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Abstract

Macroeconomic disasters (wars, pandemics, depressions) are characterized by drastic shifts and

increased volatility of the aggregate consumption to income ratio. By standard intertemporal budget

constraint logic, this ratio is linked to expectations of future income and consumption growth rates.

We investigate whether these expectations suffice to explain the shifts in the consumption-income

ratio that occur during disaster periods or whether, on the other hand, consumers become more

forward-looking and therefore give more weight to these expectations during disaster times. Our

theoretical framework implies that the predictive ability of the current consumption-income ratio for

future income and consumption growth rates is higher during disaster episodes. We check this both

for past disasters and the current Covid-19 pandemic through the estimation of panel data regres-

sions for industrial economies using historical annual data (1870 − 2015) and recent quarterly data

(1995Q1 − 2020Q4). Our estimations confirm that macroeconomic disasters, contrary to ordinary

recessions, make consumers more forward-looking.
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1 Introduction

The Covid-19 pandemic and the lockdown measures implemented to contain it in countries around the

world have triggered significant changes in the consumption and saving behavior of households. Unprece-

dented upward shifts have been reported in the propensities to save of US and European households

during 2020. These shifts have been attributed both to forced (or, involuntary) saving caused by the

lockdowns and to precautionary saving motives stemming from increased uncertainty about future income

and employment prospects (see e.g., Dossche and Zlatanos, 2020; Vandenbroucke, 2021). As macroeco-

nomic disaster episodes - i.e., pandemics such as Covid-19 but also historical wars and depressions - are

characterized by drastic declines in GDP, private consumption or both (see Barro and Ursúa, 2008), it is

not surprising that the changes in consumption and income that occur during these periods potentially

imply large movements in the propensity to consume and to save out of income.

This paper therefore focuses on the propensity to consume out of income - as captured by the con-

sumption to income ratio - during macroeconomic disaster episodes.1 We consider both historical disaster

episodes (such as wars, depressions and past pandemics) and the current Covid-19 pandemic by looking at

historical annual data (1870-2015) and recent quarterly data (1995Q1-2020Q4) for industrial economies.

We start from the observation that macro disaster periods, defined by Barro and Ursúa (2008) as peak-

to-trough cumulative declines in GDP and/or private consumption of at least 10%, are characterized

by multiple, often drastic shifts and increased volatility of the consumption-income ratio. As standard

intertemporal budget constraint (IBC) logic implies that this ratio is linked to expectations about fu-

ture income and consumption growth rates, this paper investigates whether these expectations about the

future suffice to explain the shifts in the consumption-income ratio that occur during disaster periods

or whether, on the other hand, consumers become more forward-looking and therefore give more weight

to these expectations during disaster times. Theoretically, we build on the framework of Campbell and

Mankiw (1989) and Lettau and Ludvigson (2005) in which a representative consumer satisfies the IBC

by allowing for disaster-dependent discount factors. Assuming that disaster episodes constitute periods

during which consumers, on average, earn and consume a smaller fraction of their lifetime wealth, these

periods effectively extend the horizon of their budget constraint, making them more forward looking.

Hence, during disaster episodes discount factors are higher and more weight is given to expectations

about future income and consumption growth rates. Because the consumption-income ratio is linked to

these (potentially volatile) expectations, it may shift more drastically and become more volatile during

1We focus on the consumption-income ratio instead of the saving rate to which it is inversely related as, in the theory

outlined in Section 3 below, we derive expressions for the log consumption-income ratio. Denoting by c − y the log

consumption-income ratio, the log saving-income ratio can then be calculated as ln[1− exp (c− y)].
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disasters. Empirically, since the theory suggests that the current log consumption-income ratio contains

information about future income and consumption growth rates, this period’s log consumption-income

ratio should have predictive power for next period’s income and consumption growth rates. Moreover,

given our disaster-dependent discount factors, this predictive ability should be higher during disaster pe-

riods. Hence, we evaluate the predictive power of the log consumption-income ratio both during normal

times and during disaster episodes through the estimation of panel predictive regressions for industrial

economies. We first look at past disaster periods (such as World Wars I and II and the Great Depres-

sion) using our historical annual dataset and then look at the current Covid-19 pandemic using our recent

quarterly dataset. We make full use of the panel structure of the data. First, we estimate country-specific

predictive impact estimates which implicitly allows for cross-country differences in the underlying discount

factors. These estimates are then combined using the mean group (MG) estimator to obtain estimates

for the average effects. This avoids obtaining biased and inconsistent parameter estimates when falsely

assuming that the regression slope parameters are identical across countries (see Pesaran and Smith,

1995). Second, we allow for cross-sectional dependence in the data as it is possible that unobserved com-

mon factors such as common business or financial cycles affect the dependent variable and the regressors

in the estimated equations. This can also lead to biased and inconsistent parameter estimates. To take

this cross-sectional dependence into account, we use the common correlated effects (CCE) methodology

suggested by Pesaran (2006) where the unobserved common factors are controlled for by including cross-

sectional averages of the dependent variable and all explanatory variables as additional regressors in the

model. We use the mean group (CCEMG) variant to allow for parameter heterogeneity.

Our findings using historical data confirm that the predictive ability of the log consumption-income ra-

tio for future income and consumption growth rates is significantly higher during macroeconomic disasters.

Interpreted through the lens of the model, our results suggest that consumers are more forward-looking

during disaster times and, consequently, then give more weight to expectations about future income and

consumption growth rates in their consumption decisions. As such, expectations about future income and

consumption growth rates, in and of themselves, do not appear to be sufficient to explain the large shifts

and high volatility observed in the consumption-income ratios during these crisis periods. An increase in

the weight given to future expectations is also required to explain the data. Our results survive several

robustness checks. Furthermore, the increased predictive ability of the consumption-income ratio is not

limited to one particular disaster type but is found for every major crisis type that we consider in our

historical dataset (i.e., World Wars I and II, the Great Depression and the Spanish flu pandemic of the

late 1910s and early 1920s). When looking at conventional recessions instead of disaster episodes, how-

ever, we fail to find a significantly higher predictive impact of the consumption-income ratio. The results
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obtained when using our recent quarterly dataset for the period 1995Q1−2020Q4 are fully in line with the

results obtained for historical disaster episodes, i.e., the predictive power of the log consumption-income

ratio on next period’s income and consumption growth rates is significantly higher during the Covid-19

pandemic. While these results hold across different robustness checks, they again do not hold for ordinary

recessions that have occurred over the sample period.

While there is a large literature that focusses on the asset-pricing implications of macroeconomic

disasters (see e.g., Rietz, 1988; Barro, 2006, 2009; Barro and Ursúa, 2012; Nakamura et al., 2013; Gillman

et al., 2015; Farhi and Gabaix, 2016), our paper fits in and adds to a growing literature that looks

at the behavior of consumption and saving during crises - mostly, conventional recessions - and at the

channels through which these crises affect the propensity to consume and save. Mody et al. (2012) report

large increases in the saving rates of advanced economies during the Great Recession and attribute these

increases to changes in variables that capture precautionary saving, i.e., unemployment risk and GDP

volatility. Alan et al. (2012) find that increased uncertainty - rather than credit tightening - explains

the rise in the saving rate of UK households during recessions. Using data covering multiple recessions

in OECD countries, Adema and Pozzi (2015) present evidence that household saving ratios increase

during recessions, i.e., behave countercyclically, which they attribute to higher unemployment risk, lower

household wealth and tighter credit constraints. Carroll et al. (2019) report that the saving rate across

the business cycle in the US is largely driven by the degree of labor income uncertainty and credit

availability. Taking a different tack closer to our work, Aizenman and Noy (2015) explore the role of

history-dependence in the dynamics of saving and use historical data for industrial economies to show

that past crisis experiences subsequently have a strong positive impact on household saving. Recently,

the existing literature looks beyond conventional recessions to explore the effects of the current Covid-

19 pandemic on saving. Jordà et al. (2020) use European data going back to the 14th century and

argue that pandemics, current and historical, may induce shifts to greater precautionary saving. Coibion

et al. (2020) use US survey data to investigate how local lockdown measures implemented in reaction to

Covid-19 have affected consumer spending and the macroeconomic expectations of households.

The outline of the paper is as follows. Section 2 graphically looks at the behavior of the consumption

to income ratio during macroeconomic disaster episodes. Section 3 presents our theoretical framework.

The empirical specification and the estimation method are outlined in Section 4. The results for historical

macro disasters are presented in Section 5, while the results related to the Covid-19 pandemic are reported

in Section 6. Section 7 concludes.
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2 Macroeconomic disasters and the consumption-income ratio

Figure 1 presents historical annual time series over the period 1870 − 2015 for the log consumption to

GDP ratio for sixteen industrial economies for which these data are available. The figure also shows the

macroeconomic disaster episodes as identified by Barro and Ursúa (2008) of which the most prominent are

(in chronological order) World War I, the Spanish flu pandemic of the late 1910s/early 1920s, the Great

Depression and World War II. Details on the sources and the construction of these data are provided

in Section 5.1 and Appendix B. From the figure, we note that the volatility of the log consumption-

income ratio is considerably higher during disaster episodes with multiple, often drastic, shifts occurring

during these periods. Many times, these shifts in the consumption-income ratio take the form of large

initial drops, followed by sharp increases (e.g., France during World War II). In other instances, however,

disaster episodes are characterized by temporary upward jumps (e.g., Denmark during World War I).

Figure 1: The log consumption-income ratio during historical disaster episodes
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Notes: The blue line denotes the log consumption to GDP ratio. Shaded areas correspond to disaster episodes as

identified by Barro and Ursúa (2008). We note that since consumption and GDP (in per capita real terms) are expressed

as indices with baseyear 2005 = 100, the log of the ratio between both equals zero in 2005. We refer to Section 5.1 for

more details on the data used in this figure.

It is instructive to investigate whether the ratio of consumption to after-tax income is also character-
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ized by large shifts during disaster episodes. Historical data on after-tax income are not widely available

however. In Figure 2, we present the consumption to disposable (after-tax) national income ratio over

the period 1870− 2015 which can be constructed for only four out of the sixteen countries considered in

Figure 1. From the figure, we note that this ratio is also typically characterized by large shifts and higher

volatility during the disaster periods identified by Barro and Ursúa (2008).

Figure 2: The log consumption to disposable income ratio and macroeconomic disaster episodes
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Notes: The blue line denotes the log consumption to disposable national income ratio. Shaded areas correspond to

disaster episodes as identified by Barro and Ursúa (2008). We note that since consumption and disposable national

income (in per capita real terms) are expressed as indices with baseyear 2005 = 100, the log of the ratio between both

equals zero in 2005. We refer to Section 5.1 and Section 5.4.4 for details on the data used in this figure.

With respect to the current Covid-19 pandemic, Figure 3 then presents recent quarterly time series

over the period 1995Q1− 2020Q4 for the log consumption-income ratio for twenty industrial economies.

Again, for many countries, we notice drastic - often downward - shifts in the consumption-income ratio

during the Covid-19 part of the sample (i.e., the period 2020Q1−2020Q4). Finally, in Figure 4, we present

the consumption to disposable income ratio over the same period which, at the quarterly frequency, can be

constructed for only seven out of the twenty countries considered in the previous figure. Unsurprisingly,

the (downward) shifts during the Covid-19 part of the sample are more pronounced when we look at the

consumption to disposable income ratio as household disposable incomes have decreased less than pre-tax

incomes during the Covid-19 pandemic due to the implementation in many countries of a variety of tax

and transfer measures (see e.g., Blanchard, 2020).

As noted in Section 1 above, the literature has documented that increases in saving ratios - which are

inversely related to consumption to income ratios - during crisis periods may be triggered by increases

in labor market uncertainty and precautionary motives (see e.g., Mody et al., 2012; Adema and Pozzi,

2015; Carroll et al., 2019). Conversely, decreases in saving ratios during crises could be attributed to life

cycle consumption smoothing motives in reaction to decreases in income (see e.g., Attanasio et al., 2000).

The increases observed in the saving rates during the Covid-19 pandemic have been attributed to forced

savings stemming from the lockdowns imposed in most countries during 2020 and, to a lesser extent, to

precautionary saving motives resulting from increased uncertainty about future income and employment

prospects (see e.g., Dossche and Zlatanos, 2020).
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Figure 3: The log consumption-income ratio during the Covid-19 pandemic
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Notes: The blue line denotes the log consumption to GDP ratio. The shaded area on the far right corresponds to the

Covid-19 pandemic period (2020Q1−Q4). We refer to Section 6.1 for details on the data used in this figure.

Figure 4: The log consumption to disposable income ratio during the Covid-19 pandemic
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Notes: The blue line denotes the log consumption to disposable income ratio. The shaded area on the far right corresponds

to the Covid-19 pandemic period (2020Q1−Q4). We refer to Section 6.1 for details on the data used in this figure.
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In this paper, rather than focusing on the direction of the shifts, we investigate their magnitude.

