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Chapter 1

Introduction

1.1 Motivation

Many macroeconomic time series, like industrial production, gross national product and
consumption are characterised by long periods of positive growth, expansions, and short
periods of decline, recessions. The overall positive growth in these series may be modelled
by a linear deterministic trend with a positive slope. If however the short periods of
decline have a large impact on future values of the series, a trend specification with
constant growth rate may not be flexible enough to capture the trend in the time series.
Therefore, the deterministic trend is often extended.

One interesting possibility is to include a stochastic trend. A popular stochastic trend
specification is the random walk, which consists of a cumulative sum of uncorrelated
stochastic shocks generated by a continuous distribution. This random walk specification
assumes that positive and negative shocks, occurring in every time period, have a perma-
nent effect on future values of the series. However, if only shocks during recession periods
have a permanent effect, then the random walk may be too flexible to model the trend.

An alternative strategy to model the shocks in the recession periods, which are likely to
have a permanent effect, is to use appropriate dummy variables. Due to the deterministic
character of this solution, this implies that in forecasting exercises the model does not
take into account the possibility of a period of negative growth in the future and provides
unjustly less forecast uncertainty.

Hamilton (1989) exploits the fact that recessions are recurrent events. Based on the
ideas of modelling the business cycle by Neftci (1984), he formulates a trend specification,
where shocks during recessions have a different effect on future values of the series than
shocks during expansions. This so-called Markov trend is a segmented trend with two
slopes to model the different growth rates in the recession and expansion periods. The
direction of the slope in every period depends on the value of an unobserved first-order
two-state Markov process. Instead of a continuous shock in every period like in the random
walk specification, the stochastic Markov trend is determined by discrete shocks, which
do not have to occur in every period. The Markov trend can be represented in a way,



2 Introduction

where the growth in expansion periods is modelled by a linear deterministic trend and the
growth during recessions by discrete shocks. The Markov structure in the trend implies
that the current slope of the trend depends on the value of the slope in the previous
period to model persistency in the time series. This is not the case for the random walk,
which consists of a cumulative sum of uncorrelated shocks. Therefore, the Markov trend
is more restricted than the random walk.

The Markov trend has been applied to analyse the business cycle in macroeconomic
time series. The transition probabilities of the Markov process determine the expected
duration of recessions and expansions and inference on regime changes can be used to
determine turning points. Hamilton (1989) models real gross national product of the
United States using a Markov trend, where the deviations from this trend are assumed to
be an autoregressive process. He assumes that the trend in this series can be described
by a Markov trend plus a random walk, resulting from a unit root in the autoregressive
polynomial. Hence, the future values of the series depend on discrete shocks which have
occurred during recession periods and continuous shocks which have happened in every
period in the past. Lam (1990) however assumes that the series is stationary around
a Markov trend so that only shocks during recessions matter. His results show that
the estimated duration of recessions and the dating of turning points depend on the
specification of the trend, see also Gordon (1997). This is not surprising, since the Markov
trend specification models the trend and the business cycle simultaneously and adding
an extra stochastic trend influences inference on the Markov trend. It is therefore for
business cycle analysis necessary to have an accurate description of the trend in the series.
Furthermore, the trend specification also plays an important role in forecast exercises and
impulse-response analysis. Overspecification of stochastic trends leads to superfluous
forecast uncertainty, while underspecification assumes unfairly less forecast uncertainty.

In this thesis we focus on the analysis of trends in macroeconomic time series using
Markov trend models. For the univariate analysis, we consider model specification, the
impact of shocks on future values of the series for several trend specifications and forecast
uncertainty. Additionally, we link the slopes of the Markov trend with the stages of the
business cycle. The univariate Markov trend model is extended with a seasonal component
to analyse the business cycle and the seasonal variation in time series simultaneously. To
analyse multivariate macroeconomic time series, we consider a straightforward multivari-
ate extension of the univariate Markov trend model of Hamilton (1989) and Lam (1990).
The model consists of a multivariate version of a univariate Markov trend specification
and the deviations from this multivariate Markov trend are assumed to be a vector au-
toregressive process. We focus on model specification and on the role of the trend and in
particular on common stochastic trend specifications. Again, the impact of shocks under
different trend specifications is discussed. The slopes of the multivariate Markov trend
can be linked with the stages of business cycle and common Markov trends may imply
the presence of common business cycles in multivariate time series.

To analyse univariate and multivariate Markov trend models, we use Bayesian meth-
ods. Recent developments in simulation techniques, like Gibbs sampling, has made the
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Bayesian analysis of Markov trend models possible as shown by e.g. Albert and Chib
(1993) and McCulloch and Tsay (1994b). Inference on for instance the business cycle
is not only based on single optimal parameter values like in classical analyses but also
takes into account parameter uncertainty. The same arguments holds for out-of-sample
inference, like the analysis of forecast distributions. The Bayesian inference in this thesis
is based on diffuse prior specifications and can be seen as an extensive way to analyse
the information in the likelihood function. It enables us to examine the amount of infor-
mation in macroeconomic time series as posterior variances are completely dominated by
variation in the time series and not heavily influenced by prior specification. Informative
priors can however easily be included in the analysis.

To determine the appropriate trend specification in univariate Markov trend models
we can build on existing Bayesian methods. However, the analysis of stochastic trends
in multivariate Markov trend models is not straightforward and requires new techniques.
Therefore, we provide in this thesis a new general Bayesian framework to analyse the
number of (common) stochastic trends in vector autoregressive models. This framework
is adapted to analyse the presence of common Markov trends in the multivariate Markov
trend models to analyse common business cycles.

In the next section, we provide a short overview of the literature about Markov switch-
ing including model extensions. Although we usually do not consider all of these exten-
sions, several of them can easily be incorporated in the models considered in this thesis.
The last section of this chapter provides a more detailed outline of the thesis.

1.2 Short Overview of Markov Switching Literature

The introduction of the Markov trend model by Hamilton (1989) has resulted in a rapidly
expanding literature on the implementation of Markov processes in econometric modelling.
Just as for business cycle analysis, the Markov processes are used to model switches
between regimes. In this section we provide a short overview of some major contributions
of Markov switching in the modelling of economic time series.

One of the main applications of Markov switching models is in business cycle analysis.
Hamilton (1989) proposes a time series model, where the growth rate of the series depends
on the stage of the business cycle. The business cycle is modelled by an unobserved first-
order Markov process like in Neft¢i (1984) and Falk (1986). The Hamilton Markov trend
model has been used to analyse business cycles in macroeconomic time series. Hamilton
(1989) and Lam (1990) use this model to analyse the business cycle in gross national
product [GNP] of the United States, Goodwin (1993) analyses the business cycle in real
GNP of seven other countries, Layton (1994) considers Australian gross domestic prod-
uct and Diebold and Rudebusch (1996) compare several composite indexes of coincident
indicators.

Several extensions to the original Hamilton model have been proposed. Durland and
McCurdy (1994) consider duration-dependent transition probabilities to change from re-
cession to expansion regimes and vice versa. In their model the value of transition proba-
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bility depends on the number of periods that the process has been in the regime. Filardo
(1994) and Diebold, Lee and Weinbach (1994) model the transition probabilities using
logistic functions, which include explanatory variables. The Hamilton model assumes a
constant dynamic pattern over the business cycle. To allow for different dynamics during
recession and expansion periods, Markov switching in the autoregressive parameters have
been proposed, see e.g. McCulloch and Tsay (1994b) and Hansen (1992). Additionally,
for seasonally unadjusted series Ghysels (1994) and Ghysels, McCulloch and Tsay (1994)
propose transition probabilities, which are different in every season. Finally, McCulloch
and Tsay (1994a) consider Markov switching between trend stationary and difference
stationary regimes.

A few studies have extended the univariate Markov trend model to a multivariate
model. Phillips (1991a) considers a simple two-dimensional version of the Hamilton to
analyse transmissions of business cycles between countries using industrial production
series. Kim and Yoo (1995) propose a multivariate Markov switching factor model to
construct a composite index of coincident indicators, while Dwyer and Potter (1996)
consider multivariate versions of the Markov trend.

Finally, Markov switching dynamics are also found in financial time series. For in-
stance, Hamilton (1988), Ceccheti, Lam and Mark (1990) and Garcia and Perron (1996)
detect Markov switching in the conditional mean of interest rates. Engel and Hamilton
(1990), Kaminsky (1993) and Engel (1994) model depreciation and appreciation periods
in exchange rates with a simple Markov switching model. Tyssedal and Tjgstheim (1988)
use Markov switching in the autoregressive structure of dividend rates, while Ceccheti,
Lam and Mark (1990) and Bonomi and Garcia (1994) only consider Markov switching
in the mean and variance. An extension to regime changes in the conditional variance
dynamics of stock returns can be found in Hamilton and Susmel (1994), see also Cai
(1994) and Dueker (1997). Hamilton and Lin (1996) investigate the relation between
stock market volatility and the business cycle.

In this thesis we focus on the original Markov trend specification of Hamilton (1989)
to model macroeconomic time series. We only consider Markov switching structure in the
mean of the series and not in the variance. The possibilities and limitations of several of
the above mentioned model extensions are discussed. The next section provides a more
detailed outline of the thesis.

1.3 Outline

In this section we provide a general outline of the thesis. A detailed outline with refer-
ences to related literature can be found in the introduction of each chapter. The thesis is
partitioned in two parts. In the first part we consider the modelling of the trend compo-
nent in univariate macroeconomic time series. The second part deals with a multivariate
analysis of trends in time series.

The outline of the first part is as follows. In Chapter 2 we provide a short introduction
into the modelling of the trend component in univariate time series. We focus on three
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trend specifications: the linear deterministic trend, the Markov trend and the even more
flexible random walk plus drift. The latter two specifications are stochastic trends and
result in a better within-sample description of the trend component in time series, but
imply more forecast uncertainty. Additionally, we briefly discuss the modelling of the
deviations from the trend component using autoregressive models. We show that a unit
root in the autoregressive structure also implies the presence of a stochastic trend in the
model.

The univariate Markov trend model is considered in Chapter 3. The ideas in this
chapter are based on Hoek and Paap (1994). Following Hamilton (1989) the model is
autoregressive in deviation from a Markov trend. We discuss the presence of stochastic
trends and especially the impact of exogenous shocks on the level and the first differences
of the series under various specifications of the model. The chapter provides a Bayesian
strategy to analyse the presence of stochastic trends in time series using the Markov
trend model. This includes prior specification, a simulation scheme to obtain posterior
results, posterior odds ratios for the presence of stochastic trends and a predictive Bayesian
analysis. Finally, we investigate using the Markov trend model the trend in quarterly
observed German industrial production and compare forecast distributions generated by
Markov and non-Markov trend models.

In Chapter 4 the univariate Markov trend model is extended with a seasonal compo-
nent to analyse quarterly observed seasonally unadjusted series. This chapter is based
on ideas in Franses and Paap (1996) and uses techniques from Franses, Hoek and Paap
(1997). We first discuss the consequences of seasonal adjustment on business cycle analy-
sis using Markov switching models and conclude that it is preferable to model the business
cycle and the seasonal pattern in a time series simultaneously. In the model the devi-
ations from the Markov trend component now consist of a seasonal component and an
autoregressive model. To allow for changes in the seasonal pattern over time, the autore-
gressive structure may include seasonal unit roots, which lead to the presence of seasonal
stochastic trends. The seasonal component consists of seasonal dummies and incorporates
via seasonal mean shifts the possibility that changes in the seasonal pattern coincide with
changes in the business cycle. The Bayesian techniques in Chapter 3 are extended to
analyse the presence of seasonal stochastic trends and seasonal mean shifts. Finally,
we consider quarterly observed seasonally adjusted and non-adjusted German unemploy-
ment. The estimated business cycle resulting from the model for the adjusted data is
compared with the business cycle resulting from the model for the seasonally unadjusted
series. We notice differences in the dating of turning points and in the expected duration
of contraction and expansion periods.

The second part of the thesis is organised as follows. Just as in the univariate part we
start with a short introduction in the modelling of trends in multivariate time series in
Chapter 5. The univariate deterministic and stochastic trend specifications of Chapter 2
are generalised to multivariate trend specifications. We discuss parameter restrictions
which lead to the presence of common trends. We speak of common trends if the num-
ber of trends needed to model the multivariate time series is smaller than the number
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of trends needed to model the individual time series separately. In addition, we discuss
the modelling of the deviations from the trend component using vector autoregressive
moving average models. Just as in the univariate case, unit roots in the autoregressive
structure imply the presence of stochastic trends. We focus on the restrictions for com-
mon stochastic trends in vector autoregressive models, which is usually referred to as
cointegration.

Contrary to univariate Bayesian analysis of unit roots in autoregressive models, there
is no complete Bayesian method to analyse cointegration in vector autoregressive models.
Therefore, we provide in Chapter 6 a complete Bayesian framework to analyse cointegra-
tion in vector autoregressive models. This chapter is an abbreviated version of Kleibergen
and Paap (1996). The Bayesian analysis is based on a new decomposition of the parameter
matrix which models the error correction. Although the Bayesian framework is developed
for the standard linear vector autoregressive model, it turns out to be easy to implement
in more complicated models like the multivariate Markov trend model in Chapter 7. The
framework includes prior specification, posterior simulation, and Bayesian Lagrange mul-
tiplier statistics and posterior odds ratios to analyse the number of cointegration relations.
To illustrate the Bayesian cointegration analysis we compare posterior results with classi-
cal outcomes of cointegration analysis for the Johansen and Juselius (1990) Danish series
and the United Kingdom series of Hendry and Doornik (1994).

In Chapter 7 we consider a multivariate Markov trend model. This model is a multi-
variate generalisation of the univariate Markov trend model of Chapter 3. It consists of a
vector autoregressive model in deviation from a multivariate Markov trend specification.
First, we discuss several simplifications of the most general model specification including
common Markov trends, cointegration and reduced rank Markov trend cointegration. We
focus on the impact of exogenous shocks on the level and the first differences of the series
under several specifications. The Bayesian framework to analyse the models includes prior
specification, a simulation scheme to obtain posterior results and posterior odds ratios for
common Markov trends and cointegration. The analysis of common stochastic trends is
based on the techniques presented in Chapter 6. Using the multivariate Markov trend
model we conclude that quarterly observed per capita income and consumption of the
United States contains one common Markov trend and one cointegration relation. Ne-
glecting the Markov structure leads to favouring the hypothesis of no common stochastic
trends.

Finally, we end this thesis with a summary of the main results and conclusions in
Chapter 8. Additionally, we provide some directions for further research.
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Univariate Analysis






Chapter 2

Univariate Stochastic Trends

2.1 Introduction

Many macroeconomic variables, like real gross national product [GNP], real consumption,
total investment, industrial production have a tendency to grow over time. It is important
for policy makers to have accurate forecasts of these variables. For forecasting trending
time series, it is crucial to have a well specified trend component. A misspecification of
the trend component can lead to a forecast path which lies totally above or below future
realisations of the series, see e.g. Stock and Watson (1988). The trend of the logarithm
of macroeconomic time series is often modelled with a linear deterministic trend. This
trend specification corresponds to the assumption of constant exponential growth in the
level of the series and implies no forecast uncertainty since it is fully deterministic. In
practice, a deterministic trend may not be flexible enough to model the trend in a time
series. Therefore, the linear deterministic trend is often extended with a stochastic trend,
like a random walk. The random variable in this trend specification allows for a different
direction of the trend in every period and produces a better within-sample description of
the trend. However, including random variables in the trend specification leads to forecast
uncertainty. Hence, from a forecasting point of view it is necessary to avoid overfitting
of the trend component by making it too flexible with random variables. The same
arguments hold for impulse-response analysis. A misspecification of the trend component
may lead to incorrect conclusions about the impact of shocks on future values of the time
series. In this part of the thesis, we investigate techniques to analyse trends in univariate
time series. As an introduction we provide in this chapter a short overview of the various
trend specifications, which have been used to model the trend in macroeconomic time
series. Additionally, we discuss the way in which the trend component can be included in
a time series model.

The outline of this chapter is as follows. In Section 2.2 we discuss various possibilities
for the specification of the trend component in macroeconomic time series. In Section 2.3
we discuss how these trend components may enter a time series model. A simple illus-
tration of the modelling of the trend in GNP of the United States is given in Section 2.4.
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Finally, in Section 2.5 we give a short outline of the chapters in the first part of the thesis.

2.2 Trend Specifications

In this section, we consider the most applied trend specifications, for modelling macroe-
conomic time series. The simplest trend specification n;, t = 1,2,3,... is

Ny = M1 + Yo, (2.1)
which corresponds to a linear deterministic trend

with slope vy and initial value n;. This specification assumes a constant growth rate.
For known values of 7y and n; there is no forecast uncertainty so that the expectation
and the variance of ny at t = 1 is n; + (¢t — 1) and zero, respectively.! If this linear
deterministic trend is too restrictive, one can replace the linear specification in (2.2) with
a polynomial in ¢ of degree > 1. This however implies that lim; , [Py — ny_1| — o0,
which may be unrealistic for the time series under consideration. Of course, any function
of time, g(t), can be used to model the trend, see for instance Granger (1989, p. 28) for
useful alternatives. Note that the trend of the logarithm of an exponential growing series
can be modelled by a deterministic trend, since In(exp(7yot)) = Yot.

Another possibility for a more flexible trend is to introduce a random variable in the
trend specification

Ny = Ny_1 + Yo + Y14, (2.3)

where u; ~ NID(0,1). If 79 = 0 this trend is called a random walk, while for v # 0 we
refer to this trend as a random walk plus drift (=7,). The direction of the trend (2.3) at
time ¢ is ¥y plus an unanticipated shock u; and is therefore more flexible than the linear
deterministic trend (2.2). This follows directly from the backward solution of (2.3)

t
ng=mn1+%E—1)+m1 Y u. (2.4)
=2

The random walk plus drift consists of a deterministic trend plus accumulated shocks
t_,u;, which will be referred to as a stochastic trend in this thesis. The expectation
of ny at ¢ = 18 n; + y(t — 1) and its variance is 7#(¢ — 1), which implies that the
forecast uncertainty about this trend increases linear over time. Note that instead of a
standard normal distribution for u;, one can also assume other continuous distributions,

like t-distributions. Sometimes (2.3) is extended with a stochastic drift term

Ny = Ny—1 + Yot + V1,

(2.5)
Yot = Yo,4—1 7 Mts

!Strictly speaking, the expectation and variance are not defined since the trend component does not
contain a random variable.
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where 7, ~ NID(0, 07) and E[nu] = 0, see e.g. Harvey (1989). The backward solution of
this trend, n; = ny + 70,1 (t — 1) + Xi_o (711 + X5—5 1), shows that the expectation of ny
at t = 1 is still linear in ¢, n, + 79,1 (t — 1). However contrary to the random walk (2.3),
the variance of ny at t = 1, 77(t — 1) 4+ 302(t* — t), increases quadratic over time, since
it includes the uncertainty in the drift term - ,. In general, this implies that the random
walk plus drift (2.3) has smaller forecasts intervals than the random walk plus stochastic
drift term (2.5).

An alternative to the random walk plus deterministic drift was proposed by Hamilton

(1989), which is now known in the literature as a Markov trend
Ny = Ng—1 + Yo + Y15t St = 07 ]-a (26)
where s; is an unobserved first-order Markov process with transition probabilities

Pr[s; =0|s;_1 = 0] =p, Pr[s;=1|s;_1 =0]=1—p, (2.7)
Pris; =1|s;-1 =1 =4¢q, Pr[s; =0|s;-1 =1]=1—gq, '
with 0 < p <1 and 0 < ¢ < 1. The direction of this trend at time ¢ is 7, if s; = 0 and
Yo + 71 if s; = 1. Instead of a cumulative sum of a continuous random variable u;, the
stochastic trend now is a cumulative sum of a discrete random variable s;

t
ny =ny + Yot — 1)+’Y128i- (2.8)

1=2

We will refer to 3-!_, s; as a stochastic Markov trend. Note that this trend does not consist
of a cumulative sum of independent shocks, since E[s;s;_1] # 0. To derive the expectation
of n; at t = 1, we consider the following first-order autoregressive representation of s,

sy = (1 —p) + @si—1 + vy, (2.9)
where ¢ = (—1 + p + ¢) and conditional on s; 1 =0

vy = —(1 —p) with probability p,

Uy =D with probability (1 — p), (2.10)

and conditional on s;_; =1

vy =(1—gq) with probability g, (2.11)
vy = —q with probability (1 — ¢), '
so that E[vi[s;—1 = 0] = E[vy|s;—1 = 1] = 0, see Hamilton (1989) and Hamilton (1994,
p. 683-684). If ¢ =0 (i.e. p+ g = 1), s; is not correlated with the past and the Markov
structure disappears. In this case s; has an uncorrelated Bernoulli distribution with
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Pr[s; = 1] =1 —p and Pr[s; = 0] = p. Using (2.9) it is easy to show that the expectation
of s; at ¢ = 1 given the initial value s; equals

t—2

Blsis1] =Y (1 —p)e' + ¢ sy

(1—p)(1 -9
(1—)
:ﬂ__|_(pt71(81_71—):Pr[st:HSﬂ,

~

2.12
v o, 2.1

where 7 = (1 — p)/(2 — p — q). The unconditional probability that s; = 1, Pr[s, = 1],
equals limy_,o E[s¢|s1], which is 7 if ¢ < 1. Also the expectation E[s;| Pr[s; = 1] = 7]
equals . Hence, the expectation of n; at t = 1 equals

¢
Englni,si] =E{no+ 7%t — 1)+ 7 )_si
i=2

ny, Sl]

=ng+y(t—1)+m Xt:(ﬂ + ¢ (s — 7))

i=2 . (2.13)
=+ (o +mn){t—1) +7(s1 —m) Y ¢
=1
1— (,Ot_l

=n;+ (o +7y)(t — 1) + o71(s1 — 7)

1—¢

see also Hamilton (1989). In practice the value of s; is seldom known. If we have no
useful information about s; apart from Pr[s; = 1] = 7, the expectation of n; at ¢t = 1
simplifies to ny + (79 + 7y1)(t — 1). In the same way it can be shown that the variance of
ny at t = 1 given that Pr[s; = 1] = 7 equals

E[(n; — E[ng])?| Pr[s; = 1] = 7]

:ﬁE:<§Si_E[§SiDQ

Pr[s; = 1] = ﬂ]

Prfs; = 1] = 7rr

=2

mm=u=4—ﬁqi&

; . ; 2(2.14)
= v’E 23? + 2; ‘lejsz Prls; =1] = 71'} —¥E l; si| Pr[s; = 1] = 71']
B OO (B [ R e
= vim(1 )((t 1)+2 TEAE >:

where we use that E[s;s;| Pr[s; = 1] = 7] = Pr[s; = 1|s; = 1] Pr[s; = 1| Pr[s; = 1] = 7].
Note that the variance of the Markov trend for large ¢ increases linear over time.
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In summary, we have discussed in this section the properties of four trend specifi-
cations. We started with the linear deterministic trend, which incorporates no forecast
uncertainty. The random walk plus drift and the random walk plus stochastic drift term
trend specification are more flexible but lead to forecast uncertainty. Finally, we have
considered the properties of the Markov trend. Since this trend allows for two possible
slope values, it is less flexible than a random walk but more flexible than a linear deter-
ministic trend. It can be seen as a segmented trend, where the slope changes according to
a first-order Markov process. Although it is possible to think of more trend specifications,
we limit ourselves in this section to the most applied trends. In Section 2.4 we discuss as
an illustration the fit and the forecast uncertainty of the linear deterministic trend, the
random walk and the Markov trend in modelling gross national product of the United
States. In the next section, we discuss the role of trend components in time series models.

2.3 Model Specifications

To include a trend in a time series models there are several possibilities. One can model
the time series in deviation from a trend component n; or one can simply add the trend
component to the time series model in a linear way. The former corresponds to the
assumption that a univariate time series {y;}L , can be decomposed as

Y = Ny + 24, (215)

where n; is the trend component and z; represents the deviations from the trend. Some-
times (2.15) is extended with a seasonal component and/or a cyclical component. The
deviations from the trend are usually assumed to be an autoregressive moving average

[ARMA((k,l)] process

k !
Zt — Z Pizi—i = € — Z@Z)zft—z‘, (2-16)
i=1 i=1

where ¢; ~ NID(0, 02).2 If we use the lag operator L, defined as L'z; = z_;, i =0,1,2, ...,
we can write (2.16) as

(1= 1L — ¢oL® — - — L") zg = (1 — 1 L — 1t L? — - - — ¢ LY)ey,
¢(L)z = P(L)e (2.17)

where ¢(L) and ¢(L) are polynomials in the lag operator L of order k and [ respectively.

The process z; is stationary if the roots of the polynomial ¢(z) are outside the unit
circle and also invertible if the roots of the polynomial ¢)(x) are outside the unit circle,
see among others Granger and Newbold (1987). If this is the case y; is a stationary and
invertible ARMA process around the trend n;. If however one of roots of ¢(x) is one (unit

2Tt is of course possible to assume other continuous distributions.
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root), the process z; contains a stochastic trend. We refer to z; in this case as a unit root
process or an integrated process of order one, z; ~ I(1). We can write the polynomial

¢(L) as
¢(L) = (1= L)¢"(L), (2.18)

where ¢*(L) = (1 — ¢iL — -+ — ¢;_,L*¥7') is a polynomial in the lag operator of order
(k —1). This implies an ARMA(k — 1,1) model for the first difference of z

¢*(L)(1 = L)z = (L)ey,
Q=—¢iL—- = L N1 —L)zg = (1=t L—-- =ty Lhe,

k-1 l
Az — Z d);AZt—i = € — Z Vi€,

1 —
L (2.19)

where Az, = (1 — L)2z; = z; — 2, 1. To show that z; contains a stochastic trend we write
Az, as a MA(o0)

¢ (L)Az = (L)ey,
Az = (¢(L)) "(L)e (2.20)
Az = c(L)ey,

where ¢(L) = (¢*(L)) *4(L) is a lag polynomial with ¢; = 1 and 32°,i|c;| < oo. The lag
polynomial ¢(L) can be decomposed as

e(L) = c(1) + (1= L)c*(L), (2.21)

where ¢*(L) is a lag polynomial see Johansen (1995, p. 47), so that
t
z=z+c(1)> €+ (L. (2.22)
i=2

The process z; is the sum of a stochastic trend 3!_,¢; and a MA(oc) process c*(L)e;.
This decomposition was first made by Beveridge and Nelson (1981) and is known as the
Beveridge-Nelson decomposition.

From (2.22) if follows that under the decomposition (2.15) n; does not have to be
the sole trend component. If the ARMA process z; contains a unit root, y;(= n; + 2;)
consists of the sum of two trends, for instance a stochastic Markov trend $!_,s; in n,
plus a stochastic trend Y°!_, ¢; through 2, or a linear deterministic trend ¢ in n; plus a
stochastic trend Y!_, €; through z;.

Finally, it is also possible to have two unit roots in the polynomial ®(x), i.e. 2z is
integrated of the order two, z; ~ I(2). In this case the stochastic trend consists of a double
sum of unanticipated shocks, like for the trend specification (2.5). In practice, there are
not many examples of economic series, which seem to have two unit roots. Therefore, we
consider the analysis of these processes beyond the scope of this thesis.
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An alternative model specification is

k l
Yt — Z Pilr—i = Ny + € — Z Vi€ i. (2.23)
i=1 i—1

Instead of modelling the time series in deviation from its trend, the trend component n; is
added in a linear way. The interpretation of n; is difficult since it does not represent the
trend component in ;. Note that if n,; is a linear deterministic trend, it is possible to find
a one-to-one relation between the parameters in the decomposition in (2.15) and in (2.23)
unless ¢(L) contains a unit root. In that case n; is not identified, if we use decomposition
(2.15) but still identified in (2.23).

If ¢(L) contains a unit root, the first difference of y; still contains the trend component
Ny

k—1 l
Ay, — Z ¢;Ayt—1 =n;+ € — Z Vi€ (2.24)
i=1 i=1
and it is straightforward to show that

Y = y1 +c(1) i(nz +e)+c(L)e (2.25)

=2

so that y; consists of a stochastic trend 2522 €¢; plus the accumulated sum of the trend
component n;. Loosely speaking, n, now acts as a drift term. If n, contains a linear
deterministic trend, like in the linear deterministic trend specification (2.2) but also in
the random walk plus drift (2.4) and the Markov trend (2.8), a unit root in ¢(x) implies
the presence of a quadratic trend in ;.

In this thesis we use specification (2.15). In this specification the component n; can be
interpreted as a trend in y;, which is not the case in (2.23). Furthermore, the role and
hence the interpretation of the trend component n; does not change if a unit root enters
the autoregressive part of the model.

2.4 Illustration of Trend Modelling

To illustrate the modelling of the trend, we consider in this section seasonally adjusted
quarterly observed real GNP of the United States [US], 1951.1-1984.1V. Figure 2.1 displays
a plot of the level of the series. We notice that the series increases over time with short
periods of decrease, for instance in the middle of the 1970s and in the beginning of the
1980s. Since the growth in the series seems exponential, one usually models the logarithm
of this series. To model the trend component of the logarithm of the series, several
specifications have been proposed. In this section, we focus on four trend specifications,
which play an important role in this thesis. The aim of this section is to show the
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Figure 2.1. Seasonally adjusted US real GNP, 1951.1-1984.1V.

properties and implications of the various trend specifications and not to find the best
trend specification for this series.

To analyse the series we consider y; = 100 x In(GNP;). A simple model for this
transformed series is the trend stationary [T'S] model. One assumes that the series is a
stationary process around a linear deterministic trend (2.2)3

Yo = Ny + 24,
ng =mny_ 1+ 075,
ze = 1.312;_1 — 0.362;_1 + €, o =0.99.

The slope of the linear deterministic trend is 0.75, which implies an average quarterly
growth rate of 0.75%. The deviations from the trend follow an AR(2) process. The first
row of Figure 2.2 shows the transformed GNP series plus the fitted linear deterministic
trend and the series minus this linear trend. In the deviations from the trend one can see
the several recessions in the US economy. The roots of the z; process are 0.92 and 0.39
and hence a unit root in the z; process may be plausible. Imposing a unit root in the
autoregressive part of the model leads to the following difference stationary [DS] model
for y,?

Ye = Nt + 2,
ng = ny_1 + 0.72,
Azt = 0.34Azt,1 + €, o = 1.00.

The first difference of y, is a stationary process with mean 0.72. This implies that the
estimated average quarterly growth percentage (=0.72) is somewhat smaller than for

3Parameter values are obtained using ordinary least squares.
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Figure 2.2. US real gross national product and fitted trends plus deviations from these

trends, 1952.1-1984.1V.
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the trend stationary model. The 3, series contains a deterministic linear trend n; and a
stochastic trend resulting from the unit root in z;, see (2.22). The second row of Figure 2.2
shows the series and the sum of the two trends. The second column shows the deviations
from the total trend. Contrary to the deterministic trend specification, we cannot detect
recessions any more and hence the stochastic trend seems to capture the recessions.

The stochastic trend allows for a continuum of slope values for the trend in every
period. A more restrictive stochastic trend, which allows for only two different slopes is
the Markov trend (2.6). Usually, the two different slopes are related to the stages of the
business cycle, i.e modelling an expansion and a recession regime. Lam (1990) assumes
that the deviations from a Markov trend in US real GNP follow a stationary AR process.
We refer to this model specification as a Markov trend stationary [MTS] model?

Yo = Ny + 2,
ng =ng 1+ 0.96 — 2.455, p=0.96, ¢ =0.51,
zp = 1.242;_1 — 0.382;_9 + €4, o=0.77.

The Markov trend allows for a different direction of the trend during recession (s; = 1)
and expansion periods (s; = 0). During an expansion period the quarterly growth rate of
GNP is 0.96%, while during a recession —1.49% (=0.96 —2.45). The probability of staying
in an expansion period is 0.96 and the probability of staying in a recession is 0.51. Hence,
the unconditional probability of being in a recession is (1 —p)/(2 —p — q) = 0.08. Using
this probability and (2.13) the unconditional expectation of the slope of the Markov trend
is 0.96 — 2.45 x 0.08 = 0.76, which is close to the value of the slope of the trend stationary
model. The third row of Figure 2.2 shows 1, and the Markov trend.> The trend captures
some of the recessions but not all. This is even more clear from the deviations from the
Markov trend, which are shown in the second column.
Hamilton (1989) imposes a unit root in the deviations from the Markov trend®

Yo =Ny + 2z
ng=mn; 1+ 1.16 — 1.52s, p=0.90, ¢ =0.76
Az; = 0.01Az_1 — 0.06A%_9 — 0.25Az;_3 — 0.21Az;_4 + €, o=0.77.

We refer to this model a Markov difference stationary [MDS] model, since the first dif-
ference of y; minus the Markov drift term (1.16 — 1.52s;) is stationary. The average
quarterly growth rate during an expansion period is 1.16% and during a recession —0.36%
(= 1.16—1.52). The unconditional probability of being in a recession is 0.29 and hence the
unconditional expectation of the slope of the Markov trend equals 1.16—1.52x0.29 = 0.72,
which is almost the same as the drift term in the difference stationary model. The final

4Parameter values are obtained from Table 1 in Lam (1990).

5Since s; is not observed, we have to construct the Markov trend using the ex-post probabilities of
being in a recession Pr[s; = 1|yi,...,yr], which result from the estimation procedure, see Table 3 in Lam
(1990). We have set s; = 1 if Pr[s; = 1|y1,...,yr] > 0.5 and zero elsewhere.

6Parameter values are obtained from Table I in Hamilton (1989).
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Figure 2.3. Standard deviations of the one- through eight-step
ahead forecast distribution of the trend in US GNP.

row of Figure 2.2 shows a plot of the Markov trend” plus the stochastic trend result-
ing from the unit root in 2;. The deviations from the Markov and stochastic trend do
not display any recessions. Note that this model produces the smallest deviations from
the trend, followed by the difference stationary model and the Markov trend stationary
model. This does not have to imply that the Markov difference stationary model is the
best model, since it may suffer from overfitting the trend component.

Finally, we consider the forecast uncertainty of the various trend specifications. We
treat the parameter values as fixed and hence the forecast uncertainty results only from
the random variables in the trend component. Figure 2.3 shows the standard deviations
of the one- through eight-step head forecast distributions of the trend for the four models.
Since the trend in the trend stationary model is deterministic the standard deviation is
zero. This does not imply that we can obtain perfect forecasts of the trend in US GNP
with this model, since the trend may be misspecified. Since E[s;s; ;] # 0, the forecast
uncertainty resulting from the Markov trend depends on the value of the state in the
last period of the sample sp. We assume that the probability that sy = 1 equals the
unconditional probability that sp equals one, i.e. Pr[sy = 1] = . The variance of the
forecast distribution of the Markov trend simplifies to (2.14), where (£—1) has to replaced
by the number of periods ahead h, one wants to forecast. The forecast variance of the
stochastic trend, which results from the unit root in 2, is o2h.

We see from Figure 2.3 that the forecast standard deviation of the trend of the Markov
trend [MT] stationary model is the smallest. For one- and two-step ahead the forecast
standard deviation of the trend of the Markov difference stationary [MDS] model is smaller
than for the difference stationary [DS] model but for more periods ahead it is the oppo-

"The Markov trend is constructed using the ex-post probabilities, see Figure 1 in Hamilton (1989).
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site way. In general, it seems that imposing more flexible trends leads to more forecast
uncertainty. It is therefore necessary to specify a trend which is flexible enough to pro-
vide a good within-sample description of the trend without implying too much forecast
uncertainty.

