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The use of disequilibrium modelsjn_a£plie.djiiicio.e.C:9nomic research is evaluated.
A disequilibrium or swi'tcffmg regime model is used to explain sales levels ofindividual
retail stores. It is investigated whether substantial differences are found if an equili-
brium approach is followed instead. Disequilibrium models are known to suffer from
the fact that sample separation is unknown. Usually this information is not available.
Our sample contains explicit information with respect to the regime to which an
observation belongs. Therefore, the value of sample separation information in estima-
ting the disequilibrium model is investigated. Finally, Monte Carlo experiments are
conducted to get more insight into these matters.

I. INTRODUCTION

Economists typically model the world as determined by the
interplay of supply and demand. Usually equilibrium is
assumed. There are situations, however, where the classical
equilibrium hypothesis is not appropriate. In empirical
work one has to decide whether the outcomes of the model
are supply determined, demand determined or that both
opportunities are feasible. In the last case knowledge per
observation is required as to which regime^ prevails. If this
knowledge is not available and if the assumption of the
dominance of either supply or demand is not appropriate,
switching models with endogenous regime choice are used.
Typically, they are applied to analyse markets in disequilib-
rium where outcomes result from the minimum of supply
and demand. Notable examples of such analyses are the
labour, the housing and the credit markets (Rosen and
Quandt, 1978; Fair and Jaffee, 1972 and Laffont and Garcia,
1977). Aggregate time series are used to estimate these
models. Regime switches are unlikely to be discrete at an
aggregate level. Therefore several smoothed versions of the

switching model have been proposed (Muellbauer, 1978;
Kooiman and Kloek, 1979; Malinvaud, 1982; Lambert,
1984; Kooiman, 1984). On the whole their assumption is
that the minimum condition of supply and demand is more
likely to apply to the micro level than to the aggregate. The
straightforward use of microdata is the obvious alternative:
the discrete minimum condition can be maintained and no
smoothing is required (Kooiman et al., 1985). In the present
paper we will report some experiments applying the switch-
ing model to a cross-section of observations of individual
retail establishments.

The economic problem we want to address in the present
paper is that of the explanation of sales levels of individual
retail stores and the measurement of store marketing mix
effects. Obviously, sales levels of retail stores are determined
by the interplay of store supply capacity and the store
specific demand characteristics (Kooiman et al., 1985). In
the cross-section situation we study it is likely that some
stores are capacity determined (i.e., demand is large
enough), whereas other stores are demand determined (i.e.,
demand is smaller than store capacity). This implies, for

'I.e., excess supply or excess demand.
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example, that the use of a classical equilibrium approach for
estimating the important effect of advertising expenses on
sales may lead to biased estimation results (Bode et al.,
1988). A disequilibrium model is then proposed to estimate
the marketing mix effects. In such a model sales are either
supply determined or demand determined. In the present
paper the gains of such a switching model are discussed
vis-a-vis the classical equilibrium concept. This will be done
in the setting of a sample of 137 retail stores.

Another point of enquiry in the present paper is the value
of sample separation information. Usually, information re-
garding the regime to which each individual observation
belongs is not available (Kooiman et al, 1985; Bode et al,
1988). Both possibilities then have to be included in the
model, and it is up to the data to decide on the most likely
regime distribution. Such endogenous regime choice models
have not proved to be very succesful. According to Maddala
(1983, p. 299) one of the problems with disequilibrium
models with unknown sample separation is that we 'are
asking too much from the data when we do not know which
observations are on the demand function and which are on
the supply function.' Some authors have studied this
problem. Goldfeld and Quandt (1975) analysed the value of
prior information regarding the regime to which each obser-
vation belongs by Monte Carlo methods, and Kiefer (1979)
analysed the value of such information in an analytical way
by considering the problem as a comparison between the
precisions of estimates based on a joint density and those
based on a marginal density. According to these studies
there may be considerable loss of information if sample
separation is not known.

In the present paper we want to analyse the value of
sample separation information once more. There are three
reasons. First, the analysis of Goldfeld and Quandt is based
on Suits' (1955) model of the watermelon market. In the
applied section of their paper the authors use the original
data set of 33 observations, and these data provide the basis
of the analysis also in the experimental section. The results
reported by Goldfeld and Quandt should be considered as
small sample results. A priori, it is less likely that the in-
formation loss is still substantial when a larger sample is
used. Secondly, although Kiefer (1979) also deals with the
question of information loss in large samples, in his paper
use is made of a very simplified switching model. Comparing
his results with the Goldfeld-Quandt study, Kiefer notes
that they seem to indicate '. . . that the information loss in
a more complicated model is greater than that in the simple
model, as seems plausible (although this must be qualified
since the Goldfeld-Quandt results are for small samples)',
see Kiefer (1979, p. 1002). An analysis using a relatively large
sample in combination with a less simplified model may

shed more light on this matter. Thirdly, Suits' model was
originally estimated using aggregate time-series data, where-
as our current model is estimated using cross-section data
from individual stores. As far as we know the value of prior
information has not yet been analysed in the context of
individual cross-section data. Hence, its seems worthwhile
to consider the value of sample separation information once
more in the situation where a relatively large sample of
individual cross-section data is used to estimate a disequili-
brium model which is not unjustifiedly simple.

The outline of our study is as follows: Section II deals
with the conceptual framework of the disequilibrium model.
In Section III the data are discussed and the empirical
specification of the model equations is given. Section IV
deals with the empirical results. In Section V some caveats
are discussed. In Section VI the results of some Monte Carlo
experiments are discussed. The paper ends with some con-
clusions in Section VII.

II. C O N C E P T U A L FRAMEWORK OF
D I S E Q U I L I B R I U M MODEL

In this section the disequilibrium model in its basic form will
be discussed. As mentioned in the introduction, we believe
that the sales level in retail stores is determined by an
interplay of store supply capacity arid store demand. There-
fore, first of all we need an equation describing store de-
mand and an equation describing Store supply capacity:

q^ =f\X'') (la)

q'=f\X') (lb)

In these equations q'' stands for the volume of store demand;
q^ is the volume of store supply capacity; X'' are explanatory
variables affecting store demand; and X'' are explanatory
variables affecting store supply capacity. The variables
X'' and X^ will be further specified in the next section.

Once a store is established, store supply capacity is more
or \Q%% fixed, at least in the short run. This does not imply,
however, that the store always operates at this capacity.^
Actual supply (volume of sales) varies at or below store
supply capacity depending on the level of demand. Con-
sider, for example, an entrepreneur who wants to open up
a new store. It is not always easy to find a suitable establish-
ment, both in terms of location and in terms of space.
Sometimes supply capacity will be; too large to meet de-
mand; there is a situation of excess capacity^ and the store
operates below capacity. But it is also possible that the
capacity of the store is too small to meet demand. Then the
store operates at capacity and a situation of excess demand

În retailing the initiative for the use of capacity lies on the side of the consumer (see also Nooteboom, 1986, P- 234).
'In view of the difference made between 'actual supply' and 'supply capacity', it might be confusing to use here the term 'excess supply'.
Therefore, the term 'excess capacity' will be used.
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exists. Even if at the beginning the situation is such that
store demand equals store supply capacity, this equilibrium
may be disturbed in time as a result of a changing environ-
ment. For example, an excess capacity situation may arise
from a decreasing population size or from an increasing
number of competitors.

As a result of this we expect a considerable number of
stores to be in a situation of disequilibrium between store
demand and store supply capacity at the moment of sample
observation. This is also supported empirically by our sur-
vey held among confectioners' stores (see Section III). The
results of this survey indicate that stores may operate under
different economic regimes, viz., excess capacity or excess
demand.* Adding the equation q'' = q' to Equation la and
b (in accordance with the classical economic equilibrium
hypothesis) would not be appropriate in our situation. Such
an approach is based on the idea that the storekeeper is
always in a position to 'clear the market' by a suitable
choice of his marketing instruments. We believe that, in
general, this is not true for an entrepreneur in the retail
trade. Suppose, for example, that in a specific store the level
of demand is smaller than supply capacity. The storekeeper
will then try to stimulate demand in order to diminish excess
capacity. One way to achieve this is by lowering the product
prices. Of course, other store marketing instruments like
advertising or assortment composition might also be used
for this purpose. However, we believe that in many stores
the disequilibrium between store demand and store supply
capacity will continue to exist, despite the lower price level.
This can be explained as follows: first, it is possible that
profit margins are so low that prices can only slightly be
reduced. Such a minor reduction will not be enough to
bridge the gap between store demand and store supply
capacity. But even if in a specific store prices can consider-
ably be reduced before creating negative margins, it may be
unwise to do so in view of the fact that competitors might
follow. Secondly, there are many opportunities for product
differentiation in retailing. The 'product' offered in retail
stores is in fact a 'bundle of services'^ with several dimen-
sions, such as price level, proximity, accessibility (parking
space), availability of other products, and other aspects of
service (helpfulness, opening time, spaciousness, atmos-
phere, etc.). Price level is one of these dimensions, but
nonprice competition also plays a role in retail stores. Price
is not the only competing instrument. Therefore, a lower
price level does not necessarily attract many new customers.
The situation is analogous in case of an excess demand
regime: now the storekeeper is in a position to increase the
prices of his products. As long as prices are not increased

too much, most customers will continue to visit the store.
Here the argument of Nooteboom (1980, pp. 17-18) also
applies. According to him retailing 'does not provide a phys-
ical product (utility of form) to be shipped to points of sale,
but a utility of time and place at a point of sale. In the
provision of the utihty of place, the numerous retailers serve
not one market but a cluster of geographically fragmented
markets. In other words: there may be partial spatial mon-
opolies'. But if prices are further increased in order to
achieve an equilibrium situation, demand may drop at once
below store capacity. As a consequence, we believe that
excess demand causes, for example, store prices to become
higher,'^ but this does not necessarily imply that equilibrium
is restored: demand may still be larger than supply capacity.