To explain the occurrence of these large shifts - in whatever direction - during disasters, we note that

standard intertemporal budget constraint logic suggests that the current log consumption-income ratio is

linked to expectations about future income and consumption growth rates. This then begs the question

of whether the increases in volatility and the drastic shifts observed in the consumption-income ratio

during these periods of turmoil can be explained solely by changes in these expectations, or whether the

expectations about the future matter more - i.e., receive more weight - when disasters strike. In other

words, we wonder whether consumers become more forward-looking during disasters. This is empirically

investigated in what follows, whereby we use a theoretical framework that is presented in the next section.

3 Theory

Our framework is based on the representative agent setting considered by Campbell and Mankiw (1989)

and Lettau and Ludvigson (2005) where, if the agent’s intertemporal budget constraint (IBC) is satis-

fied, the current log consumption-income ratio is related to expectations about future income growth

rates, future consumption growth rates and future returns on total wealth (where total wealth pertains

to the sum of asset and human wealth). We build on this setting by allowing for disaster-dependent

discount factors. In particular, by allowing for a reduction during macroeconomic disaster episodes of the

average consumption and income to total wealth ratios of the consumer, the horizon of the consumer’s

intertemporal budget constraint is extended, i.e., it will take more periods to earn and to consume total

wealth. Hence, during disaster states, discount factors are higher and more weight is given to expecta-

tions about future income growth rates, future consumption growth rates and future returns. Because

the log consumption-income ratio is linked to these expectations, this potentially implies more drastic

fluctuations or shifts in this ratio during disaster episodes.

If the agent’s budget constraint holds intertemporally, we show in Appendix A that we can approxi-

mate the log aggregate consumption to income ratio ct − yt in period t by,

ct − yt = Et

∞∑
j=1

[(
j∏

k=1

κt+k−1

)
(∆yt+j − rt+j)−

(
j∏

k=1

ρt+k−1

)
(∆ct+j − rt+j)

]
(1)

where Et is the expectations operator conditional on period t information, rt is the log of the gross real rate

of return on total wealth, ct is the log of real consumption, yt is the log of real income, and where κt and

ρt are time-varying discount factors (with 0 < κt < 1 and 0 < ρt < 1, ∀t). The intuition behind eq.(1) is

straightforward. If the budget constraint holds intertemporally, high expected (discounted) future income

growth rates or low expected (discounted) future consumption growth rates coincide with a high current

consumption-income ratio while low expected (discounted) future income growth rates or high expected
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(discounted) future consumption growth rates coincide with a low current consumption-income ratio.

The link between expected (discounted) future returns on wealth and the current consumption-income

ratio is ambiguous as it depends on the relative magnitude of current and future values of the discount

factors κt and ρt.

The discount factors κt and ρt capture the horizon of the consumer and are assumed to differ between

normal periods and disaster periods, i.e., we have,

κt = κ0(1− dt) + κ1dt (2)

ρt = ρ0(1− dt) + ρ1dt (3)

where dt is a (stochastic) binary variable that equals zero during normal periods and one during disaster

periods, where the parameters κ0 and ρ0 denote the discount factors during normal times (with 0 < κ0 < 1

and 0 < ρ0 < 1), and where κ1 and ρ1 denote the discount factors during disaster episodes (with

0 < κ1 < 1 and 0 < ρ1 < 1). In particular, we can show that κ = 1− Y
W and ρ = 1− C

W where Y, C and

W are the average (or steady state) values of income, consumption and total wealth (where the latter

equals the sum of asset and human wealth). We refer to Appendix A for details. If during macroeconomic

disaster episodes, which are typically characterized by large falls in income and consumption, the average

income and consumption to wealth ratios are reduced compared to normal times, we have Y0

W0
> Y1

W1

and C0

W0
> C1

W1
where, as before, the subscript ‘0’ refers to normal times and the subscript ‘1’ refers to

disaster episodes.2 Since the discount factors depend negatively on the average consumption and income

to wealth ratios of the consumer, this implies κ0 < κ1 and ρ0 < ρ1, i.e., if disasters occur, the consumer

has a longer horizon and more weight is given to future income growth rates and future consumption

growth rates. The impact of disasters on the weight given to expected future returns is ambiguous.

The intertemporal budget constraint given by eq.(1) can conveniently be rewritten as,

ct − yt =

∞∑
j=1

[
Et

(
j∏

k=1

κt+k−1

)
∆yt+j − Et

(
j∏

k=1

ρt+k−1

)
∆ct+j + Et

(
j∏

k=1

ρt+k−1 −
j∏

k=1

κt+k−1

)
rt+j

]
(4)

where it is evident that the log consumption-income ratio in period t is linked to period t expectations

of (discounted) future income growth rates, of (discounted) future consumption growth rates and of

(discounted) future rates of return. As the discount factors are different for ∆yt+j , ∆ct+j and rt+j , each

2While in this paper we indirectly test whether these unobserved ratios fall during disaster periods, a reduction in these

ratios can be put forward a priori based on the validity of the intertemporal budget constraint. As total wealth can be

written as a (weighted) average of income earned over the lifetime and can also be written as a (weighted) average of

consumption expenditures over the lifespan, a temporary reduction with x% of income (respectively, consumption) during

a disaster state is expected to reduce total wealth with only a fraction of x%. Hence, the ratio of income (respectively,

consumption) to wealth is expected to decrease.
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of these variables has its own distinct link with the consumption-income ratio.

It is important to mention that eq.(4) does not imply a causality. It is possible for changes in the log

consumption-income ratio to be driven by expectations about future consumption and income growth

rates. For instance, precautionary saving motives that are prominent in buffer stock models imply higher

expected consumption growth rates (see e.g., Carroll, 1992; Parker and Preston, 2005) which, through

eq.(4), decrease the current log consumption-income ratio. Alternatively, according to ‘saving for a rainy

day’ motives which are present in permanent income models (see e.g., Campbell, 1987), lower expected

income growth rates decrease the current log consumption-income ratio. It is also possible, however, that

changes in the log consumption-income ratio have an impact on expectations about future consumption

and income growth rates. For instance, if for some reason (e.g., during lockdowns) consumers are forced

to save, the ensuing change in the consumption-income ratio implies, through eq.(4), an adjustment in

expectations about future consumption and income growth rates.

We note that the link between expected future returns and the log consumption-income ratio is not

substantial if the discount factors κt and ρt are of similar magnitude. This happens if the average (steady

state) values of the income to wealth and the consumption to wealth ratios are of equal magnitude. In

this case, we have κ0 ≈ ρ0 and κ1 ≈ ρ1, so that κt ≈ ρt (∀t). By substituting this into eq.(4), we obtain

a simplified intertemporal budget constraint as a special case of the general one given by eq.(1) or eq.(4),

i.e., we have,

ct − yt =

∞∑
j=1

[
Et

(
j∏

k=1

ρt+k−1

)
(∆yt+j −∆ct+j)

]
(5)

where the current log consumption-income ratio is linked to expectations about (discounted) future

income-consumption growth differentials ∆yt+j −∆ct+j . The discount factor ρt is given by eq.(3) where,

as before, the future matters more when disasters occur, i.e., we have ρ0 < ρ1.

The framework presented above is quite general as it only requires the validity of the IBC and the

existence of state-dependent average consumption and income to wealth ratios. Its empirical implemen-

tation does not require additional theoretical structure, i.e., we do not have to specify preferences and

technology.3 Considering the limited availability of the data that would be required to test a variety of

theoretical structures over the historical period that we consider, we believe that the generality of our

framework is an advantage of our approach rather than a limitation. In the next section, we discuss how

we take both the general budget constraint of eq.(4) and the simplified one of eq.(5) to the data.

3Indeed, the validity of the IBC and the implied predictive power of the log consumption-income ratio are in accordance

with most models of consumer behavior. One notable exception, however, is the situation where all consumers are rule-of-

thumb consumers who consume their entire income in each period. In this case, we have both C = Y and ∆ct = ∆yt (∀t)

so that the RHS of eq.(5) equals zero, i.e., c− y has no predictive ability for future variables on theoretical grounds.
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4 Empirical specification and estimation method

We first present and discuss the baseline and extended empirical specifications. Then, we provide details

on the estimation methodology.

4.1 Empirical specification

We evaluate the budget constraints given by eqs.(4) and (5) by investigating an immediate implication of

these constraints, namely that the log consumption-income ratio in the current period has predictive power

for a number of variables in the next period and that this predictive ability is different during disaster

episodes. In particular, according to the budget constraint eq.(5), the current log consumption-income

ratio has predictive power for next period’s income-consumption growth differential and this predictive

power is higher during disaster episodes. According to the general budget constraint eq.(4), the current

log consumption-income ratio has predictive power for the income growth rate, the consumption growth

rate and the rate of return on wealth in the next period. For the income growth rate and the consumption

growth rate, this predictive power is higher during disaster episodes. To check these implications of the

theory, we estimate the following baseline specification,

xi,t+1 = αidit + βi(cit − yit) + γi(cit − yit)dit + εi,t+1 (6)

where xi,t+1 is the predicted variable in period t+ 1 in country i (with i = 1, ..., N) which equals either

∆yi,t+1 −∆ci,t+1, ∆yi,t+1, ∆ci,t+1 or ri,t+1, where cit − yit is the log consumption-income ratio, where

dit is a dummy variable that is equal to zero in normal times and equal to one during disaster episodes,

and where εi,t+1 is the error term. We allow for heterogeneity across countries in all slope coefficients. In

particular, the predictive impact of the log consumption-income ratio and its interaction with the disaster

dummy is allowed to vary across countries which, according to the theory discussed in Section 3 above,

reflects potential cross-country differences in the magnitude of the discount factors and in the way they

are affected by disasters. From eq.(4) and eq.(5), we note that the current log consumption-income ratio

cit− yit has a positive impact on next period’s income-consumption growth differential ∆yi,t+1−∆ci,t+1

and on next period’s income growth ∆yi,t+1 and that this predictive ability is higher - i.e., more positive

- during macroeconomic disaster episodes. Hence, in these cases, we expect βi > 0 and γi > 0. On the

other hand, we note from eq.(4) that the current log consumption-income ratio cit − yit has a negative

impact on next period’s consumption growth rate ∆ci,t+1 and that this predictive ability is higher - i.e.,

more negative - during macroeconomic disaster episodes. Hence, in this case, we expect βi < 0 and

γi < 0. From eq.(4), we also note that the predictive ability of the current log consumption-income ratio

cit − yit on next period’s returns ri,t+1 and the impact of disasters on this ability is ambiguous. As

11



such, we do not put forward expected signs for βi and γi in this case. We also add the disaster dummy

separately to eq.(6) to control for a potential predictive impact of disasters on the dependent variable

that is unrelated to the predictive impact of the consumption-income ratio. Finally, the error term εi,t+1

of eq.(6) is given by,

εi,t+1 = µi + λift+1 + εi,t+1 (7)

where µi is a country fixed effect and where ft is a vector of unobserved common factors with corre-

sponding vector of loadings λi. The common factors can affect all countries in the sample, albeit with

a potentially different impact, i.e., there can be so-called heterogeneous cross-sectional dependence. Ex-

amples of common factors are international business or financial cycles or changes in trade or financial

integration that occur simultaneously in most or all countries of the sample and that may affect both the

dependent variable and the regressors in the regression equation. The idiosyncratic error term εi,t+1 is a

prediction error that should, in principle, be unpredictable based on period t information. It is possible

that it is autocorrelated nonetheless, however, where the autocorrelation is of the moving average (MA)

type. For example, it could follow an MA(1) process due to measurement error or time aggregation in the

data.4 Finally, the error term εi,t+1 can be conditionally heteroskedastic across countries and over time.

Indeed, the literature documents changes in volatilities of macroeconomic variables like GDP growth (see

e.g., Hamilton, 2008; Nakamura et al., 2017) and financial variables like equity returns (see e.g., Tsay,

2005, and references therein). These changes are particularly likely when considering a long historical

period that includes many fundamentally different episodes (e.g., the Great Depression, Bretton Woods).

The estimation methods and tests considered in this paper and detailed in the next section can deal with

all the mentioned complications.

Apart from the baseline specification of eq.(6), we also estimate an extended predictive regression

equation,

xi,t+1 = αidit + βi(cit − yit) + γi(cit − yit)dit + wi,t+1δi + εi,t+1 (8)

which is identical to eq.(6) except for the addition of a vector of control variables wi,t+1 with corresponding

vector of parameters δi. The vector wi,t+1 includes variables that enter the budget constraint other than

the variable under scrutiny in xi,t+1. This is relevant when testing the predictability implications of

eq.(4). Consider the case where we investigate the predictive ability of cit−yit for xi,t+1 = ∆ci,t+1. Then

wi,t+1 includes the variables ∆yi,t+1 and ri,t+1. Hence, we make sure that, when detecting a relationship

between cit − yit and ∆ci,t+1, it is not driven solely by, for example, the covariance between ∆ci,t+1 and

4See e.g., Sommer (2007) for measurement error in aggregate consumption data and its implications.
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∆yi,t+1 in which case cit− yit would only affect ∆ci,t+1 because it has predictive power for ∆yi,t+1. The

same reasoning applies to the other cases, i.e., when xi,t+1 = ∆yi,t+1 and when xi,t+1 = ri,t+1.