2.5 QOutline of Part 1

In this part of the thesis, we propose Bayesian methods to analyse univariate Markov
trend models. The Bayesian analysis focuses on the analysis of the presence of stochastic
trends in univariate time series. In Chapter 3 we discuss the properties of the four models,
discussed in the previous section, in more detail and we apply the proposed Bayesian trend
analysis to German industrial production. To evaluate the out-of-sample performance we
compare the forecast distributions of the four models.

Markov trend models are also used to analyse business cycles in time series. The
unobserved state variables represent the stage of the business cycle. In Chapter 4 we pay
more attention to modelling the business cycle with Markov trend models. We extend
the Markov trend model with a seasonal component to analyse seasonally unadjusted
quarterly observed time series. We propose Bayesian methods to analyse the seasonal
component, including the analysis of the presence of seasonal stochastic trends. Addi-
tionally, we examine the consequences of seasonal adjustment on business cycle analysis
in German unemployment.



Chapter 3

Univariate Markov Trend Model

3.1 Introduction

Until the middle of the 1970s, it was widely believed that the trend component of macroe-
conomic series, like the logarithm of output, could be described accurately by a determin-
istic linear trend, see for instance Lucas (1973). As we already have seen in Chapter 2 this
corresponds to the assumption of a constant growth rate in the series. However, Nelson
and Plosser (1982), using the unit root tests of Fuller (1976) and Dickey and Fuller (1979),
were unable to reject the hypothesis of a unit root in the autoregressive representation of
the deviations from a linear trend for thirteen macroeconomic time series of the United
States [US]. This result suggests the presence of a stochastic trend so that all shocks in
the past have a permanent effect on the future level of the series.

Perron (1989) argues that only a few shocks, like the 1929 Great Depression and the
1973 oil crisis, are likely to have had permanent effects. Modelling these events by appro-
priate dummy variables, Perron rejects the null hypothesis of a stochastic trend against
the alternative hypothesis of a shifting and segmented linear trend for many of the Nelson
and Plosser series. Subsequent econometric inference has shown that Perron’s conclusions
are sensitive to his assumptions about the breakpoints. Treating the breakpoints as un-
known parameters results in non-rejection of the stochastic trend hypothesis, see among
others Zivot and Andrews (1992), Chu and White (1992) and Hoek (1997).

Hamilton (1989) recognizes that the growth of series like real gross national product
[GNP] depends on the stage of the business cycle. He uses the idea of modelling the
business cycle with a Markov process by Neftci (1984) in a time series model, where the
value of the growth rate of a series depends on the stage of the business cycle, see also
Goldfeld and Quandt (1973) and Lindgren (1978). The model consists of a Markov trend
driven by an unobserved two-state first-order Markov process. By considering growth
rates, the unit root is implicitly imposed. Therefore, Hamilton assumes that the series
contains a stochastic trend and all shocks have a permanent effect on the level of the
series. Lam (1990) avoids imposing the unit root in the autoregressive part of the model by
extending Hamilton’s model to analyse the level of the series instead of the first differences.
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Lam’s model only contains a Markov trend, where the slope depends on the stage of the
business cycle. Now only shocks during recessions have a permanent effect on the future
level of the series. The trend component in the model proposed by Lam (1990) is therefore
more restricted than the overall trend in the model proposed by Hamilton (1989) or in an
autoregressive model in first differences, but less restricted than the deterministic trend.

In Chapter 2 we have seen that introducing more stochastic trends in a time series
model may lead to a better within-sample fit, but leads to larger forecast intervals and
hence more forecast uncertainty. It is therefore necessary for forecasting exercises to
have an adequate impression of the nature and the number of stochastic trends in a
time series. This chapter focuses on econometric inference in so-called Markov trend
models via a likelihood approach. We consider Bayesian techniques to provide a posterior
comparison of the above mentioned trend specifications for modelling the trend in time
series. The within-sample comparison is combined with a predictive Bayesian analysis for
out-of-sample evaluation of the models.

The outline of this chapter is as follows. In Section 3.2 the Markov trend model
is presented and the implications of a unit root in the autoregressive component are
discussed. Section 3.3 provides a Bayesian framework to analyse the Markov trend models.
Furthermore, a posterior odds ratio test for a unit root and for the presence of a Markov
trend is proposed. To obtain posterior results, a simulation procedure is discussed in
Section 3.4. This simulation procedure is extended in Section 3.5 to compute predictive
densities. In Section 3.6 the Bayesian analysis of stochastic trends in Markov trend
models is illustrated with two simulated series and quarterly observed German industrial
production series. For the latter series we also analyse the business cycle. Forecasts from
the Markov trend models are compared with forecasts from difference and trend stationary
models. Finally, Section 3.7 concludes.

3.2 The Markov Trend Model

Suppose that a time series {y;}_, can be decomposed into two parts,
Ye = Nt + 24, (3.1)

where n; is a Markov trend and z; represents the deviations from this trend. The Markov
trend is defined as

ng = N1 + Yo + 7154, sy =0,1, (3-2)

where the unobserved state variable s, is a two-state first-order Markov process' with
transition probabilities,

Pris; =0|s; 1 =0/ =p, Pr[s;=1|s; 1 =0]=1-p,

3.3
Pris; =1|s;, 1 =1]=¢q, Pr[s;=0|s; 1 =1]=1-gq. (3.3)

'Tf s; ~ NID(0, 1) the model becomes a structural time series model, see e.g. Harvey (1989).
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The state variable s; represents the stage of the business cycle, see Hamilton (1989). We
assume in this thesis that s; = 0 corresponds to an expansion regime, while s, = 1 denotes
a recession. The Markov trend (3.2) is a stochastic segmented trend, whose slope is ¥y
during an expansion and 7y + 7, during a recession. Since s; can only take the value 0
or 1 the Markov trend is more restricted than a Gaussian random walk process, see also
Section 2.2.

The deviations from the Markov trend {2}, are modelled by an autoregressive pro-
cess of order k [AR(k)],

(1 — 1L — ¢2L2 - ¢kLk)Zt = €,
¢(L)zt = €,
where ¢(L) is a polynomial in the lag operator L, defined by L'z, = z,_;, i = 0,1,2,...,

and €; ~ NID(0, 0?). Replacing z; by (y; — n;) and substituting the backward solution of
(3.2)

(3.4)

¢
nt:*yg(t—l)+’ylzsi+n1 (3.5)
i=2
equation (3.4) can be rewritten as

t

(L) (e — 0t —1) —n Z Si— M) = €. (3.6)

=2

Stochastic Trends

From the backward solution of the Markov trend (3.5) we can see that past stochastic
shocks, denoted by s;, have a permanent effect on the future level of the series y;. The
influence of the these shocks on the first differences of y; depends on the presence of a
unit root in the polynomial ¢(x). To analyse the implications of a unit root in the AR
polynomial, we decompose ¢(L) as follows

¢(L) = (1—pL) + ¢(L)(1 - L), (3.7)
where p = Z?Zl ¢; and ¢(L) = (1 — ¢ L — -+ — ¢_1L*¥71), a lag polynomial of order
(k — 1) with ¢; = — Z;?:H_l ¢;,i=1,...,k — 1. Note that for p = 1 the polynomial ¢(z)
contains a unit root. Using (3.7) we can write (3.6) as

k—1
(e — 1) = p(yr—1 — nu—1) + Z GilN(Yr—i — mi—;) + €1, (3.8)

=1

where A is a difference operator defined as Ay, = (1 — L)y, = yy — y4—1-
Hamilton (1989) assumes that the polynomial ¢(L) contains a unit root, in other words
p = 1. In that case the model simplifies to

k-1
(Ayr —v0 —ms) = D> il Ay — Y0 — N181-4) + €. (3.9)
izl
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This implies that the series is described by a random walk with a stochastic drift term
Yo + 715 If the roots of the polynomial ¢(z) are outside the unit circle, past shocks s;
only have a transitory effect on the first difference of y;. Stochastic shocks, denoted by
€;, have a permanent effect on the deviation from the Markov trend and therefore on the
level of the series y; but not on the first differences. As we have seen in Section 2.3 y;
contains a stochastic Markov trend Z';:Q s; plus the stochastic trend Z';:Q ¢;. Note that
the initial value of the Markov trend n; does not enter (3.9).

Lam (1990) assumes that the roots of the polynomial ¢(x) are outside the unit circle
so that the series is a stationary AR process around the Markov trend (3.2). From (3.8)
it can be seen that past s; shocks have a permanent effect on the first difference of y;,.
The past €; shocks have only a transitory effect on y;. We will call such a series Markov
trend stationary.

The Markov process s; introduces a non-linear trend in a time series model. If s, = 0
the slope of the Markov trend (3.2) is 7o, while if s, = 1 the slope is 75 + ;. Under the
restriction ; = 0 the Markov trend (3.2) degenerates to a deterministic trend with slope
7o and intercept ny. Model (3.8) with p < 1% becomes a trend stationary AR (k) model,

(v =t —1) —n1) = p(ye—1 — Wt —2) —m) + i iA(Y—i — Y0) + €,
= (3.10)

while model (3.9) results in a difference stationary model with drift -,
k=1
(Aye — ) =Y di(Ayimi — 70) + € (3.11)
i=1

The Likelihood Function

To analyse the Markov trend model we have to specify the likelihood function. First,

we consider the density function of y; given the past observations y*=!' = {y;,..., 5 1}
and given the past and current states s* = {s1,...,s;} for model (3.8). This conditional
density function reads

Pl 5" 90,1, 10, 0, p, 8) = —— exp(— 5 €) (3.12)

t 32 5 10y J15 701, Oy My 0_\/% 20_2t; :

where ¢; is given in (3.8) and ¢ = {¢y,..., ¢, 1}. Note that we consider the initial value
of the Markov trend n; as a parameter. Conditional on the states and on the initial
observations y* = {yi,...,y;} the likelihood function can be written as the product of

the conditional densities in (3.12)

Ly ly*,sT,0) = poo (1= p)or gV (1 - g

T
H f(yt‘yt_laStaf)/[]af)/lanlao-apa d))a (313)
t=k+1

2The exact restriction is that the roots of the polynomial ¢(z) are outside the unit circle.
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where 0 = {~,v1,n1,0,p, 9,p,q}, N;; denotes the number of transitions from state i to
state j. Note that we use that {y'~', s'=2} does not Granger cause s;, i.e. the conditional
distribution p(s;|s'~', y'~') equals the conditional distribution p(s;|s; ;).

The unconditional (on the states) likelihood function is given by

LTk, 0) Z ZU Z (y" |k, s, 0). (3.14)

The evaluation of this likelihood requires the summation and evaluation of 27 uncondi-
tional likelihood functions. To avoid this huge summation Hamilton (1989) derives a filter
to compute the unconditional likelihood function in case p = 1. Lam (1990) adjusts this
computationally intensive filter for the p < 1 case, see also Kim (1994). Fortunately, in
our Bayesian analysis we can circumvent the evaluation of the unconditional likelihood
function, see Section 3.4.

Finally, the unconditional likelihood function of the Markov trend model with p =1
(3.9) denoted by Lo(yT|y*, ) is given by

Lo(y"|y",00) = Ly |y, 0)] =1 (3.15)

where 6y = 0\{p, n1}.

In the next section we propose a Bayesian framework to analyse the stochastic trends
in Markov trend models. We specify prior distributions and discuss posterior odds ratios
for the presence of a unit root in the polynomial ¢(x) versus stationarity and for the
absence of a Markov trend, i.e. 73 = 0.

3.3 Bayesian Analysis

Classical inference concerning the stochastic trends in Markov trend models turns out to
be far from standard. The distribution of a likelihood ratio [LR] test for the presence of
a unit root in the autoregressive component (p = 1) is unknown and technical difficulties
are such that no formal strategy is available for a classical test procedure. Instead, Lam
(1990) performs a small Monte Carlo experiment (100 trials) to obtain a critical value
for an LR test for p = 1 in his model for US real GNP. At a 5% significance level the
presence of a unit root is rejected. The same simulation experiment shows that, like in
the standard AR model [see, e.g. Dickey and Fuller (1979)], the estimator of the dominant
root of the autoregressive component is downward biased. Furthermore, a standard LR
test for 74 = 0 is not possible since under «; = 0 the transition probabilities p and ¢ are
not identified. Hansen (1992, 1996) provides a very computationally intensive procedure
to perform a classical test for 7, = 0, see also Garcia (1995).

In this section we provide a Bayesian framework to analyse the Markov trend model.
The Bayesian analyses of the non-Markov models proceed in a similar way. The discussed
theory is limited to the specific problems under consideration. For a more general intro-
duction in Bayesian analysis, we refer to Zellner (1971) or Box and Tiao (1973). In Section
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3.3.1 we specify priors for the model parameters. In Section 3.3.2 and Section 3.3.3 we
derive posterior odds ratios for the presence of a unit root and for the absence of the
Markov trend.

3.3.1 Prior Specification

The Markov trend model (3.8) is non-linear in certain parameters. This phenomenon
often leads to local non-identification for certain parameters in the model. It is easy to
see that for p = 1, the parameter n; is not identified. Specifying a diffuse prior on n,
implies that the conditional posterior of n; given p is constant and non-zero when p = 1.
The integral over this conditional posterior at p = 1 is therefore infinity, favouring the
unit root. Hoek and Paap (1994) correct for this problem by imposing a conditional
normal prior on n; with mean y; and variance 6%/(1 — p?), which is based on the ideas
of Schotman and van Dijk (1991a, 1991b). This prior reflects the uncertainty about ny if
p approaches one by letting the variance of n; going to infinity if p — 1. This solution
provides a proper marginal posterior for p. Here, we specify a simplified version of this
prior for n,

n1 ‘ Y1, 0 ~ N(yl,O'Z), (316)

where 3, is the first observation. The advantage of this simple prior specification is that the
computation of the marginal posterior of p becomes easier, see Section 3.4. Furthermore,
Hoek (1997, Chapter 2) shows that this simplification leads to almost the same answers in
standard unit root analysis. Although this prior is more flexible since it allows for values
of p larger than one, we specify a uniform prior distribution for p on the interval [py, 1]
to exclude explosive AR structures

1
p(p) = ( H[plb,l}a (317)

L — pw)
where [ is an indicator function, which is one on [py, 1] and zero elsewhere. The value of
pi will be discussed in the next subsection.

As already mentioned in the previous section the transition parameters p and ¢ are
not identified if 74 = 0. In a Bayesian framework this does not cause any problems as
long as we specify proper priors on the non-identified parameters. The prior distributions
for p and ¢ are independent and uniform on the open interval (0, 1)

= Lo (3.18)
- H(O,l)-

Under flat priors for p and ¢ special attention must be payed to the priors for v and 7.
It is easy to show that the likelihood has the same value if we switch the role of the states
and change the values of vy, 71, p and ¢ into vy + 71, —71, ¢ and p respectively. This
complicates proper posterior analysis if we specify uninformative priors on v, and ;.



3.3 Bayesian Analysis 27

A simple solution to this problem is to restrict the intervals on which the priors have
probability mass
I (3.19)

’YO,lby'YO,ub}

(o) = —————
P{%) =
‘ (%,ub - 70,11))

1

P =T 1 us]s 3.20
(71) ('Yl,ub — ’Yl,lb) (71,6571, ub) ( )

where 7, 5, and v; 44, ¢ = 0,1 denote the upper- and lowerbound of the intervals. Another
option is to specify informative priors for 7y and ~;, for instance normal priors, see Diebolt
and Robert (1994) for a discussion on prior specification in mixture models.
Finally, the priors for ¢ and ¢ are given by
p(o) x o' (3.21)

p(¢) X H[stat}a (3.22)

where Tjy, is an indicator function, which is one if the autoregressive parameters ¢
imply that the roots of the autoregressive polynomial are outside the unit circle and zero
elsewhere.

The joint prior p(f) is given by the product of the marginal priors (3.16)—(3.22). The
joint prior for the model parameters under the restriction p = 1, py(6p), is just the product
of the marginal priors (3.18)-(3.22).

3.3.2 Unit Root Analysis

Several methods for a Bayesian analysis of unit roots have been proposed. The differences
result from prior specification, the initial value problem and model representation, see for
an overview Hoek (1997, Section 2.2) and Schotman (1994). Here we follow a standard
posterior odds ratio analysis to analyse the presence of a unit root. Since our null hypo-
thesis, Hy : p =1, is a sharp hypothesis, we have to assign a discrete prior probability to
the event p = 1. The alternative hypothesis is H : p < 1. The relative prior beliefs about
the two hypotheses is given by the prior odds ratio [PROR]
. PF[H[]]

PROR(p) = 3, (3.23)

where Pr[Hy] and Pr[H] denote the prior probabilities for both hypotheses. The posterior
odds ratio is the product of the prior odds ratio and the ratio of the averaged likelihoods
with the priors under the competing hypotheses serving as weighting functions see, e.g.,
Leamer (1978, Chapter 4) and Zellner (1971, Chapter X). Formally, the posterior odds
ratio [POR] is defined as

Pr[Ho|y"]

Pr[H y]

_ Pr[Ho]  [po(60) Loly” 1", o) dby
Pr[H] SO L(yT|yk,0)do

POR(p) = PROR(p) x

(3.24)
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where L(yT|y*,0) and Lo(yT|y*,6p) denote the unconditional likelihood functions given
in (3.14) and (3.15), respectively. If the PROR(p)=1, i.e. both hypotheses are a priori
equally likely, the POR(p) equals the Bayes factor [BF|, which corresponds to the last
term in (3.24).

Computation of the Bayes factor requires the evaluation of two integrals. Fortunately,
Dickey (1971) shows that the Bayes factor also equals the ratio of the height of the
marginal posterior and the height of the marginal prior, both evaluated in the point of
interest (p = 1)

_ p(P‘yT)‘pzl

BEG) = T

(3.25)

where p(p|y?) denotes the marginal posterior for p. This ratio is known as the Savage-
Dickey density ratio. Two regularity conditions are required for the use of the Savage-
Dickey density ratio, see also Verdinelli and Wasserman (1995). The total prior under the
alternative hypothesis must equal the conditional prior under the null hypothesis in the
point of interest, i.e.,

P(0olp)]p=1 = po(6o)- (3.26)

Furthermore, the marginal posterior of the parameter of interest and the total prior of all
parameters must be bounded in the parameter point of interest. In our case the conditions
are

0 < p(ply")|p=1 < o0 (3.27)
0 < p(#)|,=1 < 0. (3.28)

The prior specification in the previous subsection ensures that condition (3.26) is satisfied.
Since we have specified a proper prior on n; it is easy to see that condition (3.27) is also
fulfilled. Although condition (3.28) is formally not satisfied in our prior specification, we
can construct theoretically equal uniform priors for the parameters ¢ and In(c) in both
competing models such that condition (3.28) is satisfied with the same posterior results
as for the improper priors.

It is easily seen from (3.25) that the role of the prior on p is important. Under
our uniform prior for p the value of p;, is important. If we choose p; too small the
POR becomes very large favouring the unit root hypothesis. We follow the solution by
Schotman and van Dijk (1991a), who choose py, such that [py, 1] corresponds to the 99%
highest posterior density [HPD] region.

3.3.3 Markov Trend Analysis

Testing for the absence of a Markov trend can be done in the same way. Koop and Potter
(1995) use the Savage-Dickey density ratio to test for y; = 0 versus y; # 0. The Bayes
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factor for this hypothesis simplifies to

BF(v,) = POnly -0 (3.29)

p(%)\mzo

where p(7|y”) is the marginal posterior of v, and p(v;) the prior for 7y, defined in (3.19),
see Koop and Potter (1995) for more details. The priors for the models under 7, = 0
have to satisfy a condition like (3.26). For the other conditions the same arguments as
for the test for p = 1 hold. If one wants to specify a flat prior on 7;, a HPD region for ~;
is required to avoid favouring the hypothesis v; = 0.

To compute the Bayes factors we need the marginal posterior density of p and v;. In
the next section we use Markov chain Monte Carlo [MCMC] methods to obtain posterior
results.

3.4 Simulating Posterior Distributions

The posterior distribution is proportional with the product of the marginal priors in
(3.16)—(3.22) and the unconditional likelihood in (3.14). This posterior distribution is too
complicated to derive analytical posterior results. As Albert and Chib (1993), McCul-
loch and Tsay (1994b) and Chib (1996) demonstrate, the Gibbs sampling algorithm of
Geman and Geman (1984) is very useful tool for the computation of posterior results for
models with unobserved states. The state variables {s;}’_, can be treated as unknown
parameters and simulated alongside the model parameters. This technique is known as
data augmentation, see Tanner and Wong (1987).

To describe the Gibbs sampler, let 1) be a random vector which can be divided in d
blocks (¢1,...,1;,...,%4q), Also, let 9 | 1_; denote the distribution of ¢; conditional on
the other random variables ¢_; = ¢\¢;. The simulation algorithm to sample from the
joint distribution of ¢) works as follows:

Step 1: Specify starting values ¢° = (¢7,...,47,...,¢4]) and set i = 0.
Step 2: Simulate

i-l—l from lbl ‘ w§7¢§7 e -,%,
%+1 from ¢2 ‘ wi—l_lad}iz’;a - 7,¢}éa

. L i 4
57 from s | 1T 0T g, L,
i+1 i1 it i+1

f;“ from 1y | AR AR f;[l.

Step 3: Set i =i+ 1 and go to step 2.
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The described iterative scheme generates a Markov chain. After the chain has converged,
say at H iterations, the simulated values {¢",7 > H} can be used as a sample from the
joint distribution of ¢ to compute means, variances and marginal densities. For instance,
the marginal density of ¢; is obtained by

N+H

1 ) ) ) )
p(w]) = ﬁ Z p(q/)jhpia"':w;—law;-i—la"';wé)i (330)

i=H+1

where N denotes the number of useful draws. For an overview and some details on
convergence, see among others Smith and Roberts (1993) and Tierney (1994).

In the remainder of this section, we show how the Gibbs sampler can be implemented
to obtain posterior results from the Markov trend model. To apply the Gibbs sampler
we need the full conditional posterior densities of the model parameters, which play the
role of v;]1p_; in step 2. Additionally, the full conditional posterior distributions of the
state variables are needed. We focus on the unrestricted Markov trend model (3.8) with
p < 1. The full conditional posterior densities of the models (3.9)—(3.11) can be derived
in a similar way. The Gibbs sampling scheme described above results in draws €° from
the posterior distribution, which can be used to compute posterior means, variances and
marginal densities.

3.4.1 Full Conditional Posterior Distributions
Full Conditional Posterior of the States

To sample the states, we need the full conditional posterior density of s;, denoted by
p(sils™40,y"), t =1,...,T, where s7* = s"\{s;}. Since s; follows a first-order Markov
process, it is easily seen that

p(5t|57t) X p(8e]Si—1) P(Si41]51), (3.31)

due to the Markov property. Following Albert and Chib (1993), we can write

p(5t|8_t; 0: yt) f(yt+17 oy yT|yt7 S_ta Sty 0)
S, yrlyt, st 0)
X p(8t|87t; 0: yt) f(ytJrla sy yT|yt7 Sita St 0) (332)

p(sels™ . 0,y") =

Using the rules of conditional probability, the first term of (3.32) can be simplified as

p(ses™4 0, y") o< p(si|s™, 0,y ") fys, Seq1s - - ., syt 84 0)
o p(silsi-1,0) f(yily' ™", 5", 0)
p(si4ls’, 0,94") p(sig2, .., ST|5t+1: 0,y")
o< psilsi-1,0) fluly'™" 5" 0) p(sen]si, 0), (3.33)
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where we use the fact that {s; 9, ..., sp} is independent of s; given s, ;. The second term
of (3.32) is proportional to

T
f(yt-l-la R yT|yt7 St’ 9) (8 H f(yi|yZ7l7 Sl? 9) (334)

1=t+1

Next, using (3.33) and (3.34) the full conditional distribution of s; for t = k+1,...,T is
given by

T

p(5t|87t; 0: yT) X p(St‘Stfla 9) p(5t+1|5t7 9) H f(yi‘yi71: Si; 0); (335)

i=t

where f(y|y'!, s',0) is defined in (3.12) and the constant of proportionality can be ob-
tained by summing over the two possible values of s;. At time ¢ = T the term p(s741|s7,0)
drops out. The first k£ states can be sampled from the full conditional distribution

T
p(sils™,0,y") o< p(silsi—1,0) p(sealse. 0) T flwily'™", ', 0), (3.36)
i1

fort =1,..., k, where at time ¢t = 1 the term p(s;|s;,_1,8) is replaced by the unconditional
density p(s1]@), which is a binomial density with probability 7 = (1 — p)/(2 — p — q).

As Albert and Chib (1993) show, sampling of the state variables if a unit root is present
in ¢(x) is easier. Under the restriction p = 1 only the first (k — 1) future conditional
densities of y; depend on s; instead of all future conditional densities. However, sampling
is possible in the same way: take the most recent value of s7 and sample the states
backward in time, one after another, starting with sp. After each step, the ¢-th element
of sT is replaced by its most recent draw.

Full Conditional Posterior of p and ¢

It is easy to see from the conditional likelihood function (3.13) that the full conditional
posterior densities of the transition parameters are given by

p(pls™, 0\{p}, y") oc pNoo(1 — p)* (3.37)
and
plals™, 0\{q}, y") oc 1 (1 — )V, (3.38)

where N;; again denotes the number of transitions from state 7 to state j. This implies
that the transition probabilities can be sampled from beta distributions.
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Full Conditional Posterior of ~q, 71 and n,

To derive the full conditional posterior distribution of 7y, 71 and n; we rewrite (3.8) in a
linear regression equation representation

Yo
¢(L)yt = ¢(L) ( t—1 Zf:z sp 1 ) Y1 | + €, (3.39)

ny

fort =k+1,...,T. Using the properties of the likelihood of a regression model it is easy
to show that the full conditional density of (vy 71 n1)’ is normal, see e.g. Zellner (1971,
p. 65-67). Note that we also have to add the normal prior for n; (3.16) to the regression
equation (3.39) via y; = (0 0 1)(7o 71 n1)" + €. Normal priors for 7, and/or 7, can be
included in the same way.

Full Conditional Posterior of p and ¢

If we condition on 7y, 7, and n; and the states {s;}/_,, model (3.8) can be seen as a
regression model in the parameters p and ¢. Using the same argument as above the full
conditional posterior distribution of (p, @) is normal. The restriction pj < p < 1 can be
incorporated by rejecting draws for which p > 1 or by drawing from a truncated normal
distribution.

Full Conditional Posterior of o

To derive the full conditional posterior distribution of ¢ we consider the conditional like-
lihood function (3.13). This function is proportional to an inverted gamma-2 density, so
the sampling of ¢ can be based on

ST 4 (g —ny)?
t=k+1 % 02( 1 1) 9\{0},yT ~ XQ(T —k+1), (3.40)

see Zellner (1971, p. 61-62). The term (y; —n1)? results from the normal prior specification
on n; (3.16).

3.5 Forecasting
Time series models are not only used to analyse trends, business cycles, seasonal pat-
terns within-sample, but also to generate out-of-sample forecasts. In a Bayesian analysis

this implies the analysis of predictive densities. The one-step ahead predictive density
f(yri1|y?) for the Markov trend model (3.8) results from

fyralyh) //f yr1|y”, s741, 87, 0) dspii db, (3.41)
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where f(yri1|y?, sry1,sT,0) is given in (3.12). Note that contrary to standard classical
approaches this predictive density incorporates state uncertainty and parameter uncer-
tainty. The computation of the one-step ahead predictive density f(yr,i|y”) can easily
been done by extending the sampling scheme from the previous section, see Albert and
Chib (1993). To obtain posterior results we simulate in each iteration of the Gibbs sam-
pling procedure from the full conditional distribution of s”*! and y”*'. In other words,
for each draw (sT,#), which results from the Gibbs sampler we generate

e sy from p(spiq/sT,0) and

o yr. 1 from f(yri1|y?, s7y1, 8T, 0) given in (3.12).

These extra steps can be implemented in the Gibbs sampling scheme without any diffi-
culties. The same is true for the computation of h-step ahead predictive densities. The
h-step ahead predictive density f(yris|y”) is given by

fyrsnly”) ///f (yranly" T s 0) d(yrins - - yri1) d(STiny - - o S741) dO),
(3.42)

where f(ypin|yTth1 sTHh,0) is given in (3.12). For the computation of the h-step ahead
predictive density we use the simulation results for the computation of the one- through
(h — 1)-step ahead predictive densities as the following simulation scheme shows:

e Generate spyp from p(spop|srin_1,0), where spy,_1 results from the simulation of
the (h — 1)-step ahead predictive density.

o Generate yr from f(yrp|y? ™% sTHR ) given in (3.12), where {spip_1,..., 5741}
and {yrin_1,...,yrs1} are draws resulting from the simulation of the 1- through
(h — 1)-step ahead predictive densities.

The simulation output can be used to compute predictive means, variances and the pre-
dictive densities like in (3.30).

3.6 Application

To illustrate the proposed Bayesian analysis of a unit root in a Markov trend model we
first analyse in Section 3.6.1 two simulated series. In Section 3.6.2 we consider German
industrial production.

3.6.1 Simulated Series

We consider the following data generating process [DGP],
Yr = Ny + 24,
ng = g1 +2— 45, ny =0, (3.43)
2t = pzi_1 + €, €, ~ NID(0, 1),
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Table 3.1. Posterior means with posterior standard deviations between paren-
theses of the model parameters in (3.8) with Bayes factors for p = 1, for the
two DGPs.

series' 7 M n p q p o BF(p)?

1.98  —4.05 0.57 0.90 0.60 0.79 0.88

PDGPT 004)  (0.24) (079) (0.03) (0.11) (0.09) (0.07)

0.61

1.94 —-3.81 0.34 0.89 0.58 0.94 0.85

PGPIL(006)  (0.23) (0.91) (0.04) (0.11) (0.06) (0.07)

3.00

! The DGP is given in (3.43) with p = 0.8 (DGP I) and p = 1 (DGP II).
2BF(p) denotes the Bayes factor. A Bayes factor exceeding one implies that p = 1 is a
posteriori more likely than p < 1.

where {s;};% is generated by a first-order Markov process with transition probabilities

p=0.9 and ¢ = 0.6. We analyse two DGPs using the same set of disturbances {¢;};% and
state variables {s;};% but with different values for the autoregressive coefficient, p = 0.8
and p = 1 respectively. The simulated series are denoted by DGP I and DGP II and are
plotted in the top left cells of Figure 3.1 and 3.2.

To analyse the two series we consider the Markov trend model (3.8) with a first-
order AR component, which corresponds to the AR order of the DGPs. The priors for
the model parameters are given in (3.16)—(3.21). For v, and 7, we take flat priors on
the intervals [1,00) and (—oc, 0] respectively. Table 3.1 displays the posterior means
and posterior standard deviations between parentheses of the model parameters for both
DGPs. Posterior results are obtained using the Gibbs sampling algorithm explained in
Section 3.4. The posterior means of the parameters match the parameter values of the
DGPs. The posterior results are almost identical for the two DGPs except of course for p.
The posterior mean of p for DGP T is 0.79, which is clearly below unity. For DGP II we
have a posterior mean for p of 0.94. Note that due to truncation to the right the mode of
the marginal posterior density is closer to one. The final column of Table 3.1 shows the
Bayes factors for p = 1, which are computed using the Savage-Dickey density ratio (3.25).
The value p;, has been chosen such that [py, 1] corresponds to the 99% HPD region for p.
Under equal prior odds, these Bayes factors are equal to posterior odds ratios for p = 1.
For DGP T the Bayes factor for p = 1 equals 0.61, which indicates that the hypothesis
of p < 1 is a posteriori more likely than the hypothesis p = 1. However, the unit root
hypothesis is strongly favoured for the second DGP: the Bayes factor 3.00 clearly exceeds
unity. Note that the posterior standard deviation of n; for the Markov trend stationary
DGP I is smaller than for DGP II, which contains a unit root.
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Figure 3.1. Simulated series and marginal posterior densities for DGP 1.
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Figure 3.2. Simulated series and marginal posterior densities for DGP II.
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Figures 3.1 and 3.2 display the marginal posterior densities of the model parameters.
The shapes of the marginal posterior densities of p support the results of the Bayes factors.
For DGP I the density mass is situated far away from one, while for DGP II the mode is
very close to one. The top right cells of the figures denote the posterior expectations of
the states E[s;|y?], t = 1,...,100. The peaks in these graph correspond reasonably well
with the periods of negative growth. The posterior distributions of +y and ~; and the
transition probabilities reflect the fact that the DGPs consist of a relatively small number
of observations with s, = 1 and many observations with s; = 0. The posterior variances
of ¢ are much larger than the posterior variances of p. The same is true for the posterior
variances of y; and 7y. Finally, the marginal posteriors of v; show that Bayes factors for
~v1 = 0 are zero for both DGPs, since there is no probability mass in 7, = 0.

The simulation experiment gives some indication of the practical usefulness of Bayesian
unit root analysis in Markov trend models. Since only two simulated series have been
considered, it must be emphasized that no general conclusion can be drawn about the
performance of the approach. In the next subsection we analyse seasonally adjusted
quarterly observed German industrial production series.

3.6.2 German Industrial Production

In this subsection we consider quarterly observed seasonally adjusted industrial production
of Germany for the period 1957.1-1993.1V. The data source is the International Financial
Statistics. The top left cell of Figure 3.3 shows a plot of the series. Since the industrial
production series is an index and does not exhibit exponential growth, we do not apply
a logarithmic transformation. There are three major periods of negative growth in the
industrial production 1966.111-1967.11, 1973.111-1975.11T and 1992.11-1993.11. Also in the
period 1980.11-1982.1V there is an overall tendency of decrease in German industrial
production. The periods of positive growth are much longer than the periods of negative
growth, which points to an asymmetric cycle in the series. Furthermore, the average
increase during a positive growth regime is smaller than the average decrease during a
negative growth regime. A Markov trend model seems to be a suitable model to analyse
this series.

First, we consider the Markov trend model without the unit root in the autoregressive
component. The priors for the model parameters are given by (3.16)—(3.22). For 7y and
v, we take flat priors on the intervals [0.2,00) and (—oo, 0] respectively. This ensures
that s; = 0 corresponds to an expansion regime and s; = 1 corresponds to a contraction
regime. The lag order k£ of the model is determined using Bayes factors tests. We start
with an AR model of order six and decrease the order with one until the Bayes factor for
the zero restriction on the highest order q_ﬁj coefficient is smaller than one.?

The first column of Table 3.2 shows the posterior results for the Markov trend sta-
tionary model. The posterior mean of the slope of the Markov trend is 0.70 during the

3The Bayes factors are computed using a Savage-Dickey density ratio like in (3.25) and based on 99%
HPD regions.