This brings us to define actual (realized) volume of store
sales, q, as the minimum of store demand and store supply
capacity:

\q^ (Ic)

This equation should be interpreted as follows: the store-
keeper tries to meet store demand given his store supply
capacity. Therefore, the realized volume of sales q is the
minimum of q^ and q^.

This equation is added to Equations la and b and com-
pletes our disequilibrium model. The endogenous variables
in model (1) are q^, q^ and q. Only q is observable; q'^ and
q^ are so-called latent variables.

III. DATA AND EMPIRICAL
SPECIFICATION

Data

We have at our disposal a cross-section sample of Dutch
confectioners' stores. The number of observations is 137 and
the year of collection is 1985. The reason for choosing
confectioners' stores is primarily because this particular
sample contains prior information with respect to the re-
gime to which an individual store belongs. The survey
contained the following question: 'Was your business in
1985 in a situation of excess capacity (i.e., you could have
produced more at given capacity, but demand was insuffi-
cient), or was there an excess demand situation (i.e., you
could have sold more, but you were at your maximum
production capacity)?' In 85 cases the storekeeper answered
to be in a situation of excess capacity; 42 confectioners said
to be in an excess demand regime; and 10 said to be in
a situation of equilibrium between store demand and store
supply capacity. We decided to consider the equilibrium

"Apart from possible exceptional cases, every store will have excess capacity during some periods of opening time, and shortage of capacity
during some other periods. But our regime concept should be interpreted as describing the 'average situation' during a longer period of
time, say, one year. In Section V this point will be further dealt with.
Ĉf. Hall et al (1961), and Arndt and Olson (1975).

also Bode et ai (1990).
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observations as excess demand observations.^ So, our
sample consists of 85 excess capacity observations and 52
excess demand observations.

Total value of annual sales varies from 60 thousand to
1305 thousand Dutch guilders, with an average value of 488
thousand Dutch guilders.* Total floorspace varies from 41
to 530 m^ with an average value of about 150 m .̂ This area
is partitioned into selling area, with an average value of
about 50 m ,̂ and remaining space (i.e., bakery room, store-
house and office), with an average value of about 100 m .̂ In
Appendix A more information on the data is given.

Empirical specification

In our specific situation where confectioners' stores are
analysed, we decided to measure the theoretical variable q in
model (1) by total value of annual store sales of home-made^
products, Qhm, divided by some appropriate store price
index for home-made products, p,,^:

Ihm — Qhm/Ph (2)

The variable q^^ can be described as the reahzed volume of
annual store sales of home-made products.

The demand equation (la) is empirically specified as'°

(3a)

where qi^ is value of annual store demand for home-made
products, divided by p^^; A is annual advertising expenses;
Sc is selling service, measured as number of weekly working
hours of selling personnel (including the storekeeper's wife)
per square metre of selling area; C is selling area (room for
customers); TL is part of selling area used for tearoom
and/or lunchroom; F is share of the assortment groups 'nat
gebak' (i.e., products like cream confections and chocolate
eclairs) and 'droog gebak' (i.e., products like sweet biscuits
and butter-cake) in total value of home-made products
sales; p^m is store price index for home-made products; the
exact definition is given below; Qnf,^ is total value of annual
sales of products that are not home-made; Q is total value of
annual sales; and Dtl is dummy tearoom/lunchroom: equals
one for stores having a tearoom and/or lunchroom, zero
otherwise.

Volume of annual store demand for home-made products
is made a function of advertising expenses, service level,
selling space, assortment composition, price level, share of
products that are not home-made and presence of a tea-
room and/or lunchroom. The exp( ) function is used in
Equation 3a to avoid that the right-hand side becomes zero
when F, Qnhm/Q or Dtl is zero.

This specification is comparable to earher demand equa-
tions that we used in disequilibrium models. Cf. Bode et al.
(1988, Equation 2 on p. 109) and especially Bode et al. (1990,
Equation 6 on p. 47). We made some alterations to take into
account specific aspects of confectioner's stores operations.
Both the share of specific assortment groups among the
home-made products sales, F, and the share of products that
are not home-made in total value of annual sales, Qnhm/Q,
may infiuence the volume of demand in confectioner's
stores. In addition, the presence of a tearoom and/or lunch-
room is explicitly considered. This is refiected in the dummy
variable Dtl, while the space used for tearoom and/or lunch-
room, TL, is subtracted from the total room for customers,
C.

The supply capacity equation reads:

(3b)

where ql^ is value of annual store supply capacity of home-
made products, divided by /?;,„; H is annual occupancy costs
per square metre of total floorspace; W is total fioorspace,
i.e., selling area, C, plus remaining space for production,
storage and office; Dsib equals one for confectioners
who also sell products to other stores and/or institutions
and businesses, minus one for confectioners who do not,
and zero if information is not available from the
questionnaire.

Volume of annual store supply capacity of home-made
products is specified as a function of assortment composi-
tion, occupancy costs per unit of fioorspace, selling area,
remaining space, share of products that are not home-made
and a variable indicating whether a confectioner also sells
products to other stores and/or institutions and businesses.

See again our earher papers for comparable supply capa-
city equations: Bode et al. (1988, Equation 3 on p. It0) and
Bode et al. (1990, Equation 7 on p, 48), respectively. In the
supply capacity equation above TL is not subtracted from

''Other possibilities could have been to exclude them from the data set, or to distribute them among the two regimes according to some
probabilistic procedure.
*One US dollar was about 3.32 Dutch guilders in 1985.
'By 'home-made' products we mean products made on a premises. There are two reasons for restricting ourselves to home-made products
sales: first, the majority ofthe confectioners' products sold are home-made. The average sample share in total value of annual sales is about
83%. This is what distinguishes confectioners from bakers. Secondly, the prior information question in the survey implicitly refers to
home-made products.
'"This demand equation was chosen as the 'best' one in terms of plausibility and fit after estimating several specifications using the 85
excess capacity observations. An analogous procedure was followed with respect to the supply capacity equation (cf. Equation 3b) using
the 52 excess demand observations.
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C. We assume that total floorspace, W, and the partitioning
into selling area, C, and remaining space, W — C, determine
supply capacity to a large extent^ ̂  and that the presence of
a tearoom and/or lunchroom does not play an important
explicit role. We take into account that confectioners' stores
which also sell products to other stores and/or institutions
and businesses, produce more efficiently through anticipa-
tion and suppressing fluctuating demand. This should be
reflected in a positive value for P^.

The minimum condition Equation lc now becomes:

n, qlj

The store price index for home-made products,
defined as follows:

(3c)

is

(4)

where Qsn, is total value of annual sales to other stores
and/or institutions and businesses; p*^ is a weighted average
of product prices of some typical confectioners' stores
products;'^ oisib is the average discount rate for other
stores and/or institutions and businesses; in our analysis
we assume Xsw = 0.25 after consultation with the
'Bedrijfschap Banketbakkersbedrijf^^ in Zeist, The Nether-
lands. This definition reflects the fact that other stores,
institutions and businesses pay a lower price than individual
customers.

In {qln)i =

-l-(l - ; r )£ ln( I^ , -Cj ) - l -

+ U! (5b)

The method of maximum likelihood is applied to find para-
meter estimates. We assume that the disturbances Uf and
Ui are independently normally distributed with zero mean
and variance aj and (TS, respectively. The likelihood func-
tion L to be maximized with respect to the parameter vector
9, depends on whether sample separation information is
present or not:

Sample separation unknown (SSU). In this case only {qi,m)i is
observed. Denoting the right-hand sides of Equations 5a
and b by R\Xi) + [/? and R\X!) + UI respectively, it is
sbown in Appendix B that the likelihood function equals

L =

X {1 - (6a)

where N denotes the sample size, n(.; a) is the normal density
function with zero mean and variance a^, and N{.) is the
cumulative standardized normal distribution function.