4.2 Estimation method

The specifications discussed in the previous section can be written more concisely as,

xi,t+1 = zi,t+1ψi + εi,t+1 (9)

where zi,t+1 contains the regressors and ψi the corresponding parameters. Without error cross-sectional

dependence, the error term is given by εi,t+1 = µi + εi,t+1 and we can estimate eq.(9) country-by-

country using ordinary least squares (OLS) provided that E(zi,t+1εi,t+1) = 0. With error cross-sectional

dependence, the error term is εi,t+1 = µi + λift+1 + εi,t+1 and we have to deal with the unobserved

common factors ft+1 since ignoring cross-sectional dependence implies inefficient estimation and may,

additionally, imply biased and inconsistent OLS estimates if the unobserved common factors are correlated

with the regressors. Pesaran (2006) shows that the cross-sectional averages of the dependent variable

xi,t+1 and all included regressors zi,t+1 in eq.(9), i.e., x̄t+1 and z̄t+1, are suitable proxies for the unobserved

common factors. For large enough N , these cross-sectional averages can be considered exogenous, i.e.,

E(x̄t+1εi,t+1) and E(z̄t+1εi,t+1). After replacing ft+1 by these cross-sectional averages, we can estimate

eq.(9) country-by-country using OLS provided that E(zi,t+1εi,t+1) = 0. This is the common correlated

effects (CCE) estimator.

In our setting, there are two instances where the condition E(zi,t+1εi,t+1) = 0 may be violated,

necessitating the use of an instrumental variables (IV) estimator at the country level that corrects for

endogeneity. First, if there is autocorrelation in the error term εi,t+1, it can be correlated with one or

more regressors. As discussed at the end of this section, we test for autocorrelation in all our estimated

specifications. Second, in our extended specification eq.(8), we include contemporaneous variables wi,t+1

that can be correlated with the error term εi,t+1. When endogeneity is a concern, we report results

based on IV estimation. The IV estimator uses an appropriate number of lagged values of the dependent

variable and the included regressors as instruments.

We rewrite eq.(9) as,

xi,t+1 = Zi,t+1Ψi + εi,t+1 (10)

where, if we ignore the unobserved common factors, we have Zi,t+1 =
[
zi,t+1 1

]
and Ψi =

[
ψi µi

]′
and, if we proxy the unobserved common factors using cross-sectional averages, we have Zi,t+1 =[
zi,t+1 1 x̄t+1 z̄t+1

]
and Ψi =

[
ψi µi λxi λzi

]′
with x̄t+1 and z̄t+1 the cross-sectional aver-
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ages of xi,t+1 and zi,t+1 and λxi and λzi the country-specific regression coefficients on these cross-sectional

averages.

For a heterogeneous (dynamic) panel with a sufficiently large T and N , Pesaran and Smith (1995)

suggest to obtain estimates for the average effects Ψ = N−1
∑N
i=1 Ψi by averaging over country-specific

coefficient estimates, i.e., Ψ̂ = N−1
∑N
i=1 Ψ̂i. The average over the N country-specific OLS estimates

obtained when neglecting error cross-sectional dependence, is referred to as the mean group (MG) estima-

tor. The average over the N country-specific CCE estimates obtained when taking error cross-sectional

dependence into account, is referred to as the common correlated effects mean group (CCEMG) estimator

(see Pesaran, 2006). In the instances where we use IV instead of OLS at the country level, we report

the averages over the N country-specific IV estimates. The latter can be obtained both from regressions

that exclude or include cross-sectional averages as proxies for the unobserved common factors (see e.g.,

Everaert and Pozzi, 2014). Following Pesaran et al. (1996), the asymptotic covariance matrix Σ for these

mean group estimators is consistently estimated nonparametrically by,

Σ̂ =
1

N − 1

N∑
i=1

(
Ψ̂i − Ψ̂

)(
Ψ̂i − Ψ̂

)′
(11)

Besides the coefficient estimates and the corresponding standard errors, we also report the results of

two diagnostic tests. First, for the MG estimations, we calculate the Pesaran (2004) cross-sectional de-

pendence statistic, which tests the null hypothesis of cross-sectional independence in the error term. This

statistic indicates whether an estimator that controls for cross-sectional dependence, i.e., the CCEMG

estimator, should be implemented instead of the MG estimator. Second, as we have noted above, it is

important also to test for autocorrelation in the error term εi,t+1. Hence, we calculate the Cumby and

Huizinga (1992) autocorrelation statistic which tests the null hypothesis that the error term follows a

moving average process of known order q ≥ 0 against the alternative that the autocorrelations of the

error term are nonzero at lags greater than q. We calculate this statistic per country and then average it

across countries.5 This test is particularly suitable as, besides allowing to test for MA errors, it provides

an autocorrelation test that is valid also if the errors are conditionally heteroskedastic. Moreover, it can

also be applied when using estimators other than OLS, such as IV (see Cumby and Huizinga, 1992, for

details).

5Note that the Cumby and Huizinga (1992) test statistic follows a χ2 distribution. Assuming that the country-specific

test statistics are independent, the average Cumby and Huizinga (1992) test still follows a χ2 distribution with the same

number of degrees of freedom as its country-specific counterparts.
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5 Results from historical data

In this section, we investigate the impact of disaster episodes on the predictive ability of the log consumption-

income ratio using historical data. We first elaborate on the data used. Then, we discuss the baseline

results. Next, we present results of estimating predictive regression equations that contain control vari-

ables. A number of robustness checks follow, after which we investigate the results obtained when

focusing specifically on the major disaster episodes that occurred over the sample period. Finally, we

check whether our findings are unique to historical disaster episodes or whether they also hold during

ordinary recessions.

5.1 Data

We use historical long-term macro data over the period 1870 − 2015. These are available at the annual

frequency. Data availability determines the countries included in the dataset and the periods considered

per country.6 Our sample consists of sixteen economies, i.e., N = 16. These are Australia, Belgium,

Denmark, Finland, France, Germany, Italy, Japan, the Netherlands, Norway, Portugal, Spain, Sweden,

Switzerland, the UK and the US. For cit, we use the log of per capita real consumption, while for yit

we use the log of per capita real GDP. Per capita real personal consumer expenditures and per capita

real GDP are taken from the Jordà-Schularick-Taylor macro-history Database (Jordà et al., 2016).7 For

rit, we use the real rate of return on equity. Historical data for the nominal rate of return on equity

is reported by Jordà et al. (2019).8 We deflate nominal returns using the inflation rate calculated from

the Consumer Price Index (CPI) which is also obtained from the Jordà-Schularick-Taylor macro-history

Database.9

The disaster dummies dit take on the value of one during disaster episodes and are constructed

from the macroeconomic disaster episodes identified by Barro and Ursúa (2008). The authors define a

disaster as a peak-to-through cumulative decline in real per capita GDP and/or real per capita personal

consumer expenditure of at least 10%. We construct a general dummy that contains all identified disaster

episodes over the sample period. Additionally, we also consider specific disaster episodes. In particular,

we construct dummies for each of the four principal world economic crises identified by Barro and Ursúa

6For some countries and variables, a number of data points are missing at the beginning of the sample period which

renders the panel unbalanced.
7The website is http://www.macrohistory.net/data. The series have codes ‘rconpc’ and ‘rgdppc’. We note that the series

that we use are both expressed as indices with baseyear 2005 = 100 (see also Figure 1 above).
8The data can be found at https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/GGDQGJ

where the nominal equity returns have code ‘eq-tr’. Details on the data sources are discussed in the online Appendix

of Jordà et al. (2019)’s paper.
9The website is http://www.macrohistory.net/data. The data used has code ‘cpi’.
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(2008), i.e., World War I (WW1), the Spanish flu pandemic of the late 1910s/early 1920s (PAN), the

Great Depression (GRD) and World War II (WW2). More details on the construction of the disaster

dummies are provided in Appendix B.

5.2 Baseline results

We present the results of estimating eq.(6) for the sixteen economies in our sample over the period

1870− 2015 using the MG and CCEMG panel estimators discussed in Section 4.2 above. In Section 4.1,

we argued that according to the budget constraint eq.(5), the log consumption-income ratio c − y has

predictive ability for the income-consumption growth differential ∆y −∆c (with positive impact), while

according to the budget constraint eq.(4), the log consumption-income ratio c− y has predictive ability

for the income growth rate ∆y (with positive impact), the consumption growth rate ∆c (with negative

impact) and the rate of return on wealth r (with ambiguous impact). As such, we estimate eq.(6) with

each of these variables as the dependent variable.

The MG and CCEMG panel estimates for the coefficients on the regressors d, c − y and (c − y)d

are presented in Table 1.10 The country-specific coefficient estimates that are used in the calculation

of the MG and CCEMG coefficient estimates for the regressors c − y and (c − y)d are presented in

Appendix C. A look at Cumby and Huizinga (1992)’s test for autocorrelation shows that for none of

the conducted regressions the null hypothesis of no autocorrelation is rejected. Then, a look at Pesaran

(2004)’s cross-sectional dependence test reveals that, for the MG estimates, the null hypothesis of no

cross-sectional dependence in the error term of the regression equation is strongly rejected. Hence, we

focus on the CCEMG estimator which, as discussed in Section 4.2, deals with cross-sectional dependence

by augmenting the regression with cross-sectional averages of dependent variable and regressors. The

CCEMG estimates are reported in the final four columns of the table. We observe the following. First,

while it can be expected that the disaster dummy d negatively affects income growth, consumption growth

and returns in the same period, the reported results show that it also negatively affects next period’s

income growth. It has no predictive impact for consumption growth nor for returns, however. It further

has predictive impact for the income-consumption growth differential that stems from its predictive ability

for income growth. Second, in accordance with the budget constraint eq.(5), the log consumption-income

ratio c−y has a positive impact on next period’s income-consumption growth differential. The results for

10The coefficients on the regressors c−y and (c−y)d are semi-elasticities. For example, for the coefficient of ∆y on c−y,

we have ∂∆y
∂(c−y)

= ∂∆y

∂ ln( C
Y

)
, i.e., the coefficient equals the change in ∆y divided by the percentage change in C

Y
. A coefficient

equal to 0.1 then implies that if C
Y

increases with 1% (e.g., from 100% to 101%), then ∆y increases with 0.1 percentage

points (e.g., from 1% to 1.1%). A coefficient equal to 1 then implies that if C
Y

increases with 1% (e.g., from 100% to 101%),

then ∆y increases with 1 percentage point (e.g., from 0.5% to 1.5%).
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∆y and ∆c as dependent variables then show that c− y has predictive power for both the income growth

rate and the consumption growth rate where the signs are in accordance with the budget constraint logic

of eq.(4), i.e., a high consumption-income ratio today is followed by future increases in income growth

and future decreases in consumption growth. We do not find a significant impact of c − y on returns,

however. Third, in line with the theory, we find strongly significant coefficient estimates for the regressor

(c − y)d in the equations for the variables ∆y, ∆c and ∆y − ∆c. For the dependent variable r, the

significance is only marginal and, as we discuss in the next section, it is not withheld once we add control

variables to our baseline regression specification. Hence, the predictive ability of c− y for ∆y −∆c, ∆y

and ∆c is significantly higher during disaster episodes, i.e., from the CCEMG point estimates reported in

the table we find that this ability is about twice as large during disaster periods. Interpreted through the

lens of the theory of Section 3, this suggests that during disaster episodes, consumers are more forward

looking and give more weight to expectations about future income and consumption growth rates in

their consumption decisions. As such, expectations about future income and consumption growth rates,

in and of themselves, are not sufficient to explain the large shifts and high volatility observed in the

consumption-income ratios (or, conversely, the saving ratios) during disaster periods. An increase in the

weight given to future expectations is also required to explain the data.