38

Univariate Markov Trend Model

German industrial production Elsiy']
105 1.0
90 0.8
75 0.6
60 0.4
45 0.2
! A A VA U Al

3057760 65 66 69 72 75 78 81 084 87 90 93

0-0/7750" 63 66 69 72 75 78 Bl 84 87 90 93

T T
p(oly’) p(aly’)
6.4 6.4
5.6 5.6
48 48
4.0 4.0
3.2 3.2
2.4 2.4
1.6 1.6
0.8 0.8
033 0.6 0.7 0.8 0.9 1.0 993 0.9 .0 T 1.2 1.3
T T
p(voly’) p(71ly)
12.5 1.4
1.2
10.0
1.0
7.3 0.8
5.0 06
0.4
25 o
0g 0.0
60 065 070 075 080 085 090 %938 34 —30 -26 22 18 -14
T T
p(ply") p(qly’)
20 3.0
16 25
2.0
12
15
8
1.0
4 0.5
B8z 085 os8s 0901 o094 o097 100 9%0 01 02 03 0.4 05 06 0.7 08 09 1.0

Figure 3.3. German industrial production and marginal posterior densities.
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Table 3.2. Posterior means with posterior standard deviations between parentheses
and Bayes factors for p = 1 for German industrial production, 1957.1-1993.1V.

para- MTS! MDS TS DS
meters mean s.d. mean s.d. mean  s.d. mean s.d.
Yo 0.70 (0.04) 0.72 (0.17) 0.47 (0.08) 0.44 (0.18)
" —2.56 (0.36) —2.31 (0.56) 0 - 0 -
ny 31.41 (0.79) - - 31.46 (1.35) - -
P 0.95 (0.02) 0.92 (0.06) - - - -
q 0.57 (0.14) 0.53 (0.16) - - - -
P 0.75 (0.07) 1 - 0.98 (0.02) 1 -
b1 0.02  (0.09) —0.01  (0.11) 0.14 (0.08) 0.14 (0.09)
b9 0.19 (0.09) 0.16 (0.10) 0.16 (0.08) 0.16 (0.09)
b3 0.35 (0.10) 0.24 (0.10) 0.14 (0.08) 0.16 (0.08)
P4 0.29 (0.09) 0.10 (0.10) 0 - 0.03 (0.09)
b5 0 - —0.23 (0.10) 0 - —0.18 (0.09)
o 1.01  (0.07) 1.08 (0.09) 1.32  (0.08) 1.33  (0.08)
BF(p)? 0.02 - 1.74 -

'MTS=Markov trend stationary model (3.8), MDS=Markov difference stationary model (3.9),
TS=trend stationary model (3.10) and DS=difference stationary model (3.11).

2BF(p) denotes the Bayes factor. A Bayes factor exceeding one implies that p = 11is a posteriori
more likely than p < 1.

expansion regime and —1.86 (—2.56 +0.70) during a recession. The posterior mean of the
probability of staying in the expansion regime is 0.95, which is larger than the posterior
mean of the probability of staying in a recession 0.57. The posterior probability that
p is larger than ¢ is 0.99, which indicates an asymmetric business cycle. The transition
probabilities determine the expected duration of recessions and expansions. The expected
duration of staying in an expansion regime (s; = 0) conditional on being in an expansion
regime is

doip T (1-p)=—, (3.44)

see Hamilton (1989). The posterior mean of this expected duration is 23.31 quarters.
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Likewise, the expected duration of staying in a recession (s, = 1) equals

iiql’l(l = (3.45)

i—1 l1—q

The posterior mean of the expected duration of a recession is 2.64 quarters. There is
clear evidence for an asymmetric business cycle. Note that there is again more posterior
uncertainty for v, and ¢ than for v, and p.

The posterior mean of p is 0.75, which is far away from one. The Bayes factor for p =1
is 0.02, which indicates that a posteriori the unit root is not plausible. Hence, a Markov
trend stationary model is more appropriate than a Markov difference stationary model.
Figure 3.3 displays the marginal posterior densities for the most important parameters
of the model. The marginal posterior of p supports the outcome of the Bayes factor for
p = 1. There is very little probability mass in p = 1. The marginal posterior densities
of 79 and ~; are shown in the third row in Figure 3.3. Since the height of the marginal
posterior density of v; in 73 = 0 is almost zero, the Bayes factor for v; = 0 is also very
close to zero. Hence, for the industrial production series a Markov trend stationary model
is a posteriori more likely than a linear trend stationary model.

The top right cell of Figure 3.3 denotes the posterior expectations of the states E[s;|y”].
Using the 0.5 rule as in Hamilton (1989) we can distinguish the two stages of the business
cycle. We define a recession by two consecutive data points for which E[s;Jy?] > 0.5.
A peak is defined by the last expansion observation before a recession. A trough is defined
by the last observation in a recession. Using this rule we detect four recessions in German
industrial production. The following quarters are labelled as peaks: 1974.11, 1980.1, 1982.1
and 1992.11. The troughs are found in 1975.11, 1980.1V, 1982.111 and 1993.1. Note that the
states do not completely pick up the period of decrease in industrial production in the
1960s. This may be explained by the fact that the growth rate in the period just after
this recession was larger than the growth rate after the other recessions and the level of
industrial production returned to the same growth path as before the recession in the
1960s, see the top left cell of Figure 3.3. The Markov trend model considers this recession
as a large temporary deviation from the Markov trend, since it did not have a permanent
effect on the level of the series like the other periods of negative growth. Similar findings
are reported in Sichel (1994) who suggest that there exist an extra phase in the business
cycle of the United States. In this so-called recovery phase the series returns to its original
growth path so that recessions do not have a permanent effect on the level of US GNP,
see also Beaudry and Koop (1993).

Some alternative models for the German industrial production series are the Markov
trend model with a unit root in the autoregressive component (3.9), the trend stationary
model (3.10) and the difference stationary model (3.11). Note that these models are
nested in the Markov trend stationary model but that Bayes factors indicate that neither
of these models are preferred. Table 3.2 displays the posterior results for these three
models. The lag order for these models is determined in the same way as for Markov
trend stationary model. Also, the priors for the model parameters are the same as in the
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Markov trend stationary model except that we take a diffuse prior for vy on (—oc, oc) for
the models without Markov trend. The second column shows that the posteriors means
of the parameters of the Markov difference stationary model are roughly the same as
for the Markov trend stationary model except for the autoregressive parameters. The
posterior standard deviations of the parameters are however larger. Note that the lag
order of the model in first differences is larger than of the model in levels, probably due
to overdifferentiation.

The final two columns of Table 3.2 display the posterior means for the trend stationary
and difference stationary model. The posterior mean of the slope of the trend and the
drift term are roughly 0.45. The posterior mean of the variance of the error process o2
is larger than for the Markov trend models. This leads to more forecast uncertainty due
to the noise component. The last row of the table displays the Bayes factor for p = 1 in
the trend stationary model. Contrary to the Markov trend model, the Bayes factor now
favours the unit root hypothesis, indicating that all past shocks have a permanent effect
on the future level of the series.

As Markov trend models are designed to model the recession in a time series one
may expect that these models produce superior forecasts than standard AR models for
recession periods. To evaluate the out-of-sample performance of our Markov trend models,
we remove the last eight observations (1992.1-1993.1V) from the sample for a forecast
exercise. Note that the posterior expectation of the states indicate a recession during this
forecast evaluation period. We reanalyse the models again for the sample 1957.1-1991.1V
and consider one- through eight-step ahead forecast distributions, see Section 3.5.

Table 3.3 displays the posterior means with posterior standard deviations between
parentheses of the one- through eight-step ahead forecasts distributions together with
the true values of the series. The results are obtained by extending the Gibbs sampling
procedure with the extra steps mentioned in Section 3.5. Considering posterior means, we
see that in 1992.1 the trend stationary model, in 1992.1T the difference stationary model
and in 1992.11I the Markov difference stationary model produces the best forecasts. After
1992.1IT the Markov trend stationary model is superior. Contrary to the non-linear AR
models, the Markov models take into account the possibility of a recession, which occurred
after 1992.11. The standard deviations of the forecast distribution increase if we forecast
more periods ahead, although this does not have to be the case for non-linear models. Note
that imposing the unit root leads to a larger standard deviation of the forecast distribution
for the Markov difference stationary model than for the Markov trend stationary model.
This is also the case for the non-Markov models. The smaller posterior variances of
the disturbances of the Markov trend models than of the standard AR models lead to
smaller standard deviations in the forecast distributions. This is even more clear from
Figure 3.4, which shows the one- through eight-step ahead predictive error densities for
the four models. These densities are obtained by a horizontal shift of the predictive
densities of minus the true value. The predictive densities of the Markov trend models
are unimodal but skewed. It is very clear from these figures that the Markov trend model
produces superior forecast distributions after 1992.11. However in the first three periods
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Figure 3.4. One- through eight- step ahead predictive error densities for German industrial
production, 1992.1-1993.1V.
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Table 3.3. Posterior means with posterior standard deviations between parentheses of
the one- through eight-step ahead forecast distributions for the period 1992.1-1993.1V .}

period true MTS? MDS TS DS
value  mean s.d. mean s.d. mean s.d. mean s.d.

1992.1 104.40 100.40
1992.1T  102.50  99.02
1992.1I1 100.80  97.26 100.19 103.27 102.86
19921V 97.50  95.99 99.64 103.72 103.19

(1.31) (1.84) (1.29) 102.60 (1.29)
(2.01) (2.93) (1.89) (1.92)
(2.40) (4.06) (2.44) (2.49)
(2.97) (5.16) (3.00) (3.15)
19931 9460 94.88 (3.38) 9840 (6.25) 10419 (3.50) 103.84 (3.74)
(3.79) (7.28) (3.97) (4.19)
(4.10) (8.31) (4.38) (4.62)
(4.42) (9.32) (4.75) (5.00)

102.59

101.59
100.85

102.74
103.03

1993.11 94.20  93.94 98.97 104.66 104.35
1993.1I1  94.50  92.15 98.64 105.22 104.92
1993.1IV. 94.60 92.58 98.27 105.76 105.50

! Posterior results for the forecasts are conditional on the sample 1957.1-1991.1V.
2MTS=Markov trend stationary model (3.8), MDS=Markov difference stationary model (3.9)
TS=trend stationary model (3.10) and DS=difference stationary model (3.11).

the Markov trend stationary model performs very bad compared to the other models.

In summary the Markov trend model seems a useful model to describe the trend and
the business cycle in German industrial production. However, the model does not detect
the recession in the 1960s. This recession is characterized by the fact that the growth
in the period after the recession was so large that that the same growth path as before
the recession was reached. This recession did not have a permanent effect on the level
of German industrial production, like for the other recessions. One could extend the
Markov trend with an extra regime to model the recession in the 1960s, see for instance
Boldin (1996). However inference about the parameters modelling this extra regime will
be totally based on a single event.

3.7 Concluding Remarks

In this chapter we have considered Markov trend models and discussed the role of the
stochastic trends in these models. A Bayesian method to test for the presence of a unit
root in the autoregressive part of the model is proposed and a test for the presence of
Markov switching is discussed. The theory is applied to two simulated series and to quar-
terly observed seasonally adjusted German industrial production. For the latter series, a
stationary AR model around a Markov trend is a posteriori preferred to a Markov dif-
ference stationary model and to non-linear AR models. The model detects the recessions
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in German industrial production, which have had a permanent impact on the level of
the series. The recession in the 1960s is however not detected. Contrary to the other
recession periods, this recession was followed by a period of very high growth to reach the
same growth path as before the recession. Finally, the Markov trend stationary provides
superior multi-step ahead forecast distributions for the period 1992.111-1993.1V.

We conclude with some remarks concerning model extensions. The first extension
concerns time varying transition probabilities. Durland and McCurdy (1994) propose
duration-dependent transition probabilities, i.e. the value of transition probability de-
pends on the number of periods that the process has been in the regime. Filardo (1994)
and Diebold, Lee and Weinbach (1994) model the transition probabilities using logis-
tic functions, which include explanatory variables. McCulloch and Tsay (1994b) and
Paap (1995) among others allow for regime dependent autoregressive parameters, like in
threshold autoregressive models [see e.g. Potter (1995)] or smoothed threshold autoregres-
sive models [see e.g. Terdsvirta and Anderson (1992)]. The dynamic properties of these
switching autoregressive models are however not easy to derive, see Holst, Lindgren, Holst
and Thuvesholmen (1994) and Warne (1996). Obviously, also extensions to moving aver-
age models are possible, see Billio, Monfort and Robert (1996). Boldin (1996) considers
a third-order transition process to model the regime switches and extends the Markov
trend with an extra slope. Since the number of observations in a recession are usually
very small, it remains however to be seen whether the data contain enough information to
allow for a useful analysis of these flexible models. Finally, the models are extended with
seasonal components to analyse seasonal time series, see for instance Ghysels, McCulloch
and Tsay (1994). In the next chapter we extend the Markov trend model with a seasonal
component to analyse seasonal unadjusted series.



Chapter 4

Seasonal Markov Trend Model

4.1 Introduction

To date business cycle turning points in the past is one of the applications of Markov
trend models. This dating is usually based on seasonally adjusted time series, see among
others Hamilton (1989), Goodwin (1993) and Filardo (1994) since one expects that the
seasonal movements possibly blur inference on business cycles. Recent studies have ques-
tioned the accuracy of business cycle analysis using seasonal adjusted series, see among
others Ghysels (1994, 1997) and Franses and Paap (1996).

A widely applied seasonal adjustment method is Census X-11, which transforms a
seasonal time series via a sequence of moving average filters to an approximately non-
seasonal time series. To construct seasonally adjusted series for business cycle analysis it
is necessary that the seasonal adjustment filter fully removes the seasonal pattern from
the series without affecting the non-seasonal pattern. The application of the Census X-11
seasonal adjustment filter has however a number of implications on the dynamic structure
of time series. Ghysels, Granger and Siklos (1996) show that seasonal adjustment can
introduce non-linear features in a time series with a linear dynamic pattern. Ghysels and
Perron (1996) show that for time series with a one-time structural break, the probability
of detecting this break decreases if one analyses the series after seasonal adjustment.
Finally, seasonal adjustment biases inference from Markov switching models. Since Census
X-11 consists of a moving average filtering process, a current recession observation is
replaced by a weighted average of previous and forthcoming observations, which may
include expansion observations. This leads to a decrease in the transition probability of
changing regimes and an increase in the probability of staying in a regime, see Franses
and Paap (1996) for a simulation study. In turn, this causes a bias in the estimated
duration of recession and expansion periods. Furthermore, their results suggest that
seasonal adjustment may influence the correct dating of business cycle turning points.

Apart from the above mentioned negative side effects of seasonal adjustment, the
Census X-11 filter is also not capable of fully removing the seasonal pattern from a time
series. In fact, Ghysels (1994) using seasonally adjusted data still detects seasonal patterns
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in turning points, in the sense that the turning points are not equally distributed over the
year. This may result from the fact that seasonal fluctuations and the business cycle are
not independent [see e.g. Miron (1994)] and hence, it may be impossible to fully remove
the seasonal pattern without affecting the business cycle. Canova and Ghysels (1994)
discover, using the official NBER peaks and troughs, a significant change in the seasonal
means during recessions, which indicates that seasonal fluctuations can contain valuable
information about the business cycle.

The above arguments suggest that it is in most cases better for business cycle analysis
to consider seasonally unadjusted series. The seasonal fluctuations have to be modelled
simultaneously with the business cycle. In this chapter we introduce a seasonal variant of
the Markov trend model of the previous chapter. The model allows for different means
in every season. To allow for changes in the seasonal pattern we examine the presence of
seasonal stochastic trends caused by seasonal unit roots.! Since it may be the case that
changes in the seasonal means coincide with changes in stage of the business cycle [see
Canova and Ghysels (1994)], we also extend the model with different seasonal means in a
recession and an expansion period.

The outline of this chapter is as follows. In Section 4.2 we briefly discuss the modelling
of seasonal patterns in quarterly observed time series. In Section 4.3 we propose a seasonal
Markov trend model. This model extends the Markov trend model from Chapter 3 to
include different means for every season and a changing seasonal pattern during recessions.
Furthermore, we allow for the presence of seasonal unit roots. The Bayesian framework
to analyse this seasonal variant of the Markov trend model is discussed in Section 4.4. We
propose prior distributions and discuss posterior odd ratios for the presence of seasonal
unit roots. To illustrate the Bayesian analysis of seasonal unit roots, we consider in
Section 4.5 several simulated series. In Section 4.6 we examine the business cycle in
quarterly observed German unemployment and its relation with the seasonal fluctuations.
To analyse the consequences of seasonal adjustment on the dating of turning points and
the estimation of the expected duration of recession and expansion periods, we consider
seasonal adjusted and non-adjusted data. Finally, Section 4.7 concludes.

4.2 Modelling Seasonality

The modelling of the seasonal pattern in quarterly observed macroeconomic time series
has been an important issue in the past decade. In this section we discuss some basic
topics of modelling seasonal fluctuations, which concern the issues raised in this chapter.
For a recent and detailed overview of modelling seasonality we refer to Franses (1996).
The top left cell of Figure 4.1 shows a plot of quarterly observed seasonally unad-
justed German unemployment for the period 1962.1-1991.1V. The series clearly exhibits
intra-year differences, which are referred to as seasonal fluctuations. The easiest way to
model the seasonal pattern in the series is to use deterministic seasonal dummies. This

1See Hylleberg et al. (1990) for a discussion about seasonal stochastic trends.
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Figure 4.1. Seasonally unadjusted German unemployment, 1961.1-1991.1V.

corresponds to the assumption of a constant seasonal pattern over time in the time se-
ries. To display the seasonal pattern more explicitly, we consider a plot of the quarters
of unemployment as four separate series, see the top right cell of Figure 4.1. We see that
the unemployment rate in the first quarter (solid line) is almost always larger than in
the other quarters. In the years 1966, 1973-1974 and 1980-1982 however the unemploy-
ment rate in the fourth quarter is larger than in the first quarter. The second row of
Figure 4.1 shows a plot of the first differences of German unemployment and a plot of
the first differences split up in a series for each separate quarter. The first plot shows
that the amplitude of the seasonal pattern does not seem to be constant over time. The
second plot shows that the distance between the first differences in each separate quarter
changes over time. Hence, at first sight the seasonal pattern does not seem to be constant
over time and deterministic seasonal dummies are probably not sufficient to model the
seasonal fluctuations.

Apart from the seasonal fluctuations, we notice in the German unemployment series
periods of overall increase and periods of decrease or constant unemployment, see Fig-
ure 4.1. To model the business cycle in this series, one may apply a Markov trend model
with a seasonal component. To use this Markov trend model for business cycle analysis
it is necessary to have an accurate modelling of the seasonal pattern in the time series to
have precise dating of turning points. In general, changes in the seasonal pattern may be
interpreted by this Markov trend model as a change in the growth rate and hence as a
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recession. On the other hand, if one models changes in the seasonal pattern too flexible,
a change from an expansion to a recession period or vice versa, may be interpreted as
changes in the seasonal means of the growth rate of the series. Although it is not likely
that the model considers the complete recession as a continuous change in the seasonal
pattern, it can however lead to a mistake in the dating of a turning point. The top right
cell of Figure 4.1 shows that that in our example the change in the order of magnitude
of quarter one and quarter four almost always coincide with the periods of increase in
unemployment. From the plot of the first differences it seems that the changes in the
seasonal pattern coincide with the changes in the stage of the business cycle, see Canova
and Ghysels (1994) for similar phenomena in macroeconomic time series of the United
States. In Section 4.6.1 we analyse the seasonal pattern and the business cycle in the
German unemployment series in more detail.

To deal with changing seasonal patterns, quarterly observed series are often trans-
formed by taking fourth differences. The fourth difference filter Ay = (1 — L*) can be
decomposed as

(1-LY=(1-L)(1+L)(1—4L)(1+iL)
(1-L)(1+L)(1+L? (4.1)

(1-L)(1+ L+ L*+ L%,

It is easy to see that a time series which needs fourth differences to obtain stationarity has
four roots on the unit circle. Such a series is said to be seasonally integrated. The non-
seasonal root at the zero frequency (1) corresponds to a non-seasonal stochastic trend.
The seasonal unit root at the frequency 1/2 (—1) corresponds to two cycles per year and
the seasonal unit roots at the frequencies 1/4 and 3/4 (i and —i) correspond to one cycle
per year. A seasonal unit root corresponds to the presence of a seasonal stochastic trend,
see Hylleberg et al. (1990) and Engle et al. (1993). For instance, the process (1+ L)y, = ¢
consists of the seasonal stochastic trend 2;%](—1)jet,j. Therefore, a seasonal unit root
implies a continuously changing seasonal pattern. Shocks, denoted by ¢;, have a permanent
effect on the seasonal pattern. Notice from (4.1) that the (1— L*) filter can be decomposed
in a part with a non-seasonal unit root and a part with three seasonal unit roots.

A typical outcome for test for the presence of seasonal unit roots is that quarterly ob-
served macroeconomic time series tend to have one or more seasonal stochastic trends. For
example, Osborn (1990) detects seasonal unit roots in six out of thirty UK macroeconomic
variables. Otto and Wirjanto (1990) obtain similar results for Canadian macroeconomic
time series and Hylleberg, Jorgensen and Sgrensen (1993) find that several country-specific
gross domestic product series have one or more seasonal unit roots. As we already have
seen, the presence of a seasonal unit root in a time series implies a continuously changing
seasonal pattern. However, it may be the case that changes in the seasonal patterns only
occur during changes in the stage of the business cycle, see also Canova and Ghysels
(1994). In that case a seasonal stochastic trend is too flexible to model the changing sea-
sonal pattern. For instance, each stage of the business cycle can have different seasonal
means, so that a change in regime leads to a seasonal mean shift and hence the changing
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seasonal pattern can be described by recurrent seasonal mean shifts.

The influence of seasonal mean shifts on seasonal unit root inference is analysed in
several recent papers. Simulation results in Paap, Franses and Hoek (1997) show that
neglecting seasonal means shift, when they are present, yields evidence of seasonal unit
roots. In practice, Franses, Hoek and Paap (1997) show in a Bayesian analysis that the
evidence for seasonal unit roots in three consumption series tends to disappear when one
allows for a possible seasonal mean shift. Likewise, Franses and Vogelsang (1998) find,
using classical methods, that the evidence for the bi-annual unit root —1 in US industrial
production disappears when allowing for a seasonal mean shift. Finally, Paap, Franses
and Hoek (1997) show that neglecting seasonal mean shifts and modelling these shifts
using seasonal unit roots may lead to inferior forecasts.

In the next section, we propose the Markov trend model to analyse the business cycle
in seasonally unadjusted time series. The model incorporates the possibility of changing
seasonal patterns due to seasonal unit roots. To account for possible different seasonal
means during the stages of the business cycle, we allow for different seasonal means during
recessions and expansions.

4.3 The Seasonal Markov Trend Model

To analyse quarterly observed seasonally unadjusted series {y;}/_,, we extend the decom-
position in (3.1) with a seasonal component

Yo =y +dy + 2, (4.2)

where n; is a trend component, d; is a seasonal component and z; represents the deviation
from the trend and seasonal component. The trend component is again a Markov trend

ng = Ng—1 + Yo + Y154, sy =0,1, (4.3)

with n; = 0.2 The unobserved state variable s, follows a first-order Markov process with
transition probabilities

Pr[s; =0|s;-y = 0] =p, Pr[s; =1|s;-1 =0]=1—0p,

4.4
Prls; =1|s;-1 =1 =4¢q, Pr[s; =0|s;-1 =1]=1—gq. (44)
In the simplest case the seasonal component consists of four seasonal dummies
4
dt = Z 60,5Ds,ta (45)
s=1

where D, ; represents deterministic seasonal dummies, i.e. Dy, = 1 if ¢ lies in the s-
th quarter and zero elsewhere, and dps, s = 1,...,4 model the seasonal means. The

2This restriction enables us to define four seasonal dummies in d;, see (4.5).
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deviations from the trend and seasonal component are modelled by an autoregressive
process of order k [AR(k)]

d(L)z = €, (4.6)

where ¢(L) = (1 — ¢ L — ¢ L? —- -+ — ¢, L¥) is a polynomial in the lag operator L, defined
by Liyt:yt—iaizoala""

Seasonal Unit Roots

In Section 3.2, we have shown in (3.7) that it is possible to rewrite the polynomial ¢(L)
such that a restriction on a single parameter (i.e. p = 1) implies the presence of a unit
root in the polynomial. Hylleberg et al. (1990) [HEGY] show that it is also possible to
rewrite the polynomial such that zero restrictions on parameters imply the presence of
the non-seasonal root 1, and the seasonal unit roots —1, ¢z and —¢

¢(L) = —mL(1+L+L*+ L% —mL(-1+L—L*+ L7
— (m3L? + mL) (=1 + L) + ¢(L)(1 — LY), (4.7)

where g(L) = (1- oL — - — gzk,4Lk_4), a lag polynomial of order (k — 4) and i
i=1,...,k—4and 7m; j =1,...,4 are functions of the ¢; parameters. Applying (4.7) to
(4.6) results in the so-called HEGY test equation

k—4 _

Ayzy = T1214-1 + ToZoy1 + M350 + Taz31-1 + Z $ildyz i + €, (4.8)
i—1

where
2y =1+ L+ L+ L%z =2+ 21+ 21-0 + 213
zop=(—1+L—L*+ L2y =—z+ 21— 29+ 23 (4.9)
z3p = (=14+ L2 = —2 + 2o

If m; = 0 the series contains a unit root at the zero frequency. A unit root at the frequency

1/2 (—1) corresponds to my = 0. If m3 = m4 = 0 the series contains the complex roots i
and —i. For details we refer to Hylleberg et al. (1990) and Engle et al. (1993).

Identification Problem

We have seen in Section 3.2 that in case of a unit root the initial value of the Markov trend
ny is not identified, since it drops out of the model. Likewise, in case of seasonal unit roots,
linear combinations of the seasonal dummy parameters g ; are not identified. To make
this identification problem explicit, consider the following one-to-one transformation of

the seasonal mean parameters dy = (09,1 do.2 do.3 0o,3)" into the parameters wy, s = 1,...,4,
w1 1 1 1 1 (50’1
Wa i 1 —1 1 —1 (50’2
w3 o 1 0 —1 0 (50,3 (410)
W4q 0 1 0 —1 (50,4
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or in matrix notation w = Fdy, where w = (w; wy w3 wy)’. Using this transformation and
replacing z; by (y; — ny — dy;) in (4.8) results in

Ay = m (G141 — w1) + T2(Fos 1 — wa(=1)") + m3(Jas 2 — Waks 1 — Wik 2)
k=4 _
+ Ta(P3-1 — weky — Waky—1) + D Gil\aGimi + €, (4.11)

i=1
where ¢, = vy, — nyg, K = %(zt + (—4)") and where we assume that ¢ = 1 corresponds
to a first quarter observation. It is easy to see that in (4.11) the parameter w; is not
identified if 7; = 0. Analogously, if 75 = 0 the parameter ws is not identified. Roots at
the frequencies 1/4 and 3/4 (73 = my = 0) imply that w; and w, are not identified, see
also Franses, Hoek and Paap (1997). Note that zero restrictions on the m parameters do
not lead to non-identification of 7y and ;. This follows directly from the annual growth
of the trend component n; at time ¢

Agng =mny — ny_y
t t—4

= (fyg(t—l)—i-’hgsi)_(Vﬂ(t_5)+71i2225i) (4.12)

t
=4y +m Z S,
i=t—3

where we use the backward solution of n; given in (3.5). Note that the interpretation
of 7y and v; does not change under zero restrictions on the m parameters. Under the
restriction y; = 0 the model simplifies to an AR model with a deterministic trend. The
annual growth in y; equals 4vy. This model specification is examined in Franses, Hoek
and Paap (1997).

Markov Switching in Seasonal Means

Franses, Hoek and Paap (1997) correct in their model for a possible seasonal mean shift
in a series by extending the seasonal component (4.5) with a different seasonal mean
after a certain point in time. Likewise, to allow for changes in the seasonal means during
recessions we replace (4.5) by

4

dt = 2(60,5 + 51,sSt)Ds,t; (413)
s=1
so that during a recession the seasonal means change from g 5 to (dgs+9d15), s =1,...,4.

Since
4

A4dt = 2(50,5 + 61,55t)Ds,t - (60,5 + 61,55t74)Ds,t74

s=1

: (4.14)
= Z((Smst - 61,sst—4)DS=t
s=1
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the 61 parameters s = 1,...,4 are identified if there is at least one observation in every
quarter, which corresponds to a recession, s, = 0. To see the consequences of these
recurrent seasonal mean shifts on the growth of the series y; we consider

Ayt A?’Lt + Adt + AZt

=% + V1St + Z((%,s - 51,571) + (51,s8t - 51,5715t71))Ds,t + Az, (4_15)
s=1

where 6; 0 = 0;4, 7 = 0,1. If s; = s,_1 = 0 the quarterly growth in y; in season s is 7, plus
the seasonal variation (dg s — dps—1). Note that the sum of the seasonal variations over a
year is 0, i.e. 1 (60s — S0s-1) = 0. If 5, = 5, 1 = 1, the growth rate is (7o + 1) plus
the seasonal variation (Jos + 01,s) — (0,s—1 — 01,5—1), so that under no regime changes, the
sum of the seasonal variation over a year is again zero. However, if s; # s;,_; the quarterly
growth is corrected by the factor (0, 55, — 01 s—15,—1) for the difference in seasonal variation
in the two regimes.

The Likelihood Function

The derivation of the likelihood function of the seasonal Markov trend model proceeds

in the same way as for the non-seasonal Markov trend model in Section 3.2. Under the

assumption ¢; ~ NID(0,0?), the conditional density of y; given the past observations
' ={y,...,y;1} and given the past and current states s = {s1,...,s;} reads

- 1
= st v, Y1, 80, 01, 0, T, ex 62 4.16
f(yely 0,715 0o, 01 ) = 0_\/— (=5 5¢): (4.16)

where 61 = {(51’1, (5172, (5173, (51,4}, QE = {q;l, e, q;k_4}, ™ = {77'1,71'2,77'3,77'4} and €t is defined
n (4.11). Hence, the likelihood function for model (4.11) conditional on the states

= {s1,...,57} and conditional on the initial k£ observations y* = {yi, vy, ..., yx} is
given by

Ly"y*,s",0) = po (1= p)Vor g (

1 q)Nw
T =
H f(yt‘yt_laStafyﬂaf}/la(SOa(slaaaﬂ-ad))’ (4]‘7)
t=k+1

where 0 = {7y, y1,w, 61,0, 7, ¢, p,q}>, Nij; denotes the number of transitions from state
i to state j. Again, we have used that {y’~' s'=?} does not Granger cause s;, i.e. the
conditional distribution p(ss|s'1,3""!) equals the conditional distribution p(s;|s;_1). The
unconditional (on the states) likelihood function £(yT|y*,0) reads

LTk, 0) Z ZU- Z (y"|yk, s, 0). (4.18)

3Note that we have specified the likelihood as a function of w instead of dy. This turns out to be more
convenient for the seasonal unit root analysis, see Section 4.4.
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This unconditional likelihood function can be evaluated using the algorithm of Lam
(1990). As we already have seen in Chapter 3 we do not have to compute this un-
conditional likelihood for our Bayesian analysis.

The unconditional likelihood functions under zero restrictions on the 7 parameters are
defined in the same way. The unconditional likelihood function under m; = 0 equals

Li(y"ly*,0,) = L(y" |y, 0)|x -0, (4.19)

where 0; = 0\{m,w;}.* Likewise, the unconditional likelihood functions given the states
under my = 0 and w3 = 4, = 0 are

Loy y*,02) = L(y"|y"*,0)|ro=0
534(3/T|yk, 934) = ﬁ(yT\yka 9) ‘7T317r4:UJ
where 0y = 0\{ma,ws} and 034 = O\{73, 74, w3, wy}.

In the next section we consider prior specification, posterior simulation and the analysis
of the presence of seasonal unit roots for the seasonal Markov trend model.

(4.20)

4.4 Bayesian Analysis

The Bayesian analysis of the seasonal Markov trend model is similar to the analysis of
the non-seasonal model in Chapter 3. Therefore, we focus in this section on the Bayesian
treatment of the seasonal part of the model: the prior specification for the parameters,
which model the seasonal pattern, and posterior odds ratios to examine the presence of
seasonal unit roots.

4.4.1 Prior Specification

In the previous section we have seen that the presence of (seasonal) unit roots implies that
certain linear combination of the seasonal dummy parameters dy, are not identified. This
corresponds to the non-identifiedness of the n; parameter when p = 1 in the non-seasonal
Markov trend model. Hence, using the same arguments as in the previous chapter speci-
fying diffuse priors on dy results in improper posterior distributions for the m parameters
favouring the presence of (seasonal) unit roots. In Section 3.3.1 we have used the ini-
tial observation y; to define a prior for n;. Likewise, we use the first four observations
{y1, Y2, Y3, ya} to define a prior on the seasonal dummy parameters. Consider the following
initial model for the first four observations

Y — 51,151 1 000 50,1 €1
Y — 51,252 . 01 00 50,2 €9
s —digss | | 00 1 0 0,3 * €3 (4:21)
Ua — 01,454 0001 0.4 €4

4Note that the subscript correspond to which 7 parameters is equal to zero.
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or in matrix notation
7=1,0 +e, (4.22)

where € = (e €5 €3 €4)', 7 is a (4 x 1) vector containing y; — n; — d148; fori=1,....4
and I, a (4 x 4) identity matrix. Instead of assuming that e is normally distributed
with zero mean and the covariance matrix of an AR(4) model, like in Franses, Hoek and
Paap (1997), we assume that e ~ N(0, 0®I;). This simplifies the computation of marginal
posteriors for the m parameters, see also Hoek (1997) and Chapter 3 for a similar argument
concerning the p parameter. The presence of (seasonal) unit roots implies that certain
linear combinations of the elements of §; are not identified. To compare models with
different number of (seasonal) unit roots it is more convenient to have a single parameter
which is not identified under a certain hypothesis, like w; = 0. Therefore, we transform the
seasonal dummy parameters &g to w using (4.10). Hence, we consider the parameterisation
in (4.11). Applying the transformation (4.10) (or §y = F~'w) to (4.22) results in

g=Flu+e. (4.23)
This implies the following conditional prior for w
w |6, syt ~ N(Fy, FF"). (4.24)

Note that this prior is conditional on the first four observations y*, the first four states
4
s*, and 9.

The priors for the m; parameters, « = 1,...,4, are uniform. Since we want to test
the presence of unit roots against roots outside the unit circle we define uniform and
independent priors for 7 and 79 on the the intervals [my 5, 0] and [mo, 0]

1
p(m) = T]I[ﬁ,zbyo}
11’“ (4.25)
p(ma) = ——Ix, 005
( 2) o [72,15,0]

)

where I is again an indicator function, which is one on [m; 4, 0] and zero elsewhere. The
values 7y, and myy are chosen such that they define highest posterior density [HPD]
regions for m; and 7y, respectively, see Section 4.4.3 for a discussion. Since the presents
of the roots 7 and —¢ corresponds to the restriction 73 = m4 = 0, we define a joint prior
for (w3, m4) on the HPD region for the join posterior of w3 and 7y

L if (73, m4) € P

p(7T3,7T4) — { area(P)

0 elsewhere (4.26)

where P denotes the HPD region for (73, 74) and area(P) corresponds to the area of this
region. Of course P has to be inside the stationary region.
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As we already have seen, the d; ; parameters, s = 1,...,4, are identified if there is at
least one s; in quarters s which corresponds to a recession observation s; = 1. Since there
is no guarantee that this is the case we impose informative priors to avoid identification
problems. We take normal prior distributions for ¢; ; parameters

01,6 ~ N(0, 0%, ) s=1,...,4, (4.27)

so that we do not a priori suggest a seasonal mean shift and we can control the amount
of information in the prior via the prior variance agl,s.

The priors on the remaining parameters follow directly from Section 3.3.1. Briefly, the
priors for p and ¢ are again uniform and independent on the interval (0, 1)

p(p) = Lo,

p(a) = L. 429

For the vy and 7y, we take uniform and independent priors on bounded intervals to identify
the two regimes

1

p(fY(]) = —H[’Yo 1650, ub]
(Youb — Youp) O
1 (4.29)
p(')/l) = mﬂ[’h,zbm,ub}'
and the priors for o and q:S are given by
-1
plo) x o
(:) (4.30)

p(d)) X H[Stat}a

where Iy, is an indicator function, which is one if the autoregressive parameters ¢
imply that the roots of the autoregressive polynomial are outside the unit circle and zero
elsewhere. -

The joint prior of the parameters 6 = {vo, v1,w,d1, 0,7, ¢, p, q}, p(f), is given by the
product of (4.24)—(4.30). The joint priors for the parameters under zero restrictions on
7, i.e. p1(01), pa(02) and p34(634), are defined by simply neglecting the marginal prior for
the parameters which are not in the parameter set.

