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 This paper proposes a unified framework for optimization over two or more 

components (e.g., risk and time). Using Nataf’s century-old theorem on macro-micro 

aggregation, we show that many existing debates all center around the same 

“bifurcation question”: “row-first or column-first aggregation?” Those debates 

concern ex post versus ex ante fairness in welfare, validity of the random incentive 

system for incentivized experiments, the hedging confound in ambiguity 

measurements, correlation preference in intertemporal choice, and many other topics. 

For a single component, behavioral models typically relax separability while 

maintaining monotonicity. For two or more components, this is, surprisingly, no 

longer possible, and an impossibility theorem results: we have to give up 

monotonicity for at least one component. The question of which one is equivalent to 

the above bifurcation question. Our analysis clarifies and unifies many ongoing 

debates. We provide techniques for overcoming undesirable violations of 

monotonicity.  (JEL D81, C91) 

 

Keywords|: Risk and time, Hedging under ambiguity, Ex ante inequality, Aggregation, 

Separability, Dscounted expected utility, Random incentive system 
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1.  INTRODUCTION 

It may come as a surprise, but many existing debates in the literature, from Harsanyi’s 

veil of ignorance to incentive compatibility of the random incentive system or 

multiattribute risk aversion, share a common hidden cause. That is, when the decision 

problem involves multiple components, in which order should we aggregate the 

components? As a simple example, consider choices from probability distributions 

over intertemporal outcome streams. Here risk is one component and time the other. 

Should we first aggregate over time, taking the present value of each possible 

outcome stream, and next aggregate over the probabilities, taking a certainty 

equivalent? Or should we first aggregate over risk, taking the certainty equivalent of 

the probability distribution at each timepoint, and only then aggregate over time, 

taking the present value? Whereas the order of aggregation does not matter in 

classical (rational) models, it becomes essential in behavioral generalizations, not only 

for time and risk but for every situation where two or more components are involved 

(persons, commodities, production inputs, health attributes, prices, expert opinions, 

…). 

 For decisions with a single component, behavioral decision models typically 

relax strong separability assumptions while preserving monotonicity, e.g., in 

nonexpected utility for risk or equity models for welfare. However, when two or more 

components are involved, we run into an impossibility theorem: relaxing (strong) 

separability while maintaining monotonicity then is no longer possible! Relaxing 

separability then comes at the cost of giving up monotonicity for at least one of the 

components. For tractability and also psychological plausibility, we usually want to 

maintain monotonicity for at least one component. We then face the dilemma of 

which of the monotonicities to give up (Theorem 7), illustrated as a ‘bifurcation 

question” in Figure 3. This dilemma, equivalent to the aforementioned question of 

which component to aggregate over first, is thus a more fundamental and serious 

problem than was thought before. 

 There have by now been hundreds, or even thousands, of discussions of the order 

of aggregation in many fields, showing its importance and ubiquity. Many references 

will follow later, but the literature is too broad to cite or survey completely. We 

provide a unifying framework to study the aforementioned problem concerning the 

proper order of aggregation. Most prior treatments focused on single domains and 
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implicitly chose the order of aggregation without discussing it. Several authors, cited 

later, did critically discuss the order of aggregation and did compare different 

domains, but the fundamental nature of the problem and its universality have not been 

observed before. 

 Our paper builds on Nataf’s (1948) century-old theorem on macro-micro 

aggregation. It leads to the aforementioned paradoxical question, and has vast 

implications for all modern behavioral approaches involving aggregation over 

multiple components. We show that many behavioral paradoxes or puzzles in 

different domains, even though exhibiting different symptoms on the surface, do share 

the same underlying cause: the middle ground of partial rationality in the form of 

monotonicity with relaxed separability, which exists for uni-component problems, is 

not available for multiple components. This fundamental modern problem comes as 

an implication of Nataf’s century-old theorem. Even though our results derive from 

known mathematical theorems, the vast impact for behavioral approaches, ranging 

from hedging in ambiguity measurements to ex ante/ex post equality in Harsanyi’s 

veil of ignorance, has not been understood before. We provide general suggestions for 

how to determine and generate the proper order of aggregation, providing a unified 

road map for many fields. 

 This paper is organized as follows. The first part (Sections 2-3) starts with a new 

and thought-provoking preference axiomatization of discounted expected utility 

(DEU). We show that unobjectionable technical and standard axioms, such as 

monotonicity (presented in Section 2.2), when assumed for both time and risk (more 

than one component) are strong enough to give rise to DEU, the workhorse of 

classical economics, satisfying complete separability. This result is surprising: how 

can unobjectionable and widely accepted axioms characterize a widely falsified 

model? This sets our quest to uncover the underlying cause shared by many 

seemingly unrelated but essentially similar paradoxes and debates. Section 3 presents 

the formal framework of this paper and our basic theorem (Theorem 3), a modern 

version of Nataf’s theorem, and explains what underlies the paradoxical simplicity of 

this theorem.  

 The novelty of our theorems is in their simplicity and appeal, and not in 

mathematical generality or proof. Our preference conditions can be stated verbally 

and are accessible to nonspecialists more than any preceding axiomatization of DEU.  
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 Although many authors, cited later, used advanced implications of the preceding 

results in various decision theories, their basic impact for empirical and theoretical 

work, specified in Section 4 and applied in the rest of this paper, has not been 

observed before. Mongin & Pivato (2015 Proposition 1) and other papers presented 

more general theorems. Details are in Online Appendix A. We do not seek 

mathematical generality, but applied relevance and conceptual implications.  

 Section 4, where we disuss behavioral generalizations of classical models, 

presents a moral of the story. We identify the culprit that gives rise to the paradoxical 

axiomatization of DEU and we further explain the bifurcation problem. With the 

culprit identified, Section 5 gives general suggestions of how to deal with the absence 

of the middle ground. 

 Section 6 elaborates on three widely debated issues upon which our results shed 

new light (monotonicity in the Anscombe-Aumann framework; validity of the random 

incentive system; a hedging confound in ambiguity measurements), and briefly 

mentions several others. Then a conclusion and proofs follow. To limit the size of this 

paper, the mathematical power of our aggregation results, generalizing several well-

known preference axiomatizations with simplified proofs, is presented in Online 

Appendix C. For instance, Gul’s (1992) axiomatization of subjective expected utility 

readily follows as a corollary of our Theorem 1 and thus, essentially, of Nataf (1948). 

 

2.  DISCOUNTED EXPECTED UTILITY: A PARADOX TO 

REVEAL THE UNDERLYING PROBLEM 
 

This section considers the aggregation problem by providing an appealing, but 

paradoxical, axiomatization of discounted expected utility. 

 

2.1. Definitions for uncertainty and time 

 

We consider choices between “actstreams,” i.e., matrices as in Figure 1. Here, if state 

of nature 𝑠𝑠𝑖𝑖 obtains then, at timepoint 𝑡𝑡𝑗𝑗 one receives money 𝑥𝑥𝑗𝑗𝑖𝑖. Columns designate 

acts, i.e., maps from states to outcomes, and rows similarly are outcome streams. An 

actstream gives a stream yielding acts or, equivalently an act yielding streams. 
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Preferences ≽ are over actstreams. Any outcome stream can be identified with the 

matrix having that outcome stream in each row, i.e., the degenerate lottery giving that 

outcome stream with certainty. Any act can be identified with the matrix having that 

act in the first column, and outcome 0 elsewhere. This way, preferences are generated 

over acts and over streams. 

 Expected utility (EU) holds if there exist positive probabilities 𝑝𝑝1, … ,𝑝𝑝𝑚𝑚 and a 

utility function 𝑈𝑈(𝑈𝑈:ℝ → ℝ continuous and strictly increasing) such that preferences 

over acts (elements of ℝ𝑚𝑚) are represented by expected utility 

 (𝛼𝛼1, … ,𝛼𝛼𝑚𝑚) ↦  ∑ 𝑝𝑝𝑖𝑖 × 𝑈𝑈�𝛼𝛼𝑖𝑖�𝑚𝑚
𝑖𝑖=1  (1) 

 Discounted utility (DU) holds if there exist discount factors 0 < 𝑑𝑑𝑗𝑗 (𝑗𝑗 = 1, … ,𝑛𝑛) 

and a utility function 𝑈𝑈 such that preferences over streams are represented by 

discounted utility (DU) 

 (𝛽𝛽1, … ,𝛽𝛽𝑛𝑛) ↦  ∑ 𝑑𝑑𝑗𝑗 × 𝑈𝑈�𝛽𝛽𝑗𝑗�𝑛𝑛
𝑗𝑗=1  (2) 

Constant discounting can readily be obtained by adding a preference condition that 

guarantees the same discount rate over time. 

 Discounted expected utility (DEU) holds if there exist probabilities, discount 

factors, and a utility function 𝑈𝑈 such that preferences over actstreams are represented 

by their discounted expected utility (DEU) 

 ∑ 𝑝𝑝𝑖𝑖 ∑ 𝑑𝑑𝑗𝑗 × 𝑈𝑈�𝑥𝑥𝑗𝑗𝑖𝑖�𝑛𝑛
𝑗𝑗=1

𝑚𝑚
𝑖𝑖=1  (3) 

 DEU has the following implications: 

𝑠𝑠1 
 . 
 . 
 . 
𝑠𝑠𝑖𝑖 
 . 
 . 
 . 
𝑠𝑠𝑚𝑚 

FIGURE 1. An actstream 

𝑡𝑡1  .  .  .  𝑡𝑡𝑗𝑗  .  .  .  𝑡𝑡𝑛𝑛 
𝑥𝑥11 
 . 
 . 
 . 
 . 
 . 
 . 
 . 
𝑥𝑥1𝑚𝑚 

𝑥𝑥𝑛𝑛1 
 . 
 . 
 . 
 . 
 . 
 . 
 . 
𝑥𝑥𝑛𝑛𝑚𝑚 

 . 
 
 
 
𝑥𝑥𝑗𝑗𝑖𝑖 
 
 
 
 . 

.  .  . .  .  . 

.  .  . .  .  . 
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(1) EU holds for uncertainty preferences. 

(2) DU holds for intertemporal preferences. 

(3) EU and DU use the same utility function. 

Each of these implications has often been criticized on normative grounds. For 

instance, numerous debates on cardinal utility (Moscati 2018) and on the difference 

between risky and riskless utility (Fleurbaey 2010 p. 675; Keeney & Raiffa 1976) 

have been advanced, challenging implication (3). The three implications have also 

been extensively criticized on empirical grounds, so much that DEU may qualify as 

the most falsified decision model (Attema 2012; Starmer 2000). In DEU, the order of 

aggregation, first over time or first over risk, is immaterial: first computing discounted 

utilities and then computing their expectation gives the same result as first computing 

expected utilities and then their discounted value. In Sections 2.2 and 2.3, we present 

the axioms needed to axiomatize DEU. 

 

2.2. “Unobjectionable” axioms 

 

AXIOM 1. Weak ordering: transitivity and completeness (including reflexivity). 

AXIOM 2. Continuity: the usual (Euclidean) continuity on ℝ𝑚𝑚×𝑛𝑛. 

AXIOM 3. Outcome monotonicity: strictly increasing any 𝑥𝑥𝑗𝑗𝑖𝑖 strictly improves the 

actstream. 

AXIOM 4. Act monotonicity: at any timepoint, replacing the act there by a weakly 

[strictly] preferred act leads to a weakly [strictly] preferred actstream. 

AXIOM 5. Stream monotonicity: at any state, replacing the stream there by a weakly 

[strictly] preferred stream leads to a weakly [strictly] preferred actstream. 

 

2.3. Objectionable axioms 

 

This section is supposed to list the critical axioms, to be added to the preceding ones, 

needed to axiomatize DEU. Given the strong separabilities over states and timepoints 

involved in DEU, so widely falsified empirically, strong axioms may be expected to 

come. However, there will be none. This section does not provide any further axiom. 

That is, the axioms in Section 2.2 suffice to give DEU! This may come as a surprise. 

How can the least objectionable axioms be equivalent to the most objectionable 
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model? How can such seemingly weak preference conditions have such strong 

implications? The paradox is displayed in the theorem in the following section. 

 

2.4. Axiomatization of discounted expected utility 

 
Theorem 1. The following two statements are equivalent. 

(i) Discounted expected utility holds. 

(ii) Weak ordering, continuity, and monotonicity with respect to outcomes, acts, and 

streams hold. 

 

 Because of its simplicity, we claim that Theorem 1 provides the most appealing 

axiomatization of DEU presently available.1 However, a question yet to be resolved is 

how such seemingly weak preference conditions (Pivato & Tchouantez. 2024: 

“uncontroversial”) can have such strong implications. Resolving the paradox will lead 

us to the surprising fact that, for decision problems involving multiple components, 

the combination of seemingly weak rationality requirements for each component 

easily gives rise to strong rationality requirements in full force when the components 

are combined. Before touching on the crux of the problem, Section 3 introduces a 

unified framework that we need to showcase the problem underlying this paradox, 

and many other debates or paradoxes of the same nature. 