Table 1: Baseline results

MG CCEMG

Dependent variable xi,t+1 Dependent variable xi,t+1

(∆yi,t+1 −∆ci,t+1) ∆yi,t+1 ∆ci,t+1 ri,t+1 (∆yi,t+1 −∆ci,t+1) ∆yi,t+1 ∆ci,t+1 ri,t+1

dit -0.028 −0.042∗∗∗ -0.014 -0.049 −0.053∗∗∗ −0.066∗∗∗ -0.004 -0.058

(0.022) (0.015) (0.016) (0.043) (0.021) (0.018) (0.017) (0.041)

(cit − yit) 0.049∗∗∗ 0.013 −0.035∗ −0.064∗ 0.216∗∗∗ 0.074∗∗ −0.151∗∗∗ -0.107

(0.014) (0.026) (0.020) (0.033) (0.055) (0.037) (0.029) (0.067)

(cit − yit)dit 0.246∗∗∗ 0.109∗ −0.137∗ 0.208 0.289∗∗∗ 0.146∗∗ −0.135∗∗ 0.325∗

(0.060) (0.059) (0.082) (0.178) (0.064) (0.066) (0.063) (0.195)

Cumby-Huizinga AC 2.261 2.425 3.843 4.000 3.591 2.458 2.466 3.710

[0.322] [0.297] [0.146] [0.135] [0.166] [0.292] [0.291] [0.156]

Pesaran CD 12.944 25.246 22.385 45.666

[0.000] [0.000] [0.000] [0.000]

Notes: Reported are the results of the estimation of eq.(6). Estimation is based on panel data for 16 countries over the period 1870 − 2015. Standard

errors are in parentheses, p-values are in square brackets. ∗,∗∗,∗∗∗ indicate significance at the 10%, 5% and 1% level respectively. The Cumby-Huizinga test

shows the average of the individual countries’ Cumby and Huizinga (1992) autocorrelation test, testing the null hypothesis of no autocorrelation against

the alternative that the autocorrelations of the error term are nonzero at lags greater than zero (with maximum lag equal to 2). The Pesaran CD statistic

tests the null hypothesis of cross-sectional independence (see Pesaran, 2004).
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Since our baseline results provide confirmation that the predictive ability of the consumption-income

ratio for future income and consumption growth rates is significantly higher during disaster episodes, a

natural question one might then ask is whether we can draw the same conclusion when looking at ordinary

recessions. In Section 5.6 below, we provide evidence that indicates that conventional recessions do not

have a similar impact on consumption and saving. In what follows, we first investigate the robustness

of our results by adding control variables to the baseline specification and by considering a number of

alternatives for the variables used in the baseline regressions.

5.3 Adding controls

We now estimate the extended specification eq.(8) where predictable variables from the budget constraint

eq.(4), other than the variable under scrutiny x, are included as controls in the vector w. For example,

when x = ∆c, we have w =
[

∆y r
]
. As such, we make sure that when we uncover a predictive

relationship between c − y and x, it does not merely stem from to the combination of c − y having

predictive power for w and the presence of nonzero covariances between x and w.

The results are reported in Table 2. We note that our panel estimates are based on IV estimates at

the country level. We estimate eq.(8) using IV in this case because of the potential contemporaneous

correlation between the error term and the control variables w. As instruments, we use lagged values of the

dependent variable and the regressors.11 We further report the Sargan-Hansen overidentifying restrictions

statistic that tests the null hypothesis that the instruments used are valid. From the table, we note that,

as before, the results of Pesaran (2004)’s cross-sectional dependence test suggest that we focus on the

CCEMG estimates which are reported in the last three columns of the table. The autocorrelation tests

and tests for overidentifying restrictions indicate that the regression equations and instrument sets are

well-specified. The results for the dependent variables ∆y and ∆c are generally in accordance with the

baseline CCEMG results reported for ∆y and ∆c in Table 1, i.e., the log consumption-income ratio has

significant predictive ability for income and consumption growth and this ability is significantly higher

during disaster episodes. The magnitude of the estimates on the regressors c− y and (c− y)d differs to

some extent between both tables, but this is not surprising as some of the added controls - i.e., ∆c in

the equation for ∆y and ∆y in the equation for ∆c - are highly significant. Finally, we note that in the

predictive regression equation for returns on wealth r, none of the regressors are significant, i.e., there is

no robust significant predictive ability of c− y and (c− y)d for returns.

11More specifically, the MG (IV) estimation of eq.(8) uses an instrument set that consists of a constant, the predetermined

regressors dit, (cit − yit) and (cit − yit)dit and lags 1 and 2 of the variables ∆yi,t+1, ∆ci,t+1 and ri,t+1 (i.e., periods t

and t − 1). The instrument set used for CCEMG (IV) estimation additionally includes the cross-sectional averages of the

dependent variable and of all regressors to the instrument set.
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Table 2: Results when including control variables

MG (IV) CCEMG (IV)

Dependent variable xi,t+1 Dependent variable xi,t+1

∆yi,t+1 ∆ci,t+1 ri,t+1 ∆yi,t+1 ∆ci,t+1 ri,t+1

dit -0.042∗∗∗ 0.025 0.078 -0.058∗∗∗ 0.009 -0.053

(0.017) (0.030) (0.094) (0.019) (0.034) (0.058)

(cit − yit) 0.043 -0.051∗∗∗ 0.137 0.162∗∗∗ -0.107∗∗ -0.089

(0.034) (0.016) (0.154) (0.038) (0.049) (0.165)

(cit − yit)dit 0.253∗∗∗ -0.173∗∗∗ 0.061 0.194∗∗∗ -0.172∗∗∗ 0.003

(0.069) (0.066) (0.275) (0.062) (0.063) (0.165)

∆yi,t+1 0.641∗∗∗ 0.096 0.558∗∗∗ 0.186

(0.160) (0.764) (0.173) (0.760)

∆ci,t+1 0.514∗ 1.661 0.512∗∗∗ -0.671

(0.289) (1.214) (0.166) (0.954)

ri,t+1 0.046 -0.049 -0.022 -0.069

(0.029) (0.031) (0.035) (0.047)

Cumby-Huizinga AC 2.034 2.124 2.957 2.681 1.825 2.814

[0.361] [0.345] [0.228] [0.261] [0.401] [0.245]

Sargan-Hansen OR 8.561 5.551 5.160 7.714 6.768 7.022

[0.073] [0.235] [0.271] [0.103] [0.149] [0.135]

Pesaran CD 8.456 6.029 35.669

[0.000] [0.000] [0.000]

Notes: Reported are the results of the estimation of eq.(8) where the vector of controls is wi,t+1 =[
∆ci,t+1 ri,t+1

]
when xi,t+1 = ∆yi,t+1, wi,t+1 =

[
∆yi,t+1 ri,t+1

]
when xi,t+1 = ∆ci,t+1 and

wi,t+1 =
[

∆yi,t+1 ∆ci,t+1

]
when xi,t+1 = ri,t+1. Estimation is based on panel data for 16 countries

over the period 1870− 2015. Standard errors are in parentheses, p-values are in square brackets. ∗,∗∗,∗∗∗

indicate significance at the 10%, 5% and 1% level respectively. The Cumby-Huizinga test shows the average

of the individual countries’ Cumby and Huizinga (1992) autocorrelation test, testing the null hypothesis

of no autocorrelation against the alternative that the autocorrelations of the error term are nonzero at

lags greater than zero (with maximum lag equal to 2). The Pesaran CD statistic tests the null hypothesis

of cross-sectional independence (see Pesaran, 2004). The Sargan-Hansen OR test reported is the average

of the country-specific Sargan-Hansen overidentifying restrictions statistics that test the joint validity of

the instruments used (see Sargan, 1958; Hansen, 1982). MG (IV) estimation uses an instrument set that

consists of a constant, the predetermined regressors dit, (cit− yit) and (cit− yit)dit and lags 1 and 2 of the

variables ∆yi,t+1, ∆ci,t+1 and ri,t+1 (i.e., periods t and t− 1). The instrument set used for CCEMG (IV)

estimation additionally includes the cross-sectional averages of the dependent variable and all regressors

to the instrument set.
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5.4 Robustness checks

The results reported in the previous section imply that the log consumption-income ratio has significant

predictive power for income growth and consumption growth but no significant predictive ability for

returns on wealth. Theoretically, this implies that we can focus on the simplified intertemporal budget

constraint eq.(5) presented in Section 3. In this section and the next, we therefore only consider the

predictive impact of c− y for the income-consumption growth differential ∆y−∆c. This section presents

a number of robustness checks for the baseline results reported in Section 5.2. First, we investigate the

impact of adding lags of the dependent variable to the equation. Next, we check whether our results are

robust to the detrending of the persistent log consumption-income ratio. Then, we consider an alternative

disaster dummy. Finally, we check whether the results also hold when, for the variable y, we use after-tax

income instead of GDP.

5.4.1 Lagged dependent variable

Controlling for the lagged dependent variable is useful to make sure that, when detecting a relationship

between cit − yit and the dependent variable xi,t+1, this relationship is not driven solely by the possible

covariance between cit−yit and xit, i.e., xit has predictive power for xi,t+1 and cit−yit only affects xi,t+1

because it is correlated with xit. To deal with this, we estimate an extended version of eq.(6) where

one lag of the dependent variable is added as a control variable. We add only one lag because, when

conducting estimations with more lags, we find that the coefficient estimates on additional lags are not

significant. The results are reported in the columns ‘Lag dep. var.’ of Table 3. The lagged dependent

variable has a significant impact in the regression for ∆y−∆c when applying the MG estimator. However,

as with the baseline results, we find that, using Pesaran (2004)’s cross-sectional dependence test, there

are strong indications of cross-sectional dependence in the error term. As such, we focus on the CCEMG

estimates reported in the table for which we find that the coefficient on the lagged dependent variable is

not significant. Therefore, we are not surprised to find that the results are very similar to the baseline

results reported in Table 1, i.e., the log consumption-income ratio has positive predictive power for

∆y −∆c and this predictive ability is magnified during disaster episodes.

5.4.2 Detrended log consumption-income ratio

Figure 1 suggests that the log consumption-income ratio, while expected to be stationary on theoretical

grounds, is quite persistent and has unit root-like characteristics in many countries. To be on the safe

side, we therefore check whether our predictability results also hold when we take out this potential non-

stationarity. To this end, we estimate eq.(6) using a detrended version of the log consumption-income
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ratio. We detrend c− y by calculating the deviation of c− y from its stochastic trend c− y. The latter is

approximated by a ten-year moving average as c− y = 1
10

∑9
j=0(c−j − y−j).12 The results of estimating

eq.(6) for dependent variable x = ∆y − ∆c using this detrended measure instead of the actual c − y

variable are presented in Table 3 under the columns ‘Detrended c − y’. For both the MG and CCEMG

estimators, the estimates of, in particular, the coefficient on the interaction variable (c − y)d are quite

similar in magnitude and significance to those reported in Table 1, i.e., the baseline results with dependent

variable ∆y −∆c.

5.4.3 Alternative disaster dummy

Our results so far are based on disaster dummies constructed from consumption and GDP disaster

episodes identified by Barro and Ursúa (2008). More recently, Nakamura et al. (2013) estimate a model

of consumption disasters that generates endogenous estimates of the timing and length of disasters. We

use the start and end dates of their identified disaster episodes (see Table 2 in Nakamura et al., 2013) to

construct an alternative disaster dummy. We then check wether our predictability results also hold when

estimating eq.(6) with this alternative dummy variable for d. The results with ∆y−∆c as the dependent

variable are presented in Table 3 under the columns ‘Alt.disaster’. Upon comparing these results to the

baseline results reported in Table 1 with dependent variable ∆y−∆c, we find similar results with respect

to the predictive power of the log consumption-income ratio for income and consumption growth during

both normal times and disaster periods.

5.4.4 Disposable income

The baseline results are based on estimations that use real GDP as a proxy for income. Theoretically,

using an after-tax measure of income is more appropriate but historical data on disposable income are

not widely available. Piketty and Zucman (2014) provide historical data on national income after taxes

which are available for only four countries out of the sixteen considered when using GDP data.13 These

12This detrending approach takes out the low frequency movements (i.e., long swings) in the data as well as high frequency

noise as opposed to a first-differencing approach which takes out low and medium frequency movements (see e.g., Sarno

and Schmeling, 2014). We note that our baseline results are also confirmed if we proxy the stochastic trend using a moving

average calculated over 5 or 20 years.
13The website is http://piketty.pse.ens.fr/fr/capitalisback. The data used are in the country excel files, Table 1, columns

9 and 14. From the reported per capita real national income series and the reported series for the ratio of national income

after taxes to national income, a series is constructed for per capita real disposable national income (=national income

minus taxes plus transfers). Note that, in line with our consumption data (see Section 5.1), we express this series as an

index with baseyear 2005 = 100 (see also Figure 2 above). The data used are available uninterruptedly from 1870 onward.

One exception is the UK where the ratio of after-tax national income to national income is only available from 1948 onward.

Here, we extrapolate the 1948 value of this ratio to the period 1870 − 1947. Note further that we update the calculated

historical per capita real disposable income series from 2011 to 2015 using data from OECD Economic Outlook.
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countries are France, Germany, the UK and the US. In Table 3, under the columns ‘Disp. income’,

we therefore report the results of estimating eq.(6) with the variable y calculated as the log of real per

capita national disposable (after-tax) income. We note that with the number of cross-sections equal to

only N = 4, consistency of the CCE estimates is not guaranteed as the cross-sectional averages of the

dependent variable and the regressors that proxy the unobserved common factors in the regression can be

considered exogenous only if N is large enough. Hence, in this case, we focus also on the OLS estimates as

summarized by the MG results reported in the table. Both MG and CCEMG results confirm our baseline

results when using real per capita disposable income for y instead of real per capita GDP. We find that

the log consumption-income ratio c − y has significant predictive ability for the income-consumption

growth differential ∆y−∆c and we find that this predictive impact is significantly higher during disaster

episodes.

