Constituents

File and the Center for Research in Security Prices (CRSP) Daily S&P 500 Constituents

file, respectively. Appendix A describes the indexes, as well as the construction of data and

variables, in detail.

Below, Table 1 reports on the 20 major market indexes in our sample covering countries

across North America, Europe, and the Asia-Pacific region. Column 2 shows that, in our
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sample, index series start as early as 1951 and as late as 1993. Means and standard deviations

of index returns in Columns 3 and 4 show no major outliers.

3. Serial dependence in index returns

In this Section, we show that index-level serial dependence has changed from positive

to negative in recent years. Section 3.1 does so using AR(1) coefficients to proxy for serial

dependence, in line with the existing literature. In Section 3.2, we suggest multiperiod

autocorrelation (with linearly or exponentially declining weights) as a more comprehensive

way to measure serial dependence.

3.1. International evidence on serial dependence: past and present

Short-term serial dependence in daily returns on index portfolios is a classic feature of

stock markets that has always been positive (see, among others, Fama, 1965; Fisher, 1966;

Schwartz and Whitcomb, 1977; Scholes and Williams, 1977; Hawawini, 1980; Atchison,

Butler, and Simonds, 1987; Lo and MacKinlay, 1988, 1990b). To our knowledge, we are

the first to show systematically that serial dependence around the world has recently turned

negative. However, decreasing serial dependence has previously appeared in bits and pieces

throughout the literature. For instance, index-level serial dependence seems to decrease over

time in Lo and MacKinlay (1988), Boudoukh, Richardson, and Whitelaw (1994, Table 2), and

Hou (2007, Table 2). Ahn, Boudoukh, Richardson, and Whitelaw (2002, Table 2) find that

serial dependence is close to zero more recently for a range of indexes with futures contracts

and liquid, actively traded stocks. Chordia, Roll, and Subramanyam (2008, Table 7.B) find

that daily first-order autocorrelations of the portfolio of small NYSE stocks have decreased

from significantly positive during the 1/8th tick size regime (from 1993 to mid-1997) to

statistically indistinguishable from zero during the 0.01 tick size regime (from mid-2001

until the end of their sample period). Finally, Chordia, Roll, and Subramanyam (2005,

Table 1) find that autocorrelations are smaller in more recent subperiods.
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To provide systematic evidence that serial dependence has decreased over time, a natural

point of departure is extending the sample period of earlier work. We split the sample

into two subperiods, with the first period (before) running until the end of the most recent

paper examining autocorrelations in both domestic and international stock markets, Ahn,

Boudoukh, Richardson, and Whitelaw (2002). The second period (after) begins on March 3,

1999, one day after their sample period ends. For each index, Ahn, Boudoukh, Richardson,

and Whitelaw (2002) collect data only from when the corresponding futures contract becomes

available. We collect data for each index that goes back as far as possible to analyze serial

dependence both before and after futures were introduced. While the results in Table 1 are

therefore not directly comparable to Ahn, Boudoukh, Richardson, and Whitelaw (2002), we

verify that AR(1) coefficients are very similar when estimated over the same sample period.

Table 1 summarizes international evidence regarding short-term index serial dependence

in daily index returns for all of the indexes in our sample. As a starting point, we measure

serial dependence through conventional AR(1) coefficients for both daily and weekly returns.

We report AR(1) coefficients with Newey-West corrected standard errors for individual

indexes and with standard errors double-clustered in the time and index dimension for all

indexes combined (rows labeled “Panel of indices”).

[Insert Table 1 about here]

Before 1999, first-order serial dependence is positive for all indexes in our sample, which

is well known from prior work. The daily AR(1) coefficients are significantly positive for

16 of the 20 indexes. The bottom rows show this result also holds when looking across all

individual indexes in a panel setup. Serial dependence becomes indistinguishable from zero

when using a one-day implementation lag, to mitigate the impact of nonsynchronous trading

and other microstructure biases (Jegadeesh, 1990).

In stark contrast, first-order daily autocorrelation turns negative for 16 out of 20 indexes

in the post-1999 subsample. The coefficients are significantly negative for seven of 20

indexes and for the panel of indexes both with and without the one-day implementation
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lag. Column 3 labeled “t(diff.)” shows that the decline in AR(1) coefficients between the

two subsamples is significant in 17 of the 20 indexes and across the cross section of indexes

(without implementation lag).

The decline in serial dependence is not limited to daily, or first-order, autocorrelations.

We observe a similarly declining trend in serial dependence at the weekly frequency, with

weekly AR(1) coefficients in Table 1 turning negative for all 20 indexes in the post-1999

subsample. Moreover, weekly AR(1) coefficients decline between the two subsamples for 18

of the 20 indexes and nine such declines are significant. Finally, Fig. 3 plots daily qth-order

autocorrelations during the before and after subsamples for q up to 21. The plot shows that

serial dependence has declined across most lags and has turned significantly negative for q

equal to one, two, three, and five.

Overall, based on conventional autocorrelation measures in an extended sample period,

index serial dependence used to be positive but has significantly decreased over time. In

recent years, it switched sign to become significantly negative.

[Insert Fig. 3 about here]

3.2. Multi-period serial dependence

What is the best way to measure short-term serial dependence in returns? Given a

measure for serial dependence, what order and frequency should one focus on? A priori,

the answers are not clear, but the analysis by Richardson and Smith (1994) provides useful

guidance. Richardson and Smith (1994) demonstrate that many serial dependence statistics

are linear combinations of autocorrelations at various lags but differ in terms of the weights

placed on these lags. Their analytical and simulation results suggest that against a reasonable

mean-reversion alternative to the random walk hypothesis, statistics that place declining

weights on higher-order autocorrelations are generally more powerful. Mean reversion can

be in either stock prices (e.g., Fama and French, 1988; Richardson and Smith, 1994) or

stock returns (e.g., Conrad and Kaul, 1988; Lo and MacKinlay, 1988) and fits well with this

paper’s main finding that serial dependence has turned negative.
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Motivated by these results, we propose two novel measures that place declining weights

on multiple lags. The first measure, multi-period autocorrelation (MAC(q)), is derived from

the difference in variances of returns over different time intervals. Consequently, it can be

directly mapped into the standard variance ratios that place linearly declining weights on

higher-order autocorrelations (Richardson and Smith, 1994). To see how MAC(q) is directly

linked to serial dependence, consider a short (e.g., one week) period of length T , divided

into q intervals of equal length (e.g., five trading days), and a return from time 0 to T that

equals the sum of the log returns rt, t = 1, .., T
q
with E(rt) = µt = 0. Serial dependence can

simply be measured by the difference between the single-interval variance, Var(T, 1), and the

q-interval variance, Var(T, q),

Var(T, 1)− Var(T, q) = 2
q−1∑

l=1

(q − l)Cov(rt, rt−l) (1)

In Appendix B, we demonstrate that the variance difference in Eq. (1) is equivalent to a

simple trading strategy that replicates return autocovariances.3 To comprehensively capture

serial dependence in one week of daily returns, so that q = 5, Appendix B shows that we

can take a position based on past index returns, 4rt−1 + 3rt−2 + 2rt−3 + 1rt−4. The daily

return on this position is simply rt(4rt−1 + 3rt−2 + 2rt−3 + 1rt−4), which is (in expectation)

a weighted sum of autocovariances that we scale into autocorrelations,

MAC(5)t = rt(4rt−1 + 3rt−2 + 2rt−3 + 1rt−4)/(5 · σ2), (2)

where MAC(5) stands for multi-period autocorrelation with q equal to 5. Facilitating

comparisons across time and indexes, the full sample variance scaling q · σ2 allows us to

interpret MAC(5) as a weighted average of autocorrelations from lag 1 to lag 4, with positive

3Variance differences and variance ratios are central statistics in the literature on serial dependence. See
Campbell, Lo, and MacKinlay (1997; Chapter 3) for an introduction of the key concepts, and O’Hara and
Ye (2011) and Ben-David, Franzoni, and Moussawi (2018) for recent use.
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(negative) returns being a reflection of positive (negative) serial dependence over the return

measurement interval. Clearly, this scaling adjustment does not affect statistical inference.

In our empirical analysis, because MAC(5) is computed every day using daily returns over

the past week, we correct for autocorrelation in single-index regressions using Newey-West

standard errors and in panel regressions by using double-clustered standard errors.

Because MAC(q) is a trading strategy that exploits serial dependence, profits from

MAC(q) (that can be tracked in real time) directly reflect the economic relevance of serial

dependence in index returns. By contrast, traditional serial dependence tests based on

variance ratios or individual AR terms have no direct economic meaning. Also, for q = 2,

MAC(2) corresponds to 1
2
AR(1), so that the framework above incorporates the conventional

AR(1) statistic as a special case.

The second measure is also motivated by Richardson and Smith (1994), who demonstrate

that serial dependence statistics with weights that exponentially decline for higher-order

autocorrelations can be even more powerful. For this reason, we consider exponentially

declining multi-period autocorrelation [EMAC(q)]. We define EMAC(q) as

EMAC(q)t = rt · f(λq, rt−τ )/σ2, τ = 1, ...,∞,
f(λq, rt) = λqrt + (1− λq)f(λq, rt−1).

(3)

Eq. (3) defines f(.) recursively, resulting in an infinite number of exponentially declining

lags. Empirically, we scale f(.) by the sum of weights over all lags to ensure they sum to one.

Because q in MAC(q) is determined exogenously, we compare the MAC(q) and EMAC(q)

measures using the parameter λq, which is chosen such that the half-life of EMAC(q) (the

period over which 50% of all weights are distributed) is equal to the half-life of MAC(q).