 In many contexts, extensions to infinite components are desirable. Online 

Appendix B shows that this can readily be achieved using standard tools from 

mathematical measure theory (e.g., Theorem 11). The important point to note is that 

our intuitive axioms, mainly the monotonicities, remain unaffected in this process. 

Only the technical continuity is modified. Thus, these modifications do not affect the 

practical implications discussed in the main part of this paper. 

  

 
1 The theorem can readily be extended to risk. For example, if all 𝑠𝑠𝑖𝑖 have known probabilities 1/𝑚𝑚 

implying symmetry (and subjective probabilities 𝑝𝑝𝑖𝑖=1/m) we obtain all equal-probability distributions. 

Online Appendix B shows that extensions to all probability distributions readily follow. 
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3.  GENERAL DEFINITIONS AND THEOREM 
 

We now fully formalize our analysis, and add one generalization, amounting to state- 

and time-dependence of the utility function 𝑈𝑈 in Eq. 3. This greatly enhances the 

applicability of our results, and helps to make the historical connection of Theorem 1 

with Nataf (1948) explained later. Our general framework considers preferences ≽ 

over matrices 

 

 

 

 

 

 

 

 

 

There are two components: (1) a finite row set 𝑅𝑅 = {𝑟𝑟1, … , 𝑟𝑟𝑚𝑚} with its attributes 

being 𝑚𝑚 rows and (2) a finite column set 𝐶𝐶 = {𝑐𝑐1, … , 𝑐𝑐𝑛𝑛} with its attributes being 𝑛𝑛 

columns. Before, the components concerned uncertainty and time, with 𝑚𝑚 states and 𝑛𝑛 

timepoints, respectively. In general, components can also designate persons, 

commodities, production inputs, health attributes, and so on. Wakker (2010 Appendix 

D) gives many other examples. For simplicity, we continue to assume that the 

outcome set is ℝ. In some examples outcomes may concern nonmonetary 

commodities.2 We assume 𝑚𝑚,𝑛𝑛 > 1 fixed. In 𝑟𝑟𝑗𝑗, the superscript does not designate a 

power but is just an index. ℝ is the outcome space, say monetary. Rows∈ ℝ𝑛𝑛 map 𝐶𝐶 

to ℝ and columns∈ ℝ𝑚𝑚 map 𝑅𝑅 to ℝ. A matrix∈ ℝ𝑚𝑚×𝑛𝑛 (actstream before) maps 𝑅𝑅 × 𝐶𝐶 

to ℝ. It specifies a row (𝑥𝑥1𝑖𝑖 , … , 𝑥𝑥𝑛𝑛𝑖𝑖 ) for each 𝑟𝑟𝑖𝑖 and a column (𝑥𝑥𝑗𝑗1, … , 𝑥𝑥𝑗𝑗𝑛𝑛) for each 𝑐𝑐𝑗𝑗. 

Continuity of preference is as usual, referring to the Euclidean topology. 

 We throughout assume that all decisions are made at one fixed timepoint, 

preceding all timepoints of a time component if present. The decision timepoint also 

 
2 Mathematical extensions of our theorems to connected topological outcome spaces (e.g., convex sets 

of commodity bundles) are straightforward. 

FIGURE 2. A matrix 

𝑐𝑐1  .  .  .  𝑐𝑐𝑗𝑗  .  .  .  𝑐𝑐𝑛𝑛 
𝑟𝑟1 
 . 
 . 
 . 
𝑟𝑟𝑖𝑖 
 . 
 . 
 . 
𝑟𝑟𝑚𝑚 

𝑥𝑥11 
 . 
 . 
 . 
 . 
 . 
 . 
 . 
𝑥𝑥1𝑚𝑚 

𝑥𝑥𝑛𝑛1 
 . 
 . 
 . 
 . 
 . 
 . 
 . 
𝑥𝑥𝑛𝑛𝑚𝑚 

 . 
 
 
 
𝑥𝑥𝑗𝑗𝑖𝑖 
 
 
 
 . 

.  .  . .  .  . 

.  .  . .  .  . 
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precedes any information about the resolution of risk or uncertainty if an uncertainty 

component is present. Thus, if the true state was determined prior to the decision, the 

decision maker does not know which it is. Prior resolution of uncertainty is only a 

matter of perception and never of strategic relevance, and dynamic decision principles 

and updating play no role in this paper. 

 Outcome monotonicity is defined as before (strictly increasing any cell strictly 

improves the matrix). We generalize the other monotonicity conditions to allow for 

the aforementioned row (risk) and column (time) dependence. We therefore consider 

underlying preferences ≽𝑖𝑖 over rows (𝑥𝑥1𝑖𝑖 , … , 𝑥𝑥𝑛𝑛𝑖𝑖 ) and ≽𝑗𝑗 over columns (𝑥𝑥𝑗𝑗1, … , 𝑥𝑥𝑗𝑗𝑚𝑚) 

that may depend on 𝑖𝑖 and 𝑗𝑗, respectively, and we will consider monotonicity for 

preferences ≽ over matrices with respect to such underlying preferences. In particular, 

the preferences ≽𝑖𝑖 and ≽𝑗𝑗 can be derived from ≽ over matrices by keeping “outside 

cells” fixed. This procedure works well if proper separability/monotonicity conditions 

hold. For consistency, we maintain the monotonicity terminology. 

 

Definition 2. A subset of cells is separable if preferences over those cells, while 

keeping the outcomes at all other cells fixed, are independent of the levels where the 

other cells are kept fixed. Weak separability of rows, or row monotonicity, holds if 

each row is separable; that is, for each 𝑖𝑖, preferences over rows (𝑥𝑥1𝑖𝑖 , … , 𝑥𝑥𝑛𝑛𝑖𝑖 ) by keeping 

all other rows fixed are independent of the levels where the other rows are kept fixed. 

Weak separability of columns, or column monotonicity, holds if each column is 

separable. Complete separability holds if each subset of cells is separable. 

 

 Weak separability is usually considered to be a weak condition, not imposing 

strong restrictions. Row monotonicity means that improving a row improves the 

matrix, and column monotonicity is similar. Complete separability can concern any 

subset of cells, also if this subset is not a union of rows and/or columns. Several 

authors have shown that separability of a subset is equivalent to the possibility to 

define an underlying preference relation, “conditional” on that subset (such as ≽𝑖𝑖 and 

≽𝑗𝑗 above), so that we have monotonicity with respect to that relation (Zimper 2008), 

or, equivalently, to do contingent thinking (Esponda & Vespa 2024). The next section 

provides further discussion of the restrictiveness of this condition, depending on 
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whether the underlying preference relation is objective or subjective. Additive utility 

(AU) holds if preferences over matrices are represented by 

 ∑ ∑ 𝑉𝑉𝑗𝑗𝑖𝑖(𝑥𝑥𝑗𝑗𝑖𝑖)𝑛𝑛
𝑗𝑗=1

𝑚𝑚
𝑖𝑖=1  (4) 

for strictly increasing continuous functions 𝑉𝑉𝑗𝑗𝑖𝑖(𝑥𝑥𝑗𝑗𝑖𝑖). It readily implies complete 

separability. The following well-known result is basic to this paper. It has been known 

as the “theorem of aggregation.” Its history is discussed after the theorem. 

 

Theorem 3 [of aggregation] The following two statements are equivalent. 

(i) Additive utility holds. 

(ii) Weak ordering, continuity, and monotonicity with respect to outcomes, rows, and 

columns hold. 

 

It is obvious that Statement (i) implies Statement (ii), and even complete separability. 

For the reversed implication, it is clear that row and column monotonicity preclude 

particular interactions between cells. (A subset of cells is subject to interactions if it is 

not separable.) However, the tradeoffs that are directly precluded this way are only 

few. The surprising point of Theorem 3 is that, in this setting with multiple 

components, all interactions are precluded “indirectly” after all, also for the many 

subsets of cells besides rows and columns. This was, essentially, Nataf’s (1948) 

finding, although his proof has sometimes been criticized for being inaccessible. 

Nowadays, the result can readily be obtained as one of the many surprising 

implications of Gorman’s (1968) strong result. Hence, we will not give a separate 

proof. This result also explains the paradoxical simplicity of Theorem 1, and underlies 

the bifurcation result and absence of middle grounds derived later. 

 The analysis in Theorem 1 and preceding sections concerned the special case 

where ≽𝑖𝑖 and ≽𝑗𝑗 were independent of 𝑖𝑖 and 𝑗𝑗, respectively, implying that the 𝑉𝑉𝑗𝑗𝑖𝑖 can 

be taken proportional. In general contexts we use the terms uniform row monotonicity 

instead of stream monotonicity and uniform column monotonicity instead of act 

monotonicity for these special cases. The difference between DEU and AU, or 

between uniform and general monotonicity/separability, or between Theorems 1 and 

3, never plays a role in any of the conceptual debates later in this paper. The 
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generalizations (“state- and time-dependence”) increase the applicability of our 

results. 

 Whenever risk, the most-studied component in the literature and also in this 

paper, is involved we let it correspond with rows 𝑟𝑟𝑖𝑖, which then are states with known 

probabilities. We then refer to row monotonicity as risk monotonicity. 

 Our results can easily be extended to more than two components. In particular, 

each component may itself combine several components. Section 6.2 will illustrate 

this point. 

 

4.  FORMALIZING THE RESTRICTIVENESS OF 

MONOTONICITY: A BIFURCATION 
 

As with DEU, the complete separability of many classical economic theories has been 

challenged on normative and descriptive grounds. It is therefore natural for 

researchers to think of behavioral relaxations of complete separability to increase the 

models’ validity. Common strategies of behavioral relaxations were originally 

developed for single components, first risk, and later uncertainty, time, welfare, and 

so on. Even though different relaxations focus on different psychological insights or 

behavioral patterns, they typically share the same structure. That is, they operate in a 

middle ground, where complete separability is relaxed but weak separability is still 

maintained. For instance, nonexpected utility models aim to maintain mononicity 

(thus weak separability) or, equivalently, stochastic dominance, but search for proper 

relaxation of complete separability (the “sure-thing principle” or mixture-

independence). Kahneman & Tverky’s (1979) original prospect theory provides an 

example that, by violating stochastic dominance, fell out of the middle ground. It was, 

therefore, replaced by a rank-dependent version that satisfies monotonicity and hence 

is in the middle ground (Tversky & Kahneman 1992). In this section, we will show 

how Theorem 3 implies that such middle grounds do not exist for multi-component 

decision problems. 

 For our analyses, weak ordering and continuity will be taken as unobjectionable 

and thus will not be discussed further. We focus on the monotonicity conditions. We 

follow the terminological convention that for any product structure, monotonicity 

with respect to that structure refers to changes in single attributes. Thus, for outcome 
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monotonicity, we treat the space of matrices as if one component, i.e., one product 

space with 𝑚𝑚 × 𝑛𝑛 attributes, being cells. We then consider changes in single cells. 

The underlying relation, ≥ on money, is “physical” and objective, and outcome 

monotonicity is usually unobjectionable and can be given a normative status. It is a 

version of weak separability, and is not very restrictive. Then ordering within single 

attributes, ordinal as they are, are not affected by other attributes. But changes within 

nonsingle subsets of attributes, involving (cardinal) tradeoffs between attributes, can 

still be affected by other attributes. 

 We next consider row and column monotonicity. We now take the space of 

matrices as a combination of two product structures. That is, we take it as comprising 

two components—the topic of this paper. Row monotonicity refers to an 𝑚𝑚 fold 

product space, with rows, element of ℝ𝑛𝑛, as single attributes. This monotonicity again 

concerns a change in a single attribute, now a row. Similarly, column monotonicity 

refers to an 𝑛𝑛 fold product space with columns, element of ℝ𝑚𝑚, as single attributes. It 

again concerns a change in a single attribute, now a column. 

 Row monotonicity refers to underlying preference relations ≽𝑖𝑖 over rows that are 

subjective. They can differ between different persons and then have no normative 

status. They are not beyond doubt and can readily be impacted by other variables, as 

many examples below will show. Therefore, monotonicity now is debatable.3 This 

holds similarly for column monotonicity. 

 In our quest for behavioral relaxations of complete separability, we will first 

reformulate the monotonicity conditions in terms of functional forms that can 

represent preferences. For quantitative optimizations with two (or more) components, 

recursive procedures, defined next, are commonly used because they are tractable. 

They can occur in two ways, i.e., using two orders of aggregation, in the next two 

definitions. 

 

Definition 4. Row-monotonic aggregation holds if there exist row-functions 𝑅𝑅𝑖𝑖 and a 

column-function 𝐶𝐶, all continuous and strictly increasing in each coordinate, such that 

preferences are represented by 

 
3 Bommier (2017) weakened row monotonicity to hold only with stochastic dominance as underlying 

preference, so as to maintain objectivity. 
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 𝐶𝐶 �𝑅𝑅1(𝑥𝑥11, … , 𝑥𝑥𝑛𝑛1), . . . . . . ,𝑅𝑅𝑖𝑖�𝑥𝑥1𝑖𝑖 , … , 𝑥𝑥𝑛𝑛𝑖𝑖 �, . . . . . . ,𝑅𝑅𝑚𝑚(𝑥𝑥1𝑚𝑚, … , 𝑥𝑥𝑛𝑛𝑚𝑚)� (5) 

 

Here one first, for every row 𝑟𝑟𝑖𝑖, aggregates over the columns 𝑐𝑐1, … , 𝑐𝑐𝑛𝑛, and one next 

aggregates the 𝑚𝑚 resulting values into the final value.  