4.4.2 Posterior Distributions

The joint posterior distribution of the parameters is proportional to the product of the
priors (4.24)—(4.30) and the unconditional likelihood function (4.18). To obtain marginal
results, we use again the Gibbs sampling techniques discussed in Section 3.4. Since the
seasonal Markov trend model is a generalisation of the Markov trend model of Chapter 3,
simulation from the posterior can be done in a similar way. Again, the state variables
{s;}L_, are sampled alongside the model parameters from similar full conditional distribu-
tions as in (3.35). The full conditional distributions of p and ¢ are beta distributions, see
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(3.37) and (3.38). The variance o given the states and the other parameters is inverted
gamma-2 distributed. The full conditional distributions of the remaining parameters ,
w, 0; and ¢ are (truncated) normal.

4.4.3 Seasonal Unit Root Analysis

To analyse the presence of (seasonal) unit roots in a quarterly observed time series we
consider the following four hypotheses

H:mp<m <0Amy<m<0A (r3,m) €P
H, : m =0 A o < Ty <0 A (m3,m4) € P,
Hy:mp<m <0A T =0 A ( )EP
Hyy:mp <m <O0OAmep <m<0ATg=m=0

(4.31)

T3, T4

and hence H; corresponds to the hypothesis of the presence of the root 1, Hy to the
presence of the root —1 and H34 to the presence of + and —i. Of course it is also possible
to consider other joint tests, for instance for the presence of the non-seasonal and the
seasonal unit roots 1 and —1, but for our purpose it is sufficient to consider the hypotheses
in (4.31).

To analyse the presence of (seasonal) unit roots we compare the three hypotheses
H;, +=1,2,34, against the hypothesis H using posterior odds ratios. To illustrate the
computation of the posterior odds ratios, we focus on the test for the presence of the
complex root 7 and —i, i.e. m3 = m4 = 0. A priori we assign prior probabilities to the
hypotheses Hs, and H. These prior probabilities imply the prior odds ratio

PI“[H34]

PROR(TF3, 7T4) = PI‘[H]

. (4.32)

This prior odds ratio times the Bayes factor [BF] provides the posterior odds ratio [POR]

POR(73, m4) = PROR (73, m4) x BF (3, m4)

_ Pr[Hj4] y I p3a(034) L3a(y |y*, 034) dOs4 (4.33)
Pr[H] Ip@) LT lyk, 0)do

To compute the Bayes factor we again use the Savage-Dickey density ratio of Dickey
(1971), see Section 3.3.2 for a discussion. The Bayes factor for 73 = w4 = 0 equals the
ratio of the marginal posterior of (w3, m4) evaluated in 73 = m4 = 0 and the prior for
(w3, m4) evaluated in m3 = 14 = 0

Y

(s, Ta|y") rs=mi=o (4.34)

BF (73, m4) =
( ’ 4) p(ﬂ-3;7r4)‘7r3:7r4:[]

where p(ms, m4|yT) denotes the marginal posterior of (w3, 7;) and the prior p(ms, m4) is
defined in (4.26). We choose the region P such that it corresponds to the 99% HPD
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region for (73, m,) to avoid favouring the Hs, hypothesis, see Section 3.3.2 for a similar
argument concerning the prior for the p parameter.

The Bayes factors for m; = 0 and m = 0 can be constructed in the same way. The
Savage-Dickey density ratios for both hypotheses equal

_ (MY )lei=o
BF(m) = (1) [ r=0 )

where p(m |[y”) and p(ma|y”) are the marginal posteriors of m; and 7, and the priors p(7;)
and p(my) are defined in (4.25). The lowerbounds my , and 7y in these priors define the
99% HPD region for m; and 7, respectively.

An alternative Bayesian approach for seasonal unit root analysis can be found in Koop
and Pitarakis (1992). They, however, consider an linear model specification like in (2.23)
instead of the specification from the previous section and hence can follow the Bayesian
unit root analysis of DeJong and Whiteman (1991) and Zellner and Siow (1980). Since
they do not consider a time series in deviation from a trend and seasonal component,
the interpretation of intercept, seasonal dummies and trend parameters changes under
the various hypotheses. Furthermore, in this linear trend stationary AR specification the
trend parameter does not represent the growth rate of a series unless the AR order is
zero, see also Section 2.3.

In the next section we illustrate the Bayesian seasonal unit root analysis, presented
in this section, on simulated series. In Section 4.6 we test for the presence seasonal unit
roots in seasonally unadjusted German unemployment.

4.5 Illustration of Seasonal Unit Root Analysis

To illustrate the Bayesian seasonal unit root analysis we consider four simulated series.
The data generating process [DGP] is given by
Yr =+ dy + 2,
ng=ng_1 +1, ny =0, (4.36)
di = =Dy + Doy — Dy + Dy,

with

I : 2z =¢,

IT : 2z, =21+ €,
I @ 2z = —2 1 + €,
IV : zp = 2z_4 + €,

(4.37)
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Table 4.1. Posterior means with posterior standard deviations between paren-
theses of the parameters of a trend stationary model with seasonal dummies and
Bayes factors for the presence of (seasonal) unit roots for the four DGPs.

para- DGP I DGP 11 DGP III DGP IV

meters mean s.d. mean s.d. mean s.d. mean s.d.
Yo 0.99 (0.00) 0.98 (0.03) 1.00  (0.00) 1.00 (0.01)
wy 0.60 (0.59) -0.73 (1.69) —0.29 (0.63) —2.91 (1.81)
Wy 3.67 (0.25) 4.16 (0.14) 4.69 (2.11) 3.46  (1.70)
w3 0.17 (0.24) 0.24 (0.19) 0.03 (0.21) 1.56 (1.46)
Wy -0.36 (0.24) —0.07 (0.19) —-0.04 (0.21) —0.89 (1.36)
m -0.29 (0.06) —0.01 (0.01) -—0.39 (0.09) —0.04 (0.03)
o -0.34 (0.06) —0.63 (0.10) —0.01 (0.00) —0.03 (0.02)
3 -049 (0.07) —0.43 (0.09) —0.57 (0.09) —0.02 (0.01)
my —0.03 (0.07) —0.46 (0.09) 0.47 (0.10) —0.01 (0.02)
o 0.80 (0.06) 1.08 (0.06) 1.06 (0.08) 0.95 (0.07)

BF (7,)? 0.00 2.07 0.00 1.62

BF () 0.00 0.00 1.47 1.31

BF (73, m4) 0.00 0.00 0.00 5.36

!The DGPs are given in (4.36) and (4.37).
2BF(m;) denotes the Bayes factor. A Bayes factor exceeding one implies that m; = 0 is a
posteriori more likely than 7; < 0. BF (w3, 74) denotes the Bayes factor for 73 = m4 = 0.

where ¢, ~ NID(0,1). DGP I does not contain any unit roots, DGP II contains the
non-seasonal unit root 1, DGP III contains the seasonal unit root —1 and the final DGP
contains the roots 1, —1, 2 and —i. The simulated series denoted by DGP I-IV are analysed
using the model presented in Section 4.3. Since we have not introduced a Markov trend
in the DGPs, we remove the Markov structure from the model, i.e. v; = 0 and §; = 0.
In the previous section, we have seen that we need at least four lags to test for seasonal
unit roots. Since the maximum lag order of the AR process in our DGPs is four, we take
k = 4. The joint prior is given by the product of (4.24)-(4.26) and a flat prior for 4, on
(—00,00). We assume equal prior probabilities for the hypothesis under consideration so
that the posterior odds ratios equal the Bayes factors. Table 4.1 shows posterior results
for the four DGPs.

For the first DGP we see that the posterior means of 7, m3 and 73 are more than two
posterior standard deviations away from zero. However, since the posterior densities are
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Figure 4.2. Marginal posterior densities of the = parameters for DGP 1.
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Figure 4.3. Marginal posterior densities of the = parameters for DGP II.
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Figure 4.4. Marginal posterior densities of the 7 parameters for DGP III.
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truncated, care must be exercised in interpreting the standard deviations. In Figure 4.2 we
depict the marginal posterior densities of the 7w parameters. The modes of the distributions
are far away from zero, except for m4. However, this does not imply the presence of a
seasonal unit root, since the condition for the presence of the roots ? and —i is 73 = 7, = 0.
The Bayes factors for this joint test is clearly smaller than one, see Table 4.1. The same
is true for the Bayes factors for the hypothesis of the presence of the roots 1 and —1.°
The overwhelming evidence for the absence of any unit roots is not surprising, since the
z; process in the DGP has only roots equal to zero. The posterior means of ¢ and 7, are
close to their true value. The posterior means of wy, (ws — 4), ws and wy lie within two
posterior standard deviations from zero as expected.

The second column of Table 4.1 shows the posterior results for the second DGP. Now
the posterior mean of m; parameter is near zero and the Bayes factor for the presence of the
root 1 is 2.07. The posterior means of 7y, w3 and 74 are more than two posterior standard
deviations away from zero, see also Figure 4.3. The Bayes factors for the presence of the
seasonal unit roots are clearly below one. Again the posterior means of the remaining
parameters are near their true values. Note that the posterior standard deviation of wy,
is relatively large.

For the third DGP the Bayes factor for the presence of the seasonal unit root —1
exceeds one, as expected. Figure 4.4 shows that the marginal posterior densities of the
m, m3 and 74 are situated far away from zero, which leads to very small Bayes factors
for the presence of the roots 1, 7 and —i. This is not surprising since the DGP contains
only the root —1 and no other non-zero roots. The posterior means of o, vy, and the w
parameters are near their true values. Note that now the posterior standard deviation of
the wy parameter is relatively large compared to the posterior standard deviations of the
other w parameters.

The marginal posterior densities of the © parameters for the fourth DGP are shown in
Figure 4.5. The modes of the posterior densities are near zero. Table 4.1 show that the
three Bayes factors exceed one and hence indicate that a fourth difference filter is necessary
to obtain stationarity. Now, the posterior standard deviations of all w parameters are
relatively large. The posterior means of ¢ and vy do not differ more than two times the
posterior standard deviation from their true value.

In summary, the posterior results of the four DGPs show the applicability of Bayesian
seasonal unit root analysis. However, since we have only considered four DGPs, no general
conclusions can be drawn about the performance of this approach. In the next subsection
we apply the seasonal unit root analysis on German unemployment.

4.6 German Unemployment

A macroeconomic variable which obviously displays seasonal patterns is unemployment.
In this section we analyse the business cycle in quarterly observed German unemployment,

5The Bayes factors reported in this section are based on flat priors on the 99% HPD region for the
parameters of interest, namely 71, o and (73, 74), as explained in the previous section.
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Figure 4.6. Seasonally adjusted [SA] and seasonally unadjusted [NSA] German unem-
ployment. The shaded areas correspond to recessions.
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1962.1-1991.1V. Figure 4.6 shows plots of the level and the first differences of the officially
seasonally adjusted [SA] and seasonally unadjusted [NSA] German unemployment series.
It is clear from the plots that there is more variation in the unadjusted series than the
adjusted series. The periods with an increase in unemployment are shorter than the
periods with a decrease, which points towards asymmetry in the series. Furthermore, the
increase per quarter in the recessions is much larger than the decrease per quarter in the
expansion periods.

In this section we analyse the business cycle in German unemployment. To investi-
gate the consequences of seasonal adjustment on the business cycle, we first consider in
Section 4.6.1 the seasonal adjusted series. Section 4.6.2 deals with the analysis of the
seasonal unadjusted series to examine the relation between seasonal fluctuations and the
business cycle.

4.6.1 Seasonal Adjusted Series

To analyse the business cycle in seasonally adjusted German unemployment, we use the
Markov trend model from Chapter 3. Although it is not likely from Figure 4.6 that the
series is stationary around a Markov trend, we start with a Markov trend model without
unit roots in the autoregressive component (3.8) and test for the presence of a unit root.
A model with one lag turns out to be the best model to analyse the business cycle in
the adjusted series. The priors for the model parameters ny, p, ¢ and o are given by
(3.16)—(3.18) and (3.21). For g and ; we take flat priors on the intervals (—oo, 0.2] and
[0, —00) respectively. This ensures us that s, = 0 corresponds to an expansion regime and
sy = 1 corresponds to an recession regime. The first row of Table 4.2 shows the posterior
results of this model. The posterior mean of the p parameter (0.98) is very close to one
and the presence of a unit root seems likely. Indeed, the Bayes factor for p = 1, which
equals 2.76, favours the unit root hypothesis. This Bayes factor is again constructed such
that [py, 1] corresponds to the 99% HPD region for p, see Section 3.3.2 for details.

The second row of Table 4.2 shows the posterior results for a Markov trend model
with a unit root in the autoregressive component (3.9). The marginal priors for the model
parameters are the same as the marginal priors for the Markov trend model without the
unit root imposed. Note that the posterior means and posterior standard deviations of
the parameters are almost exactly the same as for the Markov trend stationary model.
During an expansion regime the unemployment rate decreases on average with 0.05% per
quarter, while during a recession there is an average increase of —0.05+ 0.53 = 0.48% per
quarter. The posterior mean of the probability of staying in this recession is 0.84. The
posterior mean of the probability of staying in an expansion regime equals 0.96. The solid
lines in Figure 4.7 on page 66 show the marginal posterior densities of these transition
probabilities and the v, and 7, parameters. The posterior uncertainty about v, and p
is smaller than the posterior uncertainty about 7; and ¢. As we already have seen in
Section 3.6.1, this may follow from the fact that the number of expansion observations is
larger than the number of recession observations. Using (3.44) and (3.45) we can compute
the expected duration of a recession and an expansion, which turn out to be 8.0 and 31.4
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Table 4.2. Posterior means with posterior standard deviations between paren-
theses and Bayes factors for p = 1 for seasonally adjusted German unemploy-
ment 1962.1-1991.1V.

model' 7, M ny p q P o BF (p)?

—0.05 0.53 0.62 0.96 0.84 0.98 0.15

MIS  0.01) (0.04) (0.15) (0.02) (0.07) (0.02) (0.01) =76
006 053 - 09 084 1 015
MDS  oo4) (0.04) —  (002) (0.07) - (0.01)

I MTS=Markov trend stationary model (3.8) and MDS=Markov difference stationary
model (3.9).

2BF(p) denotes the Bayes factor. A Bayes factor exceeding one implies that p = 1is a
posteriori more likely than p < 1.

quarters respectively. In the next subsection, we analyse the business cycle in seasonally
unadjusted German unemployment

4.6.2 Seasonal Unadjusted Series

The Bayesian analysis of the seasonal unadjusted series is based on the seasonal Markov
trend model proposed in Section 4.3. However, first we examine the nature of the seasonal
pattern in the series using a model with a deterministic trend instead of a Markov trend.
This model follows from the seasonal Markov trend model of Section 4.3 with v; = 0
and ;5 = 0, s = 1,...,4. The prior for the model parameters is given by the product
of (4.24)-(4.26), (4.30) and a flat prior for 7y on (—oc,00). Posterior odds test for zero
¢; parameters, like described in Section 3.6.1 indicate that a model with & = 9 lags is
necessary to analyse the series. The first column of Table 4.3 shows posterior results for
this model. The posterior mean of 71 is almost zero, but its posterior standard deviation
is relatively small. The Bayes factor for m; = 0 equals 1.02, which suggests that trend
stationarity and a unit root are a posteriori roughly equally likely. This Bayes factor is
based on a flat prior for m; on the region [m 5, 0], where the prior parameter 7y is chosen
such that [my 4, 0] corresponds to the 99% HPD region for 7, see Section 4.4.3. Likewise,
the Bayes factor for m = 0 is constructed. This Bayes factor equals 1.45 and hence
indicates the presence of the seasonal unit root —1. The Bayes factor for 73 = 7, = 0 is
smaller than one and hence the presence of the seasonal unit roots ¢ and —i is a posteriori
not likely.

The second column of Table 4.3 shows the posterior results for a seasonal Markov
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Table 4.3. Posterior means with posterior standard deviations between parentheses and
Bayes factors for m; = 0 for seasonally unadjusted German unemployment.

para- TS+SD! MTS+SD MDS+SD MDS+SM?
meters mean s.d. mean s.d. mean s.d. mean s.d.
Yo 0.06 (0.02) —0.05 (0.02) —0.03  (0.05) 0.04 (0.11)
o 0 - 0.54 (0.06) 0.57 (0.08) 0.62 (0.11)
w, 2.28 (0.60) 2.66 (0.85) - - - —
ws —0.64 (0.35) —0.64 (0.27) —0.75 (0.23) —0.76 (0.23)
ws 0.16 (0.15) 0.23 (0.12) 0.21 (0.11) 0.21 (0.10)
wy —~1.01 (0.16) —~1.00 (0.13) ~1.01 (0.11) —~1.05 (0.09)
611 0 - 0 - 0 - 0.04 (0.05)
619 0 - 0 - 0 - 0.00 (0.05)
613 0 - 0 - 0 - 0.02 (0.05)
814 0 - 0 - 0 - 0.01 (0.05)
D - - 0.95 (0.02) 0.95 (0.03) 0.95 (0.03)
q - - 0.81 (0.09) 0.75 (0.13) 0.60 (0.22)
m —0.01  (0.00) —0.02  (0.02) - - - -
Ty —0.10  (0.07) —0.12  (0.07) —0.13  (0.07) —0.14 (0.08)
s —0.16  (0.10) —0.14 (0.10) —0.13  (0.08) —0.13  (0.08)
T4 —0.25 (0.12) —0.24 (0.10) —0.30 (0.11) —0.37 (0.12)
b1 0.98 (0.15) 0.58 (0.11) 0.55 (0.10) 0.58 (0.02)
o —-0.35 (0.16) 0 - 0 0 0 0
b3 0.16 (0.17) 0 - 0 0 0 0
o 0.29 (0.16) 0 - 0 0 0 0
b5 0.15 (0.08) 0 - 0 0 0 0
o 0.29 (0.02) 0.23  (0.02) 0.24 (0.02) 0.24 (0.02)
BF(7,)? 1.02 1.45 - -
BF(7y) 1.45 0.63 0.44 0.46
BF (73, m4) 0.27 0.06 0.07 0.02

!TS+SD=trend stationary model + seasonal dummies (4.5), MTS+SD=Markov trend stationary

Y

model + seasonal dummies (4.5), MDS+SD=Markov difference stationary model + seasonal dummies
(4.5) and MDS+SM=Markov difference stationary model + seasonal dummies (4.13) where the Jp s

parameters are transformed into w, parameters using (4.10), s =1,...,4.

2BF(m;) denotes the Bayes factor. A Bayes factor exceeding one implies that m; = 0 is a posteriori

more likely than 7; < 0. BF (w3, 74) denotes the Bayes factor for 75 = 4 = 0.
3Results are based on normal priors for §; s with zero mean and variance 0.05%, s = 1,...

A
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Figure 4.7. Some marginal posterior densities for the seasonal adjusted and unadjusted
German unemployment series.

trend model with 6; = 0. These results are based on a prior specification (4.24)-(4.30)
with a uniform prior for 7y on (—o0,0.2] and a uniform prior for ; on [0, 00). Posterior
odds tests for ¢; = 0 suggest that a model of order 5 is enough to analyse the series.®
Figure 4.8 shows the marginal posterior densities for the m parameters for the seasonal
Markov trend model (dashed lines) and for the deterministic trend stationary model
discussed above (solid lines). The introduction of a Markov trend does almost have no
effect on the modes of the marginal posterior densities of 73 and m4. It results only in a
minor increase in the variance. The Bayes factor for m3 = m4 = 0 decreases from 0.27 to
0.06, see Table 4.3. The mode of the marginal posterior of w5 however shifts to the left.
This leads to a decrease in the Bayes factor for 7, = 0 from 1.45 to 0.63 and the presence
of the seasonal unit root —1 is not favoured any more. A possible explanation for this
phenomenon is that model without the Markov trend interprets a change in the regime as
a sudden increase in the seasonal fluctuation so that the hypothesis of a seasonal unit root
is more likely, see also Section 4.2 for a discussion. The largest effect of the introduction of
a Markov trend can be found in the marginal posterior of ;. The mode of this posterior
shifts to the left but the posterior variance increases substantially, see also Table 4.3. The
Bayes factor for m; = 0 (=1.45) clearly favours the non-seasonal unit root hypothesis.

6The Bayes factors for the presence of (non)-seasonal unit roots favour the same hypotheses, if we
take k = 9.
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Figure 4.8. Marginal posterior densities of the m parameters under a deterministic trend
stationary [TS] specification and under a Markov trend stationary [MTS] specification.

Note that all Bayes factors are again based on uniform priors on the 99% HPD regions
for the parameters of interest.

The Bayes factors suggest that a model in first differences without seasonal unit roots
is appropriate to analyse the unadjusted series. The third column of Table 4.3 shows
the posterior results for a seasonal Markov trend model under the restriction m; = 0 and
01 = 0. Note that this model can be rewritten in a model in first differences with drift
term vy + v15; and three seasonal dummies with zero mean. Bayes factors for 73 = 0 and
w3 = m, favour the absence of seasonal units. The parameters in the seasonal Markov
trend model have the same interpretation as in the non-seasonal Markov trend model and
hence we can compare the results directly. Because of the seasonal fluctuations, we may
expect that the posterior standard deviations of the various parameters are larger. The
marginal posterior densities of g, v p and q are displayed in Figure 4.7 together with the
marginal posteriors of the same parameters of the Markov difference stationary model for
the adjusted series analysed in the previous subsection. The posterior variances of the
parameters of the Markov model for the seasonal unadjusted series are clearly larger than
for the adjusted series. The posterior means of v, and 7, indicate that during an expansion
the unemployment rate decreases apart from seasonal fluctuations with 0.03% per quarter
and during a recession increases apart from seasonal fluctuations with 0.54% per quarter.
The latter percentage is about 0.06% higher than we have found for the seasonal adjusted
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Table 4.4. Peaks and troughs dates
for German unemployment.*

German unemployment

SA NSA
peak 1966.111 1966.1
trough 1967.11 1967.11
peak 1973.111 1973.1V
trough 1975.11 1975.111
peak 1980.11 1980.1
trough 1983.11 1983.1

! Turning points are based on the poste-
rior expectations of the states E[s;|yT].

series. The posterior mean of the probability of staying in a recession for the unadjusted
series equals 0.75, which is smaller than the same probability for the seasonally adjusted
series, which equals 0.84. The posterior mean of staying in an expansions is 0.95, which
is roughly the same as for the adjusted series analysed in the previous subsection. This
leads to a drop in the expected duration of a recession from 8.0 to 5.1 quarters and a drop
in the expected duration of an expansion from 31.4 to 25.7 quarters for the seasonally
unadjusted series.

The last row of of Figure 4.6 shows the posterior expectation of the states E[s;|yT],
t=1,...,T for the Markov difference stationary model (3.9) for the seasonally adjusted
series and the Markov difference stationary model with seasonal dummies for the unad-
justed series. Using the 0.5 rule as in Hamilton (1989) we can determine the turning points.
Again, we define a recession by two consecutive data points for which E[s,|y”] > 0.5.
A peak is defined by the last expansion observation, while a trough is defined by the last
observation in a recession. Table 4.4 shows the peaks and troughs based on the posterior
results of the Markov models for the seasonal adjusted and seasonal unadjusted series.
For the seasonally unadjusted data, we find that the recession in the eighties starts and
ends one quarter earlier than with the adjusted series. In the seventies, however the reces-
sion starts and ends one quarter later with the unadjusted series. We detect the largest
difference in the sixties, where based on seasonal adjusted series the recession starts in
1966.1V and based on the unadjusted series two quarters earlier. The shaded areas in
Figure 4.6 denote the recession periods.

Although the Bayes factors do not indicate the presence of seasonal unit roots, it is
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still possible that the seasonal means change during recessions. Note that the graphs
in Section 4.2 seem to indicate some change in the seasonal pattern during recessions.
To analyse this possible change, we consider the seasonal Markov trend with changing
means as in (4.13). The prior specification for the parameters is the same as for the other
Markov seasonal trend models analysed in this section. Unfortunately, the likelihood does
not contain enough information to impose a flat prior on the d; ; parameters, s = 1,...,4.
Therefore, we opt for the normal prior specification in (4.27) and compute Bayes factors
for 6,1 = 61, = 01,3 = 01,4 = 0 for different values of o5, ;. These Bayes factors are 0.94,
0.62, 0.64 for o5, = 0.01, 0.05 and 0.1, s = 1,...,4, respectively and hence a seasonal
mean shift is a posteriori not preferred. For lower values of o5, the Bayes factor are
around one and we do not learn from the data. It seems that after correcting for possible
changes in the slope of the trend during recessions the changes in the seasonal pattern are
not so pronounced any more. The final column of Table 4.3 shows the posterior results
for o5,, = 0.05, s = 1,...,4. In comparison with the third column we see a decrease in
the posterior mean of ¢ and an increase in the posterior mean of vy and ~;. The posterior
means of d; ; do not differ more than two standard deviations from zero.

To summarize the empirical findings in this section, we can simply state that transition
probabilities and hence the expected duration of a recession and the business cycle turning
points obtained from a Markov trend model for German unemployment, differ across
seasonal adjusted and unadjusted series. Additionally, there is little evidence in German
unemployment for a seasonal mean shift during recessions. After correcting for a change
in the growth rate during recessions, there is no posterior indication for changing seasonal
patterns due to seasonal unit roots.

4.7 Concluding Remarks

In this chapter we have proposed a seasonal Markov trend model to analyse seasonally
unadjusted time series. This model extends the Markov trend model from the previous
chapter with seasonal dummies, possible seasonal unit roots and allows for different sea-
sonal means during the stages of the business cycle. The model is used to analyse the
business cycle in seasonally unadjusted German unemployment. This analysis indicates
that there exists a substantial difference in posterior results, obtained from a Markov
trend model, about the transition probabilities and the dating of turning points for sea-
sonal unadjusted and seasonal adjusted series. Additionally, posterior results indicate
that there does not seem to be a major change in the seasonal means during recessions.

Just as for the non-seasonal Markov trend model of the previous chapter, we can extend
the seasonal Markov trend model with the extensions suggested in Section 3.7. Further
extensions of the model concern the modelling of the seasonality in the series. We may for
instance use periodic varying transition probabilities as in Ghysels, McCulloch and Tsay
(1994) or consider seasonally varying autoregressive parameters as e.g. in Osborn and
Smith (1989) and Franses and Paap (1994). Finally, one may argue that the dynamics in
a time series changes with the business cycle, see for instance, Terdsvirta (1995) and Tiao
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and Tsay (1994). However, these extension imply extra parameters and non-linearities in
our already ample specified model.
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Multivariate Analysis






Chapter 5

Multivariate Stochastic Trends

In the first part of this thesis, we have used Markov trend models to analyse business cycles
and the presence of stochastic trends in univariate time series. In this part we extend these
models for multivariate analysis. In this chapter, we give a short introduction into the
modelling of trends in multivariate time series. We consider trend specifications, which
are multivariate generalisations of the univariate trend specification of Chapter 2. Special
attention will be given to situations where time series have one or more common trends.
This occurs if the number of trends needed to model the time series in a multivariate model
is less than the total number of trends needed to model the separate series in univariate
models. The deviations from the trend are usually modelled by a vector autoregressive
model. Just as in the univariate case, a unit root in the autoregressive structure implies
the presence of a stochastic trend.

The outline of this chapter is as follows. In Section 5.1, we consider some multivariate
trend specifications. In Section 5.2 the conditions for common trends in the multivariate
trend specifications are discussed. Section 5.3 deals with stochastic trends caused by unit
roots in vector autoregressive models. We discuss the conditions for common stochastic
trends or cointegration. Finally, we give in Section 5.4 a brief outline of the contents of
the second part of this thesis.

5.1 Multivariate Trend Specifications

To model the trend in multivariate time series, we can take for each series a separate
univariate trend component. However, the trends of the univariate time series may be
correlated and hence this valuable information may be used in a multivariate trend spec-
ification. In this section we discuss some multivariate trend specifications, which are
generalisations of the univariate trend specifications in Section 2.2. We define the (n x 1)
vector Ny, t =1,...,T as an n-dimensional trend component.

It is easy to generalise the linear deterministic trend (2.2) to an n-dimensional trend
specification

Nt == Nt—l + F[], (51)
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where Iy is now an (n x 1) parameter vector. This trend implies deterministic linear
trends for each element in N; with n different slopes 'y and n different initial values Ny,

N, = Ny + Tyt — 1). (5.2)

Again, there is no forecast uncertainty for known values of I'y and N;. Since this trend
does not contain random variables, there is no correlation between the elements of V.
The multivariate version of the random walk plus drift (2.3) is given by

Nt == Nt,1 + FU + FlUt; (53)

where T'g is an (n x 1) parameter vector, I'; an (n x n) parameter matrix and the (n x 1)
vector U; ~ NID(0,1I,). The direction of this trend is given by the n drift terms, which
are the elements of I'y plus a linear combination (rows of I'y) of n random shocks U;. The
backward solution of this multivariate random walk

t
Ny=Ni+To(t—1)+T1 > U (5.4)

=2

consists of a multivariate linear deterministic trend I'y(¢—1) and an n-dimensional stochas-
tic trend °!_, U;. Since the covariance between the elements of the n-dimensional stochas-
tic trend is zero, the trend consists of n independent stochastic trends. The matrix I';I"}
denotes the covariance between these n independent stochastic trends. The expectation
of Ny at t = 11is Ny + Ig(t — 1) and the variance is I'1T) (¢t — 1). Hence, the forecast
uncertainty increases linear over time.

A multivariate generalisation of the Markov trend can be represented as follows!

Nt == Nt,1 + FO + Flst, (55)

where [y is an (n x 1) parameter vector, 'y an (n X n) parameter matrix and the
n-dimensional vector Sy = (s14,...,s,,)" a random variable with s,, = 0,1, j =1,...,n,
which evolves according to a first-order Markov process. The backward solution of the
Markov trend

t
Ny=N+ Dot —1)+T1) S (5.6)

1=2

consist of the linear deterministic trend I'y(¢ — 1) and an n-dimensional stochastic Markov
trend Y!_, S;.

Since the state variable S; can take 2" different values, the Markov trend allows many
slope directions for each univariate series for large values of n. To model the transitions
between these 2" states there are several possibilities. The easiest possibility is to assume

!Other multivariate generalisations of the Markov trend can be found in Phillips (1991a), Kim and
Yoo (1995) and Dwyer and Potter (1996).
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that each element s;,, j = 1, ..., n evolves according to an independent first-order Markov
process with transition probabilities

Pr[s;; = 0]sj;—1 = 0] =p;, Pr[s;, =1]s;,-1 =0]=1—p,,

5.7
Pr[s;, = 1|sj,-1 = 1] = ¢, Pr[s;; =0|s;;_1 =1] =1 —g;. (5.7)

The trend N; now consists of n independent stochastic Markov trends and the matrix
['1 models the correlation between these Markov trends. Since S; consist of indepen-
dent Markov processes, we can use the expectation (2.13) and the variance (2.14) of the
univariate Markov trend specification to compute the expectation and variance of N, at
t = 1. For instance, the unconditional probability that s;;, = 1 equals Pr[s;, = 1] = 7; =
(1-p;)/(2—pj—q;),j =1,...,n, see Section 5.1, so that the unconditional expectation
of Ny at t = 1 equals (I'g + I'1P)(t — 1) where P = (m mo ... m,)". The variance of the
Markov trend can be derived in the same way using the result in (2.14).

The most general possibility to model the transitions is to define (2" —1)2" transition
probabilities between the 2" possible realisations of S;. These transition probabilities
can be put in an (2" x 2") transition matrix, see below for an example. The (2" x 1)
eigenvector of this transition matrix belonging to the eigenvalue one contains the uncon-
ditional probabilities of the 2" possible realisations of S;, see Hamilton (1994, p. 681-682)
for details. Using the 2" unconditional probabilities we can compute the unconditional
expectation of the Markov trend as before. The derivation of the variance of the Markov
trend is however more complicated but can easily be obtained using simulation. Note that
the specification with independent Markov processes with transition probabilities (5.7) is
just a restricted version of the latter possibility.

To illustrate the multivariate Markov trend, assume that n = 2 and S; =(sy; s9)"
Now define a new state variable s; which equals

1 if S, = (00)

. ]2 ifs,=(oy
ot 3 if S, =(01) (58)

4 if S, =(11).

The direction of the Markov trend at time ¢ is 'y if sy = 1, Iy plus the first row of I'; if
s; = 2, I'g plus the second row of I'y if sf = 3 and 'y plus the sum of the rows of I'y if
s; = 4.

To model the transitions between the four realisations of S; we define a (4 x 4) tran-
sition matrix. The (4,j)-th element of this matrix denotes the transition probability
Prs; =i|s; ; =j], i,j = 1,...,4. The most general transition matrix for s; contains
4 x 3 = 12 free parameters. If we however assume that S; = (s1; s2)" consists of two
independent Markov processes with transition probabilities (5.7) the (4 x 4) transition
matrix equals

P1D2 (1 —aq1)p2 pi(1—q2) (1—q)(1—q)
(1 - pl)pZ q1P2 (1 - pl)(l - QZ) Ch(l - QZ)
p1(1 = p2) (1=aq1)(1—p2) P1q2 (1—-q)an ' (5.9)

(I=p1)(1 —p2) ¢1(1 = pa) (1 —p1)ae 011G
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This transition matrix only consists of four parameters, pi, po, ¢ and ¢s.

In this section we have specified n-dimensional trend components to model the trend
in multivariate time series. In practice, it is sometimes not realistic to assume different
trends for each separate time series. In the next section, we show the conditions for
common trends in time series. These conditions imply restrictions on the parameter
matrices in the multivariate trend specifications of this section.

5.2 Common Trends

Just as in the univariate case, there are two possibilities to include the trend component in
a time series model. One can model the time series in deviation from a trend component
N; or one can simply add the trend component to the time series model in a linear
way. In the former approach we assume that an n-dimensional time series {Y;}7_, can be
decomposed as

}/t — Nt+Zt; (510)

where IV, represents the trend component and Z; the deviations from this trend. As we
already have seen in Section 2.2 we can interpret NV; in this specification as a trend in
Y;. In this section we focus on the role of the trend component and assume that 7, is
a stationary process around the multivariate trend component N;. In the next section
we consider the specification of the Z; component and discuss the second possibility to
include the trend component.

The trend components N;, which we have discussed in the previous section, define for
each of the n univariate series in Y; a single trend. These n trends can be correlated. It
may however be the case that less than n trends are sufficient to describe the trend in the
n-dimensional time series Y;. In other words, the univariate series in Y; have a common
trend. We speak of a common trend if a linear combination of two or more series which
contain the trend does not contain the trend. Hence, if there are m linearly independent
combinations of Y}, which do not contain the trend, they are (n — m) common trends in
Y;.

It is easy to see that if we specify a linear deterministic trend for N, (5.1) we assume
that there are (n — 1) common trends. Define the (n x (n — 1)) matrix I'q,, which is
orthogonal to [y, i.e. ['y Ty = 0. Since 'y, N; = 'y, (Ny 4+ T'y), the linear combinations
'y, Y; do not contain a linear deterministic trend so that we have one common linear
deterministic trend.