IV. EMPIRICAL RESULTS

Estimation method

Equations 3a-3c are written in logarithm form,'* distur-
bances are added to the demand equation and the supply
capacity equation,'^ and observations are indexed by i. We
then get the following model to be used for estimation:

h + (5a)

Sample separation known {SSK). In this situation both
and the corresponding regime is observed. We can use the
regime information to classify the observations into excess
capacity observations and excess demand observations. Let
us denote the set of indices for which (^D; < {(lhm)i by Id and
the set for which {qtm)i ^ (^D; by / j . The likelihood function
now becomes

L =
iel.

(6b)

"See Thurik (1984) and Thurik and Koerts (1984a; t984b) for an extensive study of this relationship.
^ În the survey total sales value of home-made products was partitioned into four specific assortment groups {Qhm)i through (2ftm)4 and
one remaining group {Qhm)^- For each specific assortment group storekeepers were asked to give the 1985 usual product prices of some
typical products belonging to that group. For each observation these product prices were averaged per assortment group, yielding pY
through fl, and then the variable p*m was defined as

4 _ / 4

Phm = X PkiQhm)k Z iQhm)k-
k=l I k = l

trade organization ofthe Dutch confectioners.
aim at a multiplicative disturbance structure in Equations 3a and b. Therefore, the equations are written in logarithm form before

disturbances are added.
' 'No disturbance term is added to Equation 3c because the minimum condition is considered as a definition equation. Kooiman et al.
(1985, p. 127) use a different argument, but employ the same stochastic specification.
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See again Appendix B for the derivation. This likelihood
function contains the same parts as likelihood function
Equation 6a, but now L is of the form

L = [^ (expression)ii x Y[ [expression)2i (7b)

instead of

L= {expression)2i} (7a)

Numerical maximization of In L with respect to the para-
meter vector 6 yields an estimate d^L of 6. The asymptotic
distribution of the maximum likelihood estimator S^L
is multivariate with mean Q and covariance matrix I.
A consistent estimate of I is given by t, where

Estimation results: disequilibrium model

The estimation results of disequilibrium model (5) are pre-
sented in columns 1 and 2 of Table t: column 1 shows the
results in case sample separation is unknown (using likeli-
hood function Equation 6a)^* and column 2 contains the
parameter estimates in case sample separation is known
(using likelihood function Equation 6b). First of all, we
discuss the results in column 2 where use is made of the
regime information.''

Looking at the demand equation we conclude:

^1 (advertising): the volume of annual demand for home-
made products in confectioners' stores is significantly in-
fluenced by the store's annual advertising expenses. The
advertising elasticity is 0.18.

§2 (selling service): the selhng service has a significant
effect on demand. When the number of working hours of
selling personnel per unit of selling space increases, the
volume of demand also increases.

(̂ 3 (C — TL): the size of the room where products are sold
also has a significant effect on demand. The higher C — TL,
the higher volume of demand.

64. (assortment): stores with a relatively large share of 'hat
gebak' and 'droog gebak' in total value of home-made prod-
ucts sales, are confronted with a demand volume that is
somewhat lower than average, although the effect is not
significant.

51 (price): there is no significant effect of price level on the
volume of demand. It is possible that p^^ not only measures

prices, but also the quality of the prioducts sold. If this is the
case, the sign of d^ is not known in advance.

^6 iQnhm/Q)'- the higher the share of products that are not
home-made, the lower the volume of demand for home-
made products.

Sj (dummy tearoom/lunchroom): the presence of a tea-
room and/or lunchroom influences demand significantly.

With respect to the supply capacity equation we conclude:

j8i (assortment): the share of 'nat gebak' and 'droog gebak'
in total value of home-made products sales has a negative
effect on store supply capacity, although the effect is not
significant.

P2 (occupancy costs): the higher the occupancy costs per
unit of floorspace, the larger the store supply capacity. If
stores are located in an expensive area, floorspace is used
more efficiently.

P3 {Qnhm/Q)'- supply capacity of home-made products is
smaller than average in stores Which sell relatively few
home-made products (i.e., Qnhm/Q is high).

P4. {Dsih): stores which also sell products to other stores
and/or institutions and businesses seem to use their floor-
space more efficiently than stores which do not sell to these
customer groups.

n (distribution parameter): 7r is about 0.48. This indicates
that selling area and remaining space are about equally
important in determining store supply capacity of home-
made products. This contradicts the results found in Thurik
(1984, p. 103), where a comparable specification is estimated
on a sample that contains both excess capacity and excess
demand observations. In that study n was found to be 0.24.

8 (homogeneity parameter): the value 0.68 for e indicates
that there are no economies of scale in confectioners' stores.
This value is somewhat lower than the value 0.92 found in
Thurik (1984).

Next, the results in column 1 and column 2 are compared
with each other. It appears that .all corresponding para-
meter estimates have the same sigri, except for j?o which is
negative in column 2 and positive (but not significant) in
column t. Apart from the intercepts ^0 and ^0 there are two
parameter estimates that are significant in column 2 but not
significant in column t, viz., ^3 and e,̂ * and two parameter
estimates that are significant in column 1 but not in column
2, viz., (̂ 5 and J?i. Comparing the parameter estimates in
terms of their corresponding 90% confidence intervals, we

'̂̂ Trying several combinations of starting values for the optimization process, we found three local extremes of In L. The results in column
1 correspond to the global extreme found. Of course, theoretically it is possible that this is also a local extreme. If so, this may explain why
the estimate for the distribution parameter n is at its lower bound of zero.
"Gi'uen correct model specification, either set of estimates (SSU and SSK) should be consistent, but in the case of SSK the estimates should
be more efficient. Therefore, the SSK results are expected to be most accurate.
'*We do not trust the estimate zero (lower bound) for n in column 1. As mentioned in Footnote 16 three local e.̂ ctremes of In L were found.
In one of these situations n was found to be 0.60, which seems more realistic. The fact the n is zero in column i may also explain why e is
very small and not significant. (The local extreme with n = 0.60 gave e = 1.10.)
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Table 1. Estimation results of disequilibrium model (5) and single Equations 8a and b
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Parameter

Demand equation
SQ Intercept

dl Advertising

§2 Selling service

<53 C-TL

^4 Assortment

5 s Price

6̂ Qn,JQ

dj Dummy tea
/lunchroom

Supply capacity equation
Po Intercept

Pi Assortment

P2 Occupancy costs

h Q,.UQ

Pi Dsib

n Distribution
parameter

E Homogeneity
parameter

Number of
observations
In L log-likelihood
r^

Model 5
SSU

3.484
(1.850)
0.191

(0.047)
0.953

(0.161)
1.053

(0.204)
- 0.043

(0.335)*
- 1.363

(0.390)
-^•1.966

(0.397)
2.771

(0.710)
0.420

(0.047)

0.122
(0.695)*

- 0.444
(0.260)
0.113

(0.054)
- 0.496

(0.516)*
0.146

(0.062)
0
(•)
0.169

(0.113)*
0.440

(0.050)

137
- 63.670

0.622

Model 5
SSK

0.949
(1.893)*
0.178

(0.043)
0.446

(0.111)
0.468

(0.143)
- 0.228

(0.231)*
- 0.404

(0.379)*
- 1.466

(0.362)
0.570

(0.168)
0.535

(0.043)

-1.831
(0.677)

- 0.336
(0.249)*
0.108

(0.052)
- 0.993

(0.438)
0.153
(0.058)
0.483

(0.124)
0.677
(0.134)
0.486

(0.046)

137
- 166.644

0.548

Equation 8a
N = Ni

- 0.266
(1.906)*
0.155

(0.038)
0.343

(0.112)
0.531

(0.126)
- 0.203

(0.205)*
- 0.253

(0.379)*
- 1.398

(0.323)
0.525

(0.154)
0.408

(0.031)

85
- 44.486

0.601

Equation 8b
N = N,

- 1.245
(0.817)*

- 0.679
(0.313)
0.131

(0.065)
- 0.966

(0.550)
0.258

(0.067)
0.561

(0.180)
0.515
(0.158)
0.448

(0.044)

52
- 32.020

0.451

Equation 8a
N = N,

2.147
(1.344)*
0.166

(0.031)
0.446

(0.080)
0.500

(0.104)
- 0.213

(0.170)*
- 0.690

(0.267)
- 1.391

(0.267)
0.558

(0.120)
0.423

(0.026)

137
- 76.450

0.571

Equation 8b
N = N,

- 2.394
(0.464)

-0 .181
(0.177)*
0.125

(0.038)
- 1.595

(0.293)
0.124

(0.042)
0.512

(0.096)
0.683

(0.091)
0.463

(0.028)