 

Definition 5. Column-monotonic aggregation holds if there exist column-functions 𝐶𝐶𝑗𝑗 

and a row-function 𝑅𝑅, all continuous and strictly increasing in each coordinate, such 

that preferences are represented by 

 𝑅𝑅 �𝐶𝐶1(𝑥𝑥11, … , 𝑥𝑥1𝑚𝑚), . . . . . . ,𝐶𝐶𝑗𝑗�𝑥𝑥𝑗𝑗1, … , 𝑥𝑥𝑗𝑗𝑚𝑚� , . . . . . . ,𝐶𝐶𝑛𝑛(𝑥𝑥𝑛𝑛1, … , 𝑥𝑥𝑛𝑛𝑚𝑚)� (6) 

 

Now one first, for every column 𝑐𝑐𝑗𝑗, aggregates over the rows 𝑟𝑟𝑖𝑖, … , 𝑟𝑟𝑚𝑚 and one next 

aggregates the 𝑛𝑛 resulting values into the final value. Under uniform row 

monotonicity, we can take all 𝑅𝑅𝑖𝑖 in Eq. 5 the same, i.e., independent of 𝑖𝑖, and under 

uniform column monotonicity, we can take all 𝐶𝐶𝑗𝑗 in Eq. 6 the same, independent of 𝑗𝑗. 

 In the literature, terminologies of row-first and column-first aggregation are 

popular, as used in our title. Unfortunately, those terms have been used 

interchangeably, with several linguistic requirements and conventions going in 

opposite directions. Ambiguities cannot be avoided then. In our formal analysis we, 

therefore, chose the terms row-monotonic and column-monotonic aggregation instead. 

 The two procedures do not seem to be very restrictive because they involve many 

functions that can be chosen independently and with almost no restrictions imposed 

on those functions. The following observation shows that orders of aggregation, i.e., 

aggregation monotonicities, are, indeed, quantitative versions of preference 

monotonicities. The observation is standard in consumer theory. 

 

Observation 6. Given weak ordering, continuity, and outcome monotonicity, column-

monotonic aggregation can be used if and only if column monotonicity holds. Row-

monotonic aggregation can be used if and only if row monotonicity holds. 
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As for the proof, row- (column-)monotonic aggregation can be derived from the 

corresponding preference condition by taking constant-equivalent functions for the 

functions 𝑅𝑅𝑖𝑖,𝐶𝐶𝑗𝑗, 𝑅𝑅, and 𝐶𝐶. The rest is straightforward. 

 The following impossibility result, mathematically a corollary of Nataf’s (1948) 

Theorem 3, has vast and paradoxical implications for behavioral theories. Figure 3 

illustrates it. 

 

THEOREM 7 [Impossibility theorem for multiple components]. If one wants to adopt a 

behavioral model with interactions (violations of complete separability), and for 

tractability reasons use a recursive model, then the two routes available, row-

monotonic and column-monotonic aggregation, are mutually exclusive, and one faces 

a bifurcation. 
 

 
 

 

 

 

 

 

 

The paradoxical point is that there is no middle ground. The moment one commits to 

the, ordinal, weak separability of both components, one is committed to their cardinal, 

complete, separability. And the moment one commits to one of the two weak 

separabilities, a large part (“half”) of all conceivable interactions are precluded, more 

than most researchers have been aware of. The following example illustrates how this 

paradox can lead researchers astray. 

 

Example 8 [Paradoxical absence of the middle ground]. A researcher, facing 

actstreams as in Figure 1, wants to relax complete separability and allow for 

interactions between risky states 𝑠𝑠𝑖𝑖 but not between timepoints 𝑡𝑡𝑗𝑗. She aims at a 

middle ground with risk monotonicity, i.e., stochastic dominance, kept. Thus, in Eq. 3 

(DEU), the right summation, DU over columns is kept, but the left summation, EU, is 

FIGURE 3. Bifurcation 
with no middle ground

Recursivity with 
interactions
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replaced by a nonexpected utility formula that satisfies stochastic dominance (e.g., 

Kochov 2015 or Bastianello & Faro 2023). 

 

 

 

 

 

 

 

 

 

 At first sight, we seem to have achieved the desired middle ground, with cardinal 

but no ordinal interactions between states 𝑠𝑠𝑖𝑖. However, the bifurcation of Theorem 7 

shows that it cannot be. The researcher is using Eq. 5, with each 𝑅𝑅𝑖𝑖 discounted utility, 

but then Eq. 6 must be violated! Act monotonicity must be violated. Figure 4 gives an 

example, for 𝑑𝑑1 = 𝑑𝑑2 = 1, 𝑃𝑃(𝑠𝑠1) =  𝑃𝑃(𝑠𝑠2) = 0.5, 𝑈𝑈 linear (𝑈𝑈(𝛼𝛼) = 𝛼𝛼), and any 

nonexpected utility model with overweighting of the worst outcome. In the example, 

preferences over columns at timepoint 𝑡𝑡1 depend on the levels at which the outcomes 

at timepoint 𝑡𝑡2 are fixed—timepoint 𝑡𝑡1 is affected by 𝑡𝑡2. Even though the version of 

Eq. 3 as modified by this researcher seems to have preserved separable discounting, in 

reality this is not so, and interactions between timepoints are still happening under the 

cover. Nonseparable discounting is not only possible here but it even is unavoidable. 

Further, interactions even occur at the elementary level of single timepoints. Possibly 

unbeknownst to the researcher, she has introduced interactions between timepoints 

after all.  □ 

 

 The example shows that researchers, unaware of the absence of middle ground 

demonstrated in Theorem 7, may inadvertently introduce interactions. Such 

interactions similarly occur, for instance, for functionals ∑ 𝑝𝑝𝑖𝑖𝑈𝑈(𝑥𝑥1𝑖𝑖 , … , 𝑥𝑥𝑛𝑛𝑖𝑖 )𝑚𝑚
𝑖𝑖=1  with 𝑈𝑈 

monotonic in all of its arguments but not additively separable, or 

∑ 𝑝𝑝𝑖𝑖𝑚𝑚
𝑖𝑖=1  𝜑𝜑(∑ 𝑑𝑑𝑗𝑗 × 𝑈𝑈�𝑥𝑥𝑗𝑗𝑖𝑖�𝑛𝑛

𝑗𝑗=1 ) with 𝜑𝜑 nonlinear, a functional used by Kreps & Porteus 

(1978), Epstein & Zin (1989), and Klibanoff, Marinacci, & Mukerji (2005). 

 

≻ 
𝑡𝑡1  𝑡𝑡2 

𝑠𝑠1 
𝑠𝑠2 

1    0 
𝑡𝑡1  𝑡𝑡2 
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𝑠𝑠2 
 

0    0 

FIGURE 4. Violation of 
act monotonicity 
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 In behavioral approaches, the choice in the bifurcation presented in Figure 3 is 

mostly made implicitly (Andreoni & Sprenger 2012; Machina 2014 Eq. 6 & footnote 

11 & p. 3821 l. -3). As we have shown, the choice is critical though and explicit 

arguments for the monotonicity assumed are desirable. Several papers did discuss this 

point explicitly, including Bommier, Kochov, & le Grand (2017 Sections 4 and 7), 

Epper & Fehr-Duda (2024), Marinacci (2015 p. 1026), and Onay & Öncüler (2009). 

But the critical nature of the issue (Figure 3) has not been noted before. Now it is 

clear why in the numerous discussions in the literature no-one ever proposed a middle 

ground: because it doesn’t exist. 

 The following claim, mathematically a corollary of Theorem 7 and, thus, of Nataf 

(1948), highlights another practical implication of essentially Nataf’s theorem. While 

not fully formalized, dividing logical implications over assumptions, it shows the true 

face of monotonicity, signalling the alarming restrictiveness of recursive procedures. 

They may inadvertently preclude many relevant interactions. The “at least” clause 

below is because of the interactions precluded by both monotonicities. 

 

Interpretation 9 [Precluding many interactions]. Given weak ordering, continuity, 

outcome monotonicity, and 𝑚𝑚 = 𝑛𝑛, row monotonicity precludes at least half of the 

possible interactions (violations of complete separability), and so does column 

monotonicity. Each condition precludes all interactions allowed by the other. 

 

For 𝑚𝑚 ≠ 𝑛𝑛, one monotonicity is less restrictive than the other and precludes fewer 

interactions, but the situation is similarly alarming, 

 The following example will serve as lead example in Section 5. It applies our 

framework to Harsanyi’s (1955) utilitarianism, a version of DEU. 

 

Example 10 [Welfare and risk]. Columns 𝑐𝑐𝑗𝑗 refer to persons and rows 𝑟𝑟𝑖𝑖 refer to risk, 

i.e., states with known probabilities 𝑝𝑝𝑖𝑖. For simplicity, we assume 𝑝𝑝𝑖𝑖 = 1/𝑚𝑚 for all 𝑖𝑖. 

Harsanyi’s (1955) utilitarian model is AU with 𝑉𝑉𝑘𝑘𝑖𝑖 = 𝑈𝑈𝑘𝑘/𝑚𝑚 for all 𝑖𝑖,𝑘𝑘, where 𝑈𝑈𝑘𝑘 is 

the utility function of person 𝑘𝑘. It is a column-dependent generalization of DEU. 

Preferences over a matrix are of a benevolent social planner with no stakes of her 

own. Harsanyi’s Pareto optimality is column monotonicity, and his expected utility 

for the social planner implies uniform risk (= row) monotonicity. 
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 An axiomatization of Harsanyi’s model readily follows from Theorem 3 by 

adding symmetry of rows (implying uniformity of row preference and EU with equal 

probabilities). The extension to general probabilities follows from Theorem 11 in 

Online Appendix B. This result is more general than Harsanyi’s (1955) 

axiomatization in weakening his assumption of expected utility. In return, Harsanyi 

did not need continuity in outcomes, and could handle subdomains of the matrix 

space.4 Harsanyi’s axiomatization was received as a paradox because many were 

misled by the “hidden” restrictiveness of column monotonicity. But with our 

preceding theorems and Interpretation 9, his result comes as no surprise. Pivato & 

Tchouantez (2024) provided the most general results along these lines known to us, 

allowing for nonstandard real numbers and weakening continuity to solvability. These 

generalizations are empirically and conceptually preferable but have the drawback of 

using concepts that are not well-known. The authors further weakened completeness 

of preference and allowed for state- and person-dependent utility. They also provided 

impossibility-result interpretations, generalizing the classic Mongin (1995), and 

surveyed further literature. 

 Harsanyi’s model has often been criticized for ignoring inequality aversion, 

which involves interactions between different persons (= columns). In the following 

Figures 5 and 6 we assume symmetry of 𝑐𝑐1 and 𝑐𝑐2 (i.e., anonymity) and also of 𝑟𝑟1 and 

𝑟𝑟2 (which have probability 0.5). 

 

 

 

 

 

 

 

 

 

 
4 Harsanyi did not explicity introduce persons as different attributes, but his domain can be remodeled 

accordingly, turning it into a subdomain of Anscombe & Aumann’s (1963) framework. Thus, 

Anscombe & Aumann’s theorem is a corollary of Harsanyi’s. 

𝑐𝑐1  𝑐𝑐2 𝑐𝑐1  𝑐𝑐2 

≺ 𝑟𝑟1 
𝑟𝑟2 

0    1 𝑟𝑟1 
𝑟𝑟2 

1    1 
1    0 0    0 

𝑐𝑐1  𝑐𝑐2 𝑐𝑐1  𝑐𝑐2 

≻ 𝑟𝑟1 
𝑟𝑟2 

0    0 𝑟𝑟1 
𝑟𝑟2 

1    0 
1    1 0    1 

FIG. 5b. Column monotonicity violated 

FIGURE 5 

𝑐𝑐1  𝑐𝑐2 𝑐𝑐1  𝑐𝑐2 

~ 𝑟𝑟1 
𝑟𝑟2 

0    1 𝑟𝑟1 
𝑟𝑟2 

1    1 
1    0 0    0 

𝑐𝑐1  𝑐𝑐2 𝑐𝑐1  𝑐𝑐2 

~ 𝑟𝑟1 
𝑟𝑟2 

0    0 𝑟𝑟1 
𝑟𝑟2 

1    0 
0    1 1    1 
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 Broome (1991 p. 185) proposed Figure 5 as a criticism of Harsanyi’s 

utilitarianism. In all matrices, both persons always receive 10.50. Hence, under 

column monotonicity (“Pareto optimality”), all matrices are indifferent, and so are 

they under Harsanyi’s utilitarianism (Fig. 5a). Broome argued that, to the contrary, the 

strict preferences in Fig. 5b are plausible under inequality aversion, nowadays usually 

interpreted as ex post inequality aversion (see below). The dispreferred matrices 

certainly, under both 𝑟𝑟1 and 𝑟𝑟2, result in inequality, and the preferred matrices 

certainly (for every row) result in equality. The preference over the first column is 

affected by the second here, and column monotonicity and Harsanyi’s utilitarianism 

are violated. Row monotonicity may still hold. 