Table 2 confirms the dramatic decline in serial dependence using both MAC(5) and

EMAC(5). Average MAC(5) before 1999 is positive for 19 out of the 20 indexes and

significantly so for 11 of them. By contrast, MAC(5) after 1999 is negative for all indexes

and significantly so for 13 of the 20 indexes. The change in MAC(5) is significant in 16 of
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the 20 indexes.

We find virtually identical results when comparing EMAC(5) with MAC(5), indicating

that the assigned weights in MAC(5) are very close to the optimal weights in EMAC(5)

and that MAC(5) efficiently combines autocorrelations at multiple lags. Hence, we focus on

MAC(5) when presenting results in the remainder of the paper, given that it maps into the

familiar variance ratio tests and also has a convenient trading strategy interpretation. In

the Online Appendix, we further demonstrate the similarity of our results when using either

MAC(q) or EMAC(q) definitions and for lag orders varying from one day up to one month

of returns (i.e., q = 2 up to q = 22).

[Insert Table 2 about here]

4. Main results

In this section, we use MAC(5) to further analyze how serial dependence in index returns

varies over time and in the cross section. We present evidence that the large negative changes

in index serial dependence are associated with the increased popularity of index products.

Index MAC(5) is positive up to the introduction of the futures and becomes significantly

negative thereafter. This pattern can be found in nearly all indexes in our sample even

though their futures are introduced over a time span of almost two decades. MAC(5) is also

significantly negative in futures returns and ETFs returns since the introduction of futures

and ETFs, respectively. We use the percentage of assets allocated to index products as

a measure for the extent of indexing and find a significantly negative relation with serial

dependence in both the time series and the cross section.

4.1. Serial dependence and futures introductions

Figs. 1 and 2 show that index serial dependence became negative as index products

increased in popularity around the world. However, the correlation between indexing and

negative serial dependence could simply reflect a common time trend. An important advantage
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of our study is its broad coverage of 20 major market indexes. Considerable cross-market

variation exists in the starting date of indexing. This added cross-sectional dimension helps

to isolate the link between indexing and index serial dependence.

We first determine the break date at which each index’s serial dependence changes the

most using a purely statistical, data-driven approach. For each index, we run cumulative

sum (CUSUM) break tests and retrieve the break date from the data as the date at which

the cumulative sum of standardized deviations from average MAC(5) is the largest. In other

words, we extract the date at which serial dependence changes the most. We ignore any

breaks in October 1987 and September 2008, which are characterized by extreme market

turmoil, and report results in the first column of Table 3. Removing these two extreme

episodes from other parts of our empirical tests does not alter our results in any significant

way. The asterisks indicate that the change in MAC(5)Index around the break date is

significant for 15 out of the 20 indexes. A large variation exists in the break dates across the

20 indexes.

[Insert Table 3 about here]

We next examine whether the variation in break dates can be explained by the variation

in the starting date of indexing. Although the first index fund has been around since

December 31, 1975, a long time passed before index funds became popular.4 Thus, we

regard the introduction of futures contracts as the start of indexing and report the futures

introduction dates in the second column of Table 3. Comparing the break dates with futures

introduction dates, a structural break in serial dependence generally happens just a few

years after index futures are introduced. Break dates that occur before or many years after

the futures introduction tend to indicate insignificant breaks. A regression of break dates on

futures introduction dates produces a positive and highly significant slope coefficient (t-value

4For instance, John C. Bogle, founder of Vanguard, recounts that the road to success was long and
winding for the company: “[I]n the early days, the idea that managers of passive equity funds could out-pace
the returns earned by active equity managers as a group was derogated and ridiculed. (The index fund was
referred to as Bogle’s Folly.)” (Bogle, 2014 p. 46).
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= 3.17) and an R-squared of 0.36. We present this regression including the raw data in Panel

A of Fig. 4.

[Insert Fig. 4 about here]

Panel B presents additional evidence by plotting cumulative MAC(5) (i.e., cumulative serial

dependence trading profits) across all equity indexes, futures, and ETFs over our sample

period. The horizontal axis is in event time and plots the years between the calendar date

and the futures introduction date [for index MAC(5) and futures MAC(5)] or the ETF

introduction date [for ETF MAC(5)]. Cumulative serial dependence in index returns clearly

has an inverse U-shape that centers around the various futures introductions. Cumulative

index MAC(5) is increasing in the years prior to the 20 futures introductions, indicating

positive serial dependence. After the introduction, cumulative index MAC(5) decreases,

indicating negative serial dependence. The tipping point across all indexes lies within five

years after the futures introductions.

In Columns 3 and 4 of Table 3, we directly estimate the impact of futures introductions

on serial dependence by regressing index MAC(5) on a dummy variable, Dintro, that is equal

to one if at least one equity futures contract is introduced on the respective index and zero

otherwise,

MAC(5)Index,t = b1 + b2 ·Dintro,t + εt, (4)

for each of the 20 indexes. When examining individual indexes, Eq. (4) is a time series

regression with Newey-West–corrected standard errors. When examining the pooled sample

of indexes, Eq. (4) is a panel regression with standard errors double-clustered (across indexes

and over time).

Table 3 reports these results along with simple averages for MAC(5)futures and MAC(5)ETF

(for which Dintro is always equal to one). The intercept term b1 is positive for 17 indexes

and significant for 11 of them, suggesting positive serial dependence before the futures

introduction consistent with the papers that examine periods up to the 1990s. The dummy
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coefficient b2 measures the change in serial dependence after the futures introduction, which

is negative for all 20 indexes with 15 of them significant. The sum of both coefficients (b1+b2)

measures index MAC(5) after the futures introduction, which is negative for 17 out of the

20 indexes and significant for nine. Because futures introductions occur between 1982 and

2000, these findings are unlikely to be driven by a single event. In addition, index products

experience negative serial dependence right away, from the moment they are introduced.

Average MAC(5)futures is negative for each of the 20 indexes and significant for 12 of them.

Similarly, MAC(5)ETF is negative for all indexes and significantly so for 12 of them, with

values slightly more negative than for MAC(5)futures.

In the bottom rows of Table 3, we run a panel regression across all markets of either the

MAC(5)Index, MAC(5)futures, or MAC(5)ETF series, with standard errors clustered at the

time and index level as in Table 3. Global MAC(5)Index is significantly positive prior to the

futures introduction (0.072 with t-value = 4.55) and reduces substantially and significantly

after the introduction (-0.108 with t-value = -5.01) to a significantly negative -0.036 (t-value

= -2.11). Similarly, the coefficients on MAC(5)futures and MAC(5)ETF are significantly

negative when pooled together across indexes. In unreported results, we re-run Eq. (4)

after creating separate dummy variables for futures introductions and ETF introductions.

Coefficients on these variables are -0.060 and -0.080 (t-value = -3.86 and -2.91), respectively.5

The MAC(q) measure is estimated from a trading strategy that can be executed in

real time. The trading strategy allows us to demonstrate that negative serial dependence

in index returns is economically important. For instance, a strategy that trades against

the negative MAC(5) using all indexes (the S&P 500 alone) in our sample would result

in an annualized Sharpe ratio of 0.63 (0.67) after March 2, 1999. Similar Sharpe ratios

5Also, Etula, Rinne, Suominen, and Vaittinen (2015) argue that month-end liquidity needs of investors
can lead to structural and correlated buying and selling pressures of investors around month-ends, thereby
causing short-term reversals in equity indexes. We verify that the above results are robust to these patterns.
When we include separate dummy variables for the three periods around month-ends most likely subject to
buying and selling pressures (i.e., t-8 to t-4, t-3 to t, and t+1 to t+3) and their interaction with the futures
introduction dates of each market, we find coefficients of 0.071 (t-value = 4.29) on the intercept and -0.107
(t-value = -4.87) on the futures introduction dummy.
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are observed for the indexes and ETFs. These Sharpe ratios compare favorably against

the average Sharpe ratio across the stock markets in our sample of 0.36 and highlight the

economic importance of negative index serial dependence. At the same time, trading against

negative serial dependence requires frequent rebalancing. As a result, the strategy perhaps

is not exploitable to many investors after accounting for transaction costs.

In sum, the introduction of indexing correlates negatively with index serial dependence.

We observe positive serial dependence up to the introduction of the index products, but

economically strong and significantly negative serial dependence in index and index product

returns thereafter.

4.2. Serial dependence and the extent of indexing

Thus far, we have used cross-market variation in the introduction of the futures contracts,

which is measured by a dummy variable. Next, we examine the relation between serial

dependence and several continuous measures of indexing based on the assets allocated to

index products as a percentage of the underlying index’s market capitalization.

To measure indexing in futures, we multiply the futures open interest (in contracts) with

contract size and underlying index price. To mitigate the impact of spikes in futures open

interest around roll dates, we average this measure using a three-month moving window that

corresponds to the maturity cycle of futures contracts. To measure ETF indexing, we take

the size of the ETF market listed on an index (market capitalization). Both the futures

measure and the ETF measure are scaled by daily market capitalization of the underlying

index. To measure total indexing, we take the sum of both measures. We exclude the Russell

2000, S&P 400, and NASDAQ indexes because open interest data on the futures from either

Bloomberg or Datastream are available only four to ten years after the futures introduction

(this does not affect our results). Panel B of Fig. 2 shows that the past 30 years have seen a

substantial rise in indexing globally, which coincides with declining serial dependence in the

index.
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More formally, we regress each index i’s MAC(5) on the extent of indexing,

MAC(5)index,it = b1 + b2 · Indexingit−1 + θ′Xit−1 + εit, (5)

where the vector Xit contains the TED spread and each index’s market volatility, past

market returns, and detrended market volume as control variables in the spirit of Nagel

(2012), Hameed, Kang, and Viswanathan (2010), and Campbell, Grossman, and Wang

(1993), respectively. More details on these variables’ definitions can be found in Appendix

A. We measure indexing over the previous day, but results are practically identical when

indexing is measured at time t or t − 5. Table 4 presents results of a panel regression

indicating a significantly negative relation between index serial dependence and indexing.