137
- 89.014

0.485

Note: SSU stands for 'sample separation unknown', SSK for 'sample separation known'. N denotes the number of observations used: N^ is
the number of excess capacity observation, i.e. 85; N^ is the number of excess demand observations, i.e. 52; N, is total number of
observations, i.e. 137. Estimated standard errors are printed in parentheses under the estimated parameters. An asterisk (*) is printed next
to the estimated standard error ff(0) of parameter estimate 9 if 10| < 1.645(T(0), i.e., if ^does not differ significantly from zero at a 10% level
of significance, r^ denotes squared correlation coefficient of the dependent variable (In {qi,m)) and its fitted value. In case of SSU fitted value
can be determined in two ways (cf. Gersovitz, 1980): first, fitted value equals mm(R''{X''), R.%X% where R''(X'')and R%X') stand for fitted
values from Equation 5a and b, respectively. Secondly, fitted value equals R''{X'') if P^^ > 0.5, and R^X") if P^^ < 0.5, where P^ is the
estimated value of the conditional regime probability P^c (see Appendix B). In our analysis both approaches resulted in the same value
(0.622) of r^ (up to the third decimal place). In case of SSK fitted value equals R\X') if an excess capacity regime applies, and R\X^_) if an
excess demand regime applies. In columns 3 and 5 the fitted values used are R'^{X') and in columns 4 and 6 the fitted values are (

find that in 5 out of 17 cases the confidence intervals do not
overlap,'^ viz., in cases of $2, S^, S^, n and e. Hence, although
there are some differences between the parameter estimates in

column 1 and column 2, these differences are 'not signifi-
cant' in 12 out of 17 cases. In terms of fit the SSU results
seem to be slightly better: risu = 0.622 and rssK — 0.548.

^1 — ̂ 21 > 1.645((T(^I) -I- (7(̂ 2)). where ^1 refers to the estimate in column 1 and §2 to the estimate in column 2.
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Estimation results: disequilibrium model versus single
equation approach

Notwithstanding the theoretical objections against the use
of a classical equilibrium model in our situation (as made
clear in Section II), one still might use such an approach as
a first approximation to a more complex model. It is inter-
esting to see whether this approach in our specific example
yields parameter estimates that are quite different from
those using the disequilibrium model.

First of all, given the fact that we are in a position to
classify our sample into excess capacity observations
and excess demand observations (based on the regime
information from the survey), we could estimate the demand
Equation 5a on the set of observations for which
(gL)i < {qhm)i (denoted by I^) and the supply capacity
Equation 5b on the the set for which (qtm)i ^ (^D; (denoted
by /s)-^" Using (qim)i = (̂ /.m)< under excess capacity and
{<lhm)i — (<ihm)i under excess demand. Equations 5a and b are
rewritten as

nkMQi + h + Ui (8a)

for I £ Ii, and

- = iSo + PiFi + h^^H, +

+ (t - n)E\n(Wi - C,)

i + pADsih + U\ (8b)

for i e Is, respectively. These equations are also estimated by
means of the maximum Hkelihood method. The likelihood
functions now boil down to^'

for Equation 8a and

ie/.

(9a)

(9b)

for Equation 8b. The estimation results are given in column
3 and column 4 of Table \}^

Another approach, which does not make use of the
sample separation information at all, would be to assume
that Equations 8a and b hold for all observations in the
sample, based on the assumption that \n{qhm)i = ln{ql^)i =
ln(?fcm)i- Next, let us estimate these equations separately by
means of the maximum likehhood method. The likelihood
functions now become

L = "!); a,)
1 = 1

for Equation 8a estimated on all observations, and

(10a)

(10b)

for Equation 8b estimated on all observations. The estima-
tion results are given in column 5 and column 6 of Table t,
respectively.

Comparing the single equation estimates in columns
3 and 4 with the disequilibrium estimates in column 2, it
appears that they are generally more in line with the SSK
results than the SSU estimates are^ On the one hand, this is
more or less a predictable outcome since both the estimates
in column 2 and the estimates in columns 3 and 4 are based
on the regime information from the survey, whereas the
results in column t are not. On the other hand, as men-
tioned in Footnotes t7 and 20, given the fact that both
model (5) and the regime information from the survey are
correct, the estimates in column 1 should be consistent
(although less efficient^^ than the estimates in column 2),
whereas the parameter estimates in columns 3 and 4 should
be inconsistent. Therefore, the SSU estimates might also
have been closer to the SSK estimates than the single
equation estimates are.

Looking at the estimates in columns 5 and 6, the same
conclusions can be drawn: the parameter estimates in col-
umns 5 and 6 are generally closer to the SSK results than
the SSU results are. In addition, cjomparing the parameter
estimates in column 2 with all remaining parameter esti-
mates in Table 1, in 11 out of 17 cases the estimates in
columns 5 and 6 are closest to the SSK estimates although
the sample separation information is not used at all^^ in
estimating the parameters in columns 5 and 6.̂ * This
result is even more surprising: v>e would have expected

^°It should be noted that using the sample separation information in this way, produces inconsistent parameter estimates of disequilibrium
model (5). Cf. Maddala (1983, pp. 293-4) and Fair and Jaffee (1972, pp. 503-4). But we are interested in the extent to which these estimates
in our specific situation differ from the disequilibrium estimates. We will come back on this point in Section VI.
•̂ 'Of course, maximizing the normal hkelihoods (Equations 9a and b) just amounts to nonlinear least squares.
^^These are in fact the final results of the model building procedure mentioned in Footnote 10. We followed this procedure to minimize
specification errors in constructing the disequilibrium model.
^^Note that in nearly all cases the estimated standard errors of the parameter estimates in column 1 are higher than the corresponding ones
in column 2.
^*Apart form the procedure followed to develop Equations 3a and b as described in Footnote 10.
•̂ 'In three cases the estimates in columns 3 and 4 are closest, viz., in case of ^5, d^ and ji^ and in three cases the estimates in column 1 (SSU)
are closest to those in column 2, viz., in case of ji 1,(^2 and p^..
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that the results in columns 3 and 4 would be closer to
those in column 2 than the estimates in columns 5 and 6
would be.

Comparing the parameter estimates in terms of their 90%
confidence intervals, we find that all intervals calculated
from column 2 (SSK) and the corresponding intervals cal-
culated from columns 5 and 6 overlap. The same holds true
when we compare column 2 with columns 3 and 4 (except
for Gj). On the other hand, comparing the confidence inter-
vals based on the results of column 1 (SSU) with the inter-
vals based on the single equation estimates of columns 3-6,
we find more nonoverlapping intervals: with respect to the
parameter estimates $2, ^i and n there are 'significant' dif-
ferences between column 1 and columns 3 and 4, and with
respect to the parameter estimates Si, ^3, ^7, ^0, n and
£ there are 'significant' differences between column 1 and
columns 5 and 6.

In order to compare the single equation approach with
the disequilibrium estimates in terms of fit we combined the
results in columns 3 and 4 and in columns 5 and 6, respec-
tively: with respect to columns 3 and 4 for each observation
I the fitted value of In {qhm)i was determined either by R\Xf)
or by R\X]) depending on which regime applied according
to the regime information. With respect to columns 5 and
6 the fitted value was defined as the minimum of ^''(Xf) and
R\X\). Next, the squared correlation coefficient of ln(q^m)
and its corresponding fitted value (based on all N, = 137
observations) was determined, yielding r^ = 0.569 for col-
umns 3 and 4 and r^ = 0.528 for columns 5 and 6. The single
equations approach in columns 3 and 4 apparently results in
a fit that is slightly better than the disequilibrium approach
with sample separation known. But differences are not very
large.

Summarizing, there are some differences between the
various models/equations used in this section, but these
differences in a certain sense are not large: most correspond-
ing 90% confidence intervals overlap. With respect to the
disequilibrium estimates this might imply that the informa-
tion loss is not substantial in our situation if sample separ-
ation is not known. On the other hand, given the fact that
the single equation estimates (in particular the results in
columns 5 and 6) are generally (much) more in line with the
SSK (disequilibrium) estimates than the SSU estimates are,
we might conclude as well that the information loss is
indeed substantial if we move from SSK to SSU. The fact
that the single equation estimates in columns 5 and 6 closely
resemble the SSK disequilibrium estimates, also seems to
imply that the (theoretically incorrect) single equation esti-
mates practically still are of interest in our situation as a first
approximation to a more complex (disequilibrium) model.
However, it is hard to draw definite conclusions based on
this single concrete example. Such conclusions would dir-
ectly depend on the quality of the data, the correctness of
the regime information, the appropriateness of the func-
tional specifications Equations 3a and b, etc. tn order to

correct for the type of shortcomings that are always present
in a real world situation, in the next section some Monte
Carlo experiments are conducted that will hopefully shed
more light on the matter.