 Diamond (1967) proposed Figure 6 as a criticism of Harsanyi’s utilitarianism. In 

all matrices, both rows (states) give the good outcome to one of the two persons 

which, by symmetry, is equivalent. Hence, by row symmetry, all matrices are 

indifferent, and so are they under Harsanyi’s utilitarianism (Fig. 6a). Diamond pointed 

out that, to the contrary, the strict preferences in Fig. 6b are plausible under inequality 

aversion, nowadays usually interpreted as ex ante inequality. In the dispreferred 

matrices, one person certainly receives the good outcome and the other person 

certainly not, so that there is inequality. In the preferred matrices there is equality in 

the sense that both persons receive the same lottery, 10.50. Diamond emphasized that 

the sure-thing principle is then violated, which in this simple case is equivalent to our 

row monotonicity. The preference over the first row is affected by the second here, 

and expected utility and Harsanyi’s utilitarianism are violated. Column monotonicity 

may still hold. 

 Our bifurcation result suggests that the above two examples are the only two 

tractable recursive ways to deviate from Harsanyi (1955), and that the interactions are 

detectable at the basic level of single persons or risks, as occurring in both figures. 

Broome’s example fits in the upper route in Figure 3 and Diamond’s in the lower one. 

The examples are each other’s dual by interchanging rows and columns. Hence, 

recursive models that allow for ex-ante as well as ex-post inequality aversion, will 

have to give up on both row- and column monotonicity. 
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  We will use our framework to analyze several existing debates and/or paradoxes. 

Ultimately, they all evolve around what is the proper choice in the bifurcation of 

Figure 3, and many valuable interactions may have been lost inadvertently. Before 

discussing applications, we first tackle the natural question of which route in the 

bifurcation to choose. General guidelines, considerations, and ways to avoid 

undesirable violations of monotonicity are presented in the next section. They help 

shed new light on many existing problems. 

 

5.  GUIDELINES AND WAYS TO AVOID VIOLATIONS OF 

MONOTONICITY 
 

This section provides guidelines for researchers when facing the bifurcation in Figure 

3. For consistency with much literature, we continue to often use the term 

monotonicity, but sometimes we prefer the more neutral term separability. To decide 

on which separability to keep and which to give up, it is useful to rank the plausibility 

of each separability condition. In general, separability is most plausible for 

uncertainty and risk because there can be no physical interactions between mutually 

exclusive events (Broome 1991 Section 7.3). Within uncertainty, it is more 

convincing for risk than for ambiguous events (Wakker 2010 Section 10.4). Next, 

interactions are less likely to occur between different persons at different locations 

than within one person at different timepoints. Thus, the  [risk > ambiguity > welfare 

> time]  plausibility ordering regarding separability/monotonicity results, with risk 

monotonicity usually being the most convincing (Stango & Zinman 2023). For 

commodities or attributes, separability is less plausible than for uncertainty, but can 

𝑐𝑐1  𝑐𝑐2 

~ 
𝑐𝑐1  𝑐𝑐2 

𝑟𝑟1 
𝑟𝑟2 

0    1 𝑟𝑟1 
𝑟𝑟2 

1    0 
1    0 1    0 

𝑐𝑐1  𝑐𝑐2 𝑐𝑐1  𝑐𝑐2 

~ 𝑟𝑟1 
𝑟𝑟2 

0    1 𝑟𝑟1 
𝑟𝑟2 

1    0 

𝑐𝑐1  𝑐𝑐2 

≻ 
𝑐𝑐1  𝑐𝑐2 

𝑟𝑟1 
𝑟𝑟2 

0    1 𝑟𝑟1 
𝑟𝑟2 

1    0 
1    0 1    0 

𝑐𝑐1  𝑐𝑐2 𝑐𝑐1  𝑐𝑐2 

≺ 𝑟𝑟1 
𝑟𝑟2 

0    1 𝑟𝑟1 
𝑟𝑟2 

1    0 

FIGURE 6 

0    1 0    1 0    1 0    1 

FIG. 6a. Row monotonicity FIG. 6b. Row monotonicity violated 



 20 

take any remaining place in the ordering depending on the nature of the attributes. For 

time, payment in consumption is more separable than payment in money. With time 

and risk involved, risk-monotonic aggregation is most plausible (Abdellaoui et al. 

2019). 

 Researchers often add a component not for its own interest, but as an auxiliary 

tool to facilitate the analysis of other components. According to our conceptual 

analysis above, risk is most suited to serve as such a tool because separability there is 

very plausible. Risk has indeed mostly been used for this purpose. This is what 

Harsanyi (1955) did for welfare (our Example 10), essentially exploiting the paradox 

of our Theorem 1.5 Other examples include Anscombe & Aumann (1963) and Keeney 

& Raiffa (1976). The restrictive results of Theorems 1 and 3 were often convenient in 

these applications. 

 Empirically, it is also plausible that decision makers mostly adopt one of the two 

recursive procedures. Again, it is for tractability reasons, but now from the 

psychological perspective of the decision maker instead of conventional theoretical 

modeling for the researcher. Nevertheless, some interactions and spillover effects due 

to the presence of other attributes and stimuli can still be expected. Hence, 

empirically, people will be close to one of the two routes in Figure 3, but with small 

deviations. 

 Whether a version of monotonicity is satisfied, and which route is chosen in the 

bifurcation in Figure 3, can be manipulated by stimuli and their framings. We explain 

three manipulation techniques below. They can be used to avoid undesirable 

violations. For example, spillover effects in preference measurements, hedging effects 

in ambiguity measurements, and particular forms of inequality aversion, are violations 

of monotonicity that may be undesirable. The next section gives concrete examples 

and references. The first manipulation technique is the framing technique. In general, 

a two-stage display of matrices will enhance one kind of monotonicity. Thus, Fig. 7a 

enhances row monotonicity and Fig. 7b enhances column monotonicity. Similarly, in 

Figure 1, the framing “For each 𝑖𝑖, at state 𝑠𝑠𝑖𝑖 you receive stream (𝑥𝑥1𝑖𝑖 , … , 𝑥𝑥𝑛𝑛𝑖𝑖 )” enhances 

row-monotonicity, similarly to Fig. 7a. 

  

 
5 Undoubtedly, Harsanyi (1955) devised his result independently without relating it to the preceding 

Nataf (1948). Monging & Pivato (2015) pointed out the relations between these theorems. 
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 In Figure 5, if a social planner wants the dispreferred matrices in Fig. 5b to be 

accepted for some good extraneous reason, then the framing of Fig. 7b (with 𝑐𝑐𝑗𝑗s 

designating persons) is best suited to enhance the column monotonicity of Fig. 5a. In 

Figure 6, if a social planner wants the dispreferred matrices in Fig. 6b to be accepted 

for some good extraneous reason, the framing of Fig. 7a (with 𝑐𝑐𝑗𝑗s designating 

persons) is best suited to enhance the row monotonicity of Fig. 6a. Of course, such 

manipulations may also be misused for bad purposes, as is unavoidable for every 

technique. 

 The second manipulation technique, the timing technique, can be used if risk or 

uncertainty is involved, and concerns the perceived timing of the resolution of 

uncertainty—early, before decision time, or late, after decision time. Early resolution 

of uncertainty enhances a perception as in Fig. 7a (with the 𝑟𝑟𝑗𝑗s uncertain events) and 

row-monotonic aggregation. In Figure 6, it leads to Fig. 6a. Late resolution of 

uncertainty enhances a perception as in Fig. 7b and column-monotonic aggregation. 

In Figure 5, it leads to Fig. 5a. Thus, the perception of fairness can be manipulated by 

manipulating prior or late resolution. We stress that this paper only considers 

situations where, if resolution takes place before the decision time, then the decision 

maker knows that the uncertainty has been resolved, but does not know how it has 

been resolved. It is, therefore, of no strategic relevance here and only concerns 
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perception. This timing technique has been widely discussed and tested in the welfare 

literature and other fields (Section 6.3). In particular, Onay & Öncüler (2009) tested 

the two different framings in Figure 7 for actstreams. 

 The third technique, the partial-info technique, provides only partial information. 

For example, in Figures 5 and 6, the two persons 𝑐𝑐1, 𝑐𝑐2 may not be informed about the 

outcomes that the other person receives. This enhances separability of the columns 

and, hence, column-monotonic aggregation. There then is less room for inequality 

aversion because the persons themselves cannot perceive it. 

 One can avoid our bifurcation problem by considering subdomains. Our analysis 

as yet made the idealized assumption, common in decision theory and preference 

axiomatizations, that we deal with a full domain. That is, all matrices are conceivable. 

This is essential for our theorems. Several studies on risk and time only considered 

actstreams with one nonzero outcome, in which case the order of aggregation is 

immaterial under many behavioral models (Baucells & Heukamp 2012; Ida & Goto 

2009). Similarly, McCarthy, Mikkola, & Thomas (2020) and Pivato (2013) 

considered incomplete preferences, Alon & Gayer (2016) imposed Pareto optimality 

only if agreement on probabilities and utilities, and Halevy (2008) considered a 

restricted (comonotonic) domain where both orders of aggregation can hold for 

behavioral theories. For principled discussions of decision principles this escape route 

is not very convincing. If conditions deemed universally appropriate cannot survive 

extension to all possibilities, then this remains a point of concern. The issue of 

subdomains arises in several applications in the next section and will be further 

discussed there. 

 

6.  APPLICATIONS 
 

This section illustrates several applications of our results. We elaborate on two 

applications in our area of expertise, ambiguity, in Sections 6.1 and 6.2, and indicate 

others briefly in Section 6.3. In all examples in this section, rows 𝑟𝑟𝑖𝑖 model risky 

events. The common theme of the examples, and of this paper, is that the seemingly 

innocuous conditions of weak separability for each component are more restrictive 

than had been understood before. 
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6.1. Monotonicity in the Anscombe-Aumann framework for ambiguity 

 

We show that the well-known Anscombe-Aumann (AA) framework also made a 

choice in the bifurcation and we apply our results to it. In Figure 2, roulette events 

(rows) 𝑟𝑟1, … , 𝑟𝑟𝑚𝑚 partition the universal event and have known probabilities. Horse 

events (columns) 𝑐𝑐1, … , 𝑐𝑐𝑛𝑛 also partition the universal event but are ambiguous. The 

AA framework adopts column-monotonic aggregation, using the same expected 

utility functional (𝐶𝐶𝑗𝑗  in Eq. 6) for each column. Thus, uniform column monotonicity, 

called horse monotonicity here, is assumed (Observation 6). This implies that only the 

marginal distributions given every horse 𝑐𝑐𝑗𝑗 matter. This is characteristic of the modern 

AA framework. By 𝛼𝛼𝑝𝑝𝛽𝛽 we denote a lottery, i.e., probability distribution, yielding 𝛼𝛼 

with probability 𝑝𝑝 and 𝛽𝛽 with probability 1 − 𝑝𝑝. 

 We first assume a full domain where all matrices are available, as for instance in 

Machina (2014) who assumed simultaneity of the horse and roulette events. Figure 8 

displays ambiguity aversion as commonly assumed in the literature. The rows have 

0.5 probability each. The indifference follows from the AA assumptions: each horse 

yields lottery (10.50), with no ambiguity. The strict preferences reflect ambiguity 

aversion. They reveal a violation of risk (row) monotonicity: preferences over the first 

row are affected by the second row, and rows interact. Having committed to horse 

monotonicity, the common AA framework has to give up risk monotonicity (and 

conditioning on risky events), as shown by Theorem 7. However, as pointed out in 

Section 5, in general, risk (row) monotonicity is more plausible than column 

monotonicity. It suggests that the common AA framework chose the less plausible 

route. Jaffray (1992, personal communication) emphasized this view and 

recommended risk monotonicity for ambiguity, adopting it in all his works (e.g., 

Jaffray 1989). Eichberger & Pasichnichenko (2021), Martins-da-Rocha, Filipe, & 

Rosa (2021), and Monet & Vergopoulos (2023) followed Jaffray’s approach. The 

early Keeney & Raiffa (1976) provided a rich toolbox for interactions in this 

approach. In agreement with the timing technique, it then works best to let the 

resolution of the roulette events precede those of the horse events. Remarkably, 

Subjects are usually told that the risk uncertainty is resolved after the horse 

uncertainty, again, to enhance horse monotonicity (timing technique). Oechssler & 
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Roomets (2021) used Fig. 7b (enhancing horse monotonicity) but still found much 

risk monotonicity, providing strong evidence against horse monotonicity. 