The coefficient of -3.131 with a t-value of -2.90 implies that every 1% increase in indexing

decreases serial dependence by about 0.031. In fact, the point at which serial dependence

equals zero can be computed for the regressions MAC(5)index = b1 + b2 · Indexing + ε as the

level of indexing at which the regression line crosses the vertical axis [i.e., MAC(5)index = 0].

Globally, this point lies at 1.4% of index capitalization as shown in the the row labeled “Zero

serial dependence point.”

The effect is similar when we include index fixed effects to control for unobserved differences

in indexing between stock markets. The coefficient on indexing remains of very similar size

and significance at the 5% level once we include the controls. Coefficients on detrended

volume and last month’s index volatility are unreported, but they are in line with those in

Campbell, Grossman, and Wang (1993) and Nagel (2012). When separating futures indexing

from ETF indexing, the coefficient on futures indexing becomes larger (-3.617) and remains

significant at the 5% level, and the coefficient on ETF indexing becomes larger (-5.283) but

with a smaller t-value of -1.76.6

6To examine indexing in the broadest sense, we also consider indexing by index mutual funds that seek
to fully replicate the S&P 500 using the CRSP Survivorship-Bias-Free US Mutual Funds Database (which
covers only the US). To focus strictly on index funds, we ignore all funds that track substantially more or less
stocks than all five hundred index constituents. The coefficient on total indexing continues to be significant
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[Insert Table 4 about here]

To remove any index-specific time trend, we reestimate Eq. (5) in differenced form,

∆MAC(5)index,it = b1 + b2 ·∆Indexingit−1 + θ′∆Xit−1 + εit, (6)

where differences are calculated over a three-month interval to correspond with the futures

rolling cycle. Columns 6–8 of Table 4 indicate that the relation between changes in indexing

and changes in index MAC(5) becomes more significant, both economically and statistically.

Thus, our results do not seem to reflect latent variables (potentially index-specific) that share

a time trend. Because the average change in MAC(5) possibly varies across indexes, which

could affect coefficient estimates, we demean the differences from Eq. (6) by adding index

fixed effects to the regression. Adding index fixed effects hardly affects any of the coefficients,

which reassures us that the increase in indexing has a significantly negative impact on index

serial dependence.

Finally, to further address concerns about a common time trend between serial dependence

and indexing, we examine this relation cross-sectionally. We focus on the post-1990 period,

because before 1990, more than half of the indexes in our sample did not have exposure

to index products. Fig. 5 demonstrates that, when we plot average MAC(5) against the

average indexing measure across the indexes in our sample, a significantly negative relation

emerges (t-value = -2.00). In other words, a higher level of indexing exposure is associated

with more negative serial dependence across different markets.

We also run Fama-MacBeth cross-sectional regressions of MAC(5) on the total indexing

measure, as reported in Column 9 of Table 4. We observe a significantly negative coefficient

of -1.79 (t-value = -4.64) on the indexing measure, suggesting that, in the cross-section, a 1%

increase in the index measure significantly reduces index serial dependence by about 1.8%.

[Insert Fig. 5 about here]

when we measure indexing by the combined assets in futures, ETFs, and index mutual funds.
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5. Why did index serial dependence turn negative?

Positive index serial dependence, not surprisingly, was reduced immediately following the

introduction of index products. Previous studies show that positive serial dependence results

from market microstructure biases such as price staleness and infrequent trading (Fisher,

1966; Scholes and Williams, 1977; Atchison, Butler, and Simonds, 1987; Lo and MacKinlay

1990a; Boudoukh, Richardson, and Whitelaw, 1994, and references cited therein) or lead-lag

effects due to a response to economy-wide information that is more sluggish for some stocks

than for others (Brennan, Jegadeesh, and Swaminathan, 1993; Badrinath, Kale, and Noe,

1995; Chordia and Swaminathan, 2000; McQueen, Pinegar, and Thorley, 1996).7

Equity index futures were the first instruments in many countries that offered investors

the opportunity to invest in the index easily, cheaply, and continuously during trading hours.

This could have improved the functioning of the underlying stock markets in two ways. First,

increased responsiveness to market-wide shocks and market makers hedging their inventory

position increase trading in the smaller, less liquid index members, which attenuates market

microstructure biases such as price staleness.8 Second, trading in index futures speeds

up the incorporation of market-wide information for all stocks in the index so that the

lead-lag effect diminishes. These findings imply that index serial dependence decreases to

zero after the start of indexing. Returns of index products themselves also should have zero

serial dependence because they are traded heavily and continuously throughout the day and

7Other explanations are time-varying expected returns (Conrad and Kaul, 1988; Conrad, Kaul, and
Nimalendran, 1991), and contemporaneous correlations between, for example, large caps and small caps and
own-portfolio autocorrelations (Hameed, 1997). However, follow-up studies suggest that these explanations
do not fully account for positive serial dependence.

8So far, we have controlled for market microstructure biases to some extent using the one-day
“implementation” lag between the current returns and the weighted sum of past returns in Eq. (2) (i.e.,
between the formation and holding period). MAC(5) falls into negative territories with and without the
implementation lag in both index and the (large and very liquid) futures and ETF markets. Also, MAC(5)
is less susceptible to serial dependence coming from stale prices than measures such as AR(1). Furthermore,
microstructure biases are unlikely to have a significant impact on serial dependence for any well diversified
index (Lo and MacKinlay, 1990a). Finally, when we decompose index-level serial dependence as in Lo
and MacKinlay (1990b), both index constituents’ serial dependence and their lead-lag effects turn negative.
Hence, attenuated microstructure biases are unlikely to explain our key finding.
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unlikely suffer from information asymmetry (Subrahmanyam, 1991; Madhavan and Sobczyk,

2016).

In this paper, we find index serial dependence to not just drop to zero but also turn

significantly negative. In addition, serial dependence in index product returns is negative,

from the moment these products are traded. Negative index serial dependence suggests the

existence of non-fundamental shocks [e.g., price pressure as a compensation for liquidity

provision (Campbell, Grossman, and Wang, 1993; Nagel, 2012)] even at the aggregate level.

However, one could argue that aggregate price pressure can come from other factors such

as increasing investor demand to trade the market portfolio over time, which affects order

flow irrespective of the existence of index products. One could even argue that the futures

introduction date is completely endogenous and that futures trading is introduced with the

purpose of catering to market-level order flow. To address these concerns, in Subsection

5.1, we perform a test that directly links the decrease in serial dependence to differential

price pressures arising exogenously from the index design. Following Greenwood (2008), we

examine how indexing products change serial dependence for small, overweighted Nikkei 225

members relative to large, underweighted Nikkei 225 members.

One could also argue that index-level price pressure has been constantly present over

time but used to be overshadowed by stale prices, slow information diffusion, or other factors

causing positive serial dependence. Because the introduction of index products eliminates

these factors, index serial dependence could have become discernibly negative afterward

without actually decreasing. To address this concern, in Subsection 5.2, we compare how

indexing products change serial dependence for an index based on small S&P 500 stocks,

relative to a control index of large stocks that are at least as accurately priced and absorb

information at least as quickly but are not a member of the S&P 500.

Finally, in Subsection 5.3, we investigate the important role of index arbitrage in linking

serial dependence in index futures or ETFs to serial dependence in the index. In the presence

of index arbitrage, the popularity of index products opens up the underlying index to price
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pressure from these products, and vice versa, thus contributing to the spreading of serial

dependence characteristics across markets.

5.1. The Nikkei 225 index versus the TOPIX

The value-weighted TOPIX and the price-weighted Nikkei 225 index are two major equity

indexes in Japan that are equally important to investors but differ in their constituent

weighting scheme. While the TOPIX is value weighted, the Nikkei 225 index is weighted

using the share price of Nikkei 225 member stocks and their par value at the time of offering.

The par value of a common stock (i.e., the monetary amount at which a share is issued

or can be redeemed) can be seen as a base for shares and is stated in the corporate charter.

Shares cannot be sold below par at an initial share offering (IPO), so that par values indicate

the most favorable issue price around an IPO. While this used to be a valuable signal, par

value lost its relevance to investors once stock issuance prices were required to be published

publicly. Nowadays, in most countries, the par value of stock serves only legal purposes.

In the Nikkei 225, par value for most stocks is 50 yen per share but can also take values

of 500, 5,000, or 50,000 yen per share. As a consequence, some of the smaller (larger)

stocks receive a relatively large (small) Nikkei 225 weight, which makes them overweighted

(underweighted) in comparison with their market capitalization-based weight in the TOPIX.

Greenwood (2008) shows that overweighted stocks receive proportionally more price pressure

and uses overweighting as an instrument for index demand. Thus, the Japanese market

provides an attractive experimental setting to study the effect of indexing on index serial

dependence.