V. SOME CAVEATS

Of course, the results obtained in the empirical section
depend on:

1. the appropriateness of the assumption oi disequilibrium,
2. the correctness of the regime information;
3. the quality of the data; and
4. the suitability of the functional specifications Equations
3a and b.

ad 1. We started from the assumption that the annual
volume of home-made products sales in confectioner's
stores is determined by the interplay of supply capacity
variables and demand factors. This does not necessarily
imply that a disequilibrium model like Equation 1 is appro-
priate. In Bode et al. (1988, Footnote 2) we referred to Kiefer
(1980) who argues that, given that q in Equation Ic does not
represent an equilibrium, there is no reason to think it will
be the minimum of q'' and q\ However, as mentioned in
Section II, the minimum condition Equation Ic should be
interpreted as the result of the storekeeper's trying to meet
demand given his supply capacity. We consider the supply
side of our model as a technical restriction on the store-
keeper's supply capabilities. Therefore, model (1) seems to
be appropriate.

But there is another point worth mentioning. Stores are
faced with strong demand ffuctuations with daily, weekly,
monthly and yearly components. A store may have excess
capacity during some periods of opening time and excess
demand during other periods. Then the minimum condition
only holds within such periods of opening time, whereas we
have q < m\n{q^, q^) on annual basis. This can be seen as
follows: writing qij = min(qfj, q\^, where qij is realized vol-
ume of sales in store i during period j; qij is volume of
demand in store i during period7; and q]j is volume of supply
capacity in store ; during period j , it follows that

and

Therefore,

mm(qi, qf).

(11)

(12)

(13)

where strict inequality holds in case store i is in an excess
capacity situation during some periods and in an excess
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demand situation during other periods.^'' However, our
concepts of excess capacity and excess demand should be
interpreted as describing the 'average situation' during
a year. In that case model (1) is still appropriate.

ad 2. Assuming that the concept of disequilibrium is appro-
priate in our context, storekeepers may still have no clear
idea about the regime that applies to their situation. It may
not be easy to describe the 'average situation' during a year.
Therefore, it is possible that our sample separation informa-
tion is biased. This point will be further dealt with in the
next section.

ad 3. Our sample consists of 137 Dutch confectioners'
stores. A questionnaire was sent to all confectioners' stores
operating in The Netherlands at the moment of observation
(about 800). The number of respondents was 257. Both the
number of observations and the number of variables that
could be used for analysis had to be limited drastically due
to missing values. In a number of cases we had to correct for
inconsistencies in the data. We even sometimes had to
estimate the missing values of specific variables ourselves in
order not to get a too small sample. Therefore, some distrust
exists with respect to the quality of the data.

ad 4. The procedure followed to develop Equations 3a and
b was described in Footnote 10. These equations closely
resemble demand equations and supply capacity equations
used in earlier disequilibrium models. These earlier models
were estimated on four largely differing types of stores in the
Dutch retail trade and the results obtained were satisfac-
tory.^^ This supports the suitability of Equations 3a and b.
On the other hand we feel that the appropriateness of the
specification used is crucial in the present analysis. There
are several store characteristics and environmental factors
that might be important variables in explaining store de-
mand and store supply capacity. Some ofthese are competi-
tion, consumer characteristics and variables like image or
atmosphere. These variables may very well improve the
quality of Equations 3a and b, but they could not be used
because of the data problems mentioned above.

VI. M O N T E CARLO E X P E R I M E N T S

Following Goldfeld and Quandt (1975) a Monte Carlo
experiment is conducted in order to remove the effects that

the caveats 2, 3 and 4 may have o|n the results found in the
empirical section.

Design of experiments

Two adjustments are made to Equations 5a and b to restrict
the number of parameters to be estimated: the variable
'assortment' is removed both from the demand equation
and from the supply capacity equation. The parameter
estimate S^. did not differ significantly from zero in all
models/equations in Table 1. The same holds true for ^, in
2 out of 4 cases. Hence, the following model equations are
used in the simulation analysis:

- TL,)

+ +

PsiQnnMQi + PADsih, + C/f

In {qh«,)i = min{ln (qtJi, In (^L

(14a)

,• - c,)

(14b)

(14c)

First of all, the model is estimated on the sample of 137
observations using the original regime information from the
survey. The results are shown in Table 2. As a result of the
adjustments made the value of In L has decreased from
— 166.64 in Table 1 to — 168.03 and the value of r^ declines

from 0.548 to 0.535. The parameter estimates are (of course)
very close to the SSK results in column 2 of Table 1. Next,
the estimated parameter values in Table 2 are taken as true
parameter values. Observations on the endogenous vari-
ables \r\{qi^)i and \n{ql,,,)i are generated from Equations 14a
and b using independently normally distributed distur-
bances with variances aj and a} equal to the (squared)
estimated values from Table 2. Observations on \n{q^^)i are
determined from definition (14c). Each experiment is rep-
licated 50 times. Regime information is now directly avail-
able from the individual observations on ln(g^n,)i and

We varied the values of a^ and a^ in order to study the
effect of differences in quality of the specifications of the
model equations: case 1 refers to the basic situation where
ffd = 0.538 and a^ = 0.495; case 4 corresponds with the situ-
ation where a^ = 0.0538 and a^ = 0.0495, i.e. the standard
deviations of the disturbances have decreased with a factor
10; in case 3 (T̂  = 0.2690 and a^ =' 0.2475, i.e. the standard

• '̂'Modelling this situation becomes very complicated if only annual sales data are available. We have tried to estimate a model which has
the same structure as the model presented in Kooiman (1986, Ch. 3). He formulated a model for aggregate employment where at the level of
micro labour markets transactions equal the minimum of supply and demand. Our situation, where store sales volume instead of total
employment in The Netherlands is explained, is similar if 'periods' are considered as micro markets and a 'year' is considered as the
aggregate level. But we had computational problems in finding the parameter estimates. More research is still necessary to get more
definite conclusions with respect to this complicated disequilibrium model, but we feel that here Maddala's (1983) concern that we are
asking too much from the data might indeed be a serious point.
"See Bode et al. (1988, Table 1; 1990, Table VI).
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Table 2. Estimation results of disequilibrium modei (14) using the sample separation information from the survey

Demand equation Supply capacity equation

do Intercept

(5i Advertising

62 Selling service

(53 C-TL

Sf Price

,5fi QnhmlQ

5-1 Dummy tea/lunchroom

Od

Number of observations
In L log-likelihood
r^

1.441
(1,809)*
0,178

(0,043)
0.445

(0,112)
0.471

(0,144)
-0 ,532

(0,352)*
- 1,483

(0,365)
0,573

(0,169)
0,538

(0,043)
137
- 168,033

0,535

Po Intercept

Occupancy costs

Qnhm/Q

Dsib

Distribution parameter

Homogeneity parameter

-2,139
(0,650)
0,098

(0,053)
- 1,030

(0,439)
0,146

(0,058)
0,461

(0,121)
0,700

(0,135)

0,495
(0,047)

Note: See note Table 1,

deviations have decreased with a factor 2; case 2, finally,
corresponds with a^ = 0,41 and o-j = 0,41,^^

In accordance with the analysis in the empirical Section
IV, in the simulation analysis again four types of models c,q.
equations are estimated on the generated data:

1, model (14) is estimated using all N, (=137) observations,
making no use of the information on the (generated)
regimes (SSU);

2, model (14) is estimated using all N, (=137) observations
making use of the (generated) regime information (SSK);

3, Equation 15a below (which is similar to Equation 8a in
the empirical section) is estimated using the N^ (gener-
ated) excess capacity observations and Equation 15b
(similar to Equation 8b) is estimated using the N^ (gener-
ated) excess demand observations;'^^

4, Equations 15a and b are estimated separately using all
N, ( = 137) observations.

In view of model (14) the single equations to be used in the
simulation analysis now become

(15a)

In iqhn,)i = Po + Pi In ̂ ; + Tteln C,- + (1 - n)E

X \niW, - C) + P^iQnkJi/Qi + P^Dsib, + Ul

(15b)

respectively (cf. Equations 8a and b).