Table 3: Robustness checks

Dependent variable xi,t+1 = (∆yi,t+1 −∆ci,t+1)

MG CCEMG

(1) (2) (3) (4) (1) (2) (3) (4)

Lag dep. var. Detrended c− y Alt. disaster Disp. income Lag dep. var. Detrended c− y Alt. disaster Disp. income

dit -0.023 0.029 -0.038∗∗∗ 0.011 -0.043∗ 0.012 -0.062∗∗∗ 0.006

(0.023) (0.031) (0.015) (0.020) (0.023) (0.024) (0.021) (0.022)

(cit − yit) 0.052∗∗∗ 0.102∗∗ 0.025 0.071∗ 0.194∗∗∗ 0.204∗∗∗ 0.170∗∗∗ 0.126∗∗

(0.014) (0.050) (0.016) (0.036) (0.041) (0.053) (0.042) (0.058)

(cit − yit)dit 0.269∗∗∗ 0.253∗∗∗ 0.280∗∗∗ 0.129∗∗ 0.287∗∗∗ 0.322∗∗∗ 0.362∗∗∗ 0.196∗∗∗

(0.060) (0.105) (0.037) (0.062) (0.072) (0.097) (0.086) (0.032)

(∆yit −∆cit) 0.095∗∗ -0.009

(0.046) (0.038)

Cumby-Huizinga AC 2.243 2.733 2.271 3.969 4.372 3.724 2.682 5.253

[0.326] [0.255] [0.321] [0.137] [0.112] [0.155] [0.261] [0.072]

Pesaran CD 11.928 13.647 16.076 7.950

[0.000] [0.000] [0.000] [0.000]

Notes: Reported are the results of the estimation of eq.(6) with xi,t+1 = (∆yi,t+1 −∆ci,t+1). Data used are the same as for the results reported in Table 1, except that in

column (2) the detrended log consumption-income ratio is used for c − y, in column (3) a disaster dummy based on disasters identified by Nakamura et al. (2013) is used

for d, and in column (4) log per capita real disposable income is used for y instead of log per capita real GDP. Details are provided in the text. Estimation is based on

panel data for 16 countries (columns 1, 2 and 3) or 4 countries (column 4) over the period 1870− 2015. Standard errors are in parentheses, p-values are in square brackets.

∗,∗∗,∗∗∗ indicate significance at the 10%, 5% and 1% level respectively. The Cumby-Huizinga test shows the average of the individual countries’ Cumby and Huizinga (1992)

autocorrelation test, testing the null hypothesis of no autocorrelation against the alternative that the autocorrelations of the error term are nonzero at lags greater than zero

(with maximum lag equal to 2). The Pesaran CD statistic tests the null hypothesis of cross-sectional independence (see Pesaran, 2004).
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5.5 Major disaster episodes

In this section, we investigate whether all disaster episodes magnify the predictive impact of the log

consumption-income ratio or whether only particular episodes do so. In other words, we wonder whether

consumers become more forward looking only during certain particular crises or whether they give more

weight to future expectations during each and every disaster period. To look at this issue, we investigate

the separate impact of the major disaster episodes that occurred during the sample period according to

Barro and Ursúa (2008), i.e., World War I (WW1), the Spanish flu pandemic of the late 1910s/early 1920s

(PAN), the Great Depression (GRD) and World War II (WW2). Following the discussion of the previous

sections, we focus on the predictive ability of the log consumption-income ratio c − y for next year’s

income-consumption growth differential ∆y −∆c. Hence, we estimate predictive regression equations of

the following form,

(∆yi,t+1 −∆ci,t+1) = αid
j
it + α−ji d−jit + βi(cit − yit) + γi(cit − yit)djit + γ−ji (cit − yit)d−jit + εi,t+1 (12)

where the error term εi,t+1 is, as before, given by eq.(7). We estimate the equation per major disaster

episode j (with j = WW1, PAN,GRD,WW2) while controlling for all other disasters. To this end,

we include the specific disaster dummy variable dj that equals one during disaster period j, but also a

dummy variable d−j that takes on the value of one when disasters other than j occur, i.e., the dummy

d−j equals d − dj where d is the disaster dummy used in previous sections. Both dummies dj and d−j

enter the equation interacted with the log consumption-income ratio and also, as before, separately. As

not all specific disasters occur in all sixteen countries of our sample, the estimations are conducted with

a different number of countries for each particular disaster episode j. We refer to Appendix B for an

overview of the exact dates of the major disaster episodes in each country. In particular, estimation is

based on panel data for thirteen countries when j = WW1, for five countries when j = PAN , for eight

countries when j = GRD and for fifteen countries when j = WW2.14

In Table 4, we report the results of estimating eq.(12) for every major disaster episode j. From looking

at both the MG and CCEMG estimation results in the table, we first note that the largest disasters also

have the largest impact on the predictive ability of the log consumption-income ratio, i.e., the estimates

14We note that since estimations occur at the country level, a country can only be included in the panel estimation if

both dummies dj and d−j are defined for that country (i.e., if both dummies take on the value of one at least once over

the sample period for that country). For example, even though for j = WW2 the dummy variable dj is defined for all

sixteen countries, we cannot include Japan in the sample as the dummy d−j is not defined for Japan, i.e., the only disaster

identified by Barro and Ursúa (2008) for Japan is WW2. Hence, for j = WW2, we have N = 15 instead of N = 16. If we

do not include the dummy d−j in the estimations, we can add Japan to the sample when j = WW2 and we find that the

results with respect to the impact of WW2 on the predictive impact of c− y are very similar to those reported in Table 4.

These results are not reported, but are available upon request.
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on the regressor (c − y)dj (with dj containing the major disaster episode under scrutiny) are generally

larger in magnitude than those on the regressor (c−y)d−j (with d−j containing the other major disasters

but also all the minor ones). Furthermore, we find that for all major disasters considered, the predictive

power of the log consumption-income ratio becomes significantly higher during the occurrence of these

major crises. Hence, the finding that disasters tend to make consumers more forward looking so that

they then give more weight to expectations about future income and consumption growth rates is not

limited to one particular disaster type but occurs during every major crisis type that we consider in our

historical dataset.

Table 4: Results for major disaster episodes

Dependent variable xi,t+1 = (∆yi,t+1 −∆ci,t+1)

MG CCEMG

Disaster episode j Disaster episode j

WW1 PAN GRD WW2 WW1 PAN GRD WW2

djit -0.177 -0.137∗∗∗ -0.146∗∗∗ -0.049 -0.137 -0.108 -0.135∗∗∗ -0.129∗∗∗

(0.123) (0.041) (0.056) (0.035) (0.116) (0.096) (0.043) (0.053)

d−jit -0.056∗∗∗ -0.029 -0.019 -0.092∗∗∗ -0.108∗∗∗ -0.104∗ -0.087∗∗ -0.056∗

(0.019) (0.031) (0.018) (0.025) (0.029) (0.061) (0.043) (0.033)

(cit − yit) 0.057∗∗∗ 0.010 0.062∗∗∗ 0.050∗∗∗ 0.208∗∗∗ 0.048∗∗∗ 0.239∗∗∗ 0.209∗∗∗

(0.016) (0.006) (0.024) (0.015) (0.056) (0.010) (0.070) (0.073)

(cit − yit)djit 0.717∗∗∗ 0.615∗∗∗ 0.530∗∗∗ 0.487∗∗∗ 0.620∗∗∗ 0.804∗∗∗ 0.432∗∗∗ 0.642∗∗∗

(0.210) (0.090) (0.129) (0.057) (0.196) (0.198) (0.157) (0.139)

(cit − yit)d−jit 0.242∗∗∗ 0.268∗∗∗ 0.189∗∗∗ 0.319∗∗∗ 0.384∗∗∗ 0.432∗∗∗ 0.306∗∗∗ 0.186∗∗

(0.076) (0.080) (0.067) (0.087) (0.068) (0.146) (0.083) (0.085)

Cumby-Huizinga AC 1.751 3.238 1.502 2.596 2.469 3.161 3.323 3.604

[0.416] [0.198] [0.472] [0.273] [0.291] [0.206] [0.190] [0.165]

Pesaran CD 9.760 2.888 11.634 12.077

[0.000] [0.004] [0.000] [0.000]

Notes: Reported are the results of the estimation of eq.(12). The dummy variable dj (with j = WW1, PAN,GRD,WW2) equals

one during the considered major disaster episode (World War I, Spanish flu pandemic, Great Depression, World War II). We refer

to Appendix B for details on the exact dates of these disasters. The dummy d−j takes on the value of one when disasters other

than j occur (i.e., it equals d − dj where d is the general disaster dummy used in previous sections). Estimation is based on panel

data for 13 countries (WW1), 5 countries (PAN), 8 countries (GRD) or 15 countries (WW2) over the period 1870 − 2015. Standard

errors are in parentheses, p-values are in square brackets. ∗,∗∗,∗∗∗ indicate significance at the 10%, 5% and 1% level respectively. The

Cumby-Huizinga test shows the average of the individual countries’ Cumby and Huizinga (1992) autocorrelation test, testing the null

hypothesis of no autocorrelation against the alternative that the autocorrelations of the error term are nonzero at lags greater than

zero (with maximum lag equal to 2). The Pesaran CD statistic tests the null hypothesis of cross-sectional independence (see Pesaran,

2004).
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5.6 What about ordinary recessions?

To investigate whether our results hold not only for disasters, but also for ordinary recessions, we estimate

our baseline regression, eq.(6), using a recession dummy instead of the disaster dummy considered in the

main text. To focus on ordinary recessions, we restrict our sample to the period 1960 − 2015 with the

same N = 16 countries considered in the analysis of historical disasters. Over this period, almost no

disasters of the type defined by Barro and Ursúa (2008) have occurred, while a large number of recessions

have taken place. We calculate an annual recession dummy drec from the OECD Composite Leading

Indicator (CLI) of activity which provides monthly data on recession dates - i.e., turning points - for

each country in our sample.15 The other data used in the estimations are as before, albeit taken over a

smaller sample period.

Table 5: Results for ordinary recessions

MG CCEMG

Dependent variable xi,t+1 Dependent variable xi,t+1

(∆yi,t+1 −∆ci,t+1) ∆yi,t+1 ∆ci,t+1 ri,t+1 (∆yi,t+1 −∆ci,t+1) ∆yi,t+1 ∆ci,t+1 ri,t+1

drecit -0.006∗∗∗ -0.015∗∗∗ -0.008∗∗∗ 0.094∗∗∗ -0.001 -0.009∗∗∗ -0.008∗∗∗ 0.016

(0.001) (0.001) (0.001) (0.026) (0.001) (0.001) (0.002) (0.026)

(cit − yit) 0.060∗∗∗ 0.047 -0.013 0.101 0.074∗∗∗ 0.004 -0.091∗∗∗ -0.006

(0.018) (0.045) (0.048) (0.314) (0.019) (0.025) (0.023) (0.251)

(cit − yit)drecit 0.042∗ 0.048∗ 0.005 -0.283 0.021 0.026 0.001 0.107

(0.022) (0.027) (0.035) (0.529) (0.023) (0.024) (0.031) (0.299)

Cumby-Huizinga AC 2.300 7.753 9.313 2.794 2.337 4.125 4.150 2.888

[0.316] [0.021] [0.010] [0.247] [0.311] [0.127] [0.125] [0.236]

Pesaran CD 11.715 32.888 24.717 37.145

[0.000] [0.000] [0.000] [0.000]

Notes: Reported are the results of the estimation of eq.(6) with recession dummy drec instead of disaster dummy d. The recession dummy is

constructed from the OECD Composite Leading Indicator (CLI) of activity. Estimation is based on panel data for 16 countries over the period

1960−2015. Standard errors are in parentheses, p-values are in square brackets. ∗,∗∗,∗∗∗ indicate significance at the 10%, 5% and 1% level respectively.

The Cumby-Huizinga test shows the average of the individual countries’ Cumby and Huizinga (1992) autocorrelation test, testing the null hypothesis

of no autocorrelation against the alternative that the autocorrelations of the error term are nonzero at lags greater than zero (with maximum lag

equal to 2). The Pesaran CD statistic tests the null hypothesis of cross-sectional independence (see Pesaran, 2004).

The results are presented in Table 5. The results of the Pesaran cross-sectional dependence (CD)

test suggest that we focus on the CCEMG results. The log consumption-income ratio c − y has, as

15We first calculate a monthly recession dummy per country which is set to one for the months after the peak and up to

and including the trough. A quarterly recession dummy for that country then equals one if the monthly dummy equals one

during at least two months of the quarter under consideration. An annual recession dummy for that country then equals

one if the quarterly dummy equals one during at least two quarters of the year under consideration.
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is theoretically expected, positive predictive power for the income-consumption growth differential and

negative predictive ability for the consumption growth rate over this period. The coefficients on the

variable (c−y)drec are never significantly different from zero, however, suggesting that this predictability

is not amplified during recession episodes. Hence, while our previous results show that the consumption-

income ratio has more predictive ability for future income and consumption growth rates during disaster

episodes, we cannot draw the same conclusion when looking at ordinary recessions. This is not entirely

surprising given that Figure 1 shows that the log consumption-income ratios are relatively stable over the

period 1960− 2015, even during recessions. When interpreted using the theory of Section 3, the absence

of high volatility of and large shifts in the consumption-income ratio observed during this period suggests

that, during ordinary recessions, consumers do not give more weight to (potentially volatile) expectations

about the future when deciding on the fraction of income to consume.