To calculate Nikkei 225 index weights, we collect the history of TOPIX and Nikkei 225

index membership from Compustat Global’s Index Constituents file. We obtain the par

values of Nikkei 225 members from Factset, Nikkei, and Robin Greenwood’s website9 or (if

still unavailable) by assigning par values that minimize the difference between the publicly

9The data were used in Greenwood (2005) and can be downloaded from
http://www.people.hbs.edu/rgreenwood/Nikkei225Data.xls.
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reported Nikkei 225 index and our replicated Nikkei 225 index. Appendix A describes the

data collecting procedure in full detail. The replicated index has a correlation of more than

0.99 with the publicly reported Nikkei 225. Nikkei 225 index weights are defined as

wN225
jt =

Pjt

PVj/50∑225
k=1

Pkt

PVk/50

, (7)

where PVj represents member stock j’s par value and Pjt is its price at time t. Hence,

firms are free to choose a certain par value (in addition to choosing the number of shares

issued, the float factor, and the price). Because the weights are a function of the current

price and the par value at issuance, often many years ago, they are unlikely affected by stock

characteristics such as size, volatility, etc., that are possibly shared by index constituents as

a result of entering the index.

We follow the approach in Greenwood (2008), which examines the extent to which

individual stocks are relatively overweighted in the Nikkei 225 (OWjt) by comparing each

Nikkei 225 stock’s price-based weight, wN225
jt , with its market capitalization-based weight in

the value-weighted TOPIX, wVWjt :

OWjt = log

(
1 +

wN225
jt

wVWjt

)
. (8)

This measure is equal to zero for non-Nikkei stocks. Greenwood (2008) aggregates stock-level

overweighting OWjt to the index level by tracking profits on a zero-investment trading

strategy, which pays off when overweighted stocks move more with lagged index returns than

underweighted stocks. The idea is that a demand shock makes stocks that are relatively

overweighted (underweighted) rise too much (little) after an increase in the index and

conversely after a decrease in the index. Consequently, more overweighted stocks should

react more strongly in the opposite direction of lagged index returns or, put differently,

experience more negative serial dependence. In contrast, the spreading of information would

mostly affect large (i.e., underweighted) stocks. Also, if broad developments were to drive
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our results (such as increasing investor demand to trade the market portfolio), they affect

both overweighted stocks and underweighted stocks in a similar way. Hence, this approach

allows us to examine how indexing affects serial dependence, independent from other drivers

such as information diffusion and broad market-wide developments.

Our first measure is a replication of the strategy in Greenwood [2008, Eq. (19)] with

positions multiplied by -1 to bring his reversal measure in line with our paper’s interpretation.

We compute the weight on each stock j as

wjt =

(
OWjt−1 −

1

N

225∑

n=1

OWnt−1

)
rNikkei225t−1 . (9)

Results based on this weighting scheme are in Columns 3 and 7 of Table 5. Unreported

results indicate that cumulative returns based on this strategy are identical to Fig. 5 in

Greenwood (2008).

[Insert Table 5 about here]

We also consider weights based on multiple lags, similar to the construction of MAC(5):

wjt =

(
OWjt−1 −

1

N

225∑

n=1

OWnt−1

) q−1∑

l=1

(q − l)rNikkei225t−l , (10)

with q = 5. Results based on this weighting scheme are presented in Columns 4 and 8.

We also construct an alternative overweighting measure by sorting stocks each month in

five portfolios based on their relative overweighting and replacing the term in parentheses in

Eq. (10) by the difference in returns between the high (overweighted) and low (underweighted)

portfolio. Results using this measure (labeled “OW-UWPortfolio”) are similar to the approach

above based on the entire index but use only 20% of the most overweighted and 20% of the

most underweighted stocks in determining overweighting.

With two overweighting measures and two lag structures, we calculate returns Rt on four

trading strategies, withRt ≡
∑225
j=1wjtrjt. All four strategies have the advantage of exploiting
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variation between index stocks. Such variation ignores the movement of all index stocks

combined and adds further evidence against alternative explanations based on market-wide

developments that take place over the sample period.

Our sample begins in January 1986, the earliest date for which Nikkei 225 and TOPIX

constituents are available in Compustat Global, and consists of 331 stocks that were in the

Nikkei 225 index at least one day from 1985 to 2016, and 1,956 stocks that were in the

TOPIX (First Section) for at least 60 trading days. Over time, an average of 156 Nikkei 225

stocks (47 Nikkei 225 stocks) have a price-based weight that is larger (smaller) than their

value-based weight in the TOPIX and, on average, 53 Nikkei 225 stocks have weights of more

than five times their weight in the TOPIX. Cumulative MAC(5) for the Nikkei 225 looks

similar to Panel B of Fig. 4, with an inverse U-shape that peaks shortly after the futures

introduction.

We regress daily strategy returns against indexing:

Rt = b1 + b2 · IndexingN225
t−1 + θ′Xt−1 + εt, (11)

where IndexingN225
t is either a dummy related to the Nikkei 225 futures introduction (DN225

intro )

or the difference in Nikkei 225 indexing and TOPIX indexing (Relative indexing (futures+ETF)).

The vector Xt contains the same set of control variables as before, specifically for the Nikkei

225: market volatility, the TED spread, past market returns, and market volume.

The results presented in Table 5 demonstrate that indexing causes serial dependence to

become more negative in a portfolio that is exogenously tilted toward stocks more sensitive

to indexing. Coefficients on the intercept indicate that profits are generally zero before the

start of indexing. Hence, until then, overweighted and underweighted stocks did not respond

differently to lagged market returns. The coefficients on the Nikkei 225 futures introduction

dummy are significantly negative, indicating that serial dependence has decreased more for

overweighted stocks since the start of indexing. Furthermore, the sum of coefficients b1 and
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b2 (Intercept+futures intro) demonstrates that serial dependence has turned significantly

negative since then. The coefficients on the continuous indexing measure are also negative,

indicating that the wedge between the two groups’ serial dependence widens as the importance

of indexing in the Nikkei 225 increases relative to indexing in the TOPIX.

In sum, as Nikkei 225 indexing increases, serial dependence decreases significantly more

for overweighted index members than for underweighted members. Because Nikkei 225

weights vary between stocks and are unrelated to stock characteristics except for the current

price and the par value at which the stock enters the index, the significant decrease in

serial dependence is caused by effects unrelated to market-wide developments (which predicts

insignificant coefficients) or the spreading of information (which predicts positive coefficients).

5.2. S&P 500 index versus non–S&P 500 index

Having demonstrated the causal effects of cross-sectional differences in demand between

Nikkei 225 member stocks, we present additional evidence from comparing changes in serial

dependence between member stocks and nonmember stocks. To this end, we calculate the

differential effect of indexing on index serial dependence, depending on whether a stock is a

member of the S&P 500 or not.

Ideally, we would like to compare stocks in the S&P 500 index with a matching set

of non-S&P stocks that are identical except that they do not have S&P 500 membership.

However, because large S&P stocks are issued by the very largest and most well known

companies in the US stock market, we cannot construct a portfolio of similar-size (and

similarly well tracked) non–S&P 500 stocks. Therefore, we build an index based on the

bottom half of the S&P 500 (i.e., the 250 smallest S&P 500 stocks) at the time of the futures

introduction. We compare this index with a control index built from the largest US stocks

that are not in the S&P 500 at the same time. Both indexes are value weighted so that the

methodology is the same as for constructing the S&P 500. Large non–S&P 500 stocks are

much more frequently traded, hardly subject to nonsynchronous trading, and quickly reflect

market-wide information in their stock price. Yet, they are not subject to any price pressure
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coming from being a member of the most important index worldwide.

Panel A of Table 6 demonstrates that large non–S&P 500 stocks are about twice the

market size of small S&P 500 stocks and more often traded in terms of average volume.

Both groups of stocks have similar turnover and analyst coverage, on average. Because stocks

scoring high on these variables tend to incorporate market-wide information faster (Lo and

MacKinlay, 1990b; Chordia and Swaminathan, 2000; Brennan, Jegadeesh, and Swaminathan,

1993) the large non-S&P stocks can be expected to incorporate information at least as fast

as the small S&P 500 stocks, be easier to trade, and be less subject to microstructure noise.

Thus, serial dependence should be similar or lower in the large non–S&P 500 subset if it

were not for indexing. At the same time, the small S&P 500 stocks have higher institutional

ownership, suggesting stronger institutional demand for index stocks.

In Panel B of Table 6, we regress MAC(5) on an In S&P dummy equal to one for the

small S&P 500 index and zero for the large non-S&P 500 index, interacted with one of our

measures for indexing,

MAC(5)it = b1+b2Indexing
S&P500
t−1 +b3InS&Pi+b4InS&Pi×IndexingS&P500

t−1 +θ′Xt−1+εit,

(12)

where MAC(5) captures the return on the two subindexes i and IndexingS&P500
t is a dummy

equal to one after the introduction of indexing and zero otherwise (DS&P500
intro , as in Table 3

for the S&P 500) or one of the continuous indexing variables from Table 4 [i.e., Indexing,

Indexing (futures) and Indexing (ETFs) for the S&P 500]. The vector Xt contains the same

set of control variables as before, for the S&P 500: market volatility, the TED spread, past

market returns, and market volume. With only two subindexes, standard errors are clustered

in the time dimension, but results are similar or better with Newey-West or index-clustered

errors.