 

 

 

 

 

 

 

 

 

 In the version of the AA framework most popular today, the domain of matrices 

considered is restricted. The lotteries for different horses are assumed to be 

stochastically independent.6 Then the matrices in Figure 8 can no more be used and 

we escape from the violation of risk monotonicity there. Theorem 3 still shows that 

correlations between horses cannot be added without violating risk monotonicity (or 

sacrificing one of the other conditions), which remains a worrisome issue. In 

particular, we cannot add risk prior to, or simultaneously with the horse race and have 

EU there, because this would automatically assume away ambiguity attitudes. Several 

authors observed this impossibility and investigated ways to relax other assumptions 

in particular multistage setups, including Ke & Zhang (2020). Our analysis with the 

elementary risk monotonicity instead of EU is more basic. 

 Although the modern version of the AA framework escapes from the 

“counterexample” of Figure 8, the underlying problem, that weak separability of 

horse events does not fit well with their ambiguity, remains. We, therefore, illustrate 

this problem through another implication, a variation of Figure 8 that uses only 

stimuli within the restricted domain assumed by the modern version of AA. In Figure 

10 below, for each matrix the two columns are stochastically independent. We take 

 
6 Equivalently, they can be taken as mutually unspecified, e.g., by taking them as conditional on a 

horse (“statewise randomization”; Ke & Zhang 2020). Compare Figures 9 and 10 below. The essence is 

that they are considered to be mutually uninformative. Thus, subjects may only be informed about the 

outcome realized for the winning horse and the roulette resolution there (partial-info technique). These 

points do not impact the conceptual issues discussed here. 

𝑐𝑐1  𝑐𝑐2 
𝑟𝑟1 
𝑟𝑟2 

1    0 
0    1 

FIGURE 8. Violation of risk monotonicity in the 
Anscombe-Aumann framework 

𝑐𝑐1  𝑐𝑐2 
𝑟𝑟1 
𝑟𝑟2 

0    1 
0    1 

𝑐𝑐1  𝑐𝑐2 
𝑟𝑟1 
𝑟𝑟2 

1    1 
0    0 

≻ ~ 

𝑐𝑐1  𝑐𝑐2 
𝑟𝑟1 
𝑟𝑟2 

1    0 
1    0 

𝑐𝑐1  𝑐𝑐2 
𝑟𝑟1 
𝑟𝑟2 

0    1 ≺ 
1    0 
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outcome 𝛼𝛼 such that 𝛼𝛼~80.50, i.e., it gives the indifference in Fig. 9a. Under expected 

value maximization, 𝛼𝛼 = 4, but in general it depends on the risk attitude. 

 All columns in Figure 9 are indifferent. By AA’s horse monotonicity, all matrices 

should be indifferent. However, under ambiguity aversion the strict preferences are 

plausible. For the dispreferred matrices all outcomes are ambiguous whereas for the 

other matrices none is. Figure 10 displays the same choices as in Figure 9 but now 

using the matrix notation of this paper, with stochastic independence of the two 

columns for each matrix. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Many authors discussed horse monotonicity in the AA framework, both 

theoretically and empirically. Besides those cited before, these include Hill (2019, 

state-consistency), Machina (2014 p. 3835 3rd bulleted point), Oechssler & Roomets 

(2021), and Schneider & Schonger (2018). More general discussions of the role of the 

timing of uncertainty include Battigalli et al. (2017), Berger & Eeckhoudt (2021), 

Calford (2021), Eichberger, Grant, & Kelsey (2016), Kochov (2015), and Oechssler, 

Rau, & Roomets (2019). Our results present the issue in its most basic and general 

form, showing that the issue is more acute than has been observed before. 
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FIGURE 9. Violation of horse monotonicity due to ambiguity aversion 
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FIGURE 10. Violation of horse monotonicity due to ambiguity aversion using matrices. 
𝑃𝑃�𝑟𝑟𝑗𝑗� = 0.25 for all 𝑗𝑗. 
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6.2. Validity of the random incentive system and hedging for ambiguity 

 

Debates about validity of the random incentive system (RIS) and, in particular, a 

hedging confound for ambiguity measurements, again concern special cases of the 

bifurcation of Figure 3. To see this point, let each row of our matrices specify one of 

𝑚𝑚 choice situations in an experiment. We assume that in each choice situation a 

subject chooses an option that is an 𝑛𝑛-dimensional object. It may be a commodity 

bundle, an outcome stream, a welfare allocation over 𝑛𝑛 persons, an act assigning 

outcomes to 𝑛𝑛 states of nature, and so on. One choice situation (row) will be 

randomly selected for real implementation. Matrices are strategies, specifying a 

choice for each choice situation in the experiment. 

 It trivially follows that incentive compatibility of the RIS is equivalent to risk 

(row) monotonicity (“isolation”) where the underlying preferences are the true 

preferences in the choice situations (Cohen, Jaffray, & Said 1987, appendix; Cox, 

Sadiraj, & Schmidt 2014). Row-monotonic aggregation together with EU for risk is 

sufficient for this. Obviously, EU is not necessary here, as explained by Bardsley et 

al. (2010 p. 269) and many others. Nevertheless, there have been widespread 

misunderstandings about this point in the literature. Adding column monotonicity, 

uniformity of monotonicities, and a full domain would, by Theorem 1, indeed give 

EU for risk. Misunderstandings about the misleading restrictiveness of these extra 

assumptions (Section 4) may underlie the widespread misunderstandings. 

 As explained before, our theorems assumed full domains and complete 

preferences, whereas in many applications only subdomains are relevant or available. 

Nevertheless, the domains are often rich enough for our results to provide new 

insights. This point is further illustrated in the application of this section. 

 In the RIS, the more (row-)risk interacts with the components of interest, the 

worse validity is. This is especially problematic for the measurement of ambiguity, 

where risk generates direct contrast effects. Nevertheless, the RIS is commonly used 

there too because no better alternative has been established. We discuss a particular 

problem in detail: hedging in RIS. 

 We assume two Ellsberg urns: a known urn K contains 50 White and 50 Black 

balls, and an unknown ambiguous urn A contains 100 balls, each White or Black, but 

in unknown proportions. From both urns a ball will be drawn at random. 𝑊𝑊𝐾𝐾 denotes 
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the event that the ball drawn from urn K is white, and 𝐵𝐵𝐾𝐾, 𝑊𝑊𝐴𝐴, and 𝐵𝐵𝐴𝐴 are similar. 

(𝐵𝐵𝐴𝐴: 101) denotes a gamble yielding €101 if the ball drawn from urn A is black and 

nothing otherwise. Other gambles are denoted similarly. An experiment concerns 

𝑚𝑚 = 2 choice situations for a given subject. The first, 𝑟𝑟1, reveals the preference 

(𝐵𝐵𝐴𝐴: 101) ≽ (𝐵𝐵𝐾𝐾: 100); the second, 𝑟𝑟2, reveals the preference (𝑊𝑊𝐴𝐴: 101) ≽

(𝑊𝑊𝐾𝐾: 100). The RIS randomly selects 𝑟𝑟1 or 𝑟𝑟2 for real implementation, each with 

probability 0.5. Can we conclude that there is virtually no ambiguity aversion? 

Hedging, explained below, has often been advanced as a confound invalidating this 

conclusion. 

 Three components can be distinguished concerning: the color from K, the color 

from A, and the selection from {𝑟𝑟1, 𝑟𝑟2}. We can nevertheless use our techniques for 

two components, by combining the first two components into one. We thus define 

four 𝑐𝑐𝑗𝑗 as in Figure 11. The figure illustrates the two observed preferences. In the 

usual RIS, we do not directly consider choices between strategies for the whole 

experiment (matrices). However, the two aforementioned experimental preferences 

do, “indirectly,” imply the preference between the two matrices in Figure 11. 

 If we assume column monotonicity, then the preferences in Figure 11 follow 

from nothing other than stochastic dominance: all columns of the preferred matrix 

stochastically dominate those of the dispreferred matrix (1010.50 > 1000.50). In the 

left matrix, the outcomes under 𝑟𝑟2 provide a kind of hedge against those under 𝑟𝑟1 

(same in the right matrix), which explains the term hedging. The preferences then do 

not speak to ambiguity attitudes in any sense. It has often been observed that, under 

column monotonicity and ambiguity nonneutrality, validity of the RIS may be 

violated. Our Theorem 7 shows, more strongly, that it must necessarily be violated, 

and that violations can even be found already at the basic level of a single 

measurement in the experiment. Thus, under column monotonicity the RIS cannot be 

used to measure ambiguity attitudes. 

 The bifurcation in Figure 3 amounts to validity versus invalidity (including 

hedging) of the RIS. The hedging in the above example involved event 

complementarity, an extreme case of hedging (Hartmann 2021). Of course, besides 

hedging, any other reason to violate risk monotonicity discussed before can invalidate 

RIS. 
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 Discussions of hedging under ambiguity include Bade (2015) and Oechssler, Rau, 

& Roomets (2019). Baillon, Halevy, & Li (2022) provided the first empirical 

demonstration and reviewed further literature. Their presentation of stimuli enhanced 

violations of risk (row) monotonicity, demonstrating the potential severity of the basic 

problem. In empirical studies using RIS, stimuli should therefore be framed so as to 

minimize such violations. The techniques of Section 5 apply here. Thus, Johnson et 

al.’s (2021) Prince, an implementation of RIS to maximize validity, selected the real 

choice situation prior to the experiment rather than after as usually done. As explained 

before (the timing technique), their prior selection works better to enhance the desired 

row monotonicity. They further used framing (e.g., as in Fig. 7b) and partial-info 

techniques as best as possible. Baillon, Halevy, & Li (2022), Cox, Sadiraj, & Schmidt 

(2014), and Oechssler & Roomets (2021) also investigated the timing technique. 

 Regarding the partial-info technique for RIS, when facing a choice situation, 

subjects are usually not yet informed about the choice situations that come after, 

precluding all “backward” interactions. To reduce “forward” interactions, each choice 

situation may be presented on a different page or screen, so that subjects can only 

know about preceding choice situations from memory. In general, full understanding 

of strategies in an experiment is humanly impossible. Validity of the RIS can 

therefore be expected to be good (Bardsley et al. 2010 Section 7.5, “behavioral 

incentive compatibility”). Some limited interactions between different choice 

situations can nevertheless occur (reviewed by Johnson et al. 2021). Unfortunately, 

alternatives to the RIS are not easy to devise. 

 

6.3. Implications for other domains 

 

There are numerous cases where aggregation over two or more components is central 

besides those considered before. Our analysis pertains to all those cases, underscoring 

𝑐𝑐3 𝑐𝑐1 𝑐𝑐2 𝑐𝑐4 𝑐𝑐3 𝑐𝑐1 𝑐𝑐2 𝑐𝑐4 
0 

𝑟𝑟1 101 0 101 0 
𝑟𝑟2 0 101 0 101 

FIGURE 11. Hedging in ambiguity 

0 ≽ 

𝐵𝐵𝐾𝐾 ∩ 𝐵𝐵𝐴𝐴 
= = 

∩ 𝐵𝐵𝐴𝐴 𝑊𝑊𝐾𝐾 𝐵𝐵𝐾𝐾 ∩ 𝑊𝑊𝐴𝐴 
= 

∩ 𝑊𝑊𝐴𝐴 𝑊𝑊𝐾𝐾 
= 

∩ 𝐵𝐵𝐴𝐴 𝑊𝑊𝐾𝐾 
= 

𝐵𝐵𝐾𝐾 ∩ 𝐵𝐵𝐴𝐴 
= 

𝐵𝐵𝐾𝐾 ∩ 𝑊𝑊𝐴𝐴 
= 

∩ 𝑊𝑊𝐴𝐴 𝑊𝑊𝐾𝐾 
= 

100 𝑟𝑟1 100 0 
100 0 𝑟𝑟2 0 100 
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the unity in many debates. Broome (1991) provided deep discussions. We briefly 

mention some further cases. 

 Violations of risk monotonicity as in Fig. 6b can be due to correlation aversion. 

This has been extensively studied in many domains, including intertemporal choice 

(Rohde & Yu 2023), multiattribute utility theory (multivariate risk aversion: Attema, 

l’Haridon, & van de Kuilen 2019; Tsetlin & Winkler 2009) and consumer theory with 

𝑡𝑡1 and 𝑡𝑡2 competing or completing commodities. For temporal ambiguity (unknown 

probabilities for 𝑟𝑟1 and 𝑟𝑟2), Kochov (2015) emphasized the plausibility of stream 

monotonicity and correlation preference. Epstein & Halevy (2019) considered an 

interesting case: both rows and columns refer to events with known probabilities, but 

their correlation is ambiguous. Then ambiguity aversion gives Figure 6b with reversed 

preferences. In Córdoba & Ripoll (2017), giving up risk monotonicity served well to 

analyze value of life, and in Pagel (2017), giving up time monotonicity served well to 

analyze lifetime consumption. 