6 Results from the Covid-19 pandemic

This section investigates the impact of the Covid-19 pandemic, a contemporaneous macroeconomic disas-

ter, on the predictive ability of the log consumption-income ratio. First, we discuss the quarterly dataset

used to investigate this. To estimate the effect of the pandemic on next period’s income and consumption

growth rates, we need data for at least one additional period following the start period of the pandemic.

Hence, annual data cannot be used at the moment of writing as we do not yet have data for 2021. Next,

we present the baseline results and a number of robustness checks regarding the predictive ability of the

log consumption-income ratio for income-consumption growth differentials during the pandemic. We also

check whether ordinary recessions that occurred over the sample period have affected the predictive power

of the consumption-income ratio. Finally, we investigate to what extent Covid-19 has separately affected

the predictive ability of the log consumption-income ratio for income growth, consumption growth and

returns on wealth.

6.1 Data

For most of the estimations conducted in Section 6, we use quarterly data over the period 1995Q1−2020Q4

for twenty economies, i.e., N = 20. These are Australia, Austria, Belgium, Canada, Denmark, Finland,

France, Germany, Ireland, Italy, Japan, the Netherlands, New Zealand, Norway, Portugal, Spain, Sweden,

Switzerland, the UK and the US. The disaster dummy dit that we use in this section, i.e., the Covid-

19 dummy, is set to one over the period 2020Q1 − 2020Q4 for all countries. This implies that it is

identical across countries, i.e., we have dit = dt (∀i). For cit, we use the log of per capita real private
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final consumption expenditures, while for yit we use the log of per capita real GDP. Real private final

consumption expenditures and real GDP are taken from OECD Economic Outlook (No.108). We calculate

per capita measures using quarterly population data from Datastream. In one robustness check, we

use the log of per capita real disposable income instead of the log of per capita real GDP for yit.

Nominal disposable income of households and non-profit institutions serving households is taken from

OECD Economic Outlook (No.108) and is available for seven countries, i.e., Australia, Canada, France,

Germany, Japan, the UK and the US. We calculate per capita real disposable income using the deflator of

private final consumption expenditures (also from OECD Economic Outlook) and population data from

Datastream. When conducting estimations for returns on wealth rit in Section 6.3 below, we use the real

rate of return on equity. Nominal returns are calculated from country equity return indices reported by

Global Financial Data. We deflate nominal returns using the inflation rate calculated from the deflator

of private final consumption expenditures (from OECD Economic Outlook).

6.2 Predictability results for the variable ∆y −∆c

6.2.1 Baseline results and robustness checks

In line with the estimations conducted in Section 5, we estimate the following regression equation,

(∆yi,t+1 −∆ci,t+1) = αidt + βi(cit − yit) + γi(cit − yit)dt + εi,t+1 (13)

where dt denotes the Covid-19 dummy. Based on the theory of Section 3, we expect a positive and

significant impact of the variables (cit− yit) and (cit− yit)dt on (∆yi,t+1−∆ci,t+1). As before, the error

term is given by εi,t+1 = µi + λift+1 + εi,t+1 where µi is the country fixed effect and where ft is a vector

of unobserved common factors with corresponding vector of loadings λi. With MG estimation (OLS at

the country level), we do not control for unobserved common factors so that we implicitly set λi = 0

(∀i). With CCEMG estimation (CCE at the country level), we proxy the vector of common factors ft by

the cross-sectional averages of the dependent variable and the regressors. Details are provided in Section

4.2 above. In our current setting, the disaster dummy (i.e., the Covid-19 dummy) is common across

countries. Hence, when applying the CCEMG estimator we do not include it separately in the regression

- i.e., we set αi = 0 (∀i) - as, in this case, it is controlled for through the component λift+1 of the error

term εi,t+1.

The baseline estimates are reported in the columns ‘Baseline’ of Table 6. From both the MG and

CCEMG estimates reported in the table, we note that this period’s log consumption-income ratio c−y has

a positive impact on next period’s income-consumption differential ∆y −∆c. Moreover, this predictive

ability is significantly higher during the Covid-19 pandemic. Hence, our results for the Covid-19 pandemic
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confirm the results obtained for historical disaster episodes reported in Section 5. Based on the theory

of Section 3, this implies that consumers are more forward looking and give significantly more weight

to their expectations about the future during the pandemic. This can be interpreted as consumption

and saving decisions being more affected by expectations about future consumption and income growth

during the pandemic. Alternatively, given the forced nature of saving during the Covid-19 lockdowns,

this can also be interpreted as consumption and saving having a larger impact on expectations about

future consumption and income growth during the pandemic. The theory of Section 3, based solely on

intertemporal budget constraint logic, does not impose causality in this respect.

Table 6: Baseline results and robustness checks

Dependent variable xi,t+1 = (∆yi,t+1 −∆ci,t+1)

MG CCEMG

(1) (2) (3) (4) (1) (2) (3) (4)

Baseline Lag dep. var. Detrended c− y Disp. income Baseline Lag dep. var. Detrended c− y Disp. income

dt 0.833∗∗∗ 0.816∗∗∗ 0.038∗∗∗ 0.263∗∗∗

(0.134) (0.131) (0.016) (0.037)

(cit − yit) 0.045∗∗∗ 0.041∗∗∗ 0.048∗∗∗ 0.170∗∗∗ 0.052∗∗∗ 0.044∗∗∗ 0.081∗∗∗ 0.230∗∗∗

(0.009) (0.009) (0.010) (0.025) (0.013) (0.011) (0.019) (0.048)

(cit − yit)dt 1.245∗∗∗ 1.227∗∗∗ 1.289∗∗∗ 1.301∗∗∗ 1.353∗∗∗ 1.509∗∗∗ 1.380∗∗∗ 2.340

(0.153) (0.161) (0.176) (0.063) (0.269) (0.258) (0.283) (2.494)

(∆yit −∆cit) -0.016 -0.122∗∗∗

(0.043) (0.042)

Cumby-Huizinga AC 3.962 3.324 3.344 4.195 5.106 3.740 4.464 7.203

[0.138] [0.190] [0.188] [0.123] [0.078] [0.154] [0.107] [0.027]

Pesaran CD 14.894 14.532 15.738 11.729

[0.000] [0.000] [0.000] [0.000]

Notes: Reported are the results of the estimation of eq.(13). Data used are reported in Section 6.1. dt denotes the Covid-19 dummy which equals one over the period

2020Q1− 2020Q4. Column (1) presents the baseline results while in column (2) the first lag of the dependent variable is added as a regressor to eq.(13). In column (3) the

detrended log consumption-income ratio is used for c− y and in column (4) log per capita real disposable income is used for y instead of log per capita real GDP. Details are

provided in the text. Estimation is based on panel data for 20 countries (columns 1, 2 and 3) or 7 countries (column 4) over the period 1995Q1− 2020Q4. Standard errors

are in parentheses, p-values are in square brackets. ∗,∗∗,∗∗∗ indicate significance at the 10%, 5% and 1% level respectively. The Cumby-Huizinga test shows the average of

the individual countries’ Cumby and Huizinga (1992) autocorrelation test, testing the null hypothesis of no autocorrelation against the alternative that the autocorrelations

of the error term are nonzero at lags greater than zero (with maximum lag equal to 2). The Pesaran CD statistic tests the null hypothesis of cross-sectional independence

(see Pesaran, 2004).

The baseline results in the table are complemented by a number of robustness checks. First, the results

of including the lagged dependent variable as a regressor in eq.(13) are reported in the columns ‘Lag dep.

var.’. We find that the baseline estimations are confirmed while this inclusion improves the Cumby-

Huizinga autocorrelation test when applying CCEMG estimation. Second, given the high persistence

of the log consumption-income ratio, we check whether our results remain valid when we detrend the

28



predictor variable c−y. In particular, we consider c−y in deviation from its stochastic trend c− y where

the latter is approximated by a twenty-quarter moving average as c− y = 1
20

∑19
j=0(c−j − y−j). The

results reported in the columns ‘Detrended c − y’ confirm our baseline results.16 Finally, the results of

using log per capita real disposable income instead of log per capita real GDP as a proxy for y are reported

in the columns ‘Disp. income’. While the findings obtained with the MG estimator confirm our baseline

results, the CCEMG results reported in column ‘Disp. income’ are not convincing. In the latter case, we

find that the coefficient on the regressor of interest (c− y)d, while positive, is not significant and we also

find that the Cumby-Huizinga test for autocorrelation strongly rejects the null of no autocorrelation. As

quarterly data for disposable income are only available for N = 7 countries out of the twenty considered

when using GDP data, the cross-sectional averages of the dependent variable and the regressors used

in the CCEMG estimation may poorly proxy the unobserved common factors in this case. Hence, the

results obtained from OLS estimation and summarized by the reported MG estimates are probably more

reliable here.

6.2.2 Covid-19 versus ordinary recessions

As before, we ask ourselves whether the increased predictive ability of the log consumption-income ratio

during the Covid-19 pandemic is specific to this disaster episode or whether it occurs also during more

ordinary recessions that have taken place over the sample period 1995Q1− 2020Q4. To investigate this,

we estimate predictive regression equations of the following form,

(∆yi,t+1 −∆ci,t+1) = αidt + βi(cit − yit) + γi(cit − yit)dt + αreci drecit + γreci (cit − yit)drecit + εi,t+1 (14)

with dt the Covid-19 dummy which is common across counties and with the country-specific recession

dummy drecit . We calculate a quarterly recession dummy from the OECD Composite Leading Indicator

(CLI) of activity which provides monthly data on recession dates - i.e., turning points - for each country

in our sample.17 If ordinary recessions also increase the predictive power of cit−yit for ∆yi,t+1−∆ci,t+1,

we should not only find a significantly positive impact of the regressor (cit−yit)dt but also of the regressor

(cit−yit)drecit . As detailed in the previous subsection, we do not include the Covid-19 dummy dt separately

in the regression when conducting CCE estimation as, in this case, all common variables are controlled

for through the common unobserved factors included in the error term.

The MG and CCEMG estimates are presented in Table 7. We report the results from estimating

eq.(14) (columns ‘Baseline’) and also from estimating eq.(14) with the lagged dependent variable in-

cluded as an additional regressor (columns ‘Lag dep. var.’) as the latter results are less affected by

16This is also the case if we proxy the stochastic trend using a moving average calculated over 10 or 40 quarters.
17See footnote 15 above for details.

29



autocorrelation in the residuals. In line with the findings for annual data reported and discussed in

Section 5.6 above, there is no evidence to suggest that ordinary recessions have an impact on the pre-

dictive ability of the consumption-income ratio, i.e., the coefficient on the regressor (cit − yit)drecit is not

significantly different from zero in all estimated regressions. Hence, we conclude that it is only during

very severe crises that consumers become more forward-looking.

Table 7: Results for the Covid-19 pandemic and ordinary recessions

Dependent variable xi,t+1 = (∆yi,t+1 −∆ci,t+1)

MG CCEMG

(1) (2) (1) (2)

Baseline Lag dep. var. Baseline Lag dep. var.

dt 0.828∗∗∗ 0.775∗∗∗

(0.134) (0.130)

(cit − yit) 0.046∗∗∗ 0.040∗∗∗ 0.053∗∗∗ 0.044∗∗∗

(0.010) (0.010) (0.013) (0.013)

(cit − yit)dt 1.235∗∗∗ 1.160∗∗∗ 1.262∗∗∗ 1.475∗∗∗

(0.154) (0.161) (0.247) (0.261)

drecit 0.003 0.004 0.011 0.009

(0.008) (0.007) (0.008) (0.007)

(cit − yit)drecit 0.009 0.011 0.020 0.015

(0.015) (0.013) (0.014) (0.013)

(∆yit −∆cit) -0.064∗ -0.177∗∗∗

(0.037) (0.039)

Cumby-Huizinga AC 4.149 3.274 6.134 3.924

[0.125] [0.194] [0.046] [0.141]

Pesaran CD 12.403 13.017

[0.000] [0.000]

Notes: Reported are the results of the estimation of eq.(14). Data used are reported in Section 6.1.

Estimation is based on panel data for 20 countries over the period 1995Q1 − 2020Q4. dt denotes the

Covid-19 dummy which equals one over the period 2020Q1− 2020Q4. drecit denotes the recession dummy

which is constructed from the OECD Composite Leading Indicator (CLI) of activity. Standard errors are

in parentheses, p-values are in square brackets. ∗,∗∗,∗∗∗ indicate significance at the 10%, 5% and 1% level

respectively. The Cumby-Huizinga test shows the average of the individual countries’ Cumby and Huizinga

(1992) autocorrelation test, testing the null hypothesis of no autocorrelation against the alternative that

the autocorrelations of the error term are nonzero at lags greater than zero (with maximum lag equal to

2). The Pesaran CD statistic tests the null hypothesis of cross-sectional independence (see Pesaran, 2004).