[Insert Table 6 about here]

In Column 1 of Table 6, Panel B, b1 is significantly positive, indicating that serial dependence
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is positive for non–S&P 500 firms before the futures introduction. Coefficient b3 is also

significantly positive, indicating that, prior to indexing, portfolio-level serial dependence is

higher for the small S&P 500 stocks than for the large non–S&P 500 stocks. This suggests

that information diffuses faster across the large, well-traded non–S&P 500 stocks up to the

futures introduction.10 The coefficient on the futures introduction dummy (b2) indicates that

serial dependence for the large non–S&P 500 stocks decreases significantly afterward, from

0.174 to 0.061. However, the coefficient on In S&P×DS&P500
intro (b4) shows that this decrease

is significantly more negative for the small S&P 500 members. In fact, the sum of DS&P500
intro

and In S&P×DS&P500
intro coefficients (b2+b4 = −0.269) indicates that serial dependence steeply

decreases for these stocks into negative territory, from b1 + b3 = 0.218 (higher than for very

large nonmember stocks ) to b1+b2+b3+b4 = −0.051 (negative and lower than for very large

nonmember stocks). This result provides direct evidence against a narrative that demand

effects have always led to negative serial dependence in the past but become discernible only

once they are no longer offset by factors that lead to positive serial dependence (such as stale

prices and slow information diffusion).

Results in Table 6 are similar when we add control variables and use the continuous

indexing measures Indexing, Indexing (futures), and Indexing (ETFs) from Table 4. Coefficients

on the level of indexing are negative, indicative of a downward trend in serial dependence

as indexing increases. Most important, the significantly negative interaction coefficients

demonstrate that serial dependence decreases significantly more for the index based on

small S&P 500 stocks. Thus, all columns in Table 6 point toward a significant effect of index

membership on serial dependence that goes beyond explanations based on faster information

diffusion and reduced microstructure noise.11

10This coefficient is significant at the 15% level with Newey-West standard errors.
11To get some sense of the relative importance of these explanations, we decompose the S&P 500

autocovariance terms from Eq. (2) into the autocovariance of its constituents (i.e., reversals) and
cross-autocovariance across constituents (i.e., lead-lag effects) as in Lo and MacKinlay (1990b). We find
that, prior to the futures introduction, both the lead-lag effect and the constituent-level reversal effect are
significant. The futures introduction has a negative effect on both components that is similar in terms of their
relative contributions to total autocovariance. This is also true when we decompose S&P 500 autocovariance



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

5.3. The index arbitrage mechanism

The fact that serial dependence is negative for both the index and the index product is

consistent with the presence of arbitrage between the two. In this Subsection, we examine

such index arbitrage in greater detail. Index arbitrage can propagate price pressure from

the index product to the underlying index, or vice versa. For instance, Ben-David, Franzoni,

and Moussawi (2018) argue that for continuously traded index products such as ETFs, index

arbitrage channels serial dependence in index products into the underlying index as liquidity

providers hedge their exposure to the index products by taking an offsetting position in the

underlying index. This adds price pressure to the index stocks in the same direction as

for the index product. After the price pressure disappears, the subsequent price reversal

generates negative serial dependence in both the index and the index product.

Arbitrage per se says little about the underlying cause of initial price pressure. Yet, as

index futures and ETFs become more popular and can be traded continuously throughout

the day, price pressure is likely to exist in index product markets and can spread through

arbitrage. Consequently, while stock markets used to be exposed to price pressure only from

individual stocks before the start of indexing, now they are also exposed to price pressure

originating from index products such as futures and ETFs through the arbitrage channel.

If index arbitrage spreads price pressures between the index and the index product, we

would expect index MAC(5) to be closely related to index product MAC(5) [i.e., index

MAC(5) = φ·index product MAC(5) with φ > 0]. Furthermore, φ should be larger when

more arbitrage activity between the index products and the index takes place. To examine

the importance of arbitrage, we estimate φ and see how it interacts with arbitrage activity.

Arbitrage activity is likely to be higher in a market when index products take a larger share

of the market. Therefore, we use Indexing (Futures) or Indexing (ETFs) (measures from

Subsection 5.2) to proxy for arbitrage activity.

into the (cross-)autocovariance of both constituents and sub-portfolios based on size, industry, volume,
analyst coverage, or institutional ownership and when we decompose the Nikkei 225 autocovariance into the
(cross-)autocovariance of constituents and size or industry sub-portfolios.
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We regress weekly index MAC(5) on weekly index product MAC(5) to capture φ and its

interaction with indexing:

MAC(5)index,it = b1+φ1MAC(5)jit−5+φ2MAC(5)jit−5·Indexingjit−5+θIndexingjit−5+εit. (13)

All explanatory variables, with j = ETF or Futures, are measured at the start of the weekly

period over which we measure index MAC(5) to avoid overlapping periods. To limit the

impact of asynchronous trading times between the futures and the index, we compound daily

(index product and index) MAC(5) returns into weekly (Wednesday–Wednesday) returns. As

before, different standard error adjustment methods lead to similar standard error estimates.

We include level versions of all of the interacted variables and index fixed effects (both

unreported).

The stand-alone regression coefficients on futures MAC(5) and ETF MAC(5), presented

in Columns 1 and 3 of Table 7, are all positive and highly significant. Thus, index MAC(5)

significantly moves together with futures MAC(5) and ETF MAC(5), suggesting the presence

of index arbitrage. In Columns 2 and 4, we present results after interacting this variable with

Indexing. Coefficients on the interaction terms are highly significant and positive for both

futures indexing and ETF indexing, indicating that more arbitrage activity brings index

MAC(5) significantly closer to futures MAC(5). Therefore, as indexing products grow in

relative importance, index arbitrage becomes stronger and negative serial dependence in the

index becomes more closely connected to serial dependence in the indexing products.

[Insert Table 7 about here]

6. Conclusion

This paper presents a new stylized fact: Serial dependence in daily to weekly index returns

around the world was traditionally positive but has turned significantly negative in recent

years. We examine short-term serial dependence across 20 major stock market indexes in
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developed countries. We measure serial dependence via conventional measures and a novel

statistic that captures serial dependence over multiple lags and is easy to implement and

interpret.

The dramatic change in serial dependence is significantly related to indexing, i.e., the

growing popularity of index products such as equity index futures, ETFs, and mutual funds.

Around the world, index serial dependence tends to be positive before the introduction

of index products, in line with previous studies, but decreases once index products are

introduced on the index and eventually turns significantly negative as indexing gains importance.

As an index’s exposure to index products increases by 1%, serial dependence decreases by

about -0.031. Serial dependence in ETFs and futures is negative from the moment these

products are launched. Taking advantage of unique features of the Nikkei 225 index weighting

scheme and the discontinuity around S&P 500 index membership, we find that negative

serial dependence arises because of indexing. Further evidence supports the notion that

index arbitrage spreads negative serial dependence between these index products and the

underlying index, in line with prior work (e.g., Ben-David, Franzoni, and Moussawi, 2018;

Leippold, Su, and Ziegler, 2015).

Given the many benefits associated with indexing, the growth in index products can

be expected to continue for the next decade. Index investments are commonly advised by

government authorities, academics, and market participants as good investment practice.

This paper’s new result highlights an unexpected side effect to these benefits as negative

serial dependence signals excessive price movements even at the index level. Excessive price

movement could impose costs on institutional and individual investors who trade often. It

could even hurt passive individual investors, as many of them now invest through financial

institutions (French, 2008; Stambaugh, 2014). On a more positive note, our results suggest

that pro-active investors can enhance their return from opportunistic liquidity provision.
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Appendix A. Data construction

Our data set is constructed as follows.

A.1. Equity indexes

Indexes covered are the S&P 500 index (S&P 500), Financial Times Stock Exchange

100 index (FTSE 100), EUROSTOXX 50 Index (DJESI 50), Tokyo Stock Price Index

(TOPIX), Australian Securities Exchange 200 Index (ASX 200), Toronto Stock Exchange

60 Index (TSE 60), the Paris Bourse’s Cotation Assistée en Continu 40 Index (CAC 40),

Deutscher Aktienindex (DAX), Iberia Exchange 35 Index (IBEX 35), Milano Italia Borsa 30

Index (MIB), Amsterdam Exchange Index (AEX), Stockholm Stock Exchange Index (OMX

Stockholm), Swiss Market Index (SMI), Nihon Keizai Shimbun 225 Index (Nikkei 225), Hang

Seng Index (HSI), Nasdaq Stock Market 100 Index (Nasdaq 100), New York Stock Exchange

Index (NYSE), Russell 2000 Index (Russell 2000), S&P MidCap 400 Index (S&P 400), and

the Korea Composite Stock Price 200 Index (KOSPI 200).

We obtain data from Datastream and Bloomberg. Our sample begins on January 1, 1951

or when index data became available in one of these sources. The sample ends on December

31, 2016 or when all futures stop trading (this happens only for the NYSE, on September 15,

2011). We collect information on total returns, index prices, dividend yields, and local risk

free rates to construct excess index returns, as well as total market capitalization (in local

currencies) and daily traded volume. We cross-validate returns computed from Datastream

data against those computed from Bloomberg data to correct data errors as much as possible.

A.2. Equity futures

From Bloomberg, we obtain prices from front month futures contracts, which are rolled

one day before expiry, to construct futures returns. These contracts are the most liquid

futures, generally accounting for over 80% of the trading volume and open interest across all

listed contracts on an index. We collect information on futures prices from Datastream to

cross-check the Bloomberg futures data, and to backfill Bloomberg’s futures returns when

not covered by Bloomberg. For the Nikkei 225, we focus on the futures listed in the main
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market, Osaka. However, results are similar when using contract prices from the Singapore

International Money Exchange (SIMEX) and Chicago Mercantile Exchange (CME) listings.

In addition, for the SMI, we use futures data from Datastream prior to 1997, as Bloomberg

contains many stale quotes and misprints for this index before this date.