To have common stochastic trends, we need linear combinations of N, (5.4), which
cancel out the stochastic trend Yf_, U;. From (5.4) it is clear that if rank(I';) = n it is
not possible to find a non-zero matrix, which by premultiplying cancels out Sf_, U;. Tt
is therefore only possible to have common stochastic trends if the rank of 'y is less than
n. If the 0 < rank(I';) = m < n we can write ['; as the product of two (n x m) full rank
matrices v and ¢

Ty =~6. (5.11)
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The (n —m) linear combinations, which remove the stochastic trend from Y; are given by
the rows of the (n x (n —m)) matrix v, which is defined such that 4/, = 0. Hence, if
the rank of I'; is m there are m common stochastic trends. These m trends are given by
§' St_, U;. The matrix v models the magnitude of the impact of the m common stochastic
trends on the elements in NV; and therefore on each of the univariate time series in Y;.
Note that the (n — m) linear combinations +/, which remove the stochastic trend from
Y; do not automatically remove the deterministic trend I'y(¢ — 1) from N, in (5.4), since
7 Ty does not have to be a zero matrix.

Under rank reduction of 'y there are only (nm + (n — m)m) free parameters and
hence the ¢ and v have to be restricted to become estimable. We propose the following

restriction
I,
6= ( 5, ), (5.12)

where 09 is an ((n — m) x m) matrix. This phenomenon of common stochastic trends is
a simple case of cointegration, which will be discussed in the next section in more detail.

Likewise, we can define common stochastic Markov trends in specification (5.5). To
have common stochastic Markov trends I'y has to have reduced rank so that it can be
written as v¢' like in (5.11). The (n — m) linear combinations, which remove the trend
from Y; are given by the rows of 7, and the m stochastic common Markov trends are
&' 3¢, S;. Note again that the linear combinations which define the common stochastic
Markov do not have to remove the deterministic linear trend I'g(¢ — 1) from (5.6) unless

To understand the meaning of a common Markov trend, consider the example of the
two-dimensional Markov trend with transition probabilities (5.7) discussed in the previous
section. We already have discussed the direction of the Markov trend if I'; has full rank.
If the rank of the (2 x 2) matrix I'; is one, we can write I'; as the product (5.11) of the
two (2 x 1) vectors v and 4. Hence, the common Markov trend is given by &' 3f_, S;.
Since under rank reduction of I'y there are only three free parameters, we have to to
restrict one parameter in § or 7 to make them estimable. We impose restriction (5.12),
i.e. ' = (1 — d2). This implies that the common Markov trend at time ¢ apart from the
slope in 'y can have four directions: 0, 1, —d; and (1 — dy). If 0o = 1 or 09 = —1 it has
three directions (—1, 1 and 0) and for d; = 0 it has only two directions, 1 and 0. The
stochastic trend is common since under under rank reduction of I'; the stochastic Markov
trend for the first series in Y} is proportional to the stochastic trend for the second series
in Y;. The elements of v determines the magnitude of the impact of the common Markov
trend on each of the two univariate series.

In the next section, we consider the deviations from the trend 7, = Y; — N;,. We
model these deviations with a vector autoregressive moving average model. Just as in the
univariate case, unit roots in the autoregressive part of Z; correspond to the presence of
stochastic trends in Y;.
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5.3 Cointegration

In the previous section, we have discussed the possibility of common stochastic trends in
the multivariate trend specification N;. In this section we consider the deviations Z; from
this trend specification. These deviations are often assumed to be a vector autoregressive
moving average [VARMA (k,l)] model

k !
Zt - Z (I)iZt—i =&t — Z \Ifz'é‘t_j, (513)
i=1 j=1
where ®;, i =1,...,kand ¥;, j =1,...,l are (n X n) parameter matrices and the (n x 1)

vector £, ~ NID(0,X) with a positive definite symmetric (n x n) covariance matrix X.
Using the lag operator L we can write

(I, — &L~ —®,L"7Z, = (I, - UL~ — U, Lhe, (5.14)
O(L)Z; = ¥(L)g,. '
The process Z; is stationary if the roots of |®(z)| are outside the unit circle and invertible
if the roots of |¥(x)| are outside the unit circle, see Liitkepohl (1993) for an introduction
into VARMA models. Just as in the univariate case, a unit root in ®(x) corresponds to
the presence of a stochastic trend in Z;. To make this more explicit we neglect the MA
component for notational convenience and rewrite the model (5.13) in error correction
form

k-1
AZt = HZt_l + Z (i)iAZt_i + &y, (515)
i=1
where the (n x n) matrix Il = ¥-F_, ®; — I, and the (n x n) matrices ®; = =5, @;,

i=1,...,k—1, see e.g. Johansen (1991). Since ®(1) = —II unit roots enter the model if
IT has reduced rank. If IT = 0, Z; contains n unit roots and we can write (5.15) as?

S(L)AZ, = =,

AZ = (L)) e, (5.16)

where ®(L) = (I, — &L+ — ®p_,; L*¥1). Defining C(L) = (®(L))"! and using (2.21) we
obtain the multivariate version of the Beveridge-Nelson decomposition

t
Zy=21+C(1)> &+ C*(L)ey, (5.17)
=2

where C'(1) = (®(1))~" and C*(L)z; is a stationary vector moving average process. Since
C(1) is of full rank Z; contains n stochastic trends Y°i_, &;.

2Remember that we do not consider I(2) type trends in this thesis.
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If the rank of IT is r with 0 < r < n, Z; contains (n — r) unit roots. The matrix II can
be written as a product of two full rank (n x r) matrices o and 3

M=af. (5.18)

The multivariate version of the Beveridge-Nelson decomposition has the same form as
(5.17) but now C(1) = 8. (o/, ®(1)BL) '/, and B, and a are defined such that 5’3, = 0
and o/a; = 0, see Johansen (1991, p. 49). Note that if II = 0, which corresponds to
B=0and a=0, 8. (!, ®(1)3L) e/, = (®(1))~". Since 'Z; = 'Z, + B C*(L)e; does
not contain a stochastic trend, there are (n — r) common stochastic trends. Engle and
Granger (1987) refer to this phenomenon as cointegration and the [ matrix is called
the cointegration vector. The rank r of the matrix Il denotes the number of common
stochastic trends and is called the cointegration rank.®> The cointegrating vector 3 reflects
the stationary long run relations between the elements of Y;. Since the number of free
parameters in I under rank reduction (= nr + (n — r)r) is smaller than the number
of parameters in @ and 8 (=2nr) we have to restrict some parameters. Common used
restrictions are 5’3 =1, or

g=1 —B), (5.19)

where (35 is an ((n — r) x r) matrix. The vector a contains the so-called adjustment
parameters, which take care of the adjustment of deviations from long term equilibrium to
the equilibrium. From C(1) = 3, (a/, ®(1)8.) 'a/, it can be seen that the (n—r) common
stochastic trends are represented by o/, ¥_, ;. An extensive treatment of cointegration
can be found in Johansen (1995) and Banerjee et al. (1993).

As we already have seen in Section 2.3 the trend component N, can also be added in a
linear way to a time series model instead of modelling the time series in deviation from
the trend component as in (5.10). The former approach usually leads to a linear model
specification. Therefore from an estimation point of view it is more convenient to extend
the error correction model (5.15) with deterministic elements in a linear way

k—1
AY, = p+7(t—1)+ TV, + 3 $AY, ; + 2, (5.20)

i=1

where p and 7 are (n x 1) parameter vectors. If the roots |®(z)| are outside the unit
circle it is possible to rewrite Y; in deviations from a linear deterministic trend like in
the univariate case. This is not possible if (n — r) roots of |®(z)| are equal to one. The
Beveridge-Nelson decomposition in this case reads

t
Vi=Y1+C)Y (u+7G—1)+&)+CHL)(p+ 7t — 1)+ ), (5.21)
=2

3Note that rank reduction in IT implies the presence of more stochastic trends, while rank reduction
in T’y in Section 5.1 implies less stochastic trends.
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with C(1) = 8. (o, ®(1)3,) 'a/,. The process Y; contains (n — r) stochastic trends plus
a quadratic deterministic trend, which results from Y-!_, 7(i — 1) = 27(¢> — t). In general,
this quadratic trend disappears if 7 = 0. Note however that under cointegration the
restriction o/, 7 = 0 also corresponds to the absence of a quadratic trend in Y;. Likewise,
the deterministic linear trend in Y; disappears if 7 = 0 and o/, u = 0. If however C(1)
has full rank the latter condition changes to u = 0.

In the next chapter we consider a Bayesian analysis of cointegration. For analytical
simplicity and to meet with classical studies, we use the error correction model specifica-
tion (5.20), where the deterministic trend is added in a linear way. As we have seen in
(5.21) it is still possible in this specification to relate the deterministic elements to the
trend in the series. This is however not the case if we replace u + 7(t — 1) by a multi-
variate random walk plus drift (5.4) or the Markov trend (5.6). Therefore, we consider in
Chapter 7 specification (5.10) to analyse multivariate Markov trend models.

5.4 QOutline of Part 11

Contrary to the Bayesian analysis of the presence of unit roots in univariate time series,
there does not exist a Bayesian framework for the analysis of unit roots and cointegra-
tion in multivariate time series. Therefore, we propose in Chapter 6 a complete frame-
work for Bayesian cointegration analysis in VAR models. This framework includes, prior
specification, posterior odds ratio analysis for determining the number of unit roots or
cointegration relations and simulation techniques to obtain the posterior distributions of
the cointegration vectors and adjustment parameters. This standard framework will be
used in Chapter 7 to analyse stochastic trends in a multivariate version of the Markov
trend model of Chapter 3. This model is used to analyse the presence of common Markov
trends and cointegration in per capita consumption and income of the United States.



Chapter 6

Cointegration Analysis

6.1 Introduction

In the previous chapters we have analysed the presence of stochastic trends in univariate
time series. In this chapter we consider a multivariate analysis of stochastic trends. The
introduction of the concept of common stochastic trends or cointegration by Engle and
Granger (1987) has introduced a rapidly expanding literature on multivariate analysis of
stochastic trends. This has lead to a largely unified theory of classical statistical analysis
of cointegration, see among others Johansen (1991) and Phillips (1991b). However, there
does not exist a complete framework for Bayesian analysis of cointegration, like in the
classical literature. The main contributions to Bayesian analysis of cointegration are:
Koop (1991) analyses implied moving averages/impulse responses resulting from the Wold
decomposition of a time series, DeJong (1992) considers the posterior distributions of
the roots of vector autoregressive models, Kleibergen and van Dijk (1994) analyse the
consequences of local non-identification and prior specification on the posteriors of the
parameters, Dorfman (1995) tests for the number of cointegrating vectors by analysing
the difference between the number of unit roots in the different univariate models and the
number of unit roots in the multivariate model, and Geweke (1996) proposes posterior
simulators using the Gibbs sampler.

These studies typically consider a specific problem in the sequence of steps involved in
Bayesian cointegration analysis. They do not provide a full cointegration model selection
strategy which allows one to start with an unrestricted multivariate time series model and
to end with the posteriors of the parameters in a cointegration model. In this chapter we
provide a full modelling strategy for Bayesian cointegration analysis. The sections, which
discuss the different steps in the model selection strategy are organised as follows.

In Section 6.2 we give a short introduction of cointegration in vector autoregressive
models and provide the notation we will use in this chapter. A vector autoregressive
model is rewritten in an error correction form in which a zero restriction on a parameter
matrix reflects cointegration. In Section 6.3 a prior framework for the Bayesian analysis
of this error correction model is proposed. This prior framework does not depend on
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the functional form of the prior. Therefore, we also derive the functional forms under a
diffuse (Jeffreys’) and a natural conjugate prior specification. In Section 6.4 the posterior
distributions are derived. The posteriors of the cointegration model do not belong to a
known class of distribution. In Section 6.4.1 a Metropolis-Hastings simulation algorithm
is proposed to simulate from the unknown posterior distributions.

To analyse the number of cointegration relations, we consider in Section 6.5 a Bayesian
version of a Lagrange multiplier [LM] statistic. This Bayesian LM statistic can be seen
as an alternative to a highest posterior density [HPD] region type test. The statistic is
based on a transformation of a multidimensional HPD region into a one-dimensional HPD
region. This transformation resembles the functional form of a classical Lagrange multi-
plier statistic but has a different interpretation. Since the derivation and interpretation
of the Bayesian version of an LM statistic to test for cointegration is not straightforward,
we use a linear regression model to show the involved steps. In Section 6.6 we propose
posterior odds/Bayes factors to compare models with different number of cointegration
relations and therefore different number of unit roots. We consider Bayes factors under a
natural conjugate prior specification and propose a Bayes factor in case of diffuse priors.

Unfortunately, the outcomes of the Bayes factors and the LM statistics depend on the
order of the variables in the error correction model. Therefore, we propose in Section 6.7
an alternative error correction model representation which leads to posterior results that
are invariant with respect to the order of the variables. Using the same prior framework
as in Section 6.3 we derive priors, posteriors and Bayes factors. Since it is under the
invariant specification not possible to derive any analytical marginal prior and posterior
results, we propose new simulation procedures to obtain these results.

Finally, Section 6.8 shows some illustrative examples of the derived procedures using
four simulated series, the United Kingdom [UK] data analysed in Hendry and Doornik
(1994) and the Danish data analysed in Johansen and Juselius (1990). Section 6.9 con-
cludes.

6.2 The Cointegration Model

Consider a vector autoregressive model of order k£ [VAR(k)] for an n-dimensional vector
of time series {V;}7_,

k

Vi=p+1{t—1)+) &Y, +e, (6.1)

i=1
where ¢; is an independent n-dimensional vector normal process with zero mean and
(n x n) positive definite symmetric covariance matrix 3. The (n x 1) vectors g and 7
contain the constant and trend coefficients and ®;, i = 1,..., k are (n x n) matrices with
autoregressive coefficients. The initial values Yi,..., Y} are fixed. The VAR model in

(6.1) can be rewritten in the error correction form

k—1
AY, =p+7(t—1)+TY, 1 4+ Y BAY,; +ey, (6.2)
i=1
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where the (n x n) matrix Il = ¥-¥_, ®; — I, and the (n x n) matrices ®; = = ¥5_, | @},
i=1,...,k—1, see e.g. Johansen (1991).

The characteristic polynomial of model (6.1) is equal to |®(2)| = |I,2* — Xk | &;2F77|.
Since by definition ®(1) = —II, unit roots enter the model when ®(1) has a lower rank
value. If II is a zero matrix, the characteristic polynomial has n unit roots, which corre-
sponds to n stochastic trends. Common stochastic trends appear if (n — r) roots of the
polynomial |®(z)| are equal to one, 0 < r < n, see Section 5.3. In that case the rank
of IT equals r and we say that series generated by model (6.1) are cointegrated. Hence,
cointegration implies that we can write the matrix IT as a product of two full rank (n x r)
matrices « and (3

=af. (6.3)

The matrix 3 contains the cointegrating vectors, which reflect the stationary long term
relations (or equilibria) between the univariate series in Y;. The a matrix contains the
adjustment parameters, which determine the speed of adjustment to the equilibria 3'Y;.

Since the number of parameters in «f’, 2nr is larger than the number of free param-
eters in II, under reduced rank (= nr + (n — r)r) the a and/or 3 parameters have to
be restricted to become estimable. Here we choose for the following restriction on the
cointegration vectors 3

B =1 —B), (6.4)

where [ is an ((n —r) x r) matrix. Note that due to this normalization the § matrix has
always full rank.
To save on notation we write the error correction model (6.2) in matrix notation,

AY =V I+ X +¢, (6.5)

where AY = (AY,1 .. .AYp), Y 1 = (Yy.. .Y 1), e = (Epy1-..e7), X = (X}, ... X)),
X, = (A .. AY ., 1 (t—1)), and @ = (... D4y pu 7). To save even fur-
ther on notation, we focus in the remainder of this chapter on a simple VAR(1) model
without deterministic elements. This is not a serious restriction since under a diffuse
prior specification on @, integrating out the @ parameters from the likelihood function
leads to analysing a VAR(1) model for the transformed data MxAY and MxY ;, where
My =Ir_; — X(X'X)7'X'. We refer to this VAR(1) model in error correction form as a
linear error correction [lec] model

AY =Y II + ¢, (6.6)

where we define IT = TI' for notational convenience. Under the restriction IT = a3’ this
model simplifies to an error correction cointegration [ecc] model

AY =Y fa+¢

6.7
=Y 1a—Y, ha+te, (6.7)
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where Y7 _; consists of the first 7 columns of Y_;, Y5 _y consists of the last (n—r) columns
of Y. ; and a = o'. To clarify the parameter restriction, which leads to rank reduction
in I, we reparameterise the linear error correction model (6.6) into an unrestricted error
correction [uec| model

AY = Yi’_la — }/2’_1/82a + }/2,_1(0 )\) + &, (68)

where A is an ((n — r) X (n — r)) matrix. The error correction cointegration model
(6.7) corresponds to A = 0, see Kleibergen (1996b) and Kleibergen and van Dijk (1994)
for details. We have rewritten the linear error correction model (6.6) in such a way
that rank reduction corresponds to a parameter restriction. To see the relation between
this unrestricted error correction model and the linear error correction model (6.6) we
decompose IT in submatrices

II,, II;, &3] a3
= ( Ily; Il ) B ( —faai —[fras + A ) ’ (6.9)
where ITy; is an (r X r) matrix, ITy5 is an (r x (n — r)) matrix, ITy; is an ((n — r) X r)
matrix, ITy is an ((n — ) x (n — r)) matrix and where o = (a; o) with ey an (r x r)
matrix and ag an (r x (n — r)) matrix.

Note that the decomposition of IT in (6.9) is not unique. A different order of the
elements of Y, results in a different definition of A. This implies that the posterior of
A also depends on the order of the univariate series in Y;. Tests, which are based on
this posterior, like the posterior odds ratios in Section 6.6, are therefore sensitive to the
order of the series in Y;. The Bayesian version of the LM statistic, which is discussed
in Section 6.5.2, is less sensitive for the order since it is calculated using the posterior of
the parameters of the error correction cointegration model (6.7) in which A = 0, see also
Lucas (1996, chapter 8) for a discussion about this phenomenon. In Section 6.7 we discuss
a decomposition of IT, which leads to posterior results which are invariant to the order of
the variables in Y;. The disadvantage of this decomposition is that contrary to the simple
decomposition in (6.9) it does not allow for an analytical decomposition of the prior and
posterior in known conditional/marginal densities. Posterior results are obtained using
complicated simulation methods. Therefore, we first discuss as an introduction in the
next sections Bayesian cointegration analysis using the simple decomposition in (6.9). In
Section 6.7 we consider the invariant decomposition and discuss the computation of the
order invariant posterior results.

The Likelihood Function

The likelihood function of the unrestricted error correction model (6.8) conditional on the
initial observations Y; is given by

LoeeY|S, 0, N, Bo) = (V21) T IS @1, 2 exp(—%(vec(e)'(zl @I 1vec(e)))

1
:(\/27r)_(T_1)"|E|_%(T_1)\IT_l\_%"exp(—itr(z_ls'a)), (6.10)
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where ¢ is given in (6.8). In addition, the likelihood function of the cointegration model
(6.7) equals the likelihood function of the unrestricted model (6.10) evaluated in A =0

Eecc(Y|2;a;ﬂ2) = Euec(Y|2;a:)\752)‘)\:0- (611)

In the next section we propose a prior framework to analyse the unrestricted error
correction models (6.8) and the cointegration models (6.7).

6.3 Prior Framework

Traditional Bayesian analysis of the cointegration model starts directly with specifying
priors on the parameters ¥, a and 3 in the cointegration model (6.7). The cointegration
model (6.7) is non-linear in the parameters a and f3,. It is easy to see that the parameter
B9 is not identified when ae = 0 (or when e is of reduced rank), see Phillips (1989) for more
discussion on local non-identification. Consequently, if a diffuse prior is used, such that
the joint posterior of the parameters is proportional to the likelihood, the conditional
posterior of (35 given a is constant and non-zero when a = 0. The integral over this
conditional posterior at @ = 0, which is part of the marginal posterior of c, is therefore
proportional to the volume of the parameter region of 3, (R~")"), which is infinity. This
leads to a a posteriori favour for locally non-identified parameter values when diffuse
priors are used for the parameters (e, 33), see Kleibergen and van Dijk (1994) for a more
elaborate discussion of this phenomenon. Diffuse priors for models which are non-linear
in the parameters like the cointegration model (6.7) do not lead to posteriors with similar
properties as posteriors of linear models under a diffuse prior specification. Hence, from
a posterior perspective, diffuse priors in non-linear models like the cointegration model
(6.7) are not the natural extension of diffuse priors in linear models.

Since the error correction cointegration model (6.7) is nested in the unrestricted er-
ror correction model (6.8) it seems natural that the joint posterior distribution of the
unrestricted error correction model (6.8) evaluated in A = 0 is proportional to the joint
posterior of the cointegration model (6.7). Note that in case of linear restrictions, this re-
quirement is automatically fulfilled, as we can condition on the parameters modelling the
restriction. For non-linear restrictions, like cointegration, however, we cannot condition
on the restrictions and we have to use the joint posterior explicitly, see also Kleibergen
(1996a). Since the likelihood of the cointegration model (6.7) equals the likelihood of
the unrestricted error correction model (6.8) evaluated in A = 0 the prior has to obey
the same rule. Note that the unrestricted error correction model (6.8) is also non-linear
and suffers from the same identification problem as the cointegration model. However,
the unrestricted error correction model is observationally equivalent with the linear error
correction model (6.6). Therefore, specifying diffuse priors for the ¥ and IT parameters
in the latter model implies priors for the ¥, a, A and [, parameters in the unrestricted
error correction model (6.8), which leads to well-behaved posterior distributions. The
joint prior of the error correction cointegration model (6.7) equals the joint prior of the
unrestricted error correction model (6.8) evaluated in A = 0. This prior framework can be
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seen as a natural extension of defining diffuse prior in non-linear error correction models
and does not lead to improper posteriors, see also Kleibergen (1996a). Notice that every
cointegration model, » = 1,...,n, is nested in the linear error correction model (6.6),
which ensures also that there exists a natural transition between the joint posteriors of
cointegration models with different number of cointegration relations.

The ideas behind this prior framework can also be applied to natural conjugate priors,
like the informative Minnesota priors of Doan, Litterman and Sims (1984) and Litterman
(1986). In general one starts with specifying a prior on the parameters IT and ¥ of the
linear error correction model (6.6)

plec(z)a
6.12
Pree(TLS). (6:12)
Note that we have not specified a functional form for the priors yet. The prior on II
implies a prior on the submatrices of IT defined in (6.9)

plec(Hlla H12 ‘2)7

6.13
plec(]-_-[ﬂa H22\H11, I1,,, Z)- ( )

The decomposition in (6.9) shows the relation between the submatrices of IT and the
parameters a, A and (5. The prior distribution of e, A and (3, can now be constructed
using the Jacobian of the transformation of IT to (a, A, 52). The priors for a;, A and [,
implied by the prior for IT;;, Iy, I1;5 and ITyy are constructed such that they obey the
sequence, in which the parameter matrices should be analysed conditional on one another,
dictated by the model: A has to be analysed given ¥ and a, and the cointegrating vectors
(B2 have to be analysed given ¥, a, and A. Only this sequence allows for an analytical
decomposition of the joint prior/posterior into conditional posteriors/priors as will be
shown in Section 6.4. The marginal/conditional priors read

puec(z)a
puec(a‘z)a
Pucc NS, ), (6:14)
puec(ﬁﬂza «, )‘)

Note that of course puec(X) = piec(E) and pyec(e|X) = prec(TLi1, I2|X) @, my,)=a- The
joint prior of the unrestricted error correction model (6.8) puec(X, ¢, A, (2) is given by the
product of the conditional/marginal priors in (6.14).

Finally, the joint prior for the error correction cointegration model (6.7) is proportional
to the joint prior for the unrestricted error correction model (6.8) evaluated in A = 0

1
pecc(zaaaﬁQ) = C_puec(zaaa)\aﬁQ)‘/\ZOa (615)

where the constant ¢, is a correction factor, which corrects the integrating constant in
Puee- This correction factor is defined by

o = ///puec(z,a,)\,ﬂQ)L\:g 4 de dfy. (6.16)
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To demonstrate the implications of this prior framework, we derive the implicit condi-
tional priors the e, 5, and A parameters if we specify a diffuse (Jeffreys’) and a natural
conjugate prior for the IT parameter.

Diffuse Prior Specification

A Jeffreys’ prior for IT and ¥ is proportional to the square root of the determinant of
the information matrix of the linear error correction model (6.6). Since the information
matrix is block diagonal [see Liitkepohl (1993, section 3.4)] the Jeffreys’ prior for IT results
from the information matrix of Il given X

92 In £(Y |3, 1)
d(vec(IT))O(vec(IT))

z] s le (YY), (6.17)

Note that we only take the expectation of the disturbances and we, as Bayesians, treat
Y; as fixed and given so that the expectation equals its realisation. This implies that the
diffuse prior for the linear error correction model (6.6) reads

Pree(T) o [T 72D,

fln / ln (618)
plec(H|2) X ‘2‘ 2 ‘Y_1Y,1‘2 .

The conditional prior for IT implies the following conditional priors for the submatrices
of T1

1 1
Drec(IT11, I3 ¥) o \Z\_5T|Y1',_1MY2,71 Yi12",

1 , 1 (6.19)

Prec(Tla1, Thyo|TTy, IT5, 3) o \2\75(nfr)\3/2,,15/'2,71|5n;
where My, , =Ip_y —Y5_1(Y; Yo _1)"'Y; ;. Appendix 6.A shows the derivation of the
priors for unrestricted error correction model (6.8) based on the prior (6.19) including the
Jacobian for the transformation of (ITq, ITj9, Iy, I1ss) to (e, A, B2). These priors read

Puee(E) o [S] 72674,
wee(C|D) o< [T |Y] My, Yy _4|",
pu) ox (B[ ¥ Vil o0
puec()‘|2a (X) X ‘alzal|—§(n—r)|}/2’_1Y27_1‘§(n—r)’
Pucc(B2], 00, 2) ox [ Tl [0V Yy |7
where @ = (@ @3) with e an (r x r) matrix and @y an (r x (n — r)) matrix and

o, = (—ah(ar') I,.,). The joint prior pue.(E, e, A, B2) is given by the product of the
marginal /conditional priors in (6.20).
Now, the joint prior for the error correction cointegration model (6.7) is given by

pecc(zaaaﬁQ) O(puec(zaaa)‘aﬂ2)|)\:0- (621)
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or
1 1 1 1
Pece(E, 0¢) o [RI7ZTHIY My, Y1 Yy Yo [P0 g B, TR,

Pece(Bo] 3 @) o @S el |2 Y] Yy 3 (6.22)

Note that in the case of diffuse priors we cannot define ¢, according to (6.16). For the
derivation of the posteriors the value of ¢, is not important since it is only an integrating
constant. However, for model comparison via posterior odds this integrating constant is
important. In Section 6.6.1 we discuss the value of ¢, in posterior odds analysis in case
of a diffuse prior specification.

Natural Conjugate Prior Specification

In case of natural conjugate priors we specify an inverted Wishart prior for 3 and a matrix
normal prior for IT given X

1 1 ].
Prec(E) o< [S|2 |72 exp(— S tr(S719)),
o L 1 (6.23)
Pree(TT[ %) oc [X]72" [ A[2" exp (=5 tr(E7(IT — P)'A(IT — P))),

where h and the positive definite symmetric [PDS] (n x n) matrix S are prior parameters
for the inverted Wishart and the PDS (n x n) matrix A and the (n x n) matrix P prior
parameters for the matrix normal prior. The matrices A and P can be decomposed as

AH A12 Pll P12
A= d P= , 6.24
( A21 A22 ) an ( P21 P22 ) ( )

where Ay1, Pj; are (r X r) matrices, Aj9, Pia (r X (n — 1)) matrices, Agy, Py ((n—1) X 1)
matrices and Ay, Pay ((n — 1) X (n — 1)) matrices. Appendix 6.A shows the derivation of
the priors for the unrestricted error correction model (6.8) implied by the priors for the
parameters of the linear error correction model (6.23). The marginal/conditional priors
read

1 1 ].
PueelS) ox [SIFH] 04D exp(— (S 18)),

1 1 1
Puec(@|X) o< [X]727|Apq 92" exp(—§tr(2_1(a — (P11 Pra)) Aji2(a — (P11 Pr2)))),

1

Puec(A|Z, o) x |aLEa’L|—%(n—T)‘AQQ‘g(n—r)

6.25
exp(_%tr((alEal)l(A — 1) Ay (A= 1))), (6:25)

1
Puec((2|2, @, N) o |a2_1a'\%(n_r)|z422\%r eXP(—EtT(Am(ﬁQ - bQ)OéZ_lO/(ﬁQ — b)),

where Ay19 = Ayy — A12A2_21A21, (Q21 Qa2) = (Pyy Pyy) — AQ_QIAQI((Hll I15) — (P Pia)),
I = (Qa Qu)a!, and by = —(Qa1 (Q22 — V)X '/ (aX /)L The joint prior for the
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parameters in the unrestricted error correction model (6.8), pyec(X, @, A, 32), is given by
the product of the marginal/conditional priors in (6.25). Note that it is also possible
to specify the marginal/conditional priors (6.25) for a cointegration model with rank r
directly without starting with the prior specification for the linear error correction model
(6.23). These priors automatically imply the priors for the cointegration models with
rank # r. Furthermore, to reflect the prior belief about a cointegration rank, one can
assign prior probabilities to every cointegration rank in a posterior odds analysis, see
Section 6.6.

Now, the joint prior for the error correction cointegration model (6.7) is given by

1
pecc(za «, ﬂ?) — C_puec(za -, )‘7 52) ‘)\:0- (626)
or

pecc(za a) X puec(z)puec(a|2)puec()\|2; a) |/\:0:

(6.27)

pecc(ﬁ2‘za a) X puec(ﬁ?‘za «, )‘) |)\:0
where pye.’'s are defined in (6.25). The value of ¢, can be computed according to (6.16).
In Section 6.6 we provide a simulation procedure to obtain c,.

In the next section we derive posterior distributions for the parameters of the unrestricted
error correction and the cointegration models both for the diffuse and natural conjugate
prior specification.

6.4 Posterior Distributions

As already mentioned, only for the specific sequence of the parameters, in which we
stated the conditional priors of the parameters in the previous section, it is possible to
derive analytical expressions for the conditional posteriors of the parameters from the
unrestricted error correction model (6.8). If we follow this specific conditioning sequence,
A has to be analysed given (X, ) and (5 has to be analysed given (X, a, \). First,
we consider the posterior distributions of the restricted and unrestricted error correction
models in case of diffuse priors.

Posterior under Diffuse Prior Specification

The posterior of the unrestricted error correction model (6.8) is proportional to the like-
lihood (6.10) times the product of the marginal/conditional priors in (6.20). Due to the
structure of the model it is only possible to derive an analytical expression for marginal
posteriors of ¥ and a. Fortunately, there exist a decomposition of the posterior in known
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densities, see Appendix 6.B. The kernels of these marginal /conditional posteriors read
Paee SV o |5~5T+n) exp(—%tr(Z_lAY'MylAY)),
Puecl@]Z,Y) o [Z1727Y] _ My, Y37
exp(— (57 (@ — &)V My, Vi (e - &),

Puec(AZ, 00 Y) ox oy Sad) 7207 3, 50

1 R . (628
exp(—gtr((e X)) (A =AY Yo 1 (A = ),

Puee(Bo] S, 0, A, Y) o [@X '@/ |207D Y] _ Yy |7

1 . .
exp(—§tr(Y2’,_1Y2’,1((ﬂQ — a)aS e (B, — (a)'),
where
a = (}/1,,—1MY2,—1le,*l)ilyvl’,—lMYQ,_lAYv:

A= (}/2"711/2,,1)71}/2"71AY04'¢,

Bo= = (V1 Yo 1) VLAY = Y1 e = Y, (0 DS l(ax e !, (629)
and My_, = Iy, — Y (Y'Y 1)7'Y’,. All marginal/conditional posteriors belong to
a known class of probability densities functions: inverted Wishart for the ¥ parameter
and matrix normal for the remaining parameters, see Zellner (1971, appendix B) for a
definition of these densities. Marginal results for the A and (3, parameters can be obtained
via simulation in a straightforward way.

Since the prior and the likelihood of the error correction cointegration model (6.7)
equal the prior and the likelihood of the unrestricted error correction model (6.8) in
A = 0, the posterior of the cointegration model is proportional to the posterior of the
unrestricted error correction model in A = 0

pecc(za «, BZ‘Y) X puec(za (8 )\; ﬂ2|Y)‘)\:0
X puec(za a‘Y) puec()\‘za (8% Y)‘A:O puec(ﬁﬂza (8 )\; Y)|/\:0- (630)

The posterior of the cointegration model (6.30) can not be decomposed in known densities.
The conditional posterior of (3, restricted in A = 0 is still matrix normal, which means
that we can simulate (3, if we know how to simulate from the marginal posterior of ¥ and
a. In Section 6.4.1 we construct a simulation procedure to simulate from the marginal
posterior distribution of ¥ and «. This simulation procedure is based on the ratio of
the marginal posterior of ¥ and « in the error correction cointegration model (6.30) and
the marginal posterior of the same parameters in the unrestricted error correction model
(6.28)

peCC(E’ a|Y)

Puett SZ 8 o e T |THO Y50
puec(z,a‘Y) X |al aJ—‘ ‘ 2,-142, 1|

1 . .
exp(—itr(alZa’L)_1)\'Y2"71Y2,_1)\)). (6.31)
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Note that this ratio is proportional to the conditional posterior of A given e and ¥ defined
in (6.28) evaluated in the parameter point A = 0, pye(A|X, @, Y)|as20. Not surprisingly,
this ratio plays an important role in the computation of posterior odds ratios to compare
the error correction cointegration model with the unrestricted error correction model, see
Section 6.6.

Posterior under Natural Conjugate Prior Specification

In a similar way it is possible to derive marginal /conditional posteriors of the unrestricted
error correction model (6.8) in case of natural conjugate priors, see Appendix 6.B. The
kernels of these posteriors are

PueeS|Y)  |S + PIAP + AY'AY — I (A + Y/, V_)T|2TH0 |52 (T+htn)
exp(—%tr(E_l(S +PAP £ AY'AY — T (A+ Y, Y.))),
Puee( @], Y) o< S 72 [(A+ Y/ Yoy )i1a[2"
exp(—g (S (e — (L, TT10))/(A+ VY1) wa(er— (T, T1))),
Puee( A, 00, V) o oy S, |2 [(A V!V 20 (6.32)
exp(—gtr((ec Tl ) (= 1) (A+ Y, Yo)m(A - 1))
Puce B[S, @, A, Y) o X el 20 (A4 Y Y )27
exp(= 3 tr{(A+ VLY (s — Br)a= el (5 — o)),
with
Il = ( gi EZ > = (A+Y' V) YAP 4+ Y'Y II),
A = (Ry Ryp)a,,
By = —(Ry1 (R — V)X ' (a2 1),

(6.33)

where (R21 RQQ) = ((].:.[21 ].:.[22) — ((X - (A + Y11Y_1)2_21(A + Y11Y—1)21(]-:-[11 ].:.[12))) and

(A+Y!Y. )= (Eﬁ i %ﬁj;i Eﬁ i %ﬁjg;) Since all the marginal /conditional densities

are of a known class of distributions, the marginal posteriors of A and 5 can be obtained
via straightforward simulation.