30



6.3 Predictability results for the variables ∆y, ∆c and r

The previous subsections look at the predictive ability of the log consumption-income ratio before and

during the Covid-19 disaster based on the simplified budget constraint of eq.(5). Given the general budget

constraint of eq.(4), this implicitly assumes that the log consumption-income ratio has no predictive power

for returns on wealth. In this section, we therefore check the implications of eq.(4), i.e., whether or not the

log consumption-income ratio c− y has a separate predictive impact for income growth ∆y, consumption

growth ∆c and returns on wealth r over the period 1995Q1 − 2020Q4. To this end, we estimate eq.(8)

where dit = dt (∀i) with dt the Covid-19 dummy used in the previous subsections. As before, we do

not separately include dt in the regression when applying CCE estimation as, in this case, all common

variables are controlled for through the common unobserved factors included in the error term. Given

the inclusion of the control variables wi,t+1 which can be contemporaneously correlated with the error

term, we use IV estimation at the country level as detailed in Section 4.2 above. As instruments, we use

lagged values of the dependent variable and the regressors.18

The results are reported in Table 8. Based on the results of the Pesaran cross-sectional dependence

(CD) test, which rejects the null hypothesis of cross-sectional independence when applying MG estimation,

we focus mainly on the CCEMG estimation results which are reported in the final three columns of the

table. As expected, we find that the current log consumption-income ratio has a significant positive impact

on next quarter’s income growth rate and a significant negative impact on next quarter’s consumption

growth rate. Moreover, this predictability is significantly higher during the Covid-19 pandemic. We do

not find a significant predictive impact of c− y for real equity returns however, neither before nor during

the Covid-19 pandemic. These results, which are similar to those obtained with historical data in Section

5.3, justify our focus in the previous subsections on the predictive ability of c − y for ∆y −∆c, i.e., on

the simplified budget constraint of eq.(5).

18More specifically, the MG (IV) estimation uses an instrument set that consists of a constant, the variables dt−1,

(ci,t−1 − yi,t−1) and (ci,t−1 − yi,t−1)dt−1 and lags 2 to 4 of the variables ∆yi,t+1, ∆ci,t+1 and ri,t+1 (i.e., the periods

t− 1, t− 2 and t− 3). The instrument set used for CCEMG (IV) additionally includes the cross-sectional averages of the

dependent variable and of all included regressors. Note that instruments used are lagged at least twice (i.e., starting from

t − 1) as for estimations that use instruments lagged only once (i.e.., starting from t), the Sargan-Hansen overidentifying

restrictions statistics tend to reject the validity of the instruments.
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Table 8: Predictive results for ∆y, ∆c and r

MG (IV) CCEMG (IV)

Dependent variable xi,t+1 Dependent variable xi,t+1

∆yi,t+1 ∆ci,t+1 ri,t+1 ∆yi,t+1 ∆ci,t+1 ri,t+1

dt 0.482∗ -1.042∗∗∗ -0.813

(0.255) (0.282) (3.146)

(cit − yit) 0.027∗ -0.035∗∗∗ 0.322∗∗∗ 0.022∗∗ -0.047∗∗∗ 0.042

(0.014) (0.013) (0.117) (0.011) (0.013) (0.064)

(cit − yit)dt 0.814∗ -1.518∗∗∗ -1.147 0.543∗ -0.723∗∗ -0.245

(0.450) (0.519) (5.778) (0.301) (0.325) (2.650)

∆yi,t+1 0.787∗∗∗ 0.938 0.795∗∗∗ 0.533

(0.069) (0.919) (0.102) (0.810)

∆ci,t+1 0.717∗∗∗ 0.608 0.400∗∗∗ 0.749

(0.057) (0.853) (0.079) (0.492)

ri,t+1 0.025 0.015 0.011 0.012

(0.016) (0.012) (0.011) (0.013)

Cumby-Huizinga AC 2.436 2.373 3.342 2.814 3.678 2.221

[0.296] [0.305] [0.188] [0.245] [0.159] [0.329]

Sargan-Hansen OR 7.460 7.964 5.643 7.825 11.000 8.165

[0.382] [0.336] [0.582] [0.451] [0.202] [0.417]

Pesaran CD 9.472 18.772 57.387

[0.000] [0.000] [0.000]

Notes: Reported are the results of the estimation of eq.(8) where dit = dt (∀i) with dt the Covid-19

dummy and where the vector of controls is wi,t+1 =
[

∆ci,t+1 ri,t+1

]
when xi,t+1 = ∆yi,t+1, wi,t+1 =[

∆yi,t+1 ri,t+1

]
when xi,t+1 = ∆ci,t+1 and wi,t+1 =

[
∆yi,t+1 ∆ci,t+1

]
when xi,t+1 = ri,t+1.

Estimation is based on panel data for 20 countries over the period 1995Q1−2020Q4. The Covid-19 dummy

dt equals one over the period 2020Q1− 2020Q4. Standard errors are in parentheses, p-values are in square

brackets. ∗,∗∗,∗∗∗ indicate significance at the 10%, 5% and 1% level respectively. The Cumby-Huizinga test

shows the average of the individual countries’ Cumby and Huizinga (1992) autocorrelation test, testing the

null hypothesis of no autocorrelation against the alternative that the autocorrelations of the error term are

nonzero at lags greater than zero (with maximum lag equal to 2). The Pesaran CD statistic tests the null

hypothesis of cross-sectional independence (see Pesaran, 2004). The Sargan-Hansen OR test reported is

the average of the country-specific Sargan-Hansen overidentifying restrictions statistics that test the joint

validity of the instruments used (see Sargan, 1958; Hansen, 1982). MG (IV) estimation uses an instrument

set that consists of a constant, the variables dt−1, (ci,t−1 − yi,t−1) and (ci,t−1 − yi,t−1)dt−1 and lags 2 to

4 of the variables ∆yi,t+1, ∆ci,t+1 and ri,t+1 (i.e., the periods t− 1, t− 2 and t− 3). The instrument set

used for CCEMG (IV) additionally includes the cross-sectional averages of the dependent variable and of

all included regressors.
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7 Conclusions

This paper investigates the multiple, often drastic, shifts and increased volatility that can be observed in

the aggregate consumption to income ratio during macroeconomic disaster episodes, i.e., historical wars,

depressions and pandemics as well as the current Covid-19 pandemic. As standard intertemporal budget

constraint logic implies that this ratio is linked to expectations about future income and consumption

growth rates, we investigate whether these expectations about the future suffice to explain the shifts in the

consumption-income ratio that occur during disaster periods or whether, on the other hand, consumers

become more forward-looking and therefore give more weight to these expectations during disaster times.

Our theoretical framework implies that the current consumption-income ratio has predictive power for

future income and consumption growth rates and that this power is higher during disaster episodes. Using

both a historical annual dataset (1870 − 2015) and a recent quarterly dataset (1995Q1 − 2020Q4) for

industrial economies, we evaluate the predictive power of the log consumption-income ratio both during

normal times and during disaster episodes through the estimation of panel predictive regressions.

Our results confirm that the predictive ability of the log consumption-income ratio for future income

and consumption growth rates is significantly higher during macroeconomic disasters. Interpreted through

the lens of the model, these results imply that consumers are more forward-looking during disaster times

and, consequently, give more weight to their expectations about future income and consumption growth

rates during these periods. Our findings are not limited to one particular disaster type but are found

for every major crisis type that we consider, including the current Covid-19 pandemic. While our results

hold for macroeconomic disasters, we do not find similar evidence for the conventional recessions that

have occurred over the sample periods that we consider in our estimations. To conclude, we note that our

findings have some potentially important policy implications, i.e., during severe crises, the announcement

and implementation of policy, be it fiscal or monetary, may have a larger impact on forward-looking

consumers and may therefore be more effective.

References

Adema, Y. and Pozzi, L. (2015). Business cycle fluctuations and household saving in OECD countries: a

panel data analysis. European Economic Review, 79:214–233.

Aizenman, J. and Noy, I. (2015). Saving and the long shadow of macroeconomic shocks. Journal of

Macroeconomics, 46:147–159.

33



Alan, S., Crossley, T., and Low, H. (2012). Saving on a rainy day, borrowing for a rainy day. IFS Working

Paper, W12/11.

Attanasio, O., Picci, L., and Scorcu, A. (2000). Saving, growth and investment: a macroeconomic analysis

using a panel of countries. Review of Economics and Statistics, 82(2):182–211.
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Appendices

Appendix A Derivation of eq.(1)

This appendix describes the steps in the derivation of eq.(1) in the main text. Our framework extends

the setting considered by Campbell and Mankiw (1989) and Lettau and Ludvigson (2005) by allowing for

time-varying discount factors that are different in normal times versus disaster times. When total wealth

is tradeable, the period-by-period budget constraint of a consumer can be written as,

Wt+1 = Rt+1(Wt − Ct) (A-1)

where Wt is real total wealth, Ct is real consumption and Rt is the gross real return on total wealth.

Dividing both sides by Wt, we can write Wt+1

Wt
= Rt+1

(
1− Ct

Wt

)
. After taking logs, this gives

∆wt+1 = rt+1 + ln (1− exp(ct − wt)) (A-2)

with wt = lnWt, rt = lnRt and ct = lnCt.

We linearize the term ln (1− exp(ct − wt)) by taking a first-order Taylor approximation which gives,

ln (1− exp(ct − wt)) ≈ −
C

W − C (ct − wt) (A-3)

where we ignore the linearization constant and where W and C are the average or steady state values of

Wt and Ct.
1

We assume that during macroeconomic disaster episodes, which are typically characterized by large

falls in consumption, the average consumption to wealth ratio is lower than in normal times. As such,

we have C0

W0
> C1

W1
where the subscript ‘0’ refers to normal times and the subscript ‘1’ refers to disaster

episodes. Upon defining dt as a (stochastic) binary variable that equals zero during normal times and

one during disaster episodes, we can then rewrite eq.(A-3) as

ln (1− exp(ct − wt)) ≈ −
(

(1− dt)
C0

W0 − C0
+ dt

C1

W1 − C1

)
(ct − wt) (A-4)

where we note that C0

W0−C0
> C1

W1−C1
. Defining the discount factor in normal times as ρ0 ≡ 1 − C0

W0
and

during disaster times as ρ1 ≡ 1− C1

W1
, we rewrite eq.(A-4) as,

ln (1− exp(ct − wt)) ≈
(

(1− dt)(1−
1

ρ0
) + dt(1−

1

ρ1
)

)
(ct − wt) (A-5)

=

(
1− 1

ρt

)
(ct − wt) (A-6)

where, on the second line, ρt is given by ρt = (1− dt)ρ0 + dtρ1.

1Note that the linearization occurs around the point ct − wt = c− w with c− w = ln
(

C
W

)
.
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Substituting eq.(A-6) into eq.(A-2), we obtain ∆wt+1 = rt+1 +
(

1− 1
ρt

)
(ct − wt). Note that we can

write ∆wt+1 as ∆wt+1 = ∆ct+1+(ct−wt)−(ct+1−wt+1). Upon combining these results and rearranging

terms, we obtain,

ct − wt = ρt(rt+1 −∆ct+1) + ρt(ct+1 − wt+1) (A-7)

Solving eq.(A-7) forward ad infinitum, imposing the transversality condition (
∏∞
k=1 ρt+k−1) (ct+∞ −

wt+∞) = 0 and taking expectations at period t then gives,

ct − wt = Et

∞∑
j=1

[(
j∏

k=1

ρt+k−1

)
(rt+j −∆ct+j)

]
(A-8)

with Et is the expectations operator conditional on period t information.

Since log total wealth wt is unobserved over the time frame and for the countries considered in this

paper, we cannot empirically implement eq.(A-8). Instead, we derive an income-based budget constraint

by assuming total wealth Wt consists of Nt shares with ex-dividend price given by Pt and where Yt is

real income (i.e., the real dividend) obtained from total wealth. As such, we have Wt = Nt(Pt + Yt)

where Pt + Yt is the cum-dividend price of a share. The gross real return on total wealth is given by

Rt+1 = Pt+1+Yt+1

Pt
. By combining these results and rearranging terms, we obtain,

W ∗t+1 = Rt+1 (W ∗t − Yt) (A-9)

with W ∗t ≡ Wt

Nt
. Eq.(A-9) is in the same form as eq.(A-1) so the same steps (linearization, defining the

discount factor, forward solving) can be applied to obtain,

yt − w∗t = Et

∞∑
j=1

[(
j∏

k=1

κt+k−1

)
(rt+j −∆yt+j)

]
(A-10)

where w∗t = lnW ∗t and yt = lnYt. The discount factor κt is given by κt = (1− dt)κ0 + dtκ1 where κ0 ≡

1− Y0

W∗
0

and κ1 ≡ 1− Y1

W∗
1

with W ∗0 and Y0 the average values of W ∗t and Yt in normal times and with W ∗1

and Y1 the average values of W ∗t and Yt during disaster episodes. We assume that during macroeconomic

disaster episodes, which are typically characterized by large falls in income, we have Y0

W∗
0
> Y1

W∗
1

, so that

κ0 < κ1. We then combine eqs.(A-8) and (A-10) where, after imposing the normalization Nt = 1 or

lnNt = 0, we obtain eq.(1) in the main text.