We also collect data on futures contract size (in listed currencies per index point), volume,

and open interest on the futures and, in the case of the introduction of a mini-futures or

multiple listings on an index, we combine these with data on the original listing. As several

indexes have multiple futures contracts written on them that vary in terms of maturities and

contract specifications (e.g., mini versus regular futures), we obtain all futures series that

are written on our indexes. We aggregate these to reflect total volume and open interest,

in either local currencies or number of contracts, with the number of contracts proportional

to the size of the contract that traded first (e.g., we assign a weight of 1/5 to the S&P 500

mini contract because it trades for $100 per index point and the regular S&P 500 future has

a size of $500 per index point). Changes in contract size are retrieved from Datastream, or

publicly available online sources, or they are assumed when prices increase or decrease with

a factor two or more.

A.3. Futures introductions

For futures introductions, we start with the earliest date that futures data become

available in Datastream or Bloomberg. To determine whether we have the oldest existing

futures series, we cross-check this earliest date with three sources: Ahn, Boudoukh, Richardson,

and Whitelaw (202), Gulen and Mayhew (2000), and the website of the Commodity Research

Bureau (CRB), http://www.crbtrader.com/datacenter.asp.

A.4. ETFs

Several instances of a single ETF can be traded across different countries or exchanges.

To retrieve the set of existing equity index ETFs, we obtain a list of all equity index

ETFs on offer from a major broker-dealer and cross-check with a list of all ETFs on offer

by another major broker-dealer. We include long and short index ETFs, levered ETFs
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or vanilla ETFs on a levered index, ETFs with a currency hedge, and all ETFs that are

cross-listed. We collect information from Bloomberg on ETF prices, market capitalization,

and volume. For each index, we add up the total volume of contracts traded. We also

calculate market capitalization across all ETFs on a given index but subtract inverse ETFs

that offer short positions in the index and multiply market capitalization for leveraged ETFs

with the leverage factor (typically one and a half, two, or three times the index return).

To prevent the impact of data entry mistakes on our results, we set ETF observations to

missing for dates that report zero market cap or have a market cap of less then 10% of the

previous day’s market cap. We then interpolate these observations from the last trading day

immediately before to the first day immediately after this date. We also experiment with

removing observations with open interest or an ETF market cap more than five studentized

residuals from its centered one-year moving average, but this has a very limited impact on

the results.

A.5. S&P 500 constituents and other US stock data

For the S&P 500 constituents, we obtain the list of index constituents, as well as stock

returns, shares outstanding and turnover data, from CRSP, calculate analyst coverage from

Institutional Brokers’ Estimate System (I/B/E/S) data, and retrieve data on institutional

ownership from the Thomson Financial 13f database. We replicate the S&P 500 index and

the weights of each member using stock market capitalizations. We use these data from July

1962 onward as CRSP reports fewer than five hundred of the S&P’s index members before

this date. Further, we collect similar data of all US stocks not included in the S&P 500 from

the same sources.

A.6. Nikkei 225 and TOPIX constituents

We collect the list of Nikkei 225 and TOPIX members from Compustat Global, which

begins in 1985. As some constituents are merged or acquired and Compustat keeps only the

most recent company identifier, we use Factset to cross-check the constituents in Compustat,

identify stocks with this problem, and collect identifying information on such stocks before
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the takeover. Our sample of index constituents represent 99.4% of TOPIX capitalization and

includes all Nikkei 225. The remaining 0.6% comes from very small stocks and we distribute

them evenly across all available stocks.

A.7. Nikkei 225 par values

As Nikkei does not provide information on par value prior to 1998, we use the available

information as starting point. We obtain information on par values from a recent constituent

list on the exchange website (https://indexes.nikkei.co.jp/nkave/archives/file/nikkei_stock_

average_weight_en.pdf), a weightings list from November 1, 2011 available in Datastream,

the raw data used in Greenwood (2005) on Greenwood’s website, and the weights on April 1,

1998, which is the earliest available date for data provided by Nikkei. By combining Factset

with Compustat Global, we can determine the par values of all index constituents from 2000

onward (as this is available in Factset), which we supplement with constituents data for 1998

provided by Nikkei. For stocks that are a member of the Nikkei 225 in 1986 or later but

exit the Nikkei 225 before 1998, we infer par values by minimizing the difference between

the Nikkei 225 index and the aggregated price-weighted value of its constituents. We set the

par value to 50 (as most stocks have a par value of 50) and change the par values to 500,

5,000, or 50,000 to minimize the daily tracking error between our reconstructed index and

the actual index.

A.8. Control variables

For market volatility, we use realized (annualized) volatility over the last 21 days because

it is available for all indexes (as implied volatility indexes are not available for many of them

for a sufficiently long time). We use the difference between the three-month US LIBOR (as of

1984) or the eurodollar rate (between 1971 and 1984) and the three-month US T-bill interest

rate (obtained from the Federal Reserve Board St. Louis and Bloomberg) to calculate the

TED spread. We compute past market returns as the past month (i.e., 21 trading days)

market return as Hameed, Kang, and Viswanathan (2010) find that such a measure predicts

serial dependence profits. Finally, for market volume, we use the log of index trading volume
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detrended by calculating the five-day average relative to a one-year backward moving average

in the spirit of Campbell, Grossman, and Wang (1993).

Appendix B. Serial dependence as a variance difference

Autocovariance over a certain time period can be replicated by the difference of two

realized return variances that are evaluated over that same period T but differ in the

frequency over which they are calculated, akin to variance difference statistics (see, for

example, Campbell, Lo, and MacKinlay, 1997). To see this, consider a short (e.g., one

week) period of length T , divided into q intervals of equal length (e.g., five trading days),

and a return from time 0 to T that equals the sum of the log returns rt, t = 1, .., T
q

with E(rt) = µt = 0. The variance over the period T calculated over q intervals is

Var(T, q) = Var(r)+Var(r) + ...+ Var(rq), or

Var(T, q) =
q∑

t=1

E(r2t ) =
q∑

t=1

Var(rt). (14)

However, when we calculate the return over the same period T , but over one instead of q

intervals, the variance is

Var(T, 1) = E



( q∑

t=1

rt

)2



=
q∑

t=1

Var(rt) +
q−1∑

l=1

2(q − l)Cov(rt, rt−l). (15)

In Eq. (15), Cov(rt, rt−l) is the autocovariance in returns between the current time unit

t = T
q
and its lag t− l assuming that, over short intervals, Cov(rt, rt−l) = Cov(rk, rk−l)∀t 6= k

(i.e., stationarity). Any serial correlation causes Eq. (14) to deviate from Eq. (15) because

the autocovariance terms are nonzero and the difference between Eqs. (15) and (14) is simply

a weighted sum of autocovariance terms from lag 1 up to lag q − 1.

The autocovariance term can be isolated as the difference in returns between two investment

strategies over period T (i.e., one that rebalances every interval q and one that buys and
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holds over the period T ). First, after each of the q intervals, a rebalancing strategy adjusts

its position to the initial position. As the price of the asset P changes over time, profits after

interval t amount to Pt/Pt−1 − 1 = exp(rt)− 1 and accumulate over period T to

q∑

t=1

(exp(rt)− 1) . (16)

Approximating exp(rt) with a second-order Taylor expansion around zero, exp(x) ≈ 1 + x+

1
2
x2, we can rewrite the realized profits on the rebalancing strategy as

q∑

t=1

(
rt +

1

2
r2t

)
=

q∑

t=1

rt +
1

2
Var(T, q), (17)

where, over short periods,
∑q
t=1 r

2
t ≈ Var(T, q).

By similar arguments, the realized profit on a second, buy-and-hold strategy is

exp(
∑q
t=1 rt)− 1 =

∑q
t=1 rt + 1

2
(
∑q
t=1 rt)

2

=
∑q
t=1 rt + 1

2
Var(T, 1)

(18)

The difference between the buy-and-hold strategy and the rebalancing strategy then equals

1

2
Var(T, 1)− 1

2
Var(T, q) =

q−1∑

l=1

(q − l)Cov(rt, rt−l). (19)

Thus, the variance difference in Eq. (1), an often used statistic to measure serial

dependence, is equivalent to a simple trading strategy that replicates the return autocovariances

above by taking q−1 positions as rt
∑q−1
l=l (q− l)rt−l, l = 1, ..., q−1. For instance, to measure

the serial dependence in one week of daily returns, q = 5 (a common horizon), one can take

a position 4rt−1 + 3rt−2 + 2rt−3 + 1rt−4. Then, the daily return on our strategy is simply

rt(4rt−1 + 3rt−2 + 2rt−3 + 1rt−4), which we scale into autocorrelations as

MAC(5) = rt(4rt−1 + 3rt−2 + 2rt−3 + 1rt−4)/(5 · σ2). (20)



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

MAC(5) is equivalent to the dollar difference between the buy-and-hold strategy and the

rebalancing strategy, as
∑q−1
l=1 (q − l)E [rt, rt−k] =

∑q−1
l=1 (q − l)Cov(rt, rt−k).
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Table 2. Two multi-period autocorrelation measures

This table presents the two serial dependence measures from Section 3 for all stock markets in
our sample. Columns labeled “MAC(5)index” present multi-period autocorrelation coefficients with
linearly declining weights, as in Eq. (2). Columns labeled “EMAC(5)index” present multi-period
autocorrelation coefficients with exponentially declining weights, as in Eq. (3). Both serial
dependence measures are calculated using daily index returns. We report statistics before and after
March 3, 1999 (“Before,” “After”) and test for the difference in the columns labeled “t(diff.).” The
row labeled “Panel of indexes” reports results from a pooled regression across all of the individual
indexes in an equal-weighted panel. The row labeled “Panel of indexes (one-day lag)” does so after
incorporating a one-day implementation lag [i.e., MAC(5) = rt(4rt−2 + 3rt−3 + 2rt−4 + 1rt−5)/5σ2

and EMAC(5)t = rt · f(λ5, rt−τ )/σ2, τ = 2, ...,∞,]. Reported t-values (in parentheses) are based on
standard errors that are Newey-West corrected for individual indexes and double-clustered across
indexes and time when all indexes are pooled together. *, **, and *** indicate significance at the
10%, 5%, and 1% level, respectively.