Results of experiments

Table 3 shows the mean biases^° of the parameter estimates
for all models and cases. The root mean-square errors
(RMSEs)^^ are presented in Table 4, In addition, the ratios
of the RMSEs of the SSK estimates to the corresponding
RMSEs of the SSU estimates (of model (14)) are given in
Table 5. The following conclusions can be drawn:

Basic set of experiments. Inspecting the SSK results for case
1 in terms of the mean biases it appears that the results are

; latter values were chosen such that the proportion of variation in the dependent variable (i,e. In (g/,m)) could expected to be about
0,60 (which is quite satisfactory in a cross-section context). The value of 0,41 was determined very roughly by solving the equation
R^ = 0,60 = I — a^/S^nfg,,^^ in terms of a^, where Sî n(«hm) stands for the sample variance of \n(q^^) in the survey (i,e, 0,65^),
•̂ În the basic set of experiments (i,e, (TJ = 0,538 and as = 0,495) Nj varied from 74 to 97, with an average value of 87,3 which is comparable
with the value Nj = 85 in the survey, (Hence, N^ varied from 40 to 63 with an average value of 49,7,) As a result of changing the values of
(Tj and (T,, in the cases 2 through 4, the values of JVj and Ns also change: in case 2 N^ varied from 77 to 100 with an average value of 89,2; in
case 3 N^ varied from 87 to 111 with an average value of 98,3; in case 4 N,, varied from 107 to 115 with an average value of 111,3,
^"Le,, l/50^f°,(0r — (?o), where f is a replication index and do is the true parameter value from Table 2,
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Table 5. Ratios of RMSEs [model (14): SSK/SSU)

Parameter

Demand equation
So
5i
S2
Si
Ss
Se
Si

Supply capacity equation

P2
/*3

n
e

Case 1

0.5647
0.4225
0.3763
0.6958
0.5641
0.3930
0.3013
0.4771

0.3501
0.3314
0.2751
0.2562
0.3884
0.2277
0.2070

Case 2

0.5467
0.4313
0.4834
0.6217
0.5403
0.4914
0.4945
0.4021

0.3420
0.2558
0.3514
0.1781
0.4712
0.2787
0.3173

Case 3

0.7728
0.7462
0.6997
0.7749
0.7634
0.8923
0.7558
0.7762

0.3613
0.4561
0.2474
0.2845
0.5622
0.3601
0.4014

Case 4

0.9309
0.9547
0.9559
0.9718
0.9303
0.9319
0.9710
1.0369

0.8107
0.8619
0.8696
0.7941
1.0977
0.8666
0.8811

quite satisfactory: the mean biases of the parameter esti-
mates are relatively small compared with their true values.
Apart from d^, which has a ratio of mean bias to true value
of 0.20, the maximum (absolute) values for these ratios are
0.13 (.55) and 0.06 (^7). The average of the 15 ratios is 0.0525.
The SSU results for case 1, on the other hand, are much
worse: the maximum (absolute) values for the ratios of mean
bias to true value are 0.59 (^o), 0.40 (̂ 4̂), 0.40 (^5), 0.36 (^7)
and 0.36 (Cs). The average of the 15 (absolute) ratios equals
to 0.2478.

Looking at the SSK and the SSU results for case 1 in
terms of the RMSEs we find again that the results for SSK
are much better: the ratios of the RMSEs for SSK to the
corresponding RMSEs for SSU (Table 5, column 1) are all
substantially lower than 1, indicating that the regime in-
formation improves the estimation results considerably. The
average ratio in this column is about 0.39, implying a more
than 60% improvement 'on the average'.

We also computed the ratio of the average [over replica-
tions) estimated asymptotic standard error to the RMSE for
each parameter. The results are given in Table 6 (for SSK
and SSU only). Under general conditions these ratios con-
verge to 1 as Af tends to infinity. For case 1 these ratios are
satisfactory for SSK^^ (although there is no rigorous test to
determine when the ratios are 'close enough' to unity). In
case of SSU, however, the RMSEs are about twice as large
as the average estimated asymptotic standard errors.

Comparing cases 1-4 we find that in estimating the disequi-
librium model, knowledge of the regime to which each
individual observation belongs becomes less important. It

appears that both the SSK results and (in particular) the
SSU results become better when &a and o-j decrease (as was
to be expected). The (absolute) yalues of the mean biases
(generally) decrease as we move from case 1 to case 4. For
SSK the average (over 15 pararneters) (absolute) ratios of
mean bias to true value move friom 0.0525 for case 1 via
0.0478 for case 2 and 0.0228 for case 3 to 0.0149 for case 4.
Looking at SSU we can compute the following results for
these averages: 0.2478 for case 1,0.1425 for case 2,0.0815 for
case 3 and 0.0151 for case 4.

Inspecting the RMSEs again we see an improvement of
the results as we move from case ;1 to case 4. The decline in
RMSEs for SSK is more or less proportional to the decline
in the values of a^ and a^- For example, the RMSEs in case
3 are about one half of the corresponding values in case 1.
For SSU the dechne is more than proportional: the ratios in
Table 5 generally become better as we move to case 4. The
average values of these ratios are: 0.39 for case 1, 0.41 for
case 2, 0.59 for case 3 and 0.92 for case 4. Hence, in the
situation where the standard deviations are about 0.05, on
the average there are nearly no differences between
estimating the disequilibrium model with and without the
regime information (both in teims of mean biases and
RMSEs).

Looking at Table 6 it appears that the ratios of average
estimated asymptotic standard errors to RMSEs are sensitive
to changes in a^ and a^ in the case of SSU: the ratios more
closely approach unity as we moye to case 4. For SSK no
significant improvement can be found as Cj and a^ decrease.
Apparently if sample separation is not known the rate of
convergence of these ratios to uni:ty depends on the quality

that the RMSEs for SSK in case 1 are comparable with the estimated standard errors in Table 2, where the estimation results of
model (14) using both the survey data and the regime information from the survey, were given.
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Table 6, Ratios of average {over replications) estimated asymptotic standard errors to RMSEs (model [14): SSU and SSK)
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Case

Parameter SSU

Demand <
^0

^1

^2

.53

.55

.56

.57
Cd

zquation
0,6173
0,5736
0,4600
0,7985
0,6129
0,5272
0,4590
0,4752

Supply capacity equation

Po
P2
P2
P.
n
E

0,4397
0,3632
0,4566
0,4247
0,4949
0,3151
0,2318

1

SSK

0,8708
1,1360
0,8885
0,9722
0,8700
0,9827
0,9594
0,7654

1,0368
0,8438
1,2228
0,8963
1,0887
1,0686
0,9708

SSU

0,6521
0,5580
0,5362
0,7759
0,6342
0,6614
0,6145
0,4683

1,3062
0,4948
0,5823
4,3968
0,6584
0,4412
0,3402

Case 2

SSK

1,0248
1,0601
0,8296
1,0370
1,0128
1,0600
0,8876
0,9533

0,9695
1,1848
1,0141
0,9211
1,0376
0,9785
0,7063

SSU

0,9108
0,9179
0,8680
0,9607
0,9472
0,9856
0,8810
0,9388

0,6466
0,5896
0,4008
0,5273
0,7806
0,6938
0,5311

Case 3

SSK

1,0072
1,0393
0,9688
1,0758
1,0643
0,9633
0,8827
1,0403

1,1130
0,8383
0,9664
1,0068
0,9118
1,1199
0,9294

SSU

0,9787
1,0998
0,8633
0,8467
0,8763
1,1216
1,1045
0,8842

0,8343
0,8269
0,9253
0,8053
1,0047
0,8399
0,5887

Case 4

SSK

1,0238
1,1349
0,8843
0,8574
0,9170
1,1926
1,1073
0,8393

0,9069
0,8173
0,9471
0,8841
0,8204
0,8543
0,5823

Table 7, Number of parameters in single equation approach having lower {absolute) value of mean bias and RMSE than in disequilibrium
approach

case

case I
RMSE
mean bias

case 2
RMSE
mean bias

case 3
RMSE
mean bias

case 4
RMSE
mean bias

Eq, (15a)
IN = N,
vs model
[SSK]

demand
eq.

1
1

1
0

1
0

4
5

& (15b)
&N = N,']
(14)

supply
cap, eq.

0
2

0
2

1
1

0
0

Eq, (15a) &
[iV = NJ

(15b)

vs model (14)
[SSK]

demand
eq.

5
0

2
0

2
0

0
0

supply
cap, eq.

4
3

5
2

2
1

1
0

Eq, (15a)
IN = N,
vs model
[SSU]

demand
eq.

8
6

8
3

7
0

7
5

& (15b)
&N = NJ
(14)

supply
cap, eq.

7
5

7
5

7
4

6
3

Eq, (15a)
[N = N,-}
vs model
[SSU]

demand
eq.

8
4

8
2

2
0

0
0

&(15b)

(14)

supply
cap, eq.

7
5

7
5

7
1

1
0

of the model equations (as expressed by the values of a^
a n d CTs),

In order to compare the single equation approach with the
disequilibrium estimates, first of all (based on the results in
Tables 3 and 4) for each case and model/equation we
counted the number of parameters for which the single
equation estimates yield better results than the disequilib-
rium estimates. The numbers are shown in Table 7, We

conclude that both in terms of mean bias and in terms of
RMSEs most of the time estimating model (14) using the
regime information performs better than using the regime
information to partition the data into excess capacity obser-
vations and excess demand observations and estimating
Equations 15a and b separately (cf, column 1 of Table 7),
Only in case 4, where a^ and Cj are very small, there are
some parameters that are better^ ̂  estimated using the single
equation approach. We conclude from these exercises that if

'^However, looking at Table 4 we can see that RMSE differences occur only in the fourth decimal place (see 2̂) .53, d-^ and
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regime information is available, the disequilibrium ap-
proach (SSK) should be used instead of estimating two
single equations on two separate subsamples.