Appendix B Historical disaster episodes and dummies

Table B-1 presents the disaster periods used in the construction of the disaster dummies. The periods

are obtained by combining the consumption and GDP disasters reported in Tables 6 and 8 in Barro and

Ursúa (2008).
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Table B-1: Disaster periods used in the construction of disaster dummies

Episodes Episodes

All WW1 PAN GRD WW2 All WW1 PAN GRD WW2

Australia 1889-95 1910-18 1926-32 1938-46 Netherlands 1889-93 1913-18 1929-34 1939-44

1910-18 1912-18

1926-32 1929-34

1938-46 1939-44

Belgium 1913-18 1913-18 1930-34 1937-43 Norway 1916-21 1916-18 1919-21 1939-44

1930-34 1939-44

1937-43

Denmark 1914-21 1914-18 1919-21 1939-41 Portugal 1913-19 1913-19 1939-42

1939-41 1946-48 1927-28

1946-48 1934-36

1939-42

1974-76

Finland 1876-81 1913-18 1928-32 1938-44 Spain 1892-96 1913-15 1929-33 1940-49

1913-15 1913-15

1913-18 1929-33

1928-32 1935-38

1938-44 1940-49

1989-93

France 1870-71 1912-18 1929-35 1938-44 Sweden 1913-18 1913-18 1939-45

1874-79 1920-21

1882-86 1939-45

1912-18

1929-35

1938-44

Germany 1912-19 1912-19 1928-32 1939-46 Switzerland 1870-72 1912-18 1939-45

1922-23 1875-79

1928-32 1881-83

1939-46 1885-88

1912-18

1939-45

Italy 1918-20 1918-20 1939-45 UK 1915-21 1915-18 1918-21 1938-47

1939-45 1938-47

Japan 1937-45 1937-45 US 1906-08 1917-21 1929-33 1944-47

1913-14

1917-21

1929-33

1944-47

Notes: The periods in the table correspond to periods reported by Barro and Ursúa (2008) as either GDP disaster episodes, consumption

disaster episodes or both. The grouping of episodes according to principal world economic crises in columns ‘WW1’ (World War I), ‘PAN’

(Spanish flu pandemic), ‘GRD’ (Great Depression) and ‘WW2’ (World War II) follows the grouping reported by Barro and Ursúa (2008).

The grouping of consumption and GDP disasters according to principal world economic crises (World

War I, Spanish flu pandemic, Great Depression, World War II) is based on Tables 7 and 9 in Barro and
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Ursúa (2008).2,3,4

The episodes in column ‘All’ are used to construct the general dummy dt which is equal to one over

the reported periods in the column. The episodes in columns ‘WW1’ (World War I), ‘PAN’ (Spanish

Flu pandemic), ‘GRD’ (Great Depression) and ‘WW2’ (World War II) are used to construct the episode-

specific dummies djt with j = WW1, PAN,GRD,WW2 which are equal to one over the reported periods

in the respective columns. The episode-specific dummies are used in the estimations reported in Section

5.5.

Appendix C Per country baseline estimates using historical data

The following table reports the per country OLS and CCE estimates of the coefficients βi and γi obtained

from estimating the baseline specification eq.(6). These estimates are used in the calculation of the

MG and CCEMG estimates reported in Table 1 in the text. Also reported, between brackets, are

heteroskedasticity-consistent standard errors (see White, 1980).

2To illustrate, the UK experienced a consumption disaster over the period 1915−18 attributed to World War I and a GDP

disaster over the period 1918−21 attributed to the Spanish flu pandemic. Hence, the overall disaster period is 1915−21 and

the general dummy dt for the UK takes on the value of one during this period. Additionally, the episode-specific dummies

dWW1
t and dPAN

t take on the value of one during the periods 1915− 18, respectively 1918− 21.
3We slightly deviate from the grouping considered in Barro and Ursúa (2008) by allocating a number of their post-World

War II disaster episodes, occurring in the immediate aftermath of World War II, to our World War II category. This is the

case for Denmark (the 1946 − 48 consumption disaster), Spain (the 1946 − 49 consumption disaster, UK (the 1943 − 47

output disaster) and US (the 1944− 47 output disaster). This minor change has a minimal impact on the estimates and no

impact on the conclusions of the paper.
4The Spanish flu pandemic is based on the 1920s grouping of Barro and Ursúa (2008) where we include an episode if the

first year of the GDP or consumption disaster is either 1918 or 1919. Some episodes from Barro and Ursúa (2008)’s 1920s

grouping are therefore not included in our Spanish flu pandemic group. Examples are Germany (1922− 23) and Portugal

(late twenties).
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Table C-1: Per country estimates of βi and γi in the baseline specification eq.(6)

OLS CCE

Dependent variable Dependent variable

Country Regressor (∆yi,t+1 −∆ci,t+1) ∆yi,t+1 ∆ci,t+1 ri,t+1 (∆yi,t+1 −∆ci,t+1) ∆yi,t+1 ∆ci,t+1 ri,t+1

Australia (cit − yit) 0.017 0.002 -0.015 0.117 0.372 0.064 -0.327 0.019

(0.016) (0.023) (0.025) (0.076) (0.075) (0.087) (0.118) (0.247)

(cit − yit)dit 0.054 -0.054 -0.109 -0.139 0.094 -0.068 -0.202 -0.111

(0.082) (0.056) (0.078) (0.097) (0.087) (0.089) (0.115) (0.245)

Belgium (cit − yit) 0.209 0.281 0.071 -0.033 0.916 0.563 -0.336 0.361

(0.136) (0.107) (0.061) (0.169) (0.311) (0.177) (0.269) (0.399)

(cit − yit)dit -0.049 -0.091 -0.042 0.906 -0.070 -0.070 0.268 1.265

(0.212) (0.217) (0.202) (0.746) (0.227) (0.234) (0.327) (0.856)

Denmark (cit − yit) 0.005 0.024 0.019 -0.118 0.110 0.013 -0.158 -0.312

(0.012) (0.012) (0.018) (0.091) (0.030) (0.033) (0.040) (0.125)

(cit − yit)dit 0.372 0.230 -0.142 -0.497 0.469 0.215 -0.304 -0.031

(0.171) (0.122) (0.247) (0.225) (0.133) (0.144) (0.131) (0.286)

Finland (cit − yit) 0.055 -0.033 -0.089 -0.301 0.134 -0.038 -0.170 -0.229

(0.025) (0.033) (0.034) (0.299) (0.045) (0.051) (0.065) (0.335)

(cit − yit)dit 0.002 -0.082 -0.085 -0.212 0.006 -0.199 -0.239 -0.443

(0.144) (0.116) (0.148) (0.491) (0.114) (0.089) (0.137) (0.697)

France (cit − yit) 0.042 0.004 -0.038 -0.008 0.278 0.124 -0.068 0.443

(0.022) (0.025) (0.024) (0.099) (0.078) (0.117) (0.122) (0.286)

(cit − yit)dit 0.175 0.152 -0.024 0.530 0.362 0.281 -0.221 -0.065

(0.210) (0.115) (0.134) (0.169) (0.158) (0.159) (0.129) (0.235)

Germany (cit − yit) 0.063 -0.022 -0.085 0.010 0.105 0.012 -0.149 -0.554

(0.054) (0.052) (0.049) (0.338) (0.083) (0.068) (0.064) (0.409)

(cit − yit)dit 0.129 0.311 0.181 -0.094 0.072 0.103 0.208 0.902

(0.236) (0.266) (0.064) (0.360) (0.148) (0.181) (0.117) (0.474)

Italy (cit − yit) 0.012 -0.045 -0.057 -0.028 0.112 0.055 -0.062 -0.369

(0.015) (0.016) (0.017) (0.110) (0.041) (0.040) (0.033) (0.229)

(cit − yit)dit 0.287 0.600 0.314 0.477 0.639 0.710 0.131 1.859

(0.197) (0.262) (0.212) (1.450) (0.188) (0.267) (0.212) (1.939)

Japan (cit − yit) 0.029 -0.043 -0.072 0.046 0.334 0.101 -0.290 -0.210

(0.020) (0.020) (0.015) (0.131) (0.084) (0.070) (0.062) (0.435)

(cit − yit)dit 0.555 0.536 -0.018 0.410 0.757 0.560 -0.103 0.895

(0.385) (0.098) (0.324) (0.252) (0.299) (0.143) (0.208) (0.530)

Notes: Reported estimates are for βi and γi in equation (6). Heteroskedasticity-robust White standard errors are in parentheses. The OLS estimates reported

are used to calculate the MG estimates reported in Table 1 while the CCE estimates reported are used to calculate the CCEMG estimates reported in Table 1.
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Table C-1 (continued)

OLS CCE

Dependent variable Dependent variable

Country Regressor (∆yi,t+1 −∆ci,t+1) ∆yi,t+1 ∆ci,t+1 ri,t+1 (∆yi,t+1 −∆ci,t+1) ∆yi,t+1 ∆ci,t+1 ri,t+1

Netherlands (cit − yit) 0.099 0.192 0.093 -0.328 0.201 0.169 -0.074 -0.076

(0.086) (0.168) (0.088) (0.200) (0.110) (0.122) (0.095) (0.199)

(cit − yit)dit 0.463 0.124 -0.340 0.129 0.555 0.337 -0.172 -0.081

(0.291) (0.287) (0.287) (0.244) (0.303) (0.258) (0.437) (0.284)

Norway (cit − yit) 0.005 -0.015 -0.020 -0.085 0.022 -0.034 -0.072 -0.281

(0.007) (0.007) (0.009) (0.081) (0.030) (0.031) (0.041) (0.218)

(cit − yit)dit 0.199 0.156 -0.042 -1.053 0.373 0.363 -0.339 -0.105

(0.096) (0.235) (0.247) (0.344) (0.077) (0.177) (0.162) (0.463)

Portugal (cit − yit) 0.083 -0.180 -0.263 -0.047 0.078 -0.120 -0.236 -0.282

(0.045) (0.060) (0.043) (0.553) (0.045) (0.048) (0.043) (0.445)

(cit − yit)dit -0.086 0.158 0.243 2.307 -0.096 0.137 0.269 1.778

(0.087) (0.209) (0.167) (0.700) (0.092) (0.199) (0.166) (0.622)

Spain (cit − yit) 0.023 -0.005 -0.028 -0.055 0.165 0.045 -0.109 -0.032

(0.016) (0.035) (0.041) (0.198) (0.045) (0.062) (0.093) (0.248)

(cit − yit)dit 0.377 -0.208 -0.586 0.149 0.278 -0.155 -0.408 -0.116

(0.147) (0.157) (0.285) (0.328) (0.133) (0.137) (0.252) (0.399)

Sweden (cit − yit) 0.005 0.021 0.016 -0.179 0.067 -0.003 -0.078 -0.033

(0.012) (0.015) (0.014) (0.122) (0.025) (0.034) (0.038) (0.128)

(cit − yit)dit 0.205 -0.129 -0.334 0.197 0.154 -0.055 -0.126 -0.269

(0.133) (0.295) (0.323) (0.413) (0.162) (0.202) (0.182) (0.312)

Switzerland (cit − yit) 0.107 0.085 -0.022 0.176 0.413 0.055 -0.312 0.230

(0.053) (0.048) (0.058) (0.317) (0.116) (0.084) (0.096) (0.359)

(cit − yit)dit 0.851 -0.189 -1.040 0.025 0.551 -0.157 -0.631 -0.761

(0.170) (0.163) (0.226) (0.782) (0.198) (0.139) (0.191) (0.710)

UK (cit − yit) 0.033 -0.043 -0.076 -0.141 0.066 0.045 0.031 -0.246

(0.019) (0.023) (0.021) (0.232) (0.034) (0.039) (0.034) (0.322)

(cit − yit)dit 0.171 0.123 -0.048 0.001 0.299 0.163 -0.235 0.239

(0.129) (0.072) (0.079) (0.410) (0.225) (0.189) (0.074) (0.656)

US (cit − yit) -0.006 -0.010 -0.004 -0.049 0.080 0.135 -0.001 -0.140

(0.017) (0.021) (0.017) (0.079) (0.031) (0.042) (0.040) (0.167)

(cit − yit)dit 0.228 0.105 -0.123 0.200 0.188 0.180 -0.059 0.252

(0.097) (0.077) (0.052) (0.344) (0.105) (0.108) (0.054) (0.337)

Notes: Reported estimates are for βi and γi in equation (6). Heteroskedasticity-robust White standard errors are in parentheses. The OLS estimates reported

are used to calculate the MG estimates reported in Table 1 while the CCE estimates reported are used to calculate the CCEMG estimates reported in Table 1.
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