MAC(5)index EMAC(5)index

Index Before After t(diff.) Before After t(diff.)

(1) (2) (3) (4) (5) (6)

S&P 500 0.050*** -0.141*** -4.30*** 0.014*** -0.048*** -4.46***
(3.11) (-3.41) (3.17) (-3.64)

FTSE 100 0.031** -0.091*** -4.13*** 0.009* -0.031*** -4.25***
(2.18) (-3.52) (1.68) (-4.02)

DJESI 50 0.003 -0.077*** -2.76*** 0.003 -0.029*** -3.25***
(0.22) (-3.12) (0.51) (-3.71)

TOPIX 0.082*** -0.025 -2.54*** 0.026*** -0.014 -4.90***
(5.99) (-0.63) (5.82) (-1.09)

ASX 200 0.029 -0.044* -2.09** 0.003 -0.016** -1.72
(1.15) (-1.82) (0.37) (-2.13)

TSE 60 0.100*** -0.075** -4.93*** 0.029*** -0.029*** -4.64***
(5.29) (-2.49) (4.51) (-2.72)

CAC 40 0.020 -0.074*** -3.27*** 0.007 -0.028*** -3.53***
(1.13) (-3.26) (0.97) (-3.98)

DAX 0.012 -0.042 -1.65 0.005 -0.018* -2.02**
(0.99) (-1.38) (1.10) (-1.73)

IBEX 35 0.099*** -0.044* -3.62*** 0.031*** -0.018*** -3.66***
(3.10) (-1.91) (2.75) (-2.50)

MIB 0.043 -0.031 -1.98** 0.010 -0.012* -1.68*
(1.37) (-1.54) (0.90) (-1.68)

AEX -0.005 -0.033 -0.94 0.003 -0.014* -1.64*
(-0.28) (-1.32) (0.43) (-1.74)

OMX Stockholm 0.079*** -0.066*** -4.48*** 0.025*** -0.024*** -4.46***
(3.07) (-3.36) (2.73) (-3.93)

SMI 0.027 -0.016 -1.11 0.010 -0.014 -1.89*
(0.95) (-0.60) (1.05) (-1.65)

Nikkei 225 0.030** -0.077** -2.67*** 0.010** -0.024* -2.63***
(2.28) (-2.03) (2.43) (-1.95)

HSI 0.086*** -0.012 -3.27*** 0.033*** -0.004 -3.51***
(3.33) (-0.78) (3.57) (-0.83)

Nasdaq 100 0.026 -0.111*** -3.92*** 0.007 -0.035*** -3.80***
(1.32) (-3.84) (1.05) (-4.04)

NYSE 0.078*** -0.104*** -4.10*** 0.022*** -0.037*** -4.24***
(4.18) (-2.59) (4.22) (-2.89)

Russell 2000 0.138*** -0.097*** -5.46*** 0.048*** -0.034*** -5.56***
(6.35) (-2.60) (5.41) (-2.90)

S&P 400 0.066*** -0.067** -3.81*** 0.018*** -0.025*** -3.67***
(3.63) (-2.25) (2.84) (-2.54)

KOSPI 200 0.033 -0.013 -1.32 0.006 -0.007 -1.02
(1.10) (-0.74) (0.55) (-1.11)

Panel of indexes 0.054*** -0.062*** -4.27*** 0.017*** -0.023*** -4.35***
(3.82) (-2.68) (3.56) (-2.91)

Panel of indexes (one-day lag) 0.001 -0.057** -2.17** 0.002 -0.019** -2.39**
(0.07) (-2.41) (0.38) (-2.50)
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Table 3. Breaks in serial dependence

This table presents results on structural breaks in serial dependence for all stock markets in our
sample. Endogenously determined structural break dates in index MAC(5) (“MAC(5)Index break
date”) are based on the maximum cumulative sum (CUSUM) of deviations from each index’s average
MAC(5) after excluding October 1987 and the 2008 financial crisis. Asterisks in this column indicate
significance of a test against the null hypothesis that the break around the break date results from
a Brownian motion. We also report the date at which the first corresponding index futures started
trading (“Futures start date”). The columns labeled “MAC(5)Index = b1+b2 ·Dintro” show the results
of regressing daily returns on index MAC(5) against the intercept and a futures introduction dummy
that equals one after the futures introduction date and zero otherwise (coefficients b1 and b2 are
reported in percentages). Average futures MAC(5) (“MAC(5)futures”) and average exchange traded
fund (ETF) MAC(5) (“MAC(5)ETF ”; with corresponding ETF introduction dates) are calculated
since the futures or ETF introduction date, respectively. The row labeled “Panel of indexes” reports
results from a pooled regression across all of the individual indexes in an equal-weighted panel.
The last row [“Panel of indexes (1-day lag)”] applies a one-day implementation lag between current
and past returns [i.e., MAC(5) = rt(4rt−2 + 3rt−3 + 2rt−4 + 1rt−5)/5σ2]. Reported t-values (in
parentheses) are based on standard errors that are Newey-West corrected for individual indexes
and double-clustered across indexes and time when all indexes are pooled together. *, **, and ***
indicate significance at the 10%, 5%, and 1% level, respectively.

MAC(5)index Futures MAC(5)Index = b1 + b2 · Dintro MAC(5)futures MAC(5)ETF
break date start date b1 b2 Average Start date Average

(1) (2) (3) (4) (5) (6) (7)

S&P 500 8/14/87*** 4/22/82 0.085*** -0.165*** -0.091** 01-29-93 -0.087***
(7.12) (-5.25) (-2.49) (-3.49)

FTSE 100 9/2/98*** 5/3/84 -0.008 -0.021 -0.043*** 04-28-00 -0.109***
(-1.35) (-1.17) (-2.67) (-3.18)

DJESI 50 1/7/00 6/22/98 -0.001 -0.070** -0.070*** 03-21-01 -0.065***
(-0.08) (-2.51) (-3.67) (-3.30)

TOPIX 11/30/93*** 9/5/88 0.090*** -0.086*** -0.049*** 07-13-01 -0.032
(6.38) (-2.67) (-2.61) (-1.25)

ASX 200 10/29/97 5/3/00 0.017 -0.061* -0.036 08-27-01 -0.055**
(0.76) (-1.78) (-1.54) (-2.26)

TSE 60 4/17/00*** 9/7/99 0.098*** -0.177*** -0.061*** 10-04-99 -0.047**
(5.33) (-4.92) (-2.84) (-2.06)

CAC 40 3/07/00* 12/8/88 0.071 -0.113 -0.049*** 01-22-01 -0.062***
(0.77) (-1.21) (-3.23) (-2.81)

DAX 1/29/87 11/23/90 0.022 -0.058** -0.021 01-03-01 -0.020
(1.58) (-2.20) (-1.18) (-0.90)

IBEX 35 9/2/98*** 4/20/92 0.151** -0.167** -0.036** 10-03-06 -0.034
(2.38) (-2.52) (-2.10) (-1.31)

MIB 9/24/01 11/28/94 0.110* -0.133** -0.017 11-12-03 -0.014
(1.94) (-2.24) (-1.00) (-0.60)

AEX 5/26/86 10/26/88 -0.012 -0.009 -0.028 11-21-05 -0.036
(-0.33) (-0.24) (-1.59) (-1.36)

OMX Stockholm 4/6/00*** 1/2/90 0.073 -0.090* -0.059*** 04-24-01 -0.079***
(1.56) (-1.80) (-3.82) (-3.15)

SMI 3/24/03 11/9/90 0.008 -0.009 -0.012 03-15-01 -0.036
(0.12) (-0.13) (-0.62) (-1.46)

Nikkei 225 10/2/90*** 9/5/88 0.058*** -0.132*** -0.055*** 07-13-01 -0.050*
(4.30) (-4.31) (-2.88) (-1.92)

HSI 12/25/87** 5/6/86 0.137*** -0.135*** -0.015 11-12-99 -0.039*
(3.56) (-3.25) (-0.52) (-1.88)

Nasdaq 100 9/1/98** 4/11/96 0.043** -0.143*** -0.073*** 03-10-99 -0.077***
(2.09) (-4.36) (-3.28) (-3.29)

NYSE 8/14/87*** 5/6/82 0.138*** -0.182*** -0.100 04-02-04 -0.069*
(7.77) (-5.77) (-2.43) (-1.91)

Russell 2000 4/17/00*** 2/4/93 0.155*** -0.202*** -0.049** 05-26-00 -0.064***
(5.53) (-5.02) (-2.22) (-2.77)

S&P 400 1/15/99** 2/14/92 0.141*** -0.173*** -0.048** 05-26-00 -0.041
(2.79) (-3.15) (-2.01) (-1.63)

KOSPI 200 11/17/99 5/3/96 0.007 -0.002 -0.018 10-14-02 -0.024
(0.34) (-0.08) (-0.96) (-1.00)

Panel of indexes 0.072*** -0.108*** -0.047*** -0.054***
(4.55) (-5.01) (-3.16) (-2.94)

Panel of indexes (one-day lag) 0.018 -0.065*** -0.044*** -0.046**
(1.41) (-3.41) (-2.87) (-2.42)
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Table 5. Serial dependence and indexing in overweighted (OW) versus underweighted (UW)
Nikkei 225 stocks