Just as in the diffuse case, the posterior of the cointegration model (6.7) is proportional
to the posterior of the unrestricted error correction model (6.8) evaluated in A = 0,
see (6.30). Again the ratio of the marginal posterior of ¥ and « resulting from the
error correction cointegration model (6.7) and the marginal posterior of @ and ¥ in the
unrestricted error correction model plays an important role in the simulation from the
posterior distribution and the computation of posterior odds ratios. In the next subsection
we show a simulation scheme to sample from the posterior of the cointegration model.
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6.4.1 Simulating Posterior Distributions

To evaluate the posterior distributions of the error correction cointegration models (6.7)
with diffuse or natural conjugate priors, we use Markov chain Monte Carlo techniques.
Since not all of the full conditional posterior distributions are of a known type, standard
Gibbs sampling is not possible. Therefore, we apply the Metropolis-Hastings sampler of
Metropolis et al. (1953) and Hastings (1970).

To describe the Metropolis-Hastings [M-H| sampling algorithm, let ¢) be a random
variable with density function f(v). Let g(C|®)) be a candidate-generating density function
in (. The simulation algorithm to sample from the density f(¢)) works as follows:

Step 1: Specify starting values ¢° and set i = 0.

Step 2: Simulate ¢ from g(¢|¢?).

L min (e 1) 700e(Ch > 0
Define a((, ") =
1 FWg(Cly) =0.
Choose ! = ¢ with probability a(¢, )
and 'T! = * with probability (1 — a(¢,¢?)).

Step 3: Set i =i+ 1 and go to step 2.

The described iterative scheme generates a Markov chain. After the chain has converged,
say at H iterations, the simulated values {v*,i > H} can be used as a sample from the
distribution of ¢ to compute means, variances, etc. Different choices for the candidate-
generating function result in different specific forms of the algorithm. For example, if
g(¥Y¢) = g(¢|Y?) the acceptance probability simplifies to a(¢, ") = min(f(¢)/f (%), 1).
This describes the original Metropolis algorithm. If ¢(¢, ") = g(¢), we get a(¢*, () =
min(w(¢)/w(4?), 1), where w(¢) = f(¢)/g(¢), which can be interpreted as importance
weights, see also Section 6.6.1. For details we refer to Smith and Roberts (1993) and
Tierney (1994).

The simulation framework to sample from the posterior of the cointegration model
(6.7) is the same for diffuse and natural conjugate priors. The sampling scheme is based on
the fact that the posterior of the error correction cointegration model (6.7) is proportional
to the posterior of the unrestricted error correction model (6.8) evaluated in A =0

pecc(za «, BZ‘Y) X puec(z‘y) puec(a‘za Y) puec()‘|27 «, Y)|/\:0 p“ec(ﬂ2|z’ o, )\’ Y)‘)‘ZO
X puec(z‘y) puec(a\Z, Y) w(z’ a|Y) puec(ﬂ2|2’ o, )\’ Y)|)‘:0’ (634)

where w(E, a|Y) = puec(AE, @, Y)|rz0. If we ignore the function w(X, a|Y) in (6.34),
simulation from the posterior distribution is easy, since the remainder consists of a product
of standard densities. Since w (X, @|Y) is a bounded function, we can use an acceptance-
rejection simulation algorithm. This may, however, lead to large rejection frequencies if
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the cointegration rank is not correctly specified. Chib and Greenberg (1995) show that in
this case a M-H algorithm can speed up the simulation process. Since (33 does not enter
the weight function w, the M-H step only enters the simulation scheme for the sampling
of the ¥ and the a parameters. If we take as candidate-generating density pye.(X, @|Y") or
Puec(Z|Y) Puec(a]| X, Y), the acceptance-rejection probability simplifies to a ratio of weight
functions w, as discussed above. Given the draws of ¥ and a, we sample (5 conditional
on (¥, a) from a matrix normal distribution.

The three steps to sample from the posterior distribution of the cointegration model
can be summarized as follows:

Step 1: Draw X! from p,..(2]Y).
Draw a'"! from pye.(a|S,Y).

Step 2: Accept (X!, o) with probability min (%, 1),

otherwise (X! ait!) = (X4, at).
Step 3: Draw 85" from puec(B2| X7, 1, N, Y) =o.

This simulation scheme has advantages if one wants to analyse the model under every
cointegration rank r. Since the sampling distribution of ¥ does not depend on the rank r,
one only needs one draw X for every cointegration rank. Furthermore, using the properties
of the matrix normal distribution, the sampling of a parameters can be accelerated.
Instead of sampling an a matrix for every rank r, one can sample the o matrices at once
using one draw IT""! from p(IT|¥,Y), which is a matrix normal density. The candidate
draws of a'*! under the cointegration rank 7, r = 1,...,n, are obtained by taking the
first r rows of the draw IT"™.

Finally, the presented sampling scheme is not unique. It is possible to use a different
decomposition than the one proposed in (6.34). Furthermore, the decomposition (6.34) is
also suitable for importance sampling, see Kloek and van Dijk (1978) and Geweke (1989).
The weight functions w evaluated in the draws represent in that case the importance
weights. However, the M-H sampling method has the advantage that it is easier to apply
in more complicated cointegration models, like for instance cointegration models with
a break in the constant and/or in the cointegration relation or threshold cointegration
models. These more complicated models are often analysed in a Gibbs framework. The
sampling of the block (X, e, 33) given the remaining parameters in the model can then
be done using the simulation steps presented in this subsection, see Section 7.4 for an
example.

6.5 Bayesian Lagrange Multiplier Statistics

In the previous section, we assumed for the derivation of the posterior simulators, that
the number of cointegrating vectors r is known a priori. This is in practice seldom the
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case and procedures, which analyse whether the chosen number of cointegrating vectors
is plausible, are needed. In classical statistical analysis diagnostic test statistics like
Lagrange Multiplier or score statistics are intended for this purpose. In this section,
we will construct the Bayesian analog of these classical LM statistics to test whether
the assumed number of cointegrating vectors is plausible. Since the computation and
interpretation of the Bayesian LM statistic to test for cointegration is not straightforward,
we start in Section 6.5.1 with a Bayesian LM test for a zero regression coefficient in a
simple linear regression model. The Bayesian LM cointegration statistics are extensions
of the LM statistic in a linear regression model. To save on notation we only consider
the Bayesian LM statistics under a diffuse prior specification. The results can easily be
extended for the natural conjugate prior case.

6.5.1 Bayesian LM Statistic in the Linear Regression Model

Consider a linear regression model with two explanatory variables,

Y=2z171+ 227 +n

(6.35)
= Zvy+n,

where y, 1, 21, 2o are (T x 1) matrices, Z = (21 22), v = (71 72)" and n ~ N(0,0°1Ip). If
we are interested whether the parameter 7, is zero, we can test this hypothesis using a
highest posterior density region, see Box and Tiao (1973). An alternative method to test
the hypothesis v, = 0, is to use a Bayesian analog of an LM statistic. Since in the linear
regression model the marginal posterior distributions are of a known type, it is possible
to derive the LM statistic for 4 = 0 analytically. In the cointegration model, however,
the marginal distributions are of an unknown form and we use a M-H sampler to simulate
from the posterior distribution. Therefore, we also show in the linear regression model
how to calculate the LM statistic for the restriction 7, = 0 using M-H output. The latter
approach mimics the computation of the more complicated LM statistic for cointegration,
which will be discussed in Section 6.5.2.

Analytical Approach
Assuming diffuse priors for the different parameters,

p(*yl,ny,aZ) x o3, (6.36)

some conditional and marginal posteriors of the parameters of the linear regression model
(6.35) read,

1 X R
p(reln, 0%y, Z) < o exp(—@(% — Y2) z229(72 — H2)), (6.37)
1
p(02|71, Y, Z) x o T eXP(_T‘Q(y - 2171)’Mzz(y - Zl’h))a (6-38)
1 . .
p(mlo*y,Z) < o exp(— 55 (1 = )2 Mz (11 = A1), (6.39)
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where 4y = (2] M, 21) "2\ M.y, 52 = (2422) ' 25(y — z1m1) and M., = Iy — 25(2h20) ' 25,

To derive the distribution of the Bayesian version of the LM statistic for the hypothesis
71 = 0 under the alternative hypothesis we use the conditional posterior of v, given o2
(6.37):

(i —=%) ~ N(0,0%(z{M,z)"") &
o (A M) (1 — A1) ~ N(0,1) &
o N M,y 2) 22 M, (y — 2im1) ~ N(0, 1), (6.40)
and hence given o
o 2y — 21m) My 21 (21 Moy 20) P2 M, (y — 2m) ~ X2 (1). (6.41)

This results holds regardless of the value of o2 so that this property is not lost when we
go to the marginal result for v; by integrating out o2,

Ep2[07(y — 2171) Moy 21 (21 My 20) ™ 2 My (y — 20m)] ~ X3 (1). (6.42)

If we substitute v; = 0 in this expression and take the expectation with respect to the
conditional posterior of o2 in (6.38) with v; = 0, we obtain the value of the LM statistic
under the hypothesis 7, =0

LM(y1 =0) = Ep2[02(y — z1m1) Moy 21 (21 My 21) "' 21 My (y — 2171) |y =0)-
(6.43)

We reject the hypothesis v; = 0 when the resulting LM statistic (6.43) lies outside the
one-sided HPD region of a x?(1) distribution. This can be seen as an alternative of
testing whether 7, = 0 using a HPD region for the marginal distribution of vy, which is
t-distributed.

Likewise, it can be shown that the expression

oy —Z7)'Z(Z'2)7 2" (y — Z). (6.44)

is x?(2) distributed, when v; and 7 are non-zero. So, the LM test for v, = 75 = 0 is
obtained by evaluating (6.44) in 7; = 75 = 0 and taking the expectation over o2 given

71 =172 =0.
It is also possible to compute the LM statistic (6.43) by adjusting the expression (6.44).
This expression can be decomposed as

oy = ZY)Z(Z'2) 2y — Zy) =

072(y - ZV)’M@ZI (zllMZ2zl)71Z11M22 (y - Z’Y) +
0 (y — Z7)' 2a(zhze) "' 2h(y — Zv), (6.45)
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see Davidson and MacKinnon (1993, section 3.5). Under 7, = 0 the second part has a
x%(1) distribution and the first part equals (6.41), which implies that (6.43) is equal to

LM(71 = 0) - E0'2 [0-72(y - ZIVI)IMZQ'ZI(Z’IMZQzl)ilziMZz (y - zl’}/l)"hiﬂ]
=E,En(0(y— 27)'Z(Z'Z)"' Z' (y — Z7)|y,=0) — E[x*(1)]
=E,Eplo2(y — 27)Z(2'2) " Z'(y — Z7)|ny=0] — 1. (6.46)

This results extends also to other kind of hypotheses on +; and 75, and can be used in
any kind of linear model. For certain non-linear hypotheses on the parameters of a linear
model, like the reduced rank restriction for cointegration models, Bayesian LM statistics
can only be constructed by using a generalization of the result in (6.46).

Metropolis-Hastings Sampling Approach

Consider the case that we do not construct the Bayesian LM statistic using the marginal
and conditional posteriors assuming that v; = 0, but use the marginal posterior of o2,
and the posterior of v, given o2 from the unrestricted model in a M-H sampling approach.
So, the marginal /conditional densities from which 6% and ~, are sampled read,

T+2) li

) 1
p(0?]y, X) oc o7 exp(=5 5Y' Mz, =)y),

(6.47)

_ 1 . .
p(12]0”,y, X) o< 0t exp(— == (72 — 32) 2 M., 22(72 — 32)),

5%
where 3o = (25,M,,25) "' 25 M,,y. To correct for not sampling from the true posterior, we
need again the ratio of the true posterior and the sampling density, which is needed to con-
struct the acceptance probability a in the Metropolis-Hastings sampler, see Section 6.4.1.
This ratio is given by

_ . .
o 1€XP(—T‘27'12'121%), (6.48)

where ¥, = (212,)7'2](y — 22772), i-e. the mean of the conditional posterior of ; given 7,.

The LM statistic to test 41 = 0 can be computed by evaluating (6.43) using the M-H
output. We can also use the M-H output to calculate the LM statistic using (6.46).
Although (6.44) can be decomposed in the expression in the exponent of the kernel of the
sampling density of 75 (6.47) and in the expression of the exponent of (6.48),

o My —2Z)Z2(Z'Z) " Z'(y — Z7) =0
= 072 (y — 2070) (My, 20(25 My, 20) T 25 My, + 21(2120) 7' 20) (y — 2072)
=0 (72 — %) 25 Mz, 2072 — F2) + 121 21%) (6.49)
the Bayesian LM statistic does not correspond to the expectation of 07272} 2,7, based
on the M-H output. Since 0% and v, are sampled given v; = 0 using the M-H sampler,
Ep2[072(v2 — %) 25 M, 25(72 — 72)] does not have a x?(1) distribution.
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For the cointegration hypotheses, discussed in the next subsection, the specific depen-
dence of the parameters on one another does only allow for the kind of decompositions as
in (6.45). Closed form expressions of the Bayesian LM cointegration statistic, like (6.43),
do therefore not exist. However, these Bayesian LM statistics can still be calculated us-
ing a multivariate generalization of the result in (6.46) together with a M-H sampling
procedure, like discussed above.

6.5.2 Bayesian LM Statistic in the Cointegration Model

The parameter restriction for rank reduction in the unrestricted error correction model
(6.8) is A = 0. Since the marginal posterior of the parameter reflecting cointegration, A, in
the unrestricted error correction model, cannot be constructed analytically, the Bayesian
LM statistic to test for cointegration does not have a closed form analytical expression
as in the linear regression model. Therefore, we need the M-H sampling approach in
combination with a multivariate extension of the result in (6.46) to calculate the Bayesian
LM statistic. The Bayesian LM statistic is based on the expression

Es[tr(S™'(IT — II)'Y/, Y_(IT — II)] =
Ex[tr(S (Y — Y, I0)'Y_ (Y, V) 'V (Y — Y II))], (6.50)

where IT = (Y',Y_1)~'Y’ AY. Tt is straightforward to show that this expression has a
x? distribution with n? degrees of freedom. Hence, the Bayesian LM statistic for IT = I,
is given by Ex[tr(S~ Y — Y_, II)'Y_, (Y, Y_1) 'Y’ (Y — Y_{II)) =11, |, which has to be
compared with a x?(n?) distribution.

To compute the Bayesian LM statistic for A = 0 we consider (6.50) in A = 0 and take
the expectation with respect to e and 35 given A =0

By 01271 (V = Y21 8)' Yoy (YL, V0) TV (Y = Vo Ba)]
= Ea,5272[tr(2_1(a - d)IYI,—lMYQ,,IYL_ﬂOL - d)) +
(e Sal) NS Vo 1 A) + tr(Y] Ve 1( — Bo)as T el (By — )] (6-51)

where é, A and f3, are given in (6.29) with A = 0. Under the restriction of cointegration,
A = 0, draws from ¥, a and 5 can be obtained using a M-H sampler, as outlined in
Section 6.4.1. Since the same reasoning holds for equation (6.51) as for equation (6.49),
the Bayesian LM statistic for testing for cointegration, A\ = 0, does not correspond to
Eam,g[tr((alZa’l)*lj\’YQ’rle_lj\)]. Therefore, we have to apply a generalization of
(6.46) to calculate the Bayesian version of the LM statistic to test for rank reduction
versus full rank using the M-H output

LM(r|n) = LM(A = 0)

= Eagstr(C Y =Y 1 8a) Y (YY) 'Y (Y - Y 1 8a))] — E[x*(r(2n — 7)]
= Baps[tr(S7 (Y = Y1 80) Y (YY) "YW (Y = Y_1Ba))] — 7(2n — 7). (6.52)
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The correction factor r(2n — r) equals the number of parameters in a and (5. The
resulting Bayesian LM cointegration statistic has to be compared with a y? distribution
with (n—7)? degrees of freedom. If it is not plausible that the calculated statistic has been
generated by this distribution, the hypothesis that A = 0 is not considered plausible, which
implies that a cointegration model with r cointegration relations is not likely. Typical
extensions of the cointegration hypothesis A = 0 towards hypotheses including parameters
of deterministic components, for example to test whether deterministic components lie in
the cointegration space, can be dealt with in a straightforward way.

6.6 Posterior Odds Analysis

The in the previous sections developed procedures for calculating the posteriors of the
parameters of the cointegration model for different number of cointegrating vectors r, allow
us to compare models with different cointegration ranks using posterior odds analysis.
Since the number of cointegration vectors r can only take n + 1 different discrete values,
we can consider prior and posterior probabilities of the cointegration rank r and the

implied number of unit roots (n —r), r =0,...,n.
First we assign prior probabilities to every cointegration rank r,
Prrank = 7] r=0,...,n. (6.53)

These prior probabilities imply prior odds ratios [PROR] to compare a priori the cointe-
gration models with different number of cointegration relations. Since every cointegration
model (6.7) is nested in the full rank model (6.8) it is convenient to consider

_ Prfrank = 7]

PROR(r|n) = Pr[rank = n]’

r=0,...,n. (6.54)

The Bayes factor [BF] which compares the cointegration model (6.7) with the unrestricted
error correction model (6.8) is given by

Pr[Y|rank = r]
Pr[Y |rank = n]’
S Pece(E; @, B2) Leee(Y]E, @, o) dE dovd3,

JIIS Puec(E, @, A, B2) Luee(YIE, @, A, B2) dE daxdA d By’
see e.g. Poirier (1995) for a formal definition of a Bayes factor. Now we can define

the posterior odds ratios [POR] to compare a posteriori a cointegration model with r
cointegrating vectors with a model with n cointegrating vectors

POR(r|n) = PROR(r|n) x BF(r|n), r=0,...,n. (6.56)

BF(r|n)

r=0,...,n

(6.55)

These posterior odds ratios imply posterior probabilities for every cointegration rank. The
posterior probability for a cointegration model with rank r equals

POR(r|n)
i—o POR(i[n)’

Prrank = r|Y] = r=0,...,n. (6.57)
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The posterior probabilities can be used to choose the cointegration rank, or as weights in
further analyses, like forecasting exercises.

Bayes factors are only well defined in case of proper priors. Especially for the A\
parameter a proper prior is required, see Section 3.3.2 for a discussion. In the next
subsection we show how the Bayes factors can be computed in case of natural conjugate
priors. Additionally, we provide a Bayes factor under a diffuse prior specification, which
can be seen as a limiting case of a natural conjugate prior specification on A.

6.6.1 Computation of Bayes Factors

Since the prior and the likelihood of the error correction cointegration model (6.7) equal
the prior and the likelihood of the unrestricted error correction model (6.8) evaluated in
A = 0, times the constant 1/c,, defined in (6.16), the Bayes factor (6.55) is equal to

JII épuec(zaaa)‘aﬂ2)|)\:0 Luec(Y(E, e, A, B2)[x=0 dX dex d 3
JIIT Puec(E, 00, A, B2) Luec(Y|E, e, A, o) dX dex dX dfp,
JIT 2-puee(Z, @Y) Pucc(AZ, @, Y ) [amo Duce (B2|Z, €, A, V) [r=0 dE dex d B

JIIT Puec(E, @|Y) puce(AE, @, Y) puce(B2|3, @, A, V) dX dac dA d
o I Puee(E, @]Y) puec(AIE, @, Y) 30 dX dex
JI Puee(3, @]Y') d¥ dex ’

BF(r|n)

(6.58)

where the last step is obtained by integrating over 3, and A. We can calculate the ratio
of integrals of conditional posteriors efficiently by simulating ¥ and a from pye (2, a|Y)
which is the product of an inverted Wishart for ¥ and a matrix normal for a given ¥..
For the sampled parameters we calculate the ratio of the integrands

] ] puec(zi: az‘Y) puec()\|2i: ai; Y) |/\:0 i i
ZZ ! Y == - - = Puec )‘ ZazzaY =0
w( i ‘ ) puec(zlaal‘y) P ( |a )|)\ °

(6.59)

where i corresponds to the i-th draw of (X, ). The average of the simulated weights
w(X?, @'|Y) then converges to the ratio of the integrals (6.58)

1 al i ] ffpuec(zi aZ|Y) puec()\‘zi o’ Y)‘/\:O d¥ do
VN [ =S w(E, oY) - ’ 2l il N
(5 Zeem) TT (2 V) 05 e =N e

where N is the number of draws, v = var(w (X, @|Y’)), = stands for weak convergence,
and (& N, w(S al[Y)? - (5 D, w(E, of]Y)?) = v, see Geweke (1989).

To compute the Bayes factor we need the value of ¢,. As we have already seen,
this correction factor (6.16) is only properly defined in case of proper priors. Under a
natural conjugate prior specification the factor ¢, can easily be computed using the above
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mentioned simulation method. Since we can write (6.16) as

P JIf Puee (X, @, A, B2)|x=0 A2 dex d By
T T PueelE 0 A, Bo) dY decd d,
fff puec(z, a) puec()“za a) ‘/\20 puec(ﬁ?|2, a, )\) |)\:0 dE d(X dﬁg
SIS Puce(2, @) Pucc(AE, @) puec(62| X, e, A) dE dee d X dg,
IS Puec(Z) Puec(@]X) Puec( A2, )| r=0 d¥ da
JI Puec(E) Pucc(a|T) dE de
we can sample 3 and a from the prior pye.(2, @), which is again the product of an inverted
Wishart pye.(X) and a matrix normal p,..(a|¥), and calculate the mean of the ratio of
the integrands

(6.61)

puec(zia az) puec()\‘zia al) ‘/\:0
pu60(2i7 al)
which converges to ¢,. Note that the simulation steps to compute the Bayes factor ba-
sically consists of the computation of the ratio of the marginal posterior distribution of
A evaluated in A = 0, pyec(AY)|r=0, and the marginal prior of A in A = 0, pyec(A)|r=0.
This implies that we in fact calculate the Savage-Dickey density ratio of Dickey (1971),
see also Section 3.3.2.

In case of diffuse priors the value of ¢, is infinity. We can again apply the empirical
Bayes rule of Schotman and van Dijk (1991a) and choose a flat prior for A on the 99% HPD
region, like in Section 3.3.2. This is however not a straightforward solution since we have
specified a conditional prior for A, see (6.20). In this chapter we follow another approach.
In order to define an interpretable Bayes factor, we start with natural conjugate priors
and degenerate these proper priors such that they become diffuse priors. As we already
have seen, the correction factor ¢, depends on the ratio of the prior of the error correction
cointegration model (6.7) and the prior of the unrestricted error correction model (6.8),
which is the conditional prior of A evaluated in A = 0. Hence, to determine the correction
factor in case of diffuse priors we degenerate the proper conditional prior for A (6.25) in
A = 0. The conditional prior for A\ reads

PuceA|Z, @) = (2m) 207 o B |73 Ay 207

:puec()\‘ziaai)‘/\:m (662)

1
exp(—§tr((aLZal)’l(A —1)'Ays(A = 1)), (6.63)
where [ is defined below (6.25). To degenerate this proper prior we consider the density
function of A = AL\,

: 1 2 Lip—r 1 e . .
Pucc(A[Z, @) = (2m) 207 ey Sl | 7207 exp(— S tr((ee Sed ) THA = 1) (A = 1)),
(6.64)

where | = AJl. Substituting A = 0 (which implies A = 0) and degenerating by letting
||| going to zero, results in

lim puec(A[, @)]5 = (27) 207 | Ted |77, (6.65)
Jil 0
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The second part of this limit ends up in the marginal prior of the error correction coin-
tegration model for ¥ and «, see (6.22), while the first part equals the correction factor
Cr

The Bayes factors (6.55) in case of a diffuse prior specification can now be computed by
averaging the simulated w (X, @'Y’ as for the natural conjugate priors and by replacing
¢, by

(2r) 2’ r=0,...,n. (6.66)

The resulting Bayes factor is closely related to the Posterior Information Criterion [PIC]
of Phillips and Ploberger (1994, 1996), see Kleibergen and Paap (1996) for more details.

6.7 Invariant Specification

As we already have discussed, cointegration implies that the long run multiplier IT of
the linear error correction model (6.6) has reduced rank. In the previous sections, we
have analysed rank reduction as a restriction in the unrestricted error correction model
(6.8). When the parameter showing the deviation from cointegration A equals 0, this
model simplifies to the error correction cointegration model (6.7). A drawback of this
specification is however that different orderings of the variables in Y; can lead to different
results for the Bayes factors and the marginal posteriors under cointegration. This results
as A is correlated with the other parameters, even at A = 0. In order to obtain a
specification whose posterior of the parameters of the cointegration model is invariant with
respect to parameter transformations, we need to model the restriction such that when
it holds, the parameter resembling the restriction is (locally) uncorrelated with the other
parameters. We therefore specify the parameter reflecting deviations from cointegration
such that it only captures deviations which lie in spaces orthogonal to the cointegrating
vectors  and their multiplicators «

I1=f3a+ /. Na,=(305) ( I(;" AO* ) ( ;l ) : (6.67)
where § = (I, —35) and a; and 3, are specified such that ;' =0 with a, @', =1, ,
and 3’3, = 0 with 88, =1, ,. Note that now e does not equal (—ad(a;')' I, ,)
any more. When A* = 0, the long run multiplier IT in (6.67) displays rank reduction and
cointegration occurs. This decomposition leads to an information matrix in the parameters
a, \* and (35, which is in A\* = 0 block diagonal indicating the (local) uncorrelatedness
between A\* and (e, 3). The decomposition of IT in (6.67) is identical to a singular value
decomposition of IT,

M=USV, (6.68)

where U and V" are (nxn) orthonormal matrices, S is an (nxn) diagonal matrix containing
the positive singular values of IT (in decreasing order), see e.g. Magnus and Neudecker



102 Cointegration Analysis

(1988). If we write
Un U Su 0 Vit Vig
U= , S = dV = 6.69
(U21 U22> (0 522>a“ <V21 V22> (6.69)
with U11, 511, ‘/11 (T X T), UQQ, SQQ, Vég ((n—r) X (n— ’I“)), U21, ‘/12 ((n— T) X T) and U12,
Vo1 (r X (n — 1)) matrices, we obtain the following expressions for e, \* and 3,

a=U; S (Vi) Vay)
A= (U22U£2)_%U22 San Voo (Vaa Vaa) ™
By = —Uy Uﬂla

M=

(6.70)

where we use that for a positive definite real symmetric matrix M, M? = CA3C" where
A is a diagonal matrix containing the eigenvalues of M and C' contains the orthonormal
eigenvectors of M and M~2 = CA~2(C', see e.g. Johansen (1995, p. 222). The singular
value decomposition (6.69) also shows how A* is identified, namely through the (n — r)
smallest singular values of II, which end up in Sas.

Note that under specification (6.67) for A* = 0 the error correction cointegration model
is still the same as in (6.7), while for A* # 0 we have a different parameterisation of the
unrestricted error correction than in (6.8). The same is true for the likelihood functions,
but not for the prior and the posterior distributions. Since we have a new decomposition
of IT the prior for the parameters of the unrestricted error correction model is different
than in Section 6.3. We will use an asterisk to denote the priors, posteriors, likelihood
functions and Bayes factors resulting from the new specification. Note that the prior for
the cointegration model still equals the prior for the unrestricted error correction model
evaluated in A* = 0. In the following subsections, we show how priors, posteriors and
Bayes factors are constructed using the decomposition of IT in (6.67).

6.7.1 Prior Specification

The prior densities for the new decomposition of IT (6.67) can be constructed using the
prior framework in Section 6.3. We specify a prior on ¥ and IT, which implies a prior for

(Ea «, )‘*7 52)
pZec(Ea a, A, 52) = pfec(z, H(a: AT, ﬂ2))|‘](a: AT, ﬂ2)‘7 (6'71)

where II(a, \*, #;) means that we evaluate IT in (a, \*, 33) and |J(a, \*, 33)| is the Jaco-
bian of the transformation from IT to (e, A*, 33). In Appendix 6.C we show the derivation
and the analytical expression of this Jacobian transformation. This Jacobian transforma-
tion can be combined with a diffuse or natural conjugate prior for IT. The prior density
(6.71) cannot be decomposed into a product of conditional and marginal densities belong-
ing to a known class of probability density functions, like for the previous specification
of the unrestricted error correction model (6.8), see Section 6.3. In case of a natural
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conjugate prior for Il, the properties of the priors for o, \* and [, therefore have to
be obtained through simulation. The simulation algorithm constructed in the next sub-
section to obtain random draws from the posterior, can also be used to simulate from a
natural conjugate prior.

For the cointegration model, the prior equals the prior (6.71) evaluated in \* = 0,

* 1 * *
pecc(zﬁ 82 ﬁQ) = C_puec(zﬁ «, A ) ﬁ?) A*=0

1

*
—Puec
Cr

(6.72)
(2, II(a, A", )

)\*=0|J(aa A, 52)

/\*=0|a

where ¢, is the integrating constant like in (6.16).

In case of a diffuse prior for II given &, pe.(TI|2) o |1 @ (Y2,Y)|2, the quadratic
form of |J(a, Ba, \*)|x-=o| with (X7' ® (Y’,Y 1)), i.e. the information matrix, is block
diagonal. This quadratic form (information matrix) is not block diagonal when A\* # 0.
The block diagonality implies that when cointegration occurs, the posterior of a and [,
is invariant with respect to the specification of a and (,, i.e. the posteriors of different
specifications of a and [ can be constructed from one another. When the information
matrix of the unrestricted error correction model (6.8) is not block diagonal, the posteriors
of a and (3, do depend on the chosen order of the elements of Y.

6.7.2 Posterior Distributions

The posterior of the unrestricted error correction model for the invariant specification is
proportional to the prior (6.71) times the likelihood L, .(¥, a, A*, 53), which is defined
like in (6.10),

Droe(Z, @, A Bo|Y) o pr L (2, a, N Bo) Lo (Y2, e, A, Bo). (6.73)

uec

This posterior density cannot be decomposed into a product of conditional and marginal
densities belonging to a known class of probability density functions, like for the specifi-
cation of the unrestricted cointegration model (6.8) in Section 6.4. We can however still
simulate from this posterior since it is possible to sample from the posterior of the linear
error correction model (6.6) which is the product of an inverted Wishart and a matrix
normal distribution

Step 1: Draw X¢ from ppe.(X|Y)
Draw IT' from p;..(TT|X7, V).
Step 2: Perform a singular value decomposition of IT" = U? S* V*.

Step 3: Compute o, \* and 3 using (6.70).
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The simulated values a!, \** and 3% can be used to compute marginal results. Likewise,
we can use this simulation scheme to obtain marginal prior results for a;, A\* and 35 if we
specify a natural conjugate prior for ¥ and II.

The posterior of the cointegration model equals the posterior of the error correction
model evaluated in \* =0

p:cc(zﬂ 87 ﬂQ‘Y) X p:cc(zi «, ﬂQ) [’:cc(Y|27 «, ﬂQ)

6.74
O(pZec(Z7aa)‘*aﬁQ‘Y) ( )

A*=0-

Also under \* = 0 the conditional posterior of (3, is of an unknown type. For instance
1

under a diffuse prior specification for (X, II), pree(S,II) o |72 |1 @ (YY),
the posterior of the cointegration model reads

—-

2

Doce(Z, @, (2]Y) ox |Z|*%(T+n+1)

(X la) @ (V] Yo_1) (X )@ (V) Y_10)
(E) @ (YL Yo 1) ET'@ (YL Y 1P)

1 1 ]_
la, Xt 2B Y Y By 2 exp(—itr(zfl(AY —Y 16a)(AY - Y Ba))),
(6.75)

where we use the expression for the Jacobian transformation |J(a, \*, B2)| evaluated in
A* = 0 given in Appendix 6.C. This means that we cannot sample from the marginal
posterior of ¥ and a using a Metropolis-Hastings algorithm and sample (35 from the
conditional posterior of 35 given (X, ) like in Section 6.4.1. Hence, we need to sample
Y, a and (5 at once. If we opt for a M-H algorithm, we can take the posterior of the
unrestricted error correction model (6.73) as candidate-generating density function, since
we have already shown how to sample from this distribution. However, in this case we
also sample A* which does not show up in the posterior of the cointegration model (6.74).
To circumvent this problem we extend the posterior of the cointegration model (6.74)
with a proper conditional density g(\*|Z, o, £, Y)?

g()\*|2; «, 527 Y) pecc(za «, BZ‘Y) X g()‘*|2; «, ﬂ?; Y) pzec(za «, )\*; ﬂ2|Y)

A*=0;

(6.76)

and sample from this distribution using the M-H approach. Since g is a proper density,
the draws X, @ and (35 can be seen as draws from the posterior (6.74). The acceptance-
rejection step now depends on the ratio of the extended posterior of the cointegration
model (6.76) and the posterior of the unrestricted error correction model (6.73)

g()\*|2: «, 52; Y) pzec(za «, )‘*7 52|Y)
pz*wc(za «, )‘*7 ﬁQ‘Y)

Implementing this in a M-H sampler results in

wH(E, a, N, G|V = A0 (6.77)

Step 1: Draw (Xi+!, o1, X+ g0t from (6.73).

! This solution is based on the ideas in Chen (1994).



6.7 Invariant Specification 105

3 . ] ] * i 7 *1 i+1
Step 2: Accept (X!, o't AL, git1) with probability min (w (et A6y 1)

W*(Zi7ai7A*i:ﬂé‘Y)
otherwise (X!, a1, \H! gith) = (20 o, A, 33).

Since the candidate-generating density function has to approximate the density from which
one wants to sample, it is necessary to take for g(A\*|Z, ¢, 32,Y) a density function which
is close to the conditional posterior of A*. Therefore, the choice of g depends on the
functional form of the prior for (3, IT). The decomposition of the trace of the likelihood
function given in Appendix 6.C shows that under a diffuse prior specification a convenient
choice for g is

9N IS, @ o, V) = (2m) 0 o Sl [FO |GV VB[R
1 3 ~
exp(—tr(ALY Y B (A = Ae X7 el (AT = X)), (6.78)

with \* = (8. Y, Y_18,) 1B, V' ,AYS o/, (o, ¥ e, ) L. This results in the following
expression for the weight function w*

—3(n—r)? ‘J(a, AT, 52) /\*:0|
‘J(a: )\*; ﬂ2)|

1 1 A «
B Y Y B2 exp(—§tr((ﬁ’lYLIY,lﬁl)A*(aLZ’lal))\*')). (6.79)

w*(Z, a, \', ﬂ2|y) = (27r) |0u271al|%(”*’")

The functional form of the Jacobian is given in Appendix 6.C. It is straightforward to
show how the density ¢ and the weight function w* change when we, instead of a diffuse
prior, use a natural conjugate prior for (3,II): (Y’,Y_;) changes to (Y',Y_; + A) and
(Y!,AY) changes to (AP + Y’;AY'), see also Section 6.4

The Metropolis-Hastings sampler presented in this section may lead to high rejection
frequencies and therefore slow convergence. An alternative approach is importance sam-
pling, see Kloek and van Dijk (1978) and Geweke (1989). The weight function w* in
(6.79), evaluated in the draws, represents in that case important weights, see also Chen
(1994) and Verdinelli and Wasserman (1995, p. 615). In the next subsection we show
how we can use importance sampling techniques to compute posterior odds to compare
cointegration models with different number of cointegration relations for the specification
(6.67).