 Andreoni & Sprenger (2012) considered actstreams for risk, with probabilities of 

the states given. Their “direct preference for certainty” is exactly our uniform risk 

(stream/row) monotonicity. Contrary to their suggestions, the violations found were in 

fact violations of any existing risk theory7 rather than only of prospect theory. In their 

quantitative evaluations, Andreoni and Sprenger implicitly assumed risk monotonicity 

by taking the upper branch in the bifurcation of Figure 3, and were criticized (e.g., for 

absence of required correlations) by Cheung (2015), Epper & Fehr-Duda (2015), and 

Miao & Zhong (2015). Similar violations of uniform risk monotonicity had been 

found before, by Abdellaoui, Diecidue, & Öncüler (2011), Bleichrodt & Pinto (2009), 

and others. Any finding that the present bias weakens if risk comes in, implies a 

violation of Axiom 5 in Section 2.2, i.e., of stream monotonicity. Similarly, other 

papers have shown that delaying risks moderates the certainty effect (Abdellaoui, 

Diecidue, & Öncüler 2011; Bommier 2006), implying a violation of Axiom 4 in 

Section 2.2, i.e., of act monotonicity. 

 Many papers studied infinite-dimensional recursive temporal lotteries that do not 

readily fit into the finite framework of this paper. See, for instance, Bommier, 

Kochov, & le Grand (2017) and their references. 

 
7 The utility of gambling theory (Diecidue, Schmidt, & Wakker 2004) accommodated these violations. 

However, this theory is not very tractable or suited for applications. 
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 In judgment aggregation, matrices concern cases to be decided on, rows concern 

propositions, and columns concern judges. The majority rule can then give different 

results under row-first aggregation than under column-first. This has been known as 

the judgment aggregation paradox, and it is similar to our impossibility Theorem 7. 

Proposition-wise independence then is our row independence and matter-wise 

independence is our column independence. In social discounting, the aggregation 

concerns persons and time. 

 For uncertainty, McCarthy, Mikkola, & Thomas (2020) and Zimper (2008) 

observed an equivalence of weak and complete separability, somewhat in the spirit of 

our Theorem 3. They considered only one component and then imposed weak 

separability on all possible decompositions of the component. Theorem 1 can be taken 

to identify subjective probabilities, albeit assuming state-independent utility. This 

result is especially interesting if both components concern uncertainty. in which case 

Axioms 3 and 4 amount to stochastic independence. Their generalizations in Section 3 

and Definition 2 amount to allowing state dependence, losing identifiability of 

probability. Tsakas (2023) provided a way to then still identify probabilities if 

stochastic independence does not hold. 

 Besides the references mentioned before, numerous papers examined the timing 

technique, theoretically and empirically. Again, we bring a unification of these 

analyses. We mention some papers. For time and risk, see Ahn et al. (2019), 

Bommier, Kochov, & le Grand (2017), Epper & Fehr-Duda (2024), and Onay & 

Öncüler (2009). For welfare and risk (where timing of resolution of uncertainty is 

only one way to manipulate an ex post or ex ante viewpoint), see Fleurbaey (2010), 

Miao & Zhong (2018), and Rohde & Rohde (2015). For two-fold uncertainty as in the 

AA framework, see Battigalli et al. (2017), Berger & Eeckhoudt (2021), Calford 

(2021), Eichberger, Grant, & Kelsey (2016), Ke & Zhang (2020), Kochov (2015), 

Oechssler, Rau, & Roomets (2019). See als Machina (2014 footnote 11). Berger & 

Emmerling (2020) examined the overall effect of inequality aversion in separate 

components under different orders of aggregation. They provided a unifying 

framework of their results for several kinds of components. 
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7.  CONCLUSION 
 

We considered optimization over two (or more) components. We proposed a unified 

framework to reexamine many puzzling issues under this light, including 

monotonicity and hedging in the Anscombe-Aumann framework of ambiguity, equity 

in Harsanyi’s utilitarianism, and incentive compatibility of the random incentive 

system. We showed that Nataf’s century-old theorem turns into a modern 

impossibility theorem for behavioral economics, and underlies the aforementioned 

debates and paradoxes. They all concern a common cause: the seemingly innocuous 

conditions of weak separability for each component become surprisingly restrictive 

when combined. We also explicitly state the main implication of our result, the 

bifurcation problem, which has often been dealt with implicitly—or ignored—in the 

literature. Our analysis shows that the problem is more fundamental and acute than 

was thought before. We provided guidelines for making a deliberate choice of 

optimization when dealing with more than one component. 

 

 
APPENDIX. PROOFS 

 

As explained in the introduction and in Online Appendix A, Theorem 3 follows from 

Mongin & Pivato (2015 Proposition 1). We next prove Theorem 1. Statement (i) 

readily implies Statement (ii). We assume Statement (ii), and derive Statement (i). By 

Theorem 3, we obtain an AU representation. We derive proportionality of the 𝑉𝑉𝑗𝑗𝑖𝑖 in 

the AU representation. We can let all 𝑉𝑉𝑗𝑗𝑖𝑖 take value 0 at 0. The AU representation is a 

state- and time-dependent version of DEU. Gorman’s uniqueness result is at this state- 

and time-dependent stage: the functions 𝑉𝑉𝑗𝑗𝑖𝑖, all “grounded” at 0, can jointly be 

replaced by 𝜆𝜆 × 𝑉𝑉𝑗𝑗𝑖𝑖 for any 𝜆𝜆 > 0, independent of 𝑖𝑖 and 𝑗𝑗, and by no other functions. 

 By act monotonicity, the 𝑛𝑛 arrays (𝑉𝑉𝑗𝑗1, … ,𝑉𝑉𝑗𝑗𝑚𝑚) through their sum all represent the 

same preference relation over acts (“column”). Hence, by standard uniquess, these 𝑛𝑛 

arrays of functions, grounded at 0, are proportional to each other. That is, each 

(𝑉𝑉𝑗𝑗1, … ,𝑉𝑉𝑗𝑗𝑚𝑚) is 𝑑𝑑𝑗𝑗 times (𝑉𝑉11, … ,𝑉𝑉1𝑚𝑚) for positive 𝑑𝑑2, … ,𝑑𝑑𝑛𝑛, where we set 𝑑𝑑1 = 1. 

Similarly, by stream monotonicity, the 𝑚𝑚 arrays (𝑉𝑉1𝑖𝑖, … ,𝑉𝑉𝑛𝑛𝑖𝑖) though their sum all 
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represent the same preference relation over streams (“rows”), and each is 𝑞𝑞𝑖𝑖 times 

(𝑉𝑉11, … ,𝑉𝑉𝑛𝑛1) for positive 𝑞𝑞2, … , 𝑞𝑞𝑚𝑚 with 𝑞𝑞1 = 1. We can normalize the 𝑞𝑞𝑖𝑖s to sum to 

1, and denote them 𝑝𝑝𝑖𝑖. All 𝑉𝑉𝑗𝑗𝑖𝑖s are proportional to each other and to one function that 

can be denoted 𝑈𝑈. For 𝑈𝑈 we can take 𝑉𝑉11 or any other 𝑉𝑉𝑗𝑗𝑖𝑖. 

 For completeness, we give the uniqueness results of Theorem 1. By Gorman’s 

aforementioned uniqueness result at the state- and time-dependent stage, now at this 

state- and time-independent stage we have: 𝑈𝑈 is unique up to a positive factor (scale), 

and the 𝑑𝑑𝑗𝑗s are unique up to one other common positive factor. Because of 

normalization, the 𝑝𝑝𝑗𝑗s are unique. We can relax the requirement 𝑈𝑈(0) = 0 and add 

any constant, after which 𝑈𝑈 is also unique up to location. 

 

REFERENCES 
 

Abdellaoui, Mohammed, Enrico Diecidue, & Ayse Öncüler (2011) “Risk Preferences 

at Different Time Periods: An Experimental Investigation,” Management Science 

57, 975–987. 

Abdellaoui, Mohammed, Emmanuel Kemel, Amma Panin, & Ferdinand M. Vieider 

(2019) “Measuring Time and Risk Preferences in an Integrated Framework,” 

Games and Economic Behavior 115, 459–469. 

Ahn, David S., Ryota Iijima, Yves Le Yaouanq, & Todd Sarver (2019) “Behavioral 

Characterizations of Naiveté for Time-Inconsistent Preferences,” Review of 

Economic Studies 86, 2319–2355. 

Alon, Shiri & Gabrielle Gayer (2016) “Utilitarian Preferences with Multiple Priors,” 

Econometrica 84, 1181–1201. 

Andreoni, James & Charles Sprenger (2012) “Risk Preferences Are not Time 

Preferences,” American Economic Review 102, 3357–3376. 

Anscombe, Frank J. & Robert J. Aumann (1963) “A Definition of Subjective 

Probability,” Annals of Mathematical Statistics 34, 199–205. 

Attema, Arthur E. (2012) “Developments in Time Preference and Their Implications 

for Medical Decision Making,” Journal of the Operational Research Society 63, 

1388–1399. 



 33 

Attema, Arthur E., Olivier L’Haridon, & Gijs van de Kuilen (2019) “Measuring 

Multivariate Risk Preferences in the Health Domain, Journal of Health 

Economics 64, 15–24. 

Bade, Sophie (2015) “Randomization Devices and the Elicitation of Ambiguity-

Averse Preferences,” Journal of Economic Theory 159, 221–235. 

Baillon, Aurélien, Yoram Halevy, & Chen Li (2022) “Randomize at Your Own Risk: 

On the Observability of Ambiguity Aversion,” Econometrica 90, 1085–1107. 

Bardsley, Nicholas, Robin P. Cubitt, Graham Loomes, Peter Moffat, Chris Starmer, & 

Robert Sugden (2010) “Experimental Economics; Rethinking the Rules.” 

Princeton University Press, Princeton, NJ. 

Bastianello, Lorenzo & José Heleno Faro (2023) “Choquet Expected Discounted 

Utility,” Economic Theory 75, 1071–1098. 

Battigalli, Pierpaolo, Simone Cerreia-Vioglio, Fabio Maccheroni, & Massimo 

Marinacci (2017) “Mixed Extensions of Decision Problems under Uncertainty,” 

Economic Theory 63, 827–866. 

Baucells, Manel & Franz H. Heukamp (2012) “Probability and Time Tradeoff,” 

Management Science 58, 831–842. 

Berger, Loïc & Louis Eeckhoudt (2021) “Risk, Ambiguity, and the Value of 

Diversification,” Management Science 67(3):1639–1647. 

Berger, Loïc & Johannes Emmerling (2020) “Welfare as Equity Equivalents,” Journal 

of Economic Surveys 34, 727–752. 

Bleichrodt, Han & José Luis Pinto (2009) “New Evidence of Preference Reversals in 

Health Utility Measurement,” Health Economics 18, 713–726. 

Bommier, Antoine (2006) “Uncertain Lifetime and Intertemporal Choice: Risk 

Aversion as a Rationale for Time Discounting,” International Economic Review 

47, 1223–1246. 

Bommier, Antoine (2017) “A Dual Approach to Ambiguity Aversion,” Journal of 

Mathematical Economics 71, 104–118. 

Bommier, Antoine, Asen Kochov, & François le Grand (2017) “On Monotone 

Recursive Preferences,” Econometrica 85, 1433–1466. 

Broome, John R. (1991) “Weighing Goods.” Basil Blackwell, Oxford, UK. 

Calford, Evan M. (2021) “Mixed Strategies and Preference for Randomization in 

Games with Ambiguity Averse Agents,” Journal of Economic Theory 197, 

105326. 



 34 

Cheung, Stephen L. (2015) “Risk Preferences Are not Time Preferences: On the 

Elicitation of Time Preference under Conditions of Risk: Comment (#11),” 

American Economic Review 105, 2242–2260. 

Cohen, Michèle, Jean-Yves Jaffray, & Tanios Said (1987) “Experimental 

Comparisons of Individual Behavior under Risk and under Uncertainty for Gains 

and for Losses,” Organizational Behavior and Human Decision Processes 39, 1–

22. 

Córdoba, Juan Carlos & Marla Ripoll (2017) “Risk Aversion and the Value of Life,” 

Review of Economic Studies 84, 1472–1509. 

Cox, James C., Vjollca Sadiraj, & Ulrich Schmidt (2014) “Asymmetrically 

Dominated Choice Problems, the Isolation Hypothesis and Random Incentive 

Mechanisms,” PLoS ONE 9, e90742. 

Diamond, Peter A. (1967) “Cardinal Welfare, Individual Ethics, and Interpersonal 

Comparison of Utility: Comment,” Journal of Political Economy 75, 765–766. 

Diecidue, Enrico, Ulrich Schmidt, & Peter P. Wakker (2004) “The Utility of 

Gambling Reconsidered,” Journal of Risk and Uncertainty 29, 241–259. 

Eichberger, Jürgen, Simon Grant, & David Kelsey (2016) “Randomization and 

Dynamic Consistency,” Economic Theory 62, 547–566. 

Eichberger, Jürgen & Illia Pasichnichenko (2021) “Decision-Making with Partial 

Information,” Journal of Economic Theory 198, 105369. 

Epper, Thomas & Helga Fehr-Duda (2015) “Risk Preferences Are not Time 

Preferences: Balancing on a Budget Line: Comment (#12)” American Economic 

Review 105, 2261–2271. 