This table presents results based on relative index overweighting in Nikkei 225 stocks after regressing
four zero-investment trading strategies against a futures introduction dummy for the Nikkei 225
(“DN225

intro ”) and Nikkei 225 indexing relative to Tokyo Stock Price Index (TOPIX) indexing (Relative
indexing). Relative indexing is total indexing on the Nikkei 225 minus total indexing on the TOPIX,
with total indexing and control variables defined as in Table 4. Trading strategy returns are defined
asRt ≡

∑225
j=1wjtrjt, where wjt is a weight assigned to return r on stock j based on the overweighting

measure in Greenwood (2008),

OWjt = log

(
1 +

wN225
jt

wVWjt

)
,

where wN225
jt is the Nikkei 225 price weight and wVWjt is the TOPIX value weight. We determine

strategy weight wjt = A · B by calculating A ≡
(
OWit−1 − 1

N

∑
OWjt−1

)
in the columns labeled

“OW Portfolio,” or by cross-sectionally sorting stocks every day based on OWjt and calculating A as
the difference between the top overweighted quintile and bottom overweighted (i.e., underweighted)
quintile (columns labeled “OW - UW portfolio”). Index increases (decreases) B are measured by
either B ≡ rN225

t−1 in the columns labeled “q = 2” or by B ≡ ∑4
l=1(5 − l)rNikkei225t−l in the columns

labeled “q = 5.” Coefficients in the columns labeled “rN225
t−1 ” are multiplied by 104 to facilitate

readability. Reported t-values (in parentheses) are based on standard errors that are Newey-West
corrected. The rows labeled “Intercept + futures intro” sum both coefficients and test against the
null that the intercept and futures introduction dummy are zero. *, **, and *** indicate significance
at the 10%, 5%, and 1% level, respectively.

OW - UW portfolio OW portfolio OW - UW portfolio OW portfolio

Variable q = 2 q = 5 q = 2 q = 5 q = 2 q = 5 q = 2 q = 5

(1) (2) (3) (4) (5) (6) (7) (8)

Intercept 0.195 0.055 0.099 0.031 -0.018 0.062 0.074 0.067
(1.24) (1.17) (1.59) (1.50) (-0.15) (0.72) (1.09) (1.65)

DN225
intro -0.374** -0.102** -0.207*** -0.052**

(-2.36) (-2.11) (-3.20) (-2.35)
Relative indexing -12.408*** -3.767** -11.170*** -3.591***

(-4.12) (-2.44) (-4.93) (-3.18)
Intercept + futures intro -0.180*** -0.048*** -0.108*** -0.022**

(-7.72) (-3.60) (-6.40) (-2.45)
Controls No No No No Yes Yes Yes Yes
R2(percent) 0.235 0.077 0.174 0.048 0.851 0.549 1.063 0.562
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Table 6. Serial dependence and indexing in Standard & Poor’s (S&P) 500 stocks versus
non-S&P 500 stocks

This table compares subindex MAC(5) between a portfolio of the 250 stocks in the bottom half
of the S&P 500 and a portfolio of the 250 largest stocks that are not in the S&P 500. Panel A
summarizes market capitalization, volume, turnover, analyst coverage, and institutional ownership
for the stocks underlying each of the two subindexes. In Panel B, we regress subindex MAC(5) on
an indicator variable equal to one for observations based on the small S&P 500 member stocks and
zero otherwise (In S&P), indexing measures specifically for the S&P 500, control variables, and
interactions between the In S&P variable and each indexing measure. All explanatory variables are
as defined in Table 4 and specific to the S&P 500. Reported t-values (in parentheses) are based on
standard errors that are clustered in the time dimension. *, **, and *** indicate significance at the
10%, 5%, and 1% level, respectively.

Panel A: Characteristics of member stocks

Variable Smallest 250 stocks in S&P Largest 250 stocks not in S&P

Average Standard deviation Average Standard deviation
(1) (2) (3) (4)

Market cap (million of dollars) 2.561 3.384 5.194 11.100
Volume (million) 0.825 3.227 1.228 7.794
Turnover 5.026 9.580 5.682 24.247
Analyst coverage 14.612 6.825 12.730 7.128
Inst. ownership 0.314 0.344 0.200 0.284

Panel B: Importance of S&P membership for decrease in serial dependence

Variable Subindex MAC(5)

(1) (2) (3) (4)

Intercept 0.174*** 0.343 0.360 0.294
(9.39) (1.38) (1.39) (1.28)

In S&P 0.044***
(2.71)

DS&P500
intro -0.113***

(-2.87)
In S&P×DS&P500

intro -0.156***
(-3.66)

IndexingS&P500 -5.875*
(-1.94)

In S&P×IndexingS&P500 -8.462***
(-2.57)

IndexingS&P500(futures) -9.586*
(-1.79)

In S&P×IndexingS&P500(futures) -14.24**
(-2.46)

IndexingS&P500(ETFs) -9.154**
(-2.12)

In S&P×IndexingS&P500(ETFs) -12.36***
(-2.63)

Controls No Yes Yes Yes
Number of observations 23,200 23,200 23,200 23,200
R2(percent) 0.054 0.246 0.254 0.207
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Table 7. The index arbitrage mechanism

This table presents results after regressing weekly (Wednesday-Wednesday) returns on MAC(5)index
against weekly returns on MAC(5)futures (columns labeled “j = Futures”) or MAC(5)ETF (columns
labeled “j = ETF ”), and the interaction variables with futures indexing or exchange traded fund
(ETF) indexing, respectively. Indexing (futures) and Indexing (ETFs) are defined in Table 4.
Reported t-values (in parentheses) are based on standard errors that are clustered in the time
dimension. *, **, and *** indicate significance at the 10%, 5%, and 1% level, respectively.

Weekly MAC(5)index

Variable j = Futures j = ETF

(1) (2) (3) (4)
Weekly MAC(5)j 0.558*** 0.202 0.879*** 0.861***

(3.06) (0.83) (16.87) (11.04)
Weekly MAC(5)j × Indexingj 23.417*** 8.052***

(2.75) (2.53)
Level versions of interacted variables Yes Yes Yes Yes
Index fixed effects Yes Yes Yes Yes
R2(percent) 48.9 64.3 81.7 86.4
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Fig. 1. Evolution of index-level serial dependence
This figure plots the evolution of serial dependence in index returns from January 1, 1951
to December 31, 2016. Serial dependence is measured by first-order autocorrelation from
index returns at the daily frequency [“daily AR(1)”], first-order autocorrelation from index
returns at the weekly frequency sampled at Wednesdays [“weekly AR(1)”], and multi-period
autocorrelation in index returns with q equal to five [“index MAC(5)”]. All three serial
dependence measures are equal-weighted across each of the indexes in the sample. Plotted
is the moving average of these measures using a ten-year window (for the first ten years, the
window expands from one year to ten years).
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Panel A: Indexing on S&P 500
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Fig. 2. Evolution of indexing
This figure plots the evolution of indexing in the Standard & Poor’s (S&P) 500 (Panel
A) and across the world (Panel B). Indexing is measured for futures (“Futures”) as total
open interest (in monetary units) divided by total index market capitalization, and for
exchange-traded funds (ETFs) as total ETF market capitalization divided by total index
market capitalization. Panel A plots these measures for the S&P 500, together with total
market capitalization for S&P 500–based equity index mutual funds (“Index MFs”). Panel
B plots these measures aggregated across the stock market indexes in our sample excluding
the NASDAQ, NYSE, and S&P 400 because open interest data from either Bloomberg or
Datastream are available only four to ten years after the futures introduction. The indexing
measure is equal weighted across each of the indexes in the sample. The sum of the futures
and ETF measures is total indexing (“Total”).
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Panel B: Global indexing
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Panel A: AR(p) before 1999
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Panel B: AR(p) after 1999
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Fig. 3. Recent changes in serial dependence for different lag orders
This figure plots autocorrelation coefficients for our panel of stock market indexes across the
world, for different lag orders before and after March 3, 1999. We repeat the analysis in
the penultimate row of Table 1 at the daily frequency, and calculate daily autocorrelations
separately for lag order 1 to 21 (i.e., one month). The ranges centered around each AR(p)
coefficient represent its corresponding 90% confidence interval.
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Panel A: Index-level MAC(5) in calendar time
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Fig. 4. Serial dependence and the start of indexing
This figure plots serial dependence against the start of indexing in calendar time (Panel
A) and in event time (Panel B). For each index, indexing starts on the day that the first
corresponding equity index futures contract was introduced. Panel A plots endogenously
determined break points in serial dependence against the start of indexing. The fitted line
is based on a linear regression of the MAC(5) break date on the indexing start date. Panel
B plots cumulative index MAC(5) (normalized to start at one) around the start of indexing
for all indexes combined. The horizontal axis reflects event time, with t = 0 reflecting the
indexing start date. The black line plots (equally weighted) cumulative index MAC(5), and
the gray solid line and gray dashed line plot cumulative futures MAC(5) and exchange-traded
fund (ETF) MAC(5), respectively.
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Panel B: Cumulative global MAC(5) in event time
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Fig. 5: Serial dependence and the level of indexing
This figure plots serial dependence against indexing for the stock market indexes in our
sample. We exclude the NASDAQ, NYSE, and Standard & Poor’s (S&P) 400 because open
interest data from either Bloomberg or Datastream are available only four to ten years after
the futures introduction. Serial dependence is measured as average MAC(5); indexing as
average Indexing (futures+ETFs) (defined in Table 4). Averages are calculated from 1991
onward, when at least half of the markets in our sample have been indexed. The fitted line
results from a linear regression of average index MAC(5) on average indexing.