6.7.3 Bayes Factors

We can perform posterior odds analysis for the new decomposition of IT (6.67) the same
way as in Section 6.6. However, since we cannot decompose the posterior in known
densities the computation of the Bayes factors is more complicated. Again the Bayes
factors are defined as the ratio of the marginal likelihoods of the cointegration model and
the unrestricted error correction model like in (6.55). Since it is still true that the prior
and the likelihood of the error correction cointegration model equals the prior and the
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likelihood of the unrestricted error correction model times 1/¢,, the Bayes factor simplifies
to

H Peee(E; @, B2) L2, (Y[E, o, 5) dE dex dfy
JIIT Phec (3, 00, A%, B2) L3 (VX @, A, Bo) X dev dA* d
T E0hee (S, 00, M B2) [n—0 Lo VIS, @, A", B)|5-—0 A dex d
JIIT Piee (50 QX B2) LY 5. 0, A, By) X dex dA* df;
JIS P 0, X, Bo|Y) xe =0 dX dex d 3y
IS Piee (2, @, A%, Bo]Y) dE dax dX* dfB

BEF*(r|n)

(6.80)

For the computation of this Bayes factor we encounter differences with Section 6.6.1.
Since we cannot decompose the posterior in known densities, we cannot integrate out [,
analytically in the numerator and denominator. The same is true for the A* in the denom-
inator. Since \* enters the integral in the denominator but not the in the numerator we
cannot use the simulation procedure, which is proposed in Section 6.6.1. However, Chen
(1994) shows that we can adjust the simulation procedure by extending the numerator
with the integral [ g(\*|X, e, B2)d\*, where g is a proper density function

IS A phen(Se @ N Bl ) xeo (] 9OV IS, @, o) dX) d dex dfy
I P, 0, A, Bo|Y) dE deed M+ d s
L 1S Phoe(S, 06, N, Bo|Y) xe—0 g(N*[Z, e, ) A dex dX* d s

B [T Dine (% 06 AL Ga] V) 5 dex d s . (6.81)

BF*(rjn) =

An appropriate candidate for g(A\*|3, a, 33) is a density function which is close to the
conditional posterior of \*, see Chen (1994) for details. Therefore, the conditional density
function (6.78) is again a good candidate. We can now calculate the ratio of the two
integrals by simulating ¥, a, A* and fy from the posterior of the unrestricted error
correction model (see previous subsection). For the sampled parameters, we calculate
the ratio of the two integrands, which equals the importance weights (6.79). The sum of
these simulated importance weights converges to the ratio of the two integrals in (6.81),
see Geweke (1989).

To compute the Bayes factors we need the value of ¢,. For a diffuse prior specifica-
tion we take again for ¢, the factor (6.66). To obtain ¢, for a natural conjugate prior
specification we can use the above mentioned simulation technique of Chen (1994)

CT = ///p:;ec(zaa;)\*,ﬁg)‘)\*zodzdadﬂ2

JIT Prec(E, @, A, Ba) [y =0 dE dex d B
JIIT Dee(Ss @, A%, B2) Y dex dA*d 3y
I D% (2, 0, N5, By)[ae—o (f BN 12, @, Ba) dA*) dY dexdfy
TS PEoe (2, @, A, Ba) dX dee dA*d 3
SIS PEee(Z, 0, XY, Bo) =0 (XIS, @, B2) dE dex dN* d By
JIJS P (B, 0, A%, B2) dY dev dA*d 3y

, (6.82)
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where h(\*|X, e, ;) is a proper conditional density function. Simulate from the prior
Dheo(Z, @, A%, B2) (6.71) and compute the ratio of the integrands of the numerator and
denominator. The sum of these ratios converges to ¢,. An appropriate density function
h for the prior specification (6.23) is a density function which is close to the conditional
prior of \*

B[S, e, 52) = (2m) 720 e, e, [0 |5 ABL [P0
1
exp(—5 (B AT — et ( — 1)), (6.83)

with I* = (3, ABL)"'BLAPY'a/ (a X7 e ).

Finally, in Section 6.6.1 we have seen that the Bayes factor can be computed using
the Savage-Dickey density ratio of Dickey (1971). In fact, the above proposed simulation
method to compute the Bayes factor basically computes the height of the marginal pos-
terior of \* in 0. Hence, an alternative strategy to compute the Bayes factor is to use
the simulated values of \* and a kernel estimator to compute the height of this marginal
posterior, see Silverman (1986). The same reasoning holds for the computation of c,.

In the next section we use the invariant specification to compute Bayes factors for
simulated and real time series.

6.8 Illustrative Examples

To illustrate the applicability of the, in the previous sections, constructed methods and
procedures for Bayesian cointegration analyses, we consider four simulated time series,
the UK data analysed in Hendry and Doornik (1994) and the Danish data analysed in
Johansen and Juselius (1990).

6.8.1 Simulated Series

We consider the following four data generating processes [DGPs],

0.1
I: AK: 0.1 + &t
0.1
0.1 0.2
Im: AY,=| 01 | + 0.2 (1 0 —1)Yt_1+5t
0.1 0.2
I : AY;=| 01 |+| 02 —0.2 01 g | Yimite
0.1 02 02
0.1 —0.2 —0.2 —0.2 10 —1
IV :AY,=| 01 |+]| 02 -02 —-02 01 —1 |V +e,

0.1 02 02 -0.2 00 1
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where ¢; ~ NID(0,I3) and the sample size T is 100 observations. The four DGPs contain
0, 1, 2 and 3 cointegration relations, respectively. DGP I contains three unit roots,
DGP II contains 2 unit roots and a root 0.6, DGP III contains the roots 1, 0.6 and 0.6,
and DGP IV contains the roots 0.8, 0.6 and 0.6.

To analyse the simulated series, we consider a VAR(1) model with a constant term,
which corresponds to the specification in the DGP. The first step in the Bayesian analysis
is to specify a prior on the vector autoregressive parameters Il and on the covariance
matrix ¥. We use the diffuse prior specification (6.18).

First, we discuss Bayes factors for rank reduction. We give each cointegration rank
the same prior probability Pr[rank = r| = i, r=20,...,3, see (6.53). Given the priors
and prior probabilities, we can compare models with reduced rank (cointegration models)
with the full rank unrestricted error correction model. The Bayes factors are based on
posterior distributions resulting from the invariant decomposition of II given in (6.67).
The second column of Table 6.1 displays the Bayes factors (6.81) for the four DGPs. The
Bayes factors are calculated using the correction factor (6.66). A Bayes factor exceeding
one (or In(BF*) exceeding zero) indicates that rank r is preferred above the full rank
situation. For instance, for DGP I every rank reduction is preferred, while for DGP IV
the full rank situation is always preferred. The Bayes factors can be translated into
posterior probabilities for the cointegration ranks, see (6.57). These are displayed in the
second column of Table 6.1. They assign in all cases more than 85% probability to the
correct cointegration rank.

The fourth column of Table 6.1 contains the Bayesian LM statistics. These statistics
indicate whether rank reduction in IT (cointegration) is plausible with respect to the full
rank situation, 7.e. three cointegration relations, see Section 6.5.2. The LM statistics are
calculated using the posterior distribution resulting from decomposition (6.9). These LM
statistics have to be compared with a x? distribution with (3 — r)? degrees of freedom
which number is shown in the fifth column. The sixth column of Table 6.1 shows the
p-values of the calculated statistics. For instance, for DGP IV none of the models with
reduced rank is plausible, while for DGP III only a model with two cointegration relations
is plausible. In general, the Bayesian LM results lead to the right cointegration rank. In
the last two columns we report the results of the classical Johansen trace tests denoted by
LR(r|3). Notice that the values of these statistics are often roughly of the same magnitude
as the computed Bayesian LM statistics. The p-values based on the classical asymptotic
distribution show that the Johansen trace statistics also point out the right decision about
the cointegration rank.

6.8.2 Small Monetary Model for the UK

Hendry and Doornik (1994) construct a small linear dynamic monetary model for the
United Kingdom. The model consist of the variables nominal M;, denoted by m,, total
final expenditure y,;, the total final expenditure deflator p;, and the differential between
the three-month local authority interest rate and the M retail sight-deposit interest rate
denoted by r;. The latter represents the opportunity cost of holding M;. All variables
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Table 6.1. Bayes factors, posterior probabilities, Bayesian LM statistics
and classical likelihood ratio tests for the four DGPs.

r In(BF*(r|3))! Prr[Y]2 LM(r|3)

dof p-value LR(r|3)® p-value?

0 25.06
1 12.59
2 3.61
3 0.00
0 6.82
1 12.04
2 3.78
3 0.00
0 —23.87
1 —4.18
2 2.10
3 0.00
0 —23.96
1 —8.86
2 —2.88
3 0.00

1.00
0.00
0.00
0.00

0.01
0.99
0.00
0.00

0.00
0.00
0.89
0.11

0.00
0.00
0.05
0.95

DGP I
10.71 9
2.72 4
0.72 1
DGP 11
38.20 9
6.85 4
1.75 1
DGP II1
74.76 9
28.59 4
2.84 1
DGP 1V
75.52 9
36.15 4
11.69 1

0.30
0.22
0.39

0.00
0.14
0.18

0.00
0.00
0.09

0.00
0.00
0.00

10.97
5.10
1.38

44.98
6.39
1.09

94.86
33.05
2.95

90.93
39.68
12.32

0.96
0.80
0.24

0.00
0.64
0.29

0.00
0.00
0.09

0.00
0.00
0.00

1A Bayes factor In(BF*(r|3)) > 0 denotes that a cointegration model with r coin-

tegration relations is more likely than a model with n cointegration relations.

2 Posterior probability of the cointegration rank (6.57) is based on equal prior

probabilities (6.53) for every rank r.
3 Johansen (1991) trace test statistic.
4 The p-values are based on the asymptotic classical distribution.
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are in logs except for the interest rate r;.

In this section we analyse the same UK data as in Hendry and Doornik (1994). We
have the same quarterly observed series of my, vy, p; and r; for the period 1963.1-1989.11.
The data are seasonally adjusted. The first step in the modelling strategy is to specify an
unrestricted VAR model. Hendry and Doornik (1994) propose a VAR(2) model for the
four-dimensional vector of time series Y; = (my — py, ys, Apy, 1)’

Aift = U + 7t + H}/;,l + (ilAS/;,l + ngOILt + ngOUTt + &4 (685)

where ¢, ~ NID(0,Y), & and & are (4 x 1) parameter vectors and DOIL; and DOUT,
are dummy variables to capture outlying observations caused by the Heath-Barber boom
and the first effects of the Thatcher government, and the two oil crises respectively, see
Hendry and Doornik (1994) for details.? The trend ¢ and the dummy variable DOUT,
are restricted in the cointegration space, i.e. &/, 7 = 0 and o/, & = 0, which means that
the vector (t DOUT,)" is added to the Y;_; vector and that IT becomes a (6 x 4) matrix.

The first part of Table 6.2 displays the results of a Bayesian cointegration analysis for
the model (6.85). In the first row the results for a model without the dummy variables
DOIL; and DOUT; are reported. The results are based on a diffuse (Jeffreys’) prior for
the parameters in (6.85). The Bayes factor are computed using the posterior distributions
resulting from the invariant decomposition in (6.67), while the Bayesian LM statistics are
based on the posterior distributions resulting from decomposition (6.9). We assume equal
prior probabilities Pr[rank = r] = %, r = 0,...,4. The second and third column of the
table show the Bayes factors and the implied posterior probabilities over the cointegration
rank. The Bayes factors favour every rank reduction over a full rank model. The posterior
probabilities assign about 100% probability to rank one and 0% to every other rank. The
results of the classical Johansen trace tests are reported in the last two columns. These
tests indicate no cointegration relation at a 5% level of significance. On basis of the
Bayesian LM statistics we even opt for two cointegration relations.

The results change if we include the dummy variables DOUT; and DOIL; like in
Hendry and Doornik (1994), see second row of Table 6.2. The posterior probabilities
now also indicate two cointegration relations between the series in Y;. The same is true
for the Johansen trace statistics. However, a model with three cointegration relation is
not unlikely according to the Bayesian LM statistic. Note that the degrees of freedom
are different from (n — r)? due to the restricted trend. The difference in results between
the Bayesian LM statistics and the Johansen trace statistics follow from the fact the LM
statistic is exactly x? distributed and not asymptotically a functional of Brownian motions
since we consider the data as given.

6.8.3 Danish Money Demand

Johansen and Juselius (1990) analyse the demand function for money for the Danish
economy using a VAR model. Their model consist of M, denoted by my, real income y;,,

2DOUT, is zero except for unity in 1972.1V, 1973.1 and 1979.11 and DOIL, is zero except in 1973.I11,
1973.1V and 1979.111.
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Table 6.2. Bayes factors, posterior probabilities, Bayesian LM statistics
and classical likelihood ratio tests for the UK and Danish data.

r In(BF*(r[4))' Pr[r|Y]* LM(r[4)

dof p-value LR(r[4)® p-value?

UK data
no dummies and restricted trend
0 24.58 0.00 94.84 20 0.00 119.38 0.00
1 37.30 1.00 39.75 12 0.00 40.89 0.08
2 28.02 0.00 15.12 6 0.02 12.12 0.80
3 14.96 0.00 6.22 2 0.05 4.48 0.68
4 0.00 0.00
dummies and restricted trend
0 25.71 0.05 119.07 24 0.00 152.85 0.00
1 18.50 0.00 69.88 15 0.00 71.42 0.00
2 28.56 0.95 19.28 8 0.01 19.65 0.24
3 20.84 0.00 6.32 3 0.10 6.43 0.40
4 0.00 0.00
Danish data
unrestricted constant
0 20.65 0.08 37.86 16 0.00 45.67 0.08
1 23.06 0.92 17.54 9 0.04 17.07 0.63
2 15.92 0.00 7.75 4 0.10 6.71 0.61
3 5.18 0.00 1.18 1 0.27 0.38 0.54
4 0.00 0.00
restricted constant
0 44.36 1.00 40.63 20 0.00 49.14 0.11
1 26.10 0.00 19.03 12 0.08 19.06 0.79
2 21.43 0.00 10.09 6 0.12 8.69 0.77
3 10.69 0.00 3.21 2 0.20 2.35 0.70
4 0.00 0.00

1 A Bayes factor In(BF*(r|4)) > 0 denotes that a cointegration model with r coin-

tegration relations is more likely than a model with n cointegration relations.

2 Posterior probability of the cointegration rank (6.57) is based on equal prior

probabilities (6.53) for every rank r.
3 Johansen (1991) trace test statistic.
4 The p-values are based on the asymptotic classical distribution.
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price level p; and the costs of holding money. The costs of holding money is approximated
by a difference between the bank deposit rate i¢ for interest bearing deposits and the
bond rate i¢. All variables are in logs. Since the inflation rate Ap, does not alter the
cointegration analysis significantly, this variable is not considered in the Johansen and
Juselius study.

In this subsection we analyse the same Danish data as in Johansen and Juselius (1990).
We have quarterly observed series of my, i¢, i¥ and y; for the period 1974.1-1987.3. The

cointegration analysis is performed in the following VAR(2) model,

Amy my—1 Amy_y
Ay, LA Yt—1 = Ay; 4
| =+ > 6D+ 11| 7 + @, ' + &, (6.86)
AVH po : (- Ay
N it IND

where Ds,t represents seasonal dummies with zero mean and d, is a four-dimensional
parameter vector, s = 1,...,3. Although it is not likely that real income does not have
a linear trend, Johansen and Juselius restrict the constant in the cointegrating space,
i.e. o/ p = 0, see the end of Section 5.3. Hence, the Il matrix is extended with an extra
row and the Y_; matrix with an extra column.

The second part of Table 6.2 displays the results of a Bayesian cointegration analysis
for the Danish data. The results are based on a diffuse (Jeffreys’) prior for the param-
eters and equal prior probabilities (6.53) Pr[rank = r] = %, r =0,...,n. Again, the
results are based on posterior distributions resulting from the decomposition (6.9) except
for the Bayes factor analyses, which uses the posterior of the invariant decomposition
(6.67). First, we consider a model where the constant is not restricted in the cointe-
grating space (o/, u # 0). The second and third column show the Bayes factors and the
implied posterior probabilities over the cointegration rank. The Bayes factors favour every
rank reduction over a full rank model and lead to 92% posterior probability for a model
with one cointegration relation. The fourth column of Table 6.2 display the outcomes of
the Bayesian LM statistics. Only the LM(3[4) and LM(2]4) statistics lie inside the 95%
one-sided HPD interval, which implies that two cointegration relations between my, ¢, i’
and y,; are plausible. The Johansen trace test statistics indicate no cointegration relation
at a 5% level of significance as in the classical approach the asymptotic distribution is not
x? but a functional of Brownian motions.

In case we restrict the constant in the cointegrating space, we see that the Bayes factors
again favour every rank reduction over a full rank model. The posterior probabilities assign
100% probability to the model with zero cointegration relations and no probability to the
other models. The Bayes factor that compares within the model with one cointegration
relation whether the constant has to be restricted in the cointegrating space, equals the
ratio of the Bayes factors of the analysis with the restricted and the unrestricted constant.
The natural logarithm of this ratio (26.10—23.06=3.04) is positive, which indicates that
the restriction of the constant in the cointegration space (o, u = 0) is more likely than
an unrestricted constant (o', u # 0). Since only the LM(0|4) statistic is outside the 95%
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Figure 6.1. Marginal posterior densities of the adjustment parameters o and the cointe-

grating vector (3 for the UK series.
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one-sided HPD interval, the LM tests indicate one cointegration relation between my, i,
i? and ;. Note that the degrees of freedom are different from (n—r)? due to the restricted
constant. In the classical analysis, we have to test at 11% level of significance to find one
cointegration relation according to the Johansen trace statistics.

Using the M-H simulation algorithm in Section 6.4.1 we compute posterior results for
the cointegration model with one cointegration relation and the constant restricted in
the cointegrating space (o/, ;r = 0) under a diffuse prior specification (6.22). This is the
model proposed by Johansen and Juselius (1990). The posterior means of the o and
parameters are

my Yt Z? ig my Yt Z? ig 1
o = (—0.26 0.08 0.03 0.03 ) and ﬂ' = ( 1 —1.02 499 —-3.76 —6.23 ),
(0.07) (0.07) (0.02) (0.02) (—) (0.15) (0.76) (1.42) (0.95)

where the posterior standard deviations are between parentheses. Note that the poste-
rior means correspond reasonably well to the maximum likelihood estimates in Table 2
of Johansen and Juselius (1990). Figure 6.1 shows the marginal posterior densities of
the adjustment parameters o and the cointegrating vector 3. The first column shows
the marginal posteriors of the o parameters. The marginal posterior of the adjustment
parameter for the money equation is situated far away from zero. This is not the case
for the other adjustment parameters, where zero lies within the 95% one-sided HPD re-
gions of the marginal posteriors. The second column of Figure 6.1 shows the marginal
posteriors of the § parameters. These marginal posterior distributions are more skewed
and have fatter tails. The posterior masses of the marginal posteriors of the cointegration
parameters are situated far away from zero except for the i’-element.

In summary, although the examples in this section are simple, they show that Bayesian
techniques provide useful tools to analyse cointegration. Bayes factors and Bayesian LM
statistics indicate whether rank reduction is plausible. In the empirical examples, the
Bayesian LM statistics often result in more cointegration relations than the Bayes factors
and the classical LR tests. This is due to the fact that the Bayesian LM statistic have to
be compared with standard x? distributions instead of functionals of Brownian motions.
The Bayes factors can be used to calculate posterior probabilities for each cointegration
rank, to show the best model. If there is no clear preference for one of the cointegration
ranks, it is also possible to use the posterior probabilities as weights in a forecasting
exercise.

6.9 Concluding Remarks
The chapter discusses a Bayesian modelling framework for the analysis of cointegration

models. This framework is based on a specification of an unrestricted error correction
model which contains a parameter reflecting cointegration, i.e. it is equal to zero when
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cointegration occurs. Posteriors for parameters in the cointegration model are then pro-
portional to conditional posteriors of the parameters in the unrestricted error correction
model given that the parameter reflecting cointegration is equal to zero. This is identical
to the classical analysis where the likelihood of the cointegration model is proportional
to the conditional likelihood of the unrestricted error correction model given that the
parameter reflecting cointegration is equal to zero. The difference is though that we can
only construct these conditional posteriors given the parameters reflecting cointegration
numerically as analytical expressions do not exist. A Metropolis-Hastings sampler is used
to calculate the posteriors of the cointegration model. The prior framework, which is
proposed, allows for a full Bayesian treatment of all aspects of a cointegration model un-
der various prior specifications, like diffuse and natural conjugate. The prior is specified
on the autoregressive parameter matrices of the vector autoregressive model. This prior
implies the prior for the unrestricted error correction model and the prior for the cointe-
gration models. Therefore, one specification of the prior for the parameters of the VAR
suffices as it implies the functional specification of the priors for the cointegration models.
For posterior odds analysis it is possible to give prior probabilities to models with dif-
ferent number of cointegration relations. These prior probabilities can be combined with
Bayes factors to determine posterior probabilities. The proposed Bayes factors under a
diffuse prior specification are related to the posterior information criterium of Phillips
and Ploberger (1994, 1996). We also compare different cointegration models using the
Bayesian analog of a Lagrange Multiplier statistic.

The Bayesian cointegration analysis framework in this chapter can be extended for
cointegration analysis in more complicated models. We can for instance allow for struc-
tural breaks or consider non-linear cointegration models, like Markov switching cointegra-
tion and threshold cointegration. Also we can change the assumption of normal distributed
errors and extend the analysis to ¢-distributed errors or vector moving average errors. In
the next chapter we use this Bayesian cointegration framework to analyse multivariate
Markov trend models.
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6.A Derivation of Prior Distributions

Diffuse Prior Specification

The priors for the parameters a, A and (3, follow from the prior (6.19) and the Jacobian
of the transformations of (Ilyy, ITjo, IToy, Io) to (o, A, B2). As a = (I1y1,I1;5) the prior
for a given X reads

Puec(@]X) = Prec(Ti1, o] ) |y 1110)=a X \E\fér|Y1"71MY2,_1Y1’71|§"_

Since (Ilyy,II5;) can only be transformed to (A, 32) when @ = (IIyy,I1;5) is known, we
consider a prior for A and (35 given ¥ and a«. This prior is proportional to the product of
the prior pjec(IIgy, Ioe|TT;q, IT19, ¥) given in (6.19) and the Jacobian. Since (ITy, ITy) =

A0 I, ,) — focx the Jacobian |J(a, A, B2)| = |(J; J2)| results from
. 8(V6C H21, 1__[22 . ’
Jl - VeC ﬁQ a = —((X ® In—r)a
. 8(Vec H21 HQQ . 0
h= "oy |2 = (L) @),

Therefore, the priors for A and 3, read

puec()\a ﬁg‘z, a)
X plec(HZI; H22\H11, IT,5, E) |J(a, A 52)\

X |J(a, )\,52)Iplec(n21; H22|H11; I, 2) J(a, A ﬂz)ﬁ
. 1 1 1 1
and since [S[7H00 Y] Yo o[ = [S7F @13 Y5 )}

o [J(e, A, B2) (S71 @ Yy _ Yo, 1) J(e, ), Bo) |2

!

o=

A
festenemg e ()5 ) @ 07 )
(ex1(i2, ) @ 02-a) (22, )5(50,)) @ 02050

o [(@X™'a!) @ (Vs _,Ya1)|?
‘(( ; )1(271 B Eilal(azfla/)flazfl)( 1o, )) ® (V3 1Y2,1)

Li—»
(1 )’a'l(aLza;)*laL(ln_r)

| P

1
2

lvlb—‘

‘Y; 1Yo o 1|2

x |a2’1a’\%("’r)
o oS el 3 e S |2V )2
so that
A%, @) o e s [0 v
puec(ﬁ?‘zaaa)‘) X ‘az a| (n= T‘Yg 1}/2 1|2

where a = (a; @), a; = (—ab(a7") I,_,) and oy is an (r x ) and a an (r X (n — 1))

matrix and we use that (7! — X la/(aX /) laX™!) equals o (X)) e, .
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Natural Conjugate Prior Specification
The natural conjugate prior for IT given ¥ (6.23) implies the following conditional priors
for the submatrices of IT defined in (6.9)
Prec(IT11, Mo |E) o \Z\_%T|A11.2\%n eXP(—%tY(Z_l((Hu Iy3) — (P Pi2))
A2 ((ITyy Thp) — (P Pra)))),
Prec(Tlar, Mgg [Ty, ITj5, X)) o \Z\_%(n_”\flmﬁn eXP(—%tT(Z_l((Hm II) — (Q2 Qa2)'
Ao ((IMy; Tyg) — (Qa1 @22)))),

where Ayy = Ay — Ap Ay Aot (Qo1 Qu2) = (Par Pag) — Ay Ay (T Typ) — (Pyy Pry)).
Since a = (ITy; IT;5) the conditional prior for e equals the conditional prior of (ITy, IT;5)
evaluated in a: puec(a|X) = prec(ITi1, I12|X)|(m,, m12)=a- To derive the conditional priors
of A and (33 we need the Jacobian |.J(a, A, 52)| of the transformation of (ITy;, ITss) to (A, B2)
derived above. The following two decompositions

[S[72 A [T = (e A B) (57 ® An)J (e, A, Bo)]7

=[S o/[X o e, 7207 A 2"
and
exp(— 557 (T Thoy) = Qo1 Qo)) Aon((Thyy Th) — (@ @) =
exp(— g (tr((eTa) (A= 1) An (A — 1) + tr(An(B — ba)aS o (5, — b)),

where | = (Qu Q)| and by = —(Qu (@ — )X 'e/(aX 'a’)~" lead to the condi-
tional priors pyec(A|X, @) and pyec(F2|X, e, A) in (6.25).
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6.B Derivation of Posterior Distributions

Posterior under Diffuse Prior Specification

The joint posterior pyeem (3, e, A, B2|Y) is proportional to the product of the prior (6.20)
and likelihood (6.10). Due to the structure of the unrestricted error correction model (6.8)
it only possible to decompose the joint posterior in marginal and conditional posteriors,
Pueem (1Y) Dueem (@2, Y) Dueem (ME, @, YY) Dueem (5212, e, A, V), which is the product of an
inverted Wishart and three matrix normal densities. The marginal/conditional posteriors
follow from the following decomposition of the elements in the trace operator from the
likelihood (6.8)

tr(X7'ee) = tr(RTHAY = V) 1+ Yy 1 — Yy (0 N))
(AY =Y _ja+ Y, 10 — Y5 _1(0 N)))
= tr(S(AY'My_ AY + (a — &)'Y] | My, Vi _i(o— &)
+ (foe = (0 N) = IL)'Y; Yo 1 (foex — (0 )) — ILy))
= tr(SH(AY' My AY + (o — @)'Y] _ My, Y1 _1(a — &))
+tr(Vy Vo 1(Bea — (0 A) — IL)S ! (B — (0 )) — IL,)")
= tr(S7(AY'My | AY 4+ (a — &)'Y] _ My, Y1 _i(0— &))
+ tl“(Y2’,—1Y2,—1((52 - 32)0‘2_10‘,(52 - 32)/ +
+((0)) —IL)(E"' =S 'a(a/S " 'a) ' a/S71)((0 \) — I1,))
= tr(S(AY'My_ AY + (a — &)'Y] | My, Vi (o — &))
+tr(Yy Y5 1(fB — B)aS ' (By — (o))
+ (Y512, 1((0 A) — IL)e, (@1 2a ) e (0 A) - IL,))
= tr(XH(AY' My AY + (o — &)'Y] _ My, Y1 _1(a — &))
+tr(Yy Y _1(B2 — B)aS™ el (By — (o))
+tr((@Sal) e ((0A) - I1)'Y; Y2, 1((0 V) — IL)a)
= tr(S7(AY'My | AY 4+ (a — &)'Y] _ My, Y1 _i(0— &))
+tr(Yy Yo 1(fBa — Br)aS ™ o (B — [a)')
+ (e Sel) A =AY Yo (A= ),

where we have used that o, (e X' )'a; = (7! = 7'/ (aX'a/)'aX™!) and

I, = (Y5 Y1) 'Yy (AY - Vi 10),
a = (}/ll,—lMYzflYl,—l)_lyl’,—lMYzAAK
A= (Y2l,—1Y2,—1)_1Y2’,—1AYa o'
By = —(Y3 1Yo 1) 'Yy _((AY =Y ja— Y51 (0 \) e (aX ') 7",
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Combining this decomposition with the prior specification (6.20) provides the condi-
tional /marginal posterior distributions in (6.28).

Posterior under Natural Conjugate Prior Specification
The conditional posteriors of a, A and f; (6.32) under a natural conjugate prior spec-
ification for ¥ and IT (6.23) follow directly from the joint posterior of ¥ and IT, which
reads
Pee(STIY) o [SJEA |5 xp(— (57 (S 4
(IT — P)'A(TI — P) + (AY — Y, II)(AY — Y ,II))))
x |S|Eh| Al x| TRt exp(—%tr(Zl(S + AY'AY + P'AP

T (A+ Y,V I+ (TT— T (A + Y/, V)T — T0)))),

where

ﬂ = (Y7’1Y71)71Y7’1AY,

A+Y' Y. )11 (A—*'Yi Y71)12
A+Y Y. = <( ot ' )
( + -1 1) (A—}—YilY,l)Ql (A+Y11Y71)22

1= ( f t ) = (A4 YY) Y AP + Y/, Y 1I).
H21 H22
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6.C Derivations for the Invariant Specification

Jacobian for the Invariant Specification

For the derivation of the Jacobian transformation, it is convenient to split up the trans-
formation from IT to a, A\* and [, in two steps, firstly from IT to (e, s, \*, B2), where
a = (o o) and ¥y = —aj '@y, and secondly from (o, 92, \*, 32) to (e, \*, 32). In the
following we construct the Jacobians for the two transformations. We can denote IT as a

function of (a, ¥y, A*, 2)
0 v
= (0 ﬂL)(SI A*)(zﬂ)

where 9 = (I, — ) with a = a9, 3= (1, — B), 9. = (L, + U4095) 2( I, ,) and
8L =6y Lisy)(Iy_y + (23,)7 so that 9,9, =1I,_, and #, 3. = L,_,.3 The derivatives
of IT with respect to a, ¥, \* and 35 read

s
B = ety = (a2, ) ) + (o 03 20
Bo= e = o )
5= el - (Fate(,0,)) + o)
with

H Ty ; (((1’;); s <(f99 S0

Dueell) — (i o125 L)) | |
Ovec(5it) vec(sh) ovec(s,)

Pl @O ) ey P08, D )]

3If M is a positive definite real symmetric matrix, then Mz = CA=C" where A is a diagonal matrix
containing the eigenvalues of M and C' contains the orthonormal eigenvectors of M and M=% = CA-=C,
see e.g. Johansen (1995, p. 222).
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where we deﬁne for notational convenience 9,, = (I,_, + ¥495) and 3, = (I,—, + (2/3) so
1 1 1 1

that 9, = Jn” ( ), BL= (B2 T r)lﬂ;% with 9202 = 0, 82682 = B,
Ovec(Vy I,_,) /1
d(vec(dq)) (( 0 ) ® I”*T)Kﬂfr,r
dvec(9n?) et
9 (vec(93))
0 197%1 1, L
6(:5(?((19 )))' = (0 @Liy) + (Li, @ 08)) 7
0 Iy, , /
8(:5(?((192)))' = Lnr @0y) + (0 @ Ly ) Ky
and
8vec((ﬂ2 n— r)) . I
o(vec(B)) (I”*’“ ® ( 0 ))Kﬂfr,r
DweeB) by
d (vec(p 7%))’
O vee (5 : o
(:js((ﬁ ))), (B @L,_) + (I, ® B7)) 1
d n
(:ss((ga)))’ (B2 ® Ln—r) + (Ln—r ® ) Kn—rs
where K;; are so-called commutation matrices. For any (i X j) matrix W, vec(W) =
K; jvec(W'), vec(W') = K;,;vec(W), and K} ; = K;;, see Liitkepohl (1993, p. 466). The

Jacobian of the transformation from IT to (al, o, A*, B2) becomes

0 vec(IT)
d(vec(a)' vec(dy)" vec(A*) vec(fz)")

— ‘(Jl J2 J3 J4)|

Since ¥y = —a; 'y the derivatives of (e, U2, \*, B2) with respect to ay, a, A* and [,
are respectively

| N |
G = d(vec(ay)' vec(dy)' vec(N*) vec(f2)') | (ai'cw) @ ai!
b d(vec(ay))! - 0
0
0
G — d(vec(ar) vec(Vy)' vec(X*) vec(f2)') | —I,, @ ay?
2 d(vec(a))’ - 0

0
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0

G = d(vec(ay)' vec(Vy)' vec(A*)" vec(fs)') 0
S d(vec(\))! | L ®L,

0

0

G, - d(vec(ay) vec(vy)' vec(X*)" vec(fz)')" 0

T O(vec(3y))’ - 0

Ir & Infr

The Jacobians of the two transformations determine the Jacobian of the total transfor-
mation from IT to (a, \*, 33)

|/ (e, A", B2)]
B 0 vec(IT)
~|0(vec(a)’ vec(\*) vec(By)')
0 vec(IT)

_ d(vec(a)" vec(dy)" vec(A*) vec(Fy)")
d(vec(a)' vec(ds)" vec(A*)! vec(fFs)") J(vec(ax)" vec(A*) vec(fFa)")
= \|(J1 Jo J3 Ju)| |(G1 G2 G3 Gy)|.

Straightforward algebra shows that the Jacobian evaluated in A* = 0 equals

TN B) a0l = (L@ B) (@@ (%)) (@Bl

Decomposition of the Trace of the Likelihood Function

For the invariant decomposition (6.67) the trace in the likelihood function (6.10) can be
decomposed as follows

tr(X7'e'e) = tr(Z7H(AY — AY_ II)'(AY — AY_ 1))
— tr(S7Y(AY My | AY + (IT — II)'Y!,Y_, (IT — I1)))
— tr(SY(AY My (AY + (Ba+ BN ay — II)'Y! Y (Ba + B\ oy — 1))
— tr(S"Y(AY My | AY + (Ba —II)'Y" ,Y_,(Ba — II)
+ (BN —IDY Y (BN e, — ) -V, Y., II))
= tr(S"H(AY My AY) + XY a — &)Y Y. 16(a — &)
ST (BYL Y B+ (@ el ) (A =AY BLYL YL B (A = )
— (e S )NBLY Y BN + ST YT
= tr(S(AY My AY) + X Yo — &)Y Y 1 6(a — &)
+ (@S el ) (A = A LYY BN = AY))
where we use that

tr(STIT Y, YL, I) = tr(S 16 (BY, Yo B)é) + tr((a S el ) (A ALY Yo, B14%))
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and
1= (Y ,V,) 'Y, AY
a=(BYLY.8) 7 YL AY
M= (BY' Y 8.) 7 B Y AYS e (e S ed,)






Chapter 7
Multivariate Markov Trend Model

7.1 Introduction

In Section 5.3 we have seen that cointegration implies that there exist a linear combination
of univariate time series with stochastic trends, which can be described by a stationary
process. Although shocks have a permanent effect on the level of the separate univariate
series, they only have a temporary effect on the linear cointegration relation between the
univariate series. A shock only leads to a temporary deviation from the linear relation
between the series. The cointegration relations reflect the long run equilibria between
series. Therefore, cointegration analysis is often used to detect long run relations (equi-
libria) between economic variables, see for instance King et al. (1991) and Hendry and
Ericsson (1991).