It is remarkable that in cases 1 and 2, where the standard
deviations are largest, the single equation estimates that do
not use the regime information at all are comparable with
the SSK estimates in terms of the RMSEs: 9 out of 15
parameter estimates have a smaller RMSE in case 1 and
7 out of 15 parameter estimates in case 2!

Looking at columns 3 and 4 of Table 7, we find that most
of the time the single equation estimates are better than the
SSU estimates: only in case 4 the SSU results are better
(both in terms of mean biases and in terms of RMSEs) than
the single equation estimates that do not use the regime
information, and in case 3 the results for SSU are generally
better both in column 3 and column 4 in terms of the mean
biases. It is remarkable that in terms of RMSEs the single
equation results that do not use the regime information at
all are better than the SSU results in cases 1 and 2, and most
of the time in case 3. The single equation SSU estimates that
are based on the regime information, on the other hand, are
nearly always better than the estimates (in terms of RMSEs;
cf. column 3 of Table 7).

Two conclusions can be drawn from these results: first, if
the fit of the model equations is moderate, as measured by
the relatively large standard deviations Cj and a^, a single
equation approach (without regime information) performs
better than a disequilibrium approach without regime
information (SSU), although the disequilibrium model is
theoretically correct. In this situation the single equation
estimates even approach the quality of the SSK estimates (in
terms of the RMSEs). Secondly, with respect to Footnote 20
we conclude that the inconsistent single equation approach
that uses the regime information to partition the sample,
produces nearly always lower RMSEs (and sometimes
lower mean biases) than the consistent but inefficient^"^
(SSU) disequilibrium approach.

Finally, for completeness sake we also computed average
{over replications) squared correlation coefficients r^ of gener-
ated ln(qft J and its corresponding fitted value depending on
the model used. The results are given in Table 8. For the
SSU estimates both definitions of r^ mentioned in the note
to Table 1 were applied: r\ refers to the definition where
fitted value equals min(^''(Zf), R\Xfi) and r | corresponds
with the definition based on the conditional regime prob-
abilities. The squared correlation coefiicient for SSK is
denoted by r^. With respect to the single equation estimates
the definition for SSK {rl) was applied if the regime informa-
tion was used to partition the sample, whereas the definition

of r\ was applied if the regime information was not used at
all (see also Section IV).

Several conclusions can be drawn: first, the average
values for case 1 (basic set of experiments) are of the same
order of magnitude as the corresponding values in Table 1^'
(as could be expected). Only the squared correlation coeffi-
cients for SSU in Table 1 are somewhat higher than the
corresponding average values of r\ and r | in Table 8. Sec-
ondly, for each case the various models used do not differ
dramatically from each other with respect to their degree of
fit (as measured by r-^). Thirdly, regarding the degree of fit of
the disequilibrium models it appears that on the average the
fit of SSU is always slightly better than the fit of SSK. In
addition, r% is always somewhat higher than r\.^^ Hence, we
consistently find (on the average) rl> r\> rl for the dis-
equilibrium estimates, with more or less identical (perfect)
r^ values appearing in case 4. Fourthly, it is remarkable that
the average fit of the single equation approach that uses the
regime information to partition the sample is slightly better
than the average fit of SSK in c»se 1.

Vn. CONCLUSIONS

We evaluate the use of disequilibrium models in applied
microeconomic research. A model is applied for explaining
sales levels of individual retail stores. The model assumes
that sales levels in retail stores are determined by the inter-
play of supply capacity and demand. Some stores are
demand determined, whereas other stores are capacity de-
termined. The realized sales level is the minimum of store
demand and store supply capacity. A cross-section sample
of individual confectioner's stores is used for testing. This is
done because the usually unknown information regarding
the regime to which each individual store belongs is explicit-
ly available. In our situation of confectioners' stores the
variable to be explained is the leVel of home-made products
sales. Store demand for home-made products is made
a function of advertising expenses, service level, selling
space, assortment composition, .price level, share of pro-
ducts that are not home-made and presence of a tearoom
and/or lunchroom. Store supply capacity of home-made
products, on the other hand, is supposed to depend on
assortment composition, occupancy costs per unit of fioor-
space, selling area, remaining space, share of products that
are not home-made and a variable indicating whether a con-
fectioner also sells products to other stores and/or institu-
tions and businesses. In this last section we will not reiterate
on the economic findings of our model nor on its use for
comparative applied research. We will deal primarily with

;f. Footnote 17.
'^Remember that the 'combined' r^ values for columns 3 and 4, and 5 and 6 were found to be rl = 0.569 and rj, = 0.528, respectively.
'̂'In the absence of sample separation information Gersovitz (1980) prefers the procedure underlying the defiriition of r | over the procedure

underlying the definition of r^ to partition the sample a posteriori into excess capacity observations and excess demand observations. It is
interesting to see that in our Monte Carlo experiments the values of rl on the average are (slightly) higher than the rj, values.
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the two methodological questions which are central in the
present paper. First, is the disequilibrium approach superior
to the classical single equation one and second, to what
extent is sample separation information indispensable?

Our disequilibrium model explaining home-made prod-
ucts sales in confectioners' stores is estimated both with and
without regime information (denoted by SSK and SSU,
respectively). In addition, the disequilibrium estimates are
compared with parameter estimates based on two single
equation approaches: first, the regime information from the
survey is used to partition the sample into excess demand
observations and excess capacity observations after which
the demand equation is estimated on the excess capacity
observations whereas the supply capacity equation is esti-
mated on the excess demand observations. Secondly, both
the demand equation and the supply capacity equation are
estimated separately on all observations. Both single equa-
tion approaches result in parameter estimates that are gen-
erally more in hne with the SSK estimates than the SSU
estimates are. Two conclusions can be drawn from this for
our specific situation: first, the ('complex') disequilibrium
approach does not perform substantially better than the
('simple') single equation approach. Secondly, in estimating
the disequihbrium model some information is lost if sample
separation is not known. The resulting question is to what
degree is this loss detrimental to a sound interpretation of
our results?

In a real world context results will always be disturbed by
data errors and specification errors. Therefore, Monte Carlo
experiments are conducted to get more insight. Two main
conclusions can be drawn from these experiments: first, in
a situation where individual cross-section data are analysed
and where the degree of fit is usually low to moderate,
substantial loss of information is found if regime informa-
tion is not available in estimating a disequihbrium model.
Therefore, Maddala's (1983, p. 299) concern that we 'are
asking too much from the data when we do not know which
observations are on the demand function and which are on
the supply function' seems to be grounded. In our basic set
of experiments, where the average r^ values are about 0.5
(which is comparable with the r̂  values found in the empiri-
cal section), the information loss is about 60% on the
average (in terms of RMSEs). Even if the average values of
r̂  are about 0.80, this loss of information is still 40% on the
average. This is comparable with the median value found by
Goldfeld and Quandt (1975, p. 338)." Hence, despite the
fact that our sample size (AT, = 137) is relatively large as
compared with Goldfeld and Quandt's study, the informa-
tion loss is still substantial in most of our experiments. This
also supports Kiefer's (1979, p. 1002) conclusion (when
he compares his results with the Goldfeld-Quandt study)

'̂'The degree of fit in Goldfeld and Quandt's study, where aggreg-
ate time-series data were used, may have been somewhat higher
than 0.5 and possibly even close to 0.8.
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'... that the information loss in a more complicated model
is greater than that in a simple model, as seems plausible
(although this must be qualified since the Goldfeld-Quandt
results are for small samples)'. Our study shows that the
information loss is still substantial in a large sample and in
a situation where a relatively complicated model is used.
Secondly, if regime information is not available and if the
degree of fit is expected to be relatively low, it would be
better to use a (formally wrong) single equation approach
than a (theoretically correct) disequilibrium approach. On
the other hand, if regime information is available, it is
always better to use this information within a disequilib-
rium model than in combination with a (formally wrong)
single equation approach.

REFERENCES

Arndt, J. and Olson, J. (1975) A research note on economies
of scale in retailing, Swedish Journal of Economics, 11, 207-21.

Bode, B., Koerts, J. and Thurik, A. R. (1988) On the measurement
of retail marketing mix effects in the presence of different
economic regimes, International Journal of Research in Mar-
keting, 5(2), 107-23.

Bode, B., Koerts, J. and Thurik, A. R. (1990) Market disequilibria
and their influence on small retail store pricing, Small Business
Economics, 2(1), 45-57.

Fair, R. C. and Jaffee, D. M. (1972) Methods of estimation for
markets in disequilibrium, Econometrica, 40(3), 497-514.

Gersovitz, M. (1980) Classification probabilities for the disequilib-
rium model. Journal of Econometrics, 14, 239-46.