Epper, Thomas & Helga Fehr-Duda (2024) “Risk in Time: The Intertwined Nature of 

Risk Taking and Time Discounting,” Journal of the European Eonomi Assoiation 

22, 310–354. 

Epstein, Larry G. & Yoram Halevy (2019) “Ambiguous Correlation,” Review of 

Economic Studies 86, 668–693. 

Epstein, Larry G. & Stanley E. Zin (1989) “Substitution, Risk Aversion, and the 

Temporal Behavior of Consumption and Asset Returns: A Theoretical 

Framework,” Econometrica 57, 937–969. 

Esponda, Ignacio & Emanuel Vespa (2024) “Contingent Thinking and the Sure-Thing 

Principle: Revisiting Classic Anomalies in the Laboratory,” Review of Economic 

Studies, forthcoming. 



 35 

Fleurbaey, Marc (2010) “Assessing Risky Social Situations?,” Journal of Political 

Economy 118, 649–680. 

Gorman, William M. (1968) “The Structure of Utility Functions,” Review of 

Economic Studies 35, 367–390. 

Gul, Faruk (1992) “Savage’s Theorem with a Finite Number of States,” Journal of 

Economic Theory 57, 99–110. (“Erratum,” 1993, Journal of Economic Theory 61, 

184.) 

Halevy, Yoram (2008) “Strotz Meets Allais: Diminishing Impatience and the 

Certainty Effect,” American Economic Review 98, 1145–1162. 

Harsanyi, John C. (1955) “Cardinal Welfare, Individualistic Ethics, and Interpersonal 

Comparisons of Utility,” Journal of Political Economy 63, 309–321. 

Hartmann, Lorenz (2021) “Maxmin Expected Utility with Non-Unique Prior,” 

working paper. 

Hill, Brian (2019) “A Non-Bayesian Theory of State-Dependent Utility,” 

Econometrica 87, 1341–1366. 

Ida, Takanori & Rei Goto (2009) “Simultaneous Measurement of Time and Risk 

Preferences: Stated Preference Discrete Choice Modeling Analysis Depending 

On Smoking Behavior,” International Economic Review 50, 1169–1182. 

Jaffray, Jean-Yves (1989) “Linear Utility Theory for Belief Functions,” Operations 

Research Letters 8, 107–112. 

Johnson, Cathleen, Aurélien Baillon, Han Bleichrodt, Zhihua Li, Dennie van Dolder, 

& Peter P. Wakker (2021) “Prince: An Improved Method for Measuring 

Incentivized Preferences,” Journal of Risk and Uncertainty 62, 1–28. 

Kahneman, Daniel & Amos Tversky (1979) “Prospect Theory: An Analysis of 

Decision under Risk,” Econometrica 47, 263–291. 

Ke, Shaowei & Qi Zhang (2020) “Randomization and Ambiguity Aversion,” 

Econometrica 88, 1159–1195. 

Keeney, Ralph L. & Howard Raiffa (1976) “Decisions with Multiple Objectives.” 

Wiley, New York (2nd edn. 1993, Cambridge University Press, Cambridge). 

Klibanoff, Peter, Massimo Marinacci, & Sujoy Mukerji (2005) “A Smooth Model of 

Decision Making under Ambiguity,” Econometrica 73, 1849–1892. 

Kochov, Asen (2015) “Time and No Lotteries: An Axiomatization of Maxmin 

Expected Utility,” Econometrica 83, 239–262. 



 36 

Kreps, David M. & Evan L. Porteus (1978) “Temporal Resolution of Uncertainty and 

Dynamic Choice Theory,” Econometrica 46, 185–200. 

Machina, Mark J. (2014) “Ambiguity Aversion with Three or More Outcomes,” 

American Economic Review 104, 3814–3840. 

Marinacci, Massimo (2015) “Model Uncertainty,” Journal of the European Economic 

Association 13, 1022–1100. 

Martins-da-Rocha, Victor Filipe & Rafael M. Rosa (2021) “An Anscombe– Aumann 

Approach to Second-Order Expected Utility,” working paper. 

McCarthy, David, Kalle Mikkola, & Teruji Thomas (2020) “Utilitarianism with and 

without Expected Utility,” Journal of Mathematical Economics 87, 77–113. 

Miao, Bin & Songfa Zhong (2015) “Risk Preferences Are not Time Preferences: 

Separating Risk and Time Preference: Comment (#13),” American Economic 

Review 105, 2272–2286. 

Miao, Bin & Songfa Zhong (2018) “Probabilistic Social Preference: How Machina’s 

Mom Randomizes Her Choice,” Economic Theory 65, 1–24. 

Monet, Benjamin & Vassili Vergopoulos (2023) “Ambiguity, Randomization and the 

Timing of Resolution of Uncertainty,” working paper. 

Mongin, Philippe (1995) “Consistent Bayesian Aggregation,” Journal of Economic 

Theory 66, 313–351. 

Mongin, Philippe & Marcus Pivato (2015) “Ranking Multidimensional Alternatives 

and Uncertain Prospects,” Journal of Economic Theory 157, 146–171. 

Moscati, Ivan (2018) “Measuring Utility: From the Marginal Revolution to 

Behavioral Economics.” Oxford University Press, Oxford, UK. 

Nataf, André (1948) “Sur la Possibilité de Construction de Certain Macromodèles,” 

Econometrica 16, 232–244. 

Oechssler, Jörg, Hannes Rau, & Alex Roomets (2019) “Hedging, Ambiguity, and the 

Reversal of Order Axiom,” Games and Economic Behavior 117, 380–387. 

Oechssler, Jörg & Alex Roomets (2021) “Savage vs. Anscombe-Aumann: An 

Experimental Investigation of Ambiguity Frameworks,” Theory and Decision 90, 

405–416. 

Onay, Selçuk & Ayse Öncüler (2009) “How Do We Evaluate Future Gambles? 

Experimental Evidence on Path Dependency in Risky Intertemporal Choice,” 

Journal of Behavioral Decision Making 22, 280–300. 



 37 

Pagel, Michaela (2017) “Expectations-Based Reference-Dependent Life-Cycle 

Consumption,” Review of Economic Studies 84, 885–934. 

Pivato, Marcus (2013) “Risky Social Choice with Incomplete or Noisy Interpersonal 

Comparisons of Well-being,” Social Choice and Welfare 40, 123–139. 

Pivato, Marcus & Élise Flore Tchouantez (2024) “Bayesian Social Aggregation with 

Non-Archimedean Utilities and Probabilities,” Economic Theory 77, 561–595. 

Rohde, Ingrid M. T. & Kirsten I. M. Rohde (2015) “Managing Social Risks – 

Tradeoffs between Risks and Inequalities,” Journal of Risk and Uncertainty 51, 

103–124. 

Rohde, Kirsten I.M. & Xiao Yu (2023) “Intertemporal Correlation Aversion – A 

Model-Free Measurement,” Management Science, forthcoming. 

Schneider, Florian & Martin Schonger (2018) “An Experimental Test of the 

Anscombe-Aumann Monotonicity Axiom,” Management Science 65, 1667–1677. 

Stango, Victor & Jonathan Zinman (2023) “We Are All Behavioural, More, or Less: 

A Taxonomy of Consumer Decision-Making,” Review of Economic Studies 90, 

1470–1498. 

Starmer, Chris (2000) “Developments in Non-Expected Utility Theory: The Hunt for 

a Descriptive Theory of Choice under Risk,” Journal of Economic Literature 38, 

332–382. 

Tsakas, Elias (2023) “Belief Identification by Proxy,” working paper. 

Tsetlin, Ilia & Robert L. Winkler (2009) “Multiattribute Utility Satisfying a 

Preference for Combining Good with Bad,” Management Science 55, 1942–1952. 

Tversky, Amos & Daniel Kahneman (1992) “Advances in Prospect Theory: 

Cumulative Representation of Uncertainty,” Journal of Risk and Uncertainty 5, 

297–323. 

Wakker, Peter P. (2010) “Prospect Theory: For Risk and Ambiguity.” Cambridge 

University Press, Cambridge, UK. 

Zimper, Alexander (2008) “Revisiting Independence and Stochastic Dominance for 

Compound Lotteries,” B.E. Journal of Theoretical Economics (MS #1444). 

 



For Online Publication: Online Appendix of 

“The Deceptive Beauty of Monotonicity, and the Million-Dollar 

Question: Row-First or Column-First Aggregation?” 
Chen Li, Kirsten I.M. Rohde, & Peter P. Wakker 

April, 2024 

 

 

ONLINE APPENDIX A. PRECEDING MATHEMATICAL 

RESULT 
 

 The mathematics underlying our results has been known longtime. We do not 

bring mathematical novelties. This appendix discusses preceding literature. Theorem 3 

has been known since Nataf (1948). There, rows described producers and columns 

described production inputs. Nataf presented8 Theorem 3 to show when macro 

(column-first, or column-monotonic, defined below) aggregation of production inputs 

can be equivalent to micro (row-first, or row-monotonic) aggregation: only if there is 

not any interaction9. van Daal & Merkies (1988) provided an early historical account. 

This production example further illustrates the wide applicability of our framework. 

 Mongin & Pivato (2015 Proposition 1) provided the mathematically most general 

versions of Nataf’s (1948) result, implying our Theorem 3. (Hence, we gave no proof 

of it.) In the mathematical theory of functional equations, these results have been 

known as generalized bisymmetry equations.10 See Maksa (1999), who also pointed 

out their relatedness to economic aggregation. The special case of proportional 

representations in our Theorem 1 is equivalent to mathematical theorems on 

multisymmetry functional equations, explained by Münnich, Maksa, & Mokken 

(2000). Mongin & Pivato (2015 Theorem 1) is the most general result of this kind. 

 
8 He heavily used differentiability and his proof is not easily accessible. 
9 Formally, we use the suggestive term interaction to indicate preference relations that violate complete 

separability. In general, not only rows and columns, but every subset of cells can be nonseparable, i.e., 

be impacted by (interacting with) any other subset of cells. 
10 They search for functions allowing identity of Eqs. 5 and 6 im the main text. 
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See Zuber (2016) for related results and literature with Anscombe-Aumann outcome 

sets. Whereas all aforementioned results and virtually all results cited or given in this 

paper heavily use continuity in outcomes, Grabisch, Monet, & Vergopoulos (2023) 

give a version of our Theorem 1 that uses a continuum state space, rather than 

outcome space. 

 Thus, the mathematics underlying our results has been known longtime. As for 

Theorem 1 on DEU, its novelty is not in mathematical generality but in simplicity and 

appeal. The preference conditions there can be stated verbally and are accessible to 

nonspecialists more than any preeding axiomatization of DEU. Although many 

authors, several cited later, used advanced implications of the preceding results in 

various decision theories, their basic impact for empirical and theoretical work, 

specified in Section 4 and applied in the rest of this paper, has not been presented 

before. 

 

ONLINE APPENDIX B. EXTENSION TO INFINITE-

DIMENSIONAL MATRICES 
 

Extensions to matrices with infinitely many rows and/or columns are often of interest. 

This holds mainly for Theorem 1. Infinite-dimensional extensions of Theorem 3 are 

less common because they involve uncommon functionals, generalizing integrals. 

Wakker & Zank (1999) examined them. We focus on Theorem 1 henceforth, 

interpreting rows as states and columns as timepoints, but using the general notation 

of Figure 2. 

 Equal-likely states in Figure 2 can capture all simple lotteries with rational 

probabilities (McCarthy, Mikkola, & Thomas 2020). Mixture-closedness or 

continuous distributions require a continuum of 𝑟𝑟𝑖𝑖. Such extensions can be obtained 

by standard techniques from mathematical measure theory. Theorem 11 provides a 

typical example. It is explained next. 

 We continue to assume 𝑛𝑛 columns 𝑐𝑐1, … , 𝑐𝑐𝑛𝑛 with 𝑛𝑛 ≥ 2 fixed. A row continues to 

be an element of ℝ𝑛𝑛. In the main text, we considered the special case of risk where 

each 𝑟𝑟𝑖𝑖 had probability 1/𝑚𝑚, so that matrices could be identified with some simple 

probability distributions over columns. We now consider more general probability 

distributions over rows, such as the space of all simple probability distributions or all 
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bounded ones. To this effect, instead of 𝑅𝑅 = {𝑟𝑟1, … , 𝑟𝑟𝑚𝑚}, we now assume 𝑅𝑅 = [0,1), 

endowed with the uniform distribution 𝑃𝑃 and instead of finite-dimensional matrices as 

before, we now consider functions from 𝑅𝑅 × {𝑐𝑐1, … , 𝑐𝑐𝑛𝑛} to the reals. We continue to 

call such functions matrices. Preferences will be over matrices. We make the 

assumption characteristic of decision under risk: functions on 𝑅𝑅 × {𝑐𝑐1, … , 𝑐𝑐𝑛𝑛} that 

generate the same probability distribution over rows are indifferent. 