Goldfeld, S. M. and Quandt, R. E. (1975) Estimation in a disequi-
librium model and the value of information. Journal of Econo-
metrics, 3, 325-48.

Hall, M., Knapp, J. and Winsten, C. (1961) Distribution in Great
Britain and North America, Oxford University Press, Oxford.

Kiefer, N. M. (1979) On the value of sample separation informa-
tion, Econometrica, 47(4), 997-1003.

Kiefer, N. M. (1980) A note on regime classification in disequilib-
rium models. Review of Economic Studies, 47, 637-39.

Kooiman, P. (1984) Smoothing the aggregate fix-price model and
the use of business survey data. Economic Journal, 94 (Decem-
ber), 899-913.

Kooiman, P. (1986) Some empirical models for markets in disequi-
librium, Ph.D. thesis, Erasmus University, Rotterdam.

Kooiman, P. and Kloek, T. (1979) Aggregation of micro markets in
disequilibrium, working paper. Econometric Institute, Eras-
mus University, Rotterdam.

Kooiman, P., van Dijk, H. K. and Thurik, A. R. (1985) Likelihood
diagnostics and Bayesian analysis of a micro-economic dis-
equilibrium model for retail services. Journal of Econometrics,
29, 121-48.

Laffont, J. J. and Garcia, R. (1977) Disequilibrium econometrics
for business loans, Econometrica, 45(5), 1187-204.

Lambert, J. -P. (1984) Disequilibrium macro-models based on
business survey data: theory and estimation for the Belgian
manufacturing sector, Ph.D. thesis, CORE, Louvain-la-
Neuve.

Maddala, G. S. (1983) Limited-Dependent and Qualitative Variables
in Econometrics, Cambridge University Press, Cambridge.

Malinvaud, E. (1982) An econometric model for macro-disequilib-
rium analysis, in Current Developments in the Interface: Econ-

omics, Econometrics, Mathematic.s, (Eds) M. Hazewinkel and
A. H. G. Rinnooy Kan, Reidel, Dordrecht, pp. 239-58.

Muellbauer, J. (1978) Macrotheory vs. macroeconometrics: the
treatment of disequilibrium in Macromodels, Discussion Pa-
per 59, Birkbeck College, London.

Nooteboom, B. (1980) Retailing: Applied Analysis in the Theory of
the Firm, J. C. Gieben, Amsterdam.

Nooteboom, B. (1986) Costs, margins and competition: causes of
structural change in retailing. International Journal of Re-
search in Marketing, 3, 233-42.

Rosen, H. S. and Quandt, R. E. (1978) Estimation of a disequilib-
rium aggregate labour market. Review of Economics and Stat-
istics, 60, 371-79.

Suits, D. (1955) An econometric model of the watermelon market.
Journal of Farm Economics, 37, 237-51.

Thurik, A. R. (1984) Quantitative Analysis of Retail Productivity,
W. D. Meinema, Delft.

Thurik, A. R. and Koerts, J. (1984a) On the use of supermarket
fioorspace and its efficiency, in Economics of Distribution, (Ed.)
Franco Angefi, Franco Angeli Editore, Milan, pp. 387-445.

Thurik, A. R. and Koerts, J. (1984b) Analysis of the use of retail
fioorspace. International Small Business Journal, 2(2), 35-47.

APPENDIX A: DATA

In this appendix we give a further description of the data
used in this study. The sample consists of 137 cross-section
observations on individual Dutch confectioner's stores. The
year of collection is 1985. In the Tables A1-A3 the mean, the
standard deviation, the minimum and the maximum of the
variables used are given. Table Al shows the results for the
complete sample; Table A2 contains the results for the
excess capacity observations; and Table A3 shows the re-
sults for the excess demand observations. In these tables
total value of annual sales of home-made products {Qhm) and
advertising expenses {A) are nieasured in 1000 Dutch
guilders of the year of collectiori; the price index {phm) is
measured in cents; selling service (Sc) is measured in weekly
working hours per square metre of floorspace; selling space
(C), space for tearoom and/or lunchroom {TL) and total
floorspace {W) are measured in square metres; the assort-
ment variable {F) is measured as total value of annual sales
of the assortment groups 'nat gebak' and 'droog gebak'
divided by total value of home-made products sales; and the
occupancy costs variable {H) is measured in guilders per
square metre of floorspace.

APPENDIX B: DERIVATION OF THE
LIKELIHOOD FUNCTIONS

Sample separation unknown

Let us rewrite Equations 5a through 5c as follows:

(Bl)In{qhm)i = minjln{qDt, In (qL).}
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Table Al. Complete sample (137obs.)
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Variable

Phm

Qhm
A
Sc
C
TL
F
Qnhm/Q
Dtl
H

w
Dsib

Mean

408.71
197.30

2.09
7.17
2.30

49.93
7.39
0.77
0.17
0.13

163.13
151.35
- 0 . 2 3

Standard deviation

227.70
28.33

1.21
6.87
1.26

35.93
23.77
0.23
0.14
0.34

130.90
76.10
0.95

Minimum

36.00
106.00

0.25
0.10
0.18

13.00
0.00
0.07
0.00
0.00
2.87

41.00
-1 .00

Maximum

1175.50
267.00

641
39.00
8.60

330.00
150.00

1.00
0.75
1.00

689.00
530.00

1.00

Table A2. Excess capacity observations (85 obs.)

Variable

Qhn,

Phm

Qhm
A
Sc

c
TL
F
Qnhm/Q
Dtl
H

w
Dsib

Mean

369.12
194.92

1.88
7.00
2.20

50.59
7.53
0.77
0.18
0.13

160.32
155.64
-0 .26

Standard deviation

215.54
26.21

1.05
6.90
1.06

39.29
23.75
0.23
0.15
0.34

130.01
83.76
0.94

Minimum

36.00
135.00

0.25
0.10
0.37

16.00
0.00
0.07
0.00
0.00
2.87

41.00
- 1 . 0 0

Maximum

1025.00
265.00

4.91
39.00
7.81

330.00
140.00

1.00
0.75
1.00

689.00
530.00

1.00

Table A3. Excess demand observations (52 obs.)

Variable

Qhm

Phm

qhm
A

c
TL
F
QnhmlQ
Dtl
H

w
Dsib

Mean

473.42
201.19

2.44
7.45
2.47

48.85
7.15
0.78
0.16
0.13

167.73
144.35
-0 .17

Standard deviation

234.22
31.35

1.37
6.88
1.53

29.95
24.03
0.22
0.13
0.34

133.48
61.70
0.96

Minimum

72.72
106.00

0.33
0.10
0.18

13.00
0.00
0.13
0.02
0.00
3.89

50.00
- 1.00

Maximum

1175.50
267.00

641
34.90
8.60

175.00
150.00

1.00
0.67
1.00

623.00
330.00

1.00

where R\Xf) and R\Xf) stand for the exogenous parts of
the model equations. Let /(C/f, L/f) be the joint density
function of I/? and \J\, and g((ln(qftm)i, ln(qDO the joint

density function of ln(qDi and derived from it.
Then the marginal density of \x\.{qhm)i reads:^

(B2)

, for example, Maddala (1983, p. 297) or Kooiman et al. (1985, Appendix).
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where

and

B. Bode et al.

(B3a)

, In (qn^d din {qt)i (B3b)

In our situation where U"! and C/f are independently normal-
ly distributed with zero mean and variance aj and a^,
respectively, h''{ln{q^Ji) and h'"'{\n{qHji) equal:

and
(B4a)

(B4b)

respectively, where n(.; a) stands for the normal density
function with zero mean and variance a^, and N{.) is the
cumulative standardized normal distribution function. The
likelihood function L then becomes

L =
i = 1 i = 1

X {1 - JV([ln (B5)

where N denotes the sample size.
The (conditional) regime probabilities according to Kiefer

(1980) and Gersovitz (1980) can be derived as:^^

(B6a)

and

).)) (B6b)

respectively. The likelihood function (Equation B5) tends to
go to infinity for certain parameter values. Maddala (1983)
and Kooiman et al. (1985) deal quite extensively with this
matter. In our study this problem is suppressed by restrict-
ing the average estimated P^c to the interval [0.10,0.90].

Sample separation known

Let us define the regime variable Z,- as follows:

Zi = 1 if («L),- < (?L),-

= 0 if (qL); ;> {ql^)i (B7)

then the joint density of \n{qHm)i iind Z, equals

hi}.n(q,,,n\ Zi) = Zih"{\n(q^^)i) + (1 — Z,) h'"'{\n{q^^)i) (B8)

Denoting the set of indices for which {qt,n)i < (qL); by Ia and
the set for which (q^), ^ iqhm)i by / j , the likelihood function
L now becomes

( B 9 )

, for example, Kooiman et al. (1985, Appendix).