 Using obvious notation, a simple probability distribution over rows can be 

denoted (𝑝𝑝1: 𝑟𝑟1, … ,𝑝𝑝𝑘𝑘: 𝑟𝑟𝑘𝑘), with 𝑘𝑘 variable, and all probabilities positive. We identify 

it with a matrix that assigns row 𝑟𝑟𝑖𝑖 to each set 𝑅𝑅𝑖𝑖, where (𝑅𝑅1, … ,𝑅𝑅𝑘𝑘) partitions [0,1) 

and 𝑃𝑃�𝑅𝑅𝑖𝑖� = 𝑝𝑝𝑖𝑖 for each 𝑖𝑖. It, thus, is like the matrix in Figure 2, with 𝑅𝑅𝑖𝑖 for 𝑟𝑟𝑖𝑖 for 

each 𝑖𝑖, and 𝑚𝑚 = 𝑘𝑘. It will be sufficient to impose our intuitive axioms only on such 

simple finite-dimensional matrices. Row and column monotonicity are now defined to 

hold for all simple matrices.11 For each fixed (𝑅𝑅1, … ,𝑅𝑅𝑘𝑘), Theorem 1 then gives a 

DEU representation. Normalizing 𝑈𝑈(0) = 0, 𝑈𝑈(1) = 1, these DEU representations 

agree on common domain by standard uniqueness results, giving a probability 

measure 𝑃𝑃′ on [0,1) that at this stage might be thought to possibly differ from 𝑃𝑃 and 

even be only finitely additive. However, partitions (𝑅𝑅1, … ,𝑅𝑅𝑘𝑘) with 𝑃𝑃�𝑅𝑅𝑖𝑖� = 1/𝑘𝑘, by 

symmetry, imply 𝑃𝑃′�𝑅𝑅𝑖𝑖� = 1/𝑘𝑘 = 𝑃𝑃(𝑅𝑅𝑖𝑖). The unions of such 𝑅𝑅𝑖𝑖 show that 𝑃𝑃′ agrees 

with 𝑃𝑃 on all 𝑅𝑅 ⊂ [0,1) with rational 𝑃𝑃 probability. By monotonicity w.r.t. set 

inclusion, 𝑃𝑃′ and 𝑃𝑃 are identical. We have obtained a DEU representation for all 

simple matrices. 

 The extension of our theorems to all bounded matrices now follows using 

standard techniques from mathematical measure theory. Monotonicity with respect to 

rows and columns, but also with respect to outcomes, is imposed only on simple 

matrices. Thus, null events are avoided and strict preferences are properly implied. 

We reinforce outcome monotonicity to infinite dimensions by adding pointwise 

monotonicity: a matrix is weakly preferred if all its cells weakly dominate. This 

condition is as unobjectionable for infinite dimensions as it is for finitely many. Every 

bounded matrix is now “sandwiched” more and more tightly by pointwise dominating 

and dominated simple matrices. This determines a unique 𝐷𝐷𝐷𝐷𝑈𝑈 value, such that strict 

 
11 Bear in mind that we assume strictly positive probabilities, avoiding null events as required for 

outcome monotonicity. 
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inequality of 𝐷𝐷𝐷𝐷𝑈𝑈 values implies strict preference (using transitivity). Next, we 

reinforce continuity into supnorm continuity, ensuring existence of constant 

equivalents. Then equality of 𝐷𝐷𝐷𝐷𝑈𝑈 values, again using transitivity, implies 

indifference and, hence, we have a 𝐷𝐷𝐷𝐷𝑈𝑈 representation. We have shown the following 

result. 

 

Theorem 11. Assume that: (a) matrices map [0,1) × {𝑐𝑐1, … , 𝑐𝑐𝑛𝑛} to the reals and are 

measurable; (b) preferences are over matrices; (c) decision under risk holds with 

respect to the uniform distribution on [0,1). That is, our domain of matrices is 

equivalent to probability distributions over “rows” in ℝ𝑛𝑛. On the domain of simple 

matrices/distributions, and also on the domain of all bounded matrices/distributions, 

discounted expected utility holds if and only if weak ordering, supnorm continuity, 

pointwise monotonicity, and monotonicity with respect to outcomes, rows, and 

columns hold. 

 

 Extension to unbounded matrices and connected topological outcome spaces 

(including all convex sets of commodity bundles) can be obtained by Wakker’s 

(1993) truncation continuity. The total subjective weight of space 𝑅𝑅 is still assumed 

bounded here. Unbounded subjective weight of 𝑅𝑅 may occur, for instance, if 𝑅𝑅 

reflects time rather than uncertainty, or populations of variable size. Then further 

continuity conditions have to be invoked, discussed for instance by Asheim et al. 

(2010), Banerjee & Mitra (2007), Christensen (2022), Drugeon & Huy (2022), 

Marinacci (1998), and Pivato (2022). For extensions to infinitely many columns, 

besides infinitely many rows, our extension techniques are similarly applied to 

columns. 

 Theorem 11 can be used for all interpretations of columns. If they refer to 

ambiguous events (horses), versions of the AA framework result. Here it is usually 

assumed that only marginal distributions conditional on horses matter, which can be 

added as a preference condition. Then our structure becomes isomorphic to the set of 

maps from {𝑐𝑐1, … , 𝑐𝑐𝑛𝑛} to probability distributions over ℝ. Correlations between 

different 𝑐𝑐𝑗𝑗 then play no role. 

  



 5 

 

ONLINE APPENDIX C. THEORETICAL APPLICATIONS 

OF NATAF’S AGGREGATION RESULT TO PREFERENCE 

AXIOMATIZATIONS 
 

 We briefly sketch some further theoretical applications to preference 

axiomatizations, in addition to Theorem 1 in the main text. We first assume that both 

rows and columns refer to events. Thus, {𝑟𝑟1, … , 𝑟𝑟𝑚𝑚} and {𝑐𝑐1, … , 𝑐𝑐𝑛𝑛} are two partitions 

of the universal event. In Figure 1, the intersection event 𝑟𝑟𝑖𝑖 ∩ 𝑐𝑐𝑗𝑗 gives outcome 𝑥𝑥𝑗𝑗𝑖𝑖. 

Outcome monotonicity implies that none of those intersections is empty or null. 

Uniform row and column monotonicity can be interpreted as versions of stochastic 

independence: being informed about one partition does not affect preferences over the 

other. Theorem 1 then gives an appealing axiomatization of subjective expected 

utility, alternative to Savage (1954). Pfanzagl (1968; Section 12.5) presented this 

result using the stochastic independence interpretation for 𝑚𝑚 = 𝑛𝑛 = 2. Mongin (2020) 

and Ceron & Vergopoulos (2021) independently generalized it to general 𝑚𝑚,𝑛𝑛. 

 We next continue to assume that rows and columns refer to events, but we further 

assume decision under risk for the 𝑟𝑟𝑖𝑖, with probability 1/𝑚𝑚 for each 𝑟𝑟𝑖𝑖. We first 

consider the case where the 𝑐𝑐𝑗𝑗s may have unknown probabilities. Theorem 1 gives 

expected utility for risk (evaluating each column). Our equally-likely case can cover 

all simple rational-probability distributions. Online Appendix B shows how more 

general probability distributions can be incorporated, and that subjective probabilities 

over rows must be equal to the objective probabilities over rows. Theorem 1 also 

gives expected utility for the horse events 𝑐𝑐𝑗𝑗 and, thus, provides an alternative 

axiomatization of the original expected utility model of AA, using the two-stage 

framework that has become standard today. AA referred to standard mixture 

independence to axiomatize expected utility for risk, and also assumed horse 

monotonicity. In our approach, their mixture independence is weakened to risk 

monotonicity. For our monotonicities the event, say row, to be conditioned on always 

only involves one outcome per column, whereas for von Neumann-Morgenstern 

mixture independence (or Savage’s sure-thing principle) such events to be 

conditioned on must be allowed to involve any number of rows, i.e. any number of 
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outcomes per column. The symmetry of our two monotonicity conditions and, thus, of 

the treatment of risk and uncertainty, adds to the appeal of our alternative theorem. As 

a price to pay, we need continuous utility whereas AA allowed for complete 

generality in this regard. 

 If we interpret the 𝑐𝑐𝑗𝑗s as persons rather than events, Theorem 1 becomes an 

alternative to Harsanyi’s (1955) welfare result based on the veil of ignorance. His 

Pareto optimality is column monotonicity. Like AA, he refers to mixture 

independence to obtain EU, and we similarly generalize here. In Theorem 1 there is 

no middle ground: if the social welfare function is ordinal in the individual utilities 

then it must be cardinal, leading to a linear sum. This is the essence of Harsanyi’s 

result. Grant et al. (2010) provided generalizations that relaxed the independence and 

monotonicity conditions in Harsanyi’s result. 

 We, finally, present an implication where only one component is available at the 

outset, but we construct a second kind for auxiliary purposes. Gul (1992) considered a 

finite state space {𝑟𝑟1, … , 𝑟𝑟𝑚𝑚}. Acts (𝑥𝑥1, … , 𝑥𝑥𝑚𝑚) map states to ℝ. Gul’s preference 

relation on acts, denoted  ≽ ′ here, satisfies weak ordering, continuity, and outcome 

monotonicity, implying that all states are nonnull. One fixed event 𝐴𝐴 (nontrivial 

subset of the state space) plays a special role explained later (reminiscent of Ramsey’s 

(1931) ethically neutral event). We define the function 𝐶𝐶 on acts as the certainty 

equivalent (“constant equivalent”) function, and 𝑅𝑅1(𝑦𝑦1,𝑦𝑦2) = ⋯ = 𝑅𝑅𝑚𝑚(𝑦𝑦1,𝑦𝑦2) as the 

certainty equivalent function of acts (𝐴𝐴:𝑦𝑦1,𝐴𝐴𝑐𝑐:𝑦𝑦2), using obvious notation. 

 We take matrices as in Figure 2 with 𝑛𝑛 = 2, 𝑐𝑐1 = 𝐴𝐴, 𝑐𝑐2 = 𝐴𝐴𝑐𝑐. We define our 

preference relation ≽ over matrices as represented by Eq. 5. Thus, row monotonicity 

holds (Observation 6) and it is uniform because all 𝑅𝑅𝑗𝑗’s are the same. The act 

�𝑅𝑅1(𝑥𝑥11, 𝑥𝑥21), . . . . . . ,𝑅𝑅𝑚𝑚(𝑥𝑥1𝑚𝑚, 𝑥𝑥2𝑚𝑚)� can be identified with the equivalence class of 

corresponding matrices with entries 𝑥𝑥1
𝑗𝑗′ and 𝑥𝑥2

𝑗𝑗′ such that 𝑅𝑅𝑗𝑗�𝑥𝑥1
𝑗𝑗′, 𝑥𝑥2

𝑗𝑗′� = 𝑅𝑅𝑗𝑗�𝑥𝑥1
𝑗𝑗 , 𝑥𝑥2

𝑗𝑗� 

for all 𝑗𝑗. Uniform column monotonicity for ≽ over matrices in Figure 2 is equivalent 

to Gul’s Assumption 2 for ≽ ′ on acts, a condition called act independence nowadays 

(Chew & Karni 1994). Thus, we obtain as a corollary of Theorem 1: 

 

Theorem 12. Under the assumptions of this subsection, the following four statements 

are equivalent: 

(i) Expected utility holds for ≽ ′ over acts. 
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(ii) Discounted expected utility holds for ≽ over matrices. 

(iii) Uniform column monotonicity holds for ≽ over matrices. 

(iv) Act independence holds for ≽ ′ over acts. 

 

In the above result, standard uniqueness results for DEU imply that the “discount 

weight” 𝑑𝑑1 of the left column, after normalization, is the probability of event 𝐴𝐴 

resulting from the row probabilities. The conditions in Statements (iii) and (iv) are 

appealing because they mimic mixture independence for risk to the context of 

uncertainty. 

 Gul’s axiomatization of subjective expected utility through act independence thus 

follows as a corollary of our Theorem 1. Our result is more general because Gul 

required the event 𝐴𝐴 to satisfy a symmetry condition implying that it has subjective 

probability 0.5, which we do not need. Chew & Karni (1994) also provided this 

generalization. Our verbal proof, involving the Appendix in the main text and the 

preceding paragraphs, is considerably shorter and more accessible than that in Gul 

(1992 pp. 104-109) or Chew & Karni (1994). It is remarkable that Gul (1992) can be 

obtained as, essentially, a corollary of Nataf (1948). 

 Some other axiomatizations of expected utility used generalizations of 

bisymmetry axioms that are all more restrictive than Gul’s Assumption 2: they also 

consider more than two columns and many events 𝐴𝐴 (Köbberling & Wakker 2003 

Theorem 16). Hence, they also follow as corollaries of our Theorems 1 and 12. Such 

results include Krantz et al. (1971, Theorem 6.9.10 which assumes 𝑚𝑚 = 𝑛𝑛 =2), 

Pfanzagl (1959 pp. 287–288 which assumes 𝑚𝑚 = 𝑛𝑛 =2), and Münnich, Maksa, & 

Mokken (2000 Theorem 2). 
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