Standard analysis of cointegration is usually performed in linear vector autoregres-
sive models as described in the previous chapter. However, as we already have seen in
Section 3.6.2 neglecting the possibility of changes in the growth rates during recessions
in univariate time series can favour the presence of unit root stochastic trends in this
time series. Generalising this to a multivariate setting, it is not unlikely that neglecting
changes in the growth rate of series may influence the analysis of long run equilibria in
time series. Changes in growth rate of series may lead to temporary or even permanent
changes in the mean of the cointegration relation. This happens for instance if changes
in the growth rate do not occur simultaneously for every series, which belong to the coin-
tegration relation. Additionally, even if growth rate changes in cointegrated time series
occur at the same time, it is still possible that the mean of the cointegration relation
changes. For instance, when during a recession the decrease in one variable is larger than
the decrease in another variable. For instance, Figure 7.1 shows a candidate cointegration
relation for the logarithm of quarterly observed per capita income and consumption of
the United States.! As candidate we have taken the difference between the two series.
The figure shows that the mean of the candidate cointegration relation is not constant
over time but displays a more or less changing regime pattern. This may imply that the

Tn Section 7.6.2 we consider the two series in more detail.
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0.165580 63 66 69 72 75 78 81 84 87 90

Figure 7.1. Difference between the logarithm of US per capita
income and consumption, 1957.1-1992.1V.

cointegration relation is not a stationary process, but it is affected by occasionally shocks
in the mean caused by regime changes, see also Krolzig (1996) for a discussion. One can
interpret such a cointegration relation as a long run equilibrium between variables, which
has a mean revision during or after recessions. A special case occurs if the growth rates
of the series are affected by changes in regimes, but that the mean of the cointegration
relation is not affected by regime changes. Dwyer and Potter (1996) refer to this situation
as reduced rank Markov trend cointegration.

Neglecting permanent changes in the mean of cointegration relations, caused by regime
changes, may lead to evidence in favour of no cointegration. To analyse cointegration in
the presence of regime changes, we propose in this chapter a multivariate version of the
Markov trend model in Chapter 3. The model allows for different Markov trends for each
series, so that every series can have a different business cycle. Common business cycles
in series result from common stochastic Markov trends. The deviation from the Markov
trends are modelled by a vector autoregressive process, which may include stochastic
trends. Hence, cointegration analysis can be performed in a regime changing environment.
Markov trend cointegration occurs, if the linear cointegration relations also remove the
Markov trend from the multivariate series.

The outline of this chapter is as follows. In Section 7.2 we propose the multivariate
Markov trend model. We discuss the role of the stochastic trends in this model and
the possibilities of common trends. Section 7.3 deals with prior specification. To obtain
posterior results, we propose in Section 7.4 a Gibbs sampling algorithm to sample from
the posterior distribution. The analysis of cointegration and common stochastic Markov
trends is discussed in Section 7.5. In Section 7.6 we illustrate the analysis of multivariate
Markov trends with some simulated series. Additionally, we analyse the role of stochastic
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trends in quarterly observed real gross domestic product and consumption of the United
States, on which Figure 7.1 is based. We conclude in Section 7.7.

7.2 The Model

Suppose that an n-dimensional vector of time series {V;}7_, can be decomposed as
Y; == Nt + Zt, (71)

where NV is a multivariate Markov trend and Z; is a vector autoregressive [VAR] process
of order k

k
Zt = Z @Z‘Zt,i + Et, (72)

i=1
or using the lag polynomial ®(L) = (I, — &L — --- — &, L)
I, — &L — - — &L Z, = ¢, (7.3)

where ¢; is an n-dimensional vector normally distributed process with zero mean and
(n x n) positive definite symmetric covariance matrix ¥ and ®;,i =1,...,k, are (n X n)
parameter matrices. The n-dimensional Markov trend is defined as

Nt == Nt,1 + FO + Flst, (74)

where S; = (s14...5,,:)" an n-dimensional unobserved random variable with s;;, = 0,1,
j=1,...,n,Tgis an (n x 1) parameter vector and I'y an (n X n) parameter matrix, see
also Dwyer and Potter (1996) who use a different parameterisation. The random variable
S; can take 2" different values and hence implies 2™ possible slope values for each of the
n elements in N;. To model the transitions between these 2" states, we assume that
each element s;;, j = 1,...,n is an unobserved first-order two-state Markov process with
transition probabilities

Pr[smt == U|Sj7t_1 == 0] == pja PI'[Sjyt == 1|Sj,t—1 == U] =1- pja (7 5)
Pr[smt == 1|Sj,t—1 == ]_] == Qj, PI'[Sjyt == U|Sj7t_1 == 1] =1- q]‘. '
These transition probabilities imply a restricted (2" x2™) transition matrix, which contains
the transition probabilities between the 2" possible outcomes of S;, see also the end of
Section 5.1.
Using the backward solution of (7.4)

t

1=2
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and rewriting (7.2) in the error correction notation (6.6) results in

t—1
(AY; - F[] - Flst) = H(Y;g_l - FO (t - 2) - Fl ZSZ - Nl) +
1=2
k=1
@Z(AK,Z — FU — Flst,l‘) + &4, (77)
=1

where II = Z?Zl ®; — I, and P, = — Z?:H»l ®;, ¢ =1,...,k — 1. Note that the initial
value of the Markov trend N; is unknown and plays the role of an intercept parameter
vector.

As already mentioned in Section 5.1 the multivariate Markov trend implies the presence
of n stochastic trends in Y;. Additionally, unit roots in the vector autoregressive part of
the Markov trend model also imply the presence of stochastic trends in Y;. In practice
it may therefore be wishful to limit the number of stochastic trends in the Markov trend
model (7.7). In the remainder of this section we discuss the role of the stochastic trends
and provide parameter restrictions, which limit the number of trends in the model. These
restrictions can be imposed from a theoretical point of view or they can be tested using
the Bayes factors, which are proposed in Section 7.5.

Common Markov trends

The transition probability structure in (7.5) corresponds to the presence of n independent
stochastic Markov trends Y>!_, S; in (7.6). The matrix I'; models the correlation between
the Markov trends. If the matrix I'; is diagonal, each of the univariate series in Y; contains
a different univariate Markov trend as described in (3.2) with transition probabilities p;
and ¢;. If we link the Markov trends with the business cycle, this implies n independent
business cycles in the univariate time series in Y;. In case of common business cycles less
than n Markov trends suffice. An extreme case arises if the series have only one common
business cycle. Now only one state variable s;, suffices to model the business cycle. The
matrix I'; becomes an (n x 1) vector. Changes in the stage of the business cycle for each
series in Y; occur at the same time, see also Krolzig (1996). Although this may not always
be the case in practice, there may exist some common business cycle structure among the
series so that it is suffices to specify less than n stochastic Markov trends to model the
series.

We have seen that if I'; has full rank, Y; consists of n correlated stochastic Markov
trends I'y 3¢_, S;. A reduction in the number of Markov trends, i.e. common Markov
trends, occurs if 0 < rank(I';) = m < n, see Section 5.2. In that case we can write ['; as
a product of two (n x m) matrices v and ¢ such that I'y = 7¢’. The m common Markov
trends are given by ¢’ >°f_, S; and 7/, N; and therefore /| Y; does not contain a stochastic
Markov trend. Since Y; = N; + Z; shocks denoted by S; have a permanent effect on Y;.
The impact of the S; shocks on the first differences of Y; depends on the number of unit
roots (or the rank of II) in the vector autoregressive component Z;.
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To discuss the impacts of the possible trends in this model specification, we first focus
on the Markov trend.

Cointegration

In Section 5.3 we have seen that unit roots in the VAR process Z; result in stochastic
trends Y°!_, &; in Y;. Several situations can occur, depending on the number of unit roots.

If the roots of the polynomial |®(z)| are outside the unit root circle, there are no
stochastic trends in Z;. Hence, Y; is a stationary VAR process around a multivariate
Markov trend N;. The matrix IT in (7.7) has full rank and exogenous shocks represented
by S; have a permanent effect on future values of Y; and AY;, while shocks represented
by &; only have a transitory effect.

As we already have seen in Section 5.3 stochastic trends enter Z; and therefore Y; if
the IT matrix has reduced rank. If IT = 0 equation (7.7) simplifies to

k-1
(AY; = Lo —I[18;) = D ®;(AY,; — T — I'18,) + &4, (7.8)

=1

and the first difference of Y; is a stationary VAR process with a stochastically changing
mean (= ['g 4+ ['1S;). This corresponds to the assumption of n stochastic trends, >-f_, &,
in Y;. Now shocks S; and ¢; have a permanent effect on future values of Y}, however not
on the first differences of Y;. Note that the initial value of the Markov trend N; drops
out of the model and the growth in Y; does not depend on the initial value of the Markov
trend.

A special case arises if 0 < rank(II) = r < n. In that case IT can be written as
IT = af’, where o and f3 are full rank (n x r) matrices. Model (7.7) becomes

t—1
(AK — FU — Flst) = aﬁ'(Yt,l — Fg(t — 2) + Fl ZSZ — Nl) +

=2

k-1
Z @Z(AK,Z — FU — Flst,l‘) + &4, (79)
i=1

with the following normalisation 5" = (I, /), where 35 is an ((n — ) x r) matrix, to
identify [, see (5.19). We will refer to (7.9) as the multivariate Markov trend model in
error correction cointegration [ecc] form. According to (5.17) there are (n — r) common
stochastic trends in Y; given by o/, 3°!_,¢; and r cointegration relations 3'Z;. Now the
growth in Y; depends on the initial value of the Markov trend unless §'N; = 0. The
matrix 3T} represents the impact of the stochastic Markov trend /=2 S; on the growth
of Y; at time ¢. In case of m common Markov trends this matrix becomes 3'v4’. Not that
it is possible that §' contains one or more linear combinations which remove a stochastic
Markov trend from N, i.e. 5 € sp(y,). If r +m < n it is even possible that 57 = 0 and
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past shocks S;_; do not have a permanent effect on AY; since (7.9) simplifies to

(AK — FU — Flst) = Clﬁ%m,l — Fg(t — 2) — Nl) +
k—1
Z @Z(AK,Z — F[] — FISt,Z-) + &;. (710)

i=1

Furthermore, the relation 3'Y; = 'N; + ' Z; is (trend)stationary and does not contain a
stochastic Markov trend. Dwyer and Potter (1996) refer to this phenomenon as reduced
rank Markov trend cointegration.

The Likelihood Function

To perform a Bayesian analysis of the multivariate Markov trend model, we consider the
likelihood conditional on the states S;, see also Section 3.2. The conditional density of
Y; for the multivariate Markov trend stationary model (7.7) given the past and current
states S* = {S},...,S;} and given the past observations Y=! = {V},...,Y, |} is given
by

L5t exp(— 2T ey,

FYYE ST, Ty Ny, ST 8) =
i D )= e 2 (7.11)

where ¢, is given in (7.7) and ® = {®;,..., ®;_;}. The likelihood function for model (7.7)
conditional on the states ST and the first & initial observations Y* equals

n
,C(YT|Y’C, ST, @) — H p-;\fj,oo (1 . pj)Nj,Ol q-]’.\[j,ll (1 _ qj)Nj,lo
j=1

T
H f(Y;f‘Yt_laStaFOaFIaNhZaHai))a (712)
t=k+1
where © = {Tg, 'y, N, 5,11, ®,pj, ¢j, 5 = 1,...,n}, Nju denotes the number of transitions
from state i to state [ for j-th state variable. The unconditional likelihood function
L(YT|Yk, ©) can be obtained by summing over all possible realisations of S

cYmyk ey =33 ciy" iy s"e). (7.13)
S1 Sa St
The unconditional likelihood function for the Markov trend model in error correction
cointegration [ecc] form (7.9), Lec., follows directly from (7.13)
Loce YTV Opee) = LIYT|YE, O)|1—ap (7.14)

with O = {0, 1, N1, E, a0, B2, @, pj.q5,5 =1,...,n}.

In the next section we discuss the prior distributions for the model parameters for the
multivariate Markov trend stationary VAR model (7.7) and the Markov trend model in
error correction cointegration form (7.9).
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7.3 Prior Specification

The prior specification for the multivariate Markov trend model is a combination of the
prior specification for the univariate model of Chapter 3 and the proposed prior framework
for cointegration analysis as derived in the previous chapter.

As we have seen in the previous section, N; is not identified if [T = 0. To correct
for this identification problem we propose the same solution as for the univariate Markov
trend model, see Section 3.3.1. Hence, the prior distribution for N; conditional on the
first observation Y; and X is normal with mean Y; and covariance X

MY, 2 ~ N(Yy,%). (7.15)
The prior for ¥ is again diffuse
p(¥) o [X]72, (7.16)

and the prior distributions for the transition probabilities p; and ¢; are independent and
uniform on the unit interval (0, 1)

p(p]) = ]I([],l) .] = ]-a N

; 7.17
p(g;) =T j=1,...,n. ( )

Just as in the univariate Markov trend model, under a diffuse prior specification we need
to restrict the parameter space on which I'y and I'y have probability mass to identify the
regimes, see below (3.18). Note that in the multivariate case, also changing two columns
in I'y, the corresponding two rows in S; for ¢t = 1,...,T and changing the corresponding
transition probabilities, results in the same model and the same value of the likelihood
function. To circumvent this problem we define the priors for I'j and I'y on subspaces G
and Gy, which uniquely identify the regimes,

1 ifTyegG
p(L) o { 0  elsewhere, (7.18)
where Gy € R" and
1 T eq
p(I'r) o { 0  elsewhere, (7.19)

where G; € R™"™. Another option to circumvent the identification problem is to specify
appropriate matrix normal prior distributions for Iy and I'y. The priors for the autore-
gressive parameters ®; are diffuse

p(®;) x 1, i=1,... k-1 (7.20)

The prior for the IT and the a and 5 parameters is based on the prior framework,
derived in the previous chapter. We start with a diffuse prior for Il given X

p(II|E) o |27, (7.21)



132 Multivariate Markov Trend Model

To obtain the prior for the Markov trend error correction cointegration model (7.9) we
decompose II as follows

HH ng (07} _alﬁé
1= = .22
( [Ty Tla ) ( ay —afy+ N )7 (7.22)
where a = (o) «a3)" with a; an (r x r) matrix and as an ((n — r) x r) matrix and \ is an

((n —r) x (n — r)) matrix, see also (6.9). The diffuse prior for IT given ¥ (7.21) implies
the following conditional priors for o, A and (3,2

_1,
puec(a‘z) X |E| 2
puec()\|2, Oé) X |a12al|_%("_r) (723)
puec(52|2, Q, )\) X |0/2_1a‘%("—r),

where o) = (—OzQOzfl I, ,)', see Section 6.3. Under reduced rank, i.e. A\ = 0, the
conditional priors for o and 3, in the error correction cointegration [ecc] model (7.9) obey
the rule that pece(a, 52]2) o Pyec(, A, f2]X)[x=0 S0 that

n—r)

Peee(@%) o |S]72" |0, Sy |73

. (7.24)
pecc(ﬁ2|2a Q, )‘) (8 |a12—1a‘§(n—r)’
see also (6.22).

The joint prior p(©) for the Markov trend stationary VAR model (7.7) is given by the
product of (7.15)—(7.21). For the error correction cointegration model (7.9) the joint prior
Pece(Oece) 18 given by the product of (7.15)—(7.20) times (7.24). Note that the joint prior
of the Markov trend cointegration model (7.9) is proportional to the joint prior of the
Markov trend stationary VAR model (7.7) restricted in A = 0, the parameter restriction
which implies cointegration.

7.4 Simulating Posterior Distributions

The posterior distribution of the multivariate Markov trend model (7.7) is proportional
to the product of the prior p(©) and the unconditional likelihood (7.13). To obtain
marginal posterior results, we use again the Gibbs sampling algorithm, see Section 3.4.
The state variables {S;}L | are treated as unknown parameters and sampled alongside
the model parameter ©. The next subsection provides the full conditional posterior
distributions, which are needed to sample the parameters. Special attention will be payed
to the situation, where there is rank reduction in II. In that case we need to build a
Metropolis-Hastings step in the Gibbs sampler to generate the a and 35 parameters.

2The subscript corresponds to the fact that the priors are defined in an unrestricted error correction
[uec] model, see Section 6.2.
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7.4.1 Full Conditional Posterior Distributions
Full Conditional Posterior of the States

The derivation of the full conditional posterior of the state variables follows directly
from the derivation in the univariate case in Section 3.4. Since the state variables s,
j=1,...,nin S; are independent, they can be sampled separately using the full condi-
tional posterior distribution (3.35). The kernel of the full conditional distribution of s, ,
j=1,...,n,t=k+1,...T now reads

T . .

P54l ST\ {51}, ©.YT) o p(sjulsji-1,0) p(sjus1l50,0) [ F(Vi[Y' 7,57, ©),

i=t (7.25)
where f(V;|Y"! S ©) is defined in (7.11). The initial k values of the states can be
sampled using a full conditional posterior distribution like (3.36).

Full Conditional Posterior of p; and g;

The full conditional posterior distributions of p; and ¢;, j = 1,...,n are beta distributions
since according to (7.12)

NJEUU j,01
p(pi|ST, O\ {p;}, YT) o ;7 (1 — p;)™o

Nj 11 i10
p(q;1ST, O\ {g;}. Y7) oc g " (1 — g) Moo,

where N ; denotes the number of transitions from state i to state [ for the j-th state
variable.

(7.26)

Full Conditional Posterior of

It is easy to see from the conditional likelihood (7.12) that the full conditional posterior
of X is proportional to
1 T
P(ZIST, O\, YT) oc [Bf 720 exp(—ztr(E7H (Vi = N)(Yi = N)'+ 3 «e))
t=k+1 (7.27)

and hence the covariance matrix 3 can be sampled from an inverted Wishart distribution,
see Zellner (1971, p. 395).

Full Conditional Posterior of Ny, I'y and I'y

To derive the full conditional posterior distribution of Ny, 'y and I'; we write (7.7) as

t
®(L)Y, = ®(L)(To(t — 1)+ 1> Si+ Ni) + &
=2
k L(t—1) (7.28)
== 0L Tt M) | 'S, S | +e

j=1 1
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where &y = —I,. Without the ®; matrices, we have a multivariate regression model in the
parameters N7, I'g and I'; and the full conditional distribution would be matrix normal.
To reverse the order of ®(L) and the parameters (I'y Ty N7), we apply the vec operator to
both sides of (7.28). Using the vec notation and the fact that vec(ABC) = (C'® A)vec(B),
we can write (7.28) as a linear regression model and hence the full conditional distributions
of vec(Ny), vec(T'y) and vec(T';) are normal.

Full Conditional Posterior of IT and ®

To sample from the full conditional posterior of the autoregressive parameters we use that
conditional on Ty, Ty, N; and the states {S;}/_,, equation (7.7) can be seen as a multi-
variate regression model in the parameters IT and ®. From Zellner (1971, chapter VIII)
if follows that the full conditional posterior distribution of the parameter matrices are
matrix normal.

Sampling of a and (35

To derive the full conditional posterior distributions for a and B, we rewrite (7.9) such
that conditional on ®, Ny, I'g, I'; and the states {Sr}L_, it resembles the simple VAR(1)
model (6.7) considered in the previous chapter. Using Z; = Y; — N; we can write
k-1
AZ, — (i)iAZ_i:Oé,Z_,—H?
¢ ; ¢ B Zi1,+e (7.29)
AZt* = O{/BIZt*fl + Et,

where AZF = AZ, — Y ®,AZ,_; and Z; | = Y,_; — N;_;. The full conditional pos-
terior distribution of (v, 32) is given by the product of conditional posterior distribution
of a given (X,7%), puec(a|X, Z%), By given (X, a, Z*), Pyec(/2|X, a, Z*) and the condi-
tional posterior of A given (¥, «, Z*) evaluated in A = 0, puec(A2, @, Z*)[x=0. These
distributions are given in (6.28), where AZ* = (AZ; ... AZ})" takes the role of AY and
Z*, = (Zy_1...Zp_1) takes the role of Y_;. Note that this conditional posterior distri-
bution is the full conditional distribution since Z* is a function of the parameters ®, Ny,
'y and I'y.

As we already have discussed in Section 6.4 it is not possible to sample directly
from this distribution and we have proposed a Metropolis-Hastings sampling algorithm
in Section 6.4.1. Chib and Greenberg (1994, 1995) show that it is possible to build
such a Metropolis-Hastings step into the Gibbs sampling procedure. Briefly, draw «
from puec(a|X, Z*) and By from pye.(52|3, o, Z*), which are matrix normal distributions.
The probability of accepting this draw is given by the ratio of the conditional posterior
Puec(AX, @, Z*) | y=0 of the current drawing and the previous drawing, see Section 6.4.1 for
details about the Metropolis-Hastings step.

In the next section we propose a method to analyse the presence of (common) stochas-
tic trends in the multivariate Markov trend model.
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7.5 Bayesian Analysis of Common Trends

The Bayesian analysis of the presence of common trends in the multivariate Markov
trend model is based on the ideas in Chapter 6. In Section 7.5.1 we consider the analysis
of stochastic trends caused by unit roots in the autoregressive part of the model. In
Section 7.5.2 we propose a method to analyse common Markov trends, which proceeds in
a similar way.

7.5.1 Cointegration Analysis

To investigate the presence of common stochastic trends (cointegration), we may analyse
the posterior distribution of A, which results from the decomposition of IT in (7.22). From
(7.22) it follows that that A = 0 implies that the matrix IT has reduced rank and hence
the presence of common trends. However, in Section 6.2 we have already discussed that
a posterior odds ratio for rank reduction in IT based on decomposition (7.22) depends on
the order of the variables in Y;. To analyse the number of common stochastic trends or
the cointegration rank it is better to use the invariant decomposition of II as proposed in

Section 6.7
M= (aal) ( v (;1), > ( ﬁﬂi ) | (7.30)

where A* is an ((n —r) x (n —r)) matrix, 3 8, =1, ,, &/,a; =1, , and where a; and
(. are (n x (n—r)) matrices defined such that o/, = 0 and 3’ 3 = 0 like in (6.67). Note
that due to the normalisation restriction a; does not equal (—asa;* I,_,)" any more.
The decomposition in (7.30) is identified trough a singular value decomposition on II, see
(6.68). The matrix A* is based on the r smallest singular values of II and rank reduction
in II corresponds to A* = 0.

The diffuse prior for IT (7.21) implies via a Jacobian transformation the joint prior
p*(a, A%, )3, see Section 6.7. Appendix 6.C provides the Jacobian for the transformation
from II to («, A*, 3). The joint posterior of the model parameters is the product of the
joint prior times the likelihood function (7.13) as function of (a, A*, 3). This likelihood
function is denoted by £*(YT|Y* ©*), where we replace IT in © with (a, A*, 3) to obtain
©*. Unfortunately it is not possible to derive any conditional posterior densities for o, A*
and . However it is easy to sample these parameters in the Gibbs framework from their
full conditional distribution since we know how to sample II. To sample (o, A*, 3) from
its full conditional posterior distribution, we perform a singular value decomposition on
the sampled IT and compute a;, A* and  according to (6.70).

The analysis of the presence of one or more stochastic trends, can be done using
posterior odds ratios for A\* = 0. We start with assigning prior probabilities to every
possible rank of II

Pr[rank = 7], r=0,...,n, (7.31)

3The asterisk denotes again that the prior follows from the invariant decomposition, like in Chapter 6.
The same notation will be used for the likelihood functions and the posterior distributions.
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which implies prior probabilities to the number of stochastic trends (n — r). These prior
probabilities imply the following prior odds ratios [PROR]

Prlrank = 7]

PROR(r|n) = Pr[rank = n]’

r=0,...,n. (7.32)

The Bayes factor to compare rank r with rank n equals

f ‘CZCC(YT|Yk7 (—)ch) chc(@:cc) d@:cc (7 33)

where £*(YT|Y* ©) and p*(0*) denote the unconditional likelihood function and the
joint prior of the Markov trend stationary model (7.7) as function of («, \*, ) instead of
[1. The prior and likelihood of the error correction cointegration model (7.9) are defined
such that £, (YT|Y* ©r,) = L*(YT|Y* 0%)y—¢ and p’.(0%.) = p*(O*)|x—o with

©:.. = 0"\{\*}. The posterior odds ratios to compare rank r with rank n equals prior

odds ratio times the Bayes factor, POR(r|n) = PROR(r|n) x BF*(r|n), and the posterior
probabilities for every rank are simply

BF*(r|n) =

POR(r|n)

Pr{rank = r|Y]| = —
rank =)= S BOR i)

r=0,...,n. (7.34)

In Section 6.7.2 we have seen that the Bayes factor (7.33) can be computed using
the Savage-Dickey density ratio of Dickey (1971), which states that the Bayes factor for
A* = 0 equals the ratio of the marginal posterior density and the marginal prior density
of \*, both evaluated in A* =0
prA YT |x—0

P*(A*)[x=o
This means that we need the marginal posterior density of A\* to compute this Savage-
Dickey density ratio. Since the full conditional distribution of A* is of an unknown type,
we have to use an approximation of the full conditional posterior density of A* in combi-
nation with importance weights to compute the marginal posterior of A*, see Chen (1994).
A suitable approximation is given in (6.78) with AY and Y_; replaced by AZ* and Z* |,
which are defined at the end of Section 7.4. Another solution to compute the marginal
posterior density of A\* in zero is to use a non-parametric kernel estimator on the \* draws,
see e.g. Silverman (1986). As we have specified an implicit diffuse prior for A*, the height
of the marginal prior in A* = 0 is not defined. Therefore, we take for p(A*)| <~ the value
(27) 72" as in (6.66), which is related to the posterior information criterion [PIC]
of Phillips and Ploberger (1994), see the end of Section 6.6.1 and Kleibergen and Paap
(1996) for details.

BF*(r|n) =

(7.35)

7.5.2 Common Markov Trends Analysis

In Section 5.2 we have already seen that rank reduction in I'; implies the presence of
common stochastic Markov trends. Therefore, we can we can follow the same strategy as
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for analysing rank reduction in II to analyse the presence of common stochastic Markov
trends. The decomposition for I'; reads

n=tw (5 &) (s ) (76

where (* is an ((n — m) X (n — m)) matrix, v\v, = I, , ¢/ 6, =1, ,, and 7, and
0, are (n x (n — m)) matrices defined such that 4/, = 0 and ¢ = 0, ¢f. (7.30).
Decomposition (7.36) corresponds to a singular value decomposition on I'y like in (6.68).
The (* parameters are identified through the m smallest singular values of I'y such that
the presence of common stochastic Markov trends corresponds to (* = 0.
The analysis of rank reduction in I'y proceeds in the same way as rank reduction in
I1. The decomposition (7.36) relates the prior on I'y (7.19) to the joint prior on (v, (*, ),
see Section 6.7 and 7.5.1. The posterior is given by the product of the prior times the
likelihood (7.13). Now, the Bayes factor for m versus n stochastic Markov trends can
be computed using the Savage-Dickey density ratio of Dickey (1971) for ¢* = 0. This
Bayes factor equals the ratio of the marginal posterior density of (* and the marginal
prior density of (* both evaluated in (* =0
* (% T
BF* (mln) = 2 (CY7)
p*(¢*)

Prior odds ratios PROR(m|n), which lead to posterior odds ratios POR(m|n) can be
constructed in the same way as in the previous section.

To calculate these Bayes factors we can perform a singular value decomposition on the
sampled I'; parameters, solve for (* like in (6.70) and use a kernel estimator [see Silverman
(1986)] to evaluate the marginal of (* in zero. For the height of the marginal prior density
of (* we can perform a singular value decomposition on draws from the marginal prior

together with a kernel estimator. In case of a diffuse prior for I'; we can take the factor
_1

(2m) =20 for p(C*)] ¢ —o.

Since the number of possible values of the state variable S; is 2", the multivariate
Markov trend allows for large n many slope values of the trend for the univariate series
in Y;. In practice, it may be interested to link the state variables with stages of the
business cycle so that an expansion and a contraction regime for each series is sufficient.
Furthermore, one wants to test whether several series have a common business cycle so
that only one s, is sufficient to describe the Markov trend and the business cycle. A direct
method to test for this possibility it to restrict some parameters in I';. For instance when
n = 2 one may consider

<=0 (7.37)
¢*=0

INRTE
Iy = ’ 7.38
! ( Pior Troe ) ( )

so that I'; 9o = 0 implies that s, is sufficient to describe the business cycle for the 2-
dimensional time series Y;. The Bayes factor for I'; 29 = 0 can be computed using a
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Savage-Dickey density ratio

p(F1722‘YT)|F1,22=0
P(T122) 1) 20=0

BF(T'y 92) = , (7.39)

where p(I'; 22|Y'T) is the marginal posterior density and p(I'; 22) denotes the marginal prior
density of ' 2o. Note that Bayes factors for a common Markov trend using decomposition
(7.38) is likely to depend on the order of the variables in Y;.

7.6 Application

In this section we analyse the presence of stochastic trends in three simulated series and in
per capita income and consumption of the United States using multivariate Markov trend
models. The main focus of this section is the determination of the number of Markov
trends and stochastic trends caused by unit roots in the autoregressive part of the model.

7.6.1 Simulated Series

To illustrate the cointegration analysis in the presence of Markov trends we consider the
following data generating process [DGP]

}/:‘, = Nt+Zt7
2 4 0
Nt:Nt—1+<2>_<4>Sl,ta N1:<0>, (740)
AZt = HZt,1 + Et, Et NID(O, 12),

with three different parameter values for II

0 0
- (00),

—0.25
II: 11 = ( 0.95 > (1 —-1), (7.41)
—0.50 —0.50 1 -1
HI'H_< 0.25 —0.25><0 1)’
and hence for DGP I Z; contains two unit roots, for DGP II a unit root and a root 0.5 and
for the last DGP two roots of 0.5. The state variables {s;,}]_, are generated according
to a first-order Markov process with transition probabilities p; = 0.9 and ¢; = 0.6 and

contains the same realised values for the three simulated series.* Note that we impose in
(7.40) that Y; has one common Markov trend. The number of observations is 7' = 100.

4The simulated states and therefore the Markov trends are exactly the same as for the simulated series
in Section 3.6.1.
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Table 7.1. Posterior means with posterior standard deviations between paren-
theses and Bayes factors for the cointegration rank for the three DGPs.

par. DGP I DGP II DGP III
1.80 2.06 1.99
r (0.08) (0.06) (0.02)
0 2.03 2.06 1.99
(0.11) (0.06) (0.02)
—3.45 —3.80 —3.01
r (0.24) (0.20) (0.12)
! —4.12 —3.84 —3.96
(0.31) (0.19) (0.12)
1.20 0.68 —0.42
N (0.93) (0.80) (0.42)
! 1.96 1.16 0.12
(1.04) (0.74) (0.43)
» 0.90 (0.03) 0.90 (0.03) 0.91 (0.03)
¢ 0.61 (0.11) 0.64 (0.11) 0.63 (0.11)
—0.09 —0.02 —0.35 0.27 —0.67  0.18
- (0.07)  (0.04) (0.09)  (0.09) (0.10)  (0.11)
—0.08 —0.07 0.35 —0.47 0.27 —0.62
(0.11)  (0.06) (0.08)  (0.09) (0.09)  (0.10)
0.88  0.01 1.25 —0.14 1.15 0.09
> (0.14)  (0.10) (0.19)  (0.13) (0.17)  (0.10)
0.01 1.09 —0.14 1.07 0.09  0.85
(0.10)  (0.16) (0.13)  (0.16) (0.10)  (0.17)
r In(BF*(r[2))! Pr[r|Y]? In(BF*(r]2)) Pr[r|Y] In(BF*(r|2)) Pr[r|Y]
0 11.86 1.00 —8.41 0.00 —927.11 0.00
1 4.76 0.00 3.16 0.96 —2.11 0.10
2 0.00 0.00 0.00 0.04 0.00 0.90

L A Bayes factor In(BF*(r|2)) > 0 denotes that the presence of (2 —r) common trends or r
cointegration relations is more likely than two cointegration relations.

2 Posterior probability of the cointegration rank (7.34) is based on equal prior probabilities
(7.31) for every rank r.
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To analyse the three simulated series, we consider the multivariate Markov trend model
(7.7), where we restrict I'; to be a (2 x 1) parameter vector and hence we only allow for
one unobserved state variable s;, in the model as in the DGP (7.40). The lag order of
the model k is equal to one, which is the same as in the DGPs. The priors for model
parameters are given in (7.15)—(7.17) and (7.21). The priors for I'y and 'y are flat on
the regions Gy = {T'y € R*|Ty > 0} and G; = {I'; € R?|T'y + I'; < 0} respectively, which
identifies the two regimes.

Table 7.1 shows the posterior results for the three simulated series. The posterior
means of parameters match the true values of the DGP quite well. All posterior means
are within two posterior standard deviations from their true value. The fact that the
simulated series contain more observations with s;; = 0 than with s;; = 1 shows up in
the posterior standard deviations of the parameters. These standard deviations are larger
for ¢g; and I'; than for p; and I'y. Note further that the posterior standard deviations of
the elements of Ny increase with the number of unit roots in the DGP. Similar findings
are reported in Section 3.6.1.

To analyse the number of non-Markov stochastic trends in the series, or in other words
the rank of II, we consider the invariant decomposition of II in (7.30). Bayes factors
for the rank of IT are computed using the Savage-Dickey density ratio, as described in
Section 7.5.1. Since we have specified an uninformative prior for II, these Bayes factors
are based on the factor (2r)~2("™"" for the prior on A* in (7.35). We assign equal prior
probabilities to every cointegration rank, i.e. Pr[rank = r] = %, r = 0,1,2. The Bayes
factors and the posterior probabilities for the cointegration rank are shown in the bottom
half of the table. The results for DGP I show that every rank reduction in II is very likely
and the posterior probability for two unit roots (zero cointegration relations) is one. For
DGP II, a model with rank one is more likely than a model with rank two, but a model
with IT = 0 is not very likely. The Bayes factors imply 0.96 posterior probability on the
true cointegration rank. For DGP III the posterior probability for the true cointegration
rank is 0.90. The Bayes factors show that rank reduction in II is unlikely.

The three simulated series show the possibility of Bayesian analysis of the cointegration
rank in the presence of Markov trends. Since only three simulated series have been consid-
ered, it must be stressed that no general conclusion can be drawn about the performance
of the approach. In the next subsection we analyse per capita consumption and income
of the United States in more detail.

7.6.2 US Income and Consumption

In this section we consider seasonally adjusted real gross domestic product [GDP] and con-
sumption per capita for the period 1957.1-1992.1V. The series are obtained from Citibase.
Figure 7.2 shows a plot of the logarithm of the two series. Both series increase over the
sample period with short periods of decline, for instance in the middle and the end of
the 1970s. These periods of decline are more pronounced in the income series than in the
consumption series but seem to occur roughly simultaneously. The average growth rate
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Figure 7.2. The logarithm of US per capita income and con-
sumption, 1957.1-1992.1V.

of consumption series is 0.41% and for the income series 0.38%.

To analyse the series we consider the multivariate Markov trend stationary model (7.7)
for Y; = (y; ¢;)', where 3, and ¢; are 100 times the logarithm of the per capita income
and the consumption series, respectively. The order of the VAR part of the model & is
arbitrarily set to one to avoid overparametrisation, since the multivariate Markov trend
specification already contains many parameters. The prior distributions of the model
parameters are given by (7.15)—(7.21). To identify the regimes for the Markov trend we
define Gy = {Ty|Ty >0} and G; = {I4|Ty +T11 < To+ T3+ s < Ty} where Ty,
denotes the i-th column of I';. This implies the following four Markov trend slope values
for Y, in order of magnitude Iy + F171 <Ty+ Fl,l + FLQ <Ty<Tg+ FLQ. Note that
this prior already imposes a structure on the Markov trend. It assumes the same order of
magnitude in the slopes of the Markov trend for both series.

The posterior means with posterior standard deviations between parentheses of the
posterior distributions of the model parameters read

Yi =N+ 7,
438.9 0.26 —92.02  0.89
| s (0.18) - (0.59) (0.35) S14
Ne==1 4621 031 |V st o060 |\ s ) ’
(0.5) (0.06) (0.35) (0.16)
~0.29  0.54 0.69 0.18 (7.42)
| 013)  (044) o | (018) (0.10)
AZi=1 006 —003 |21 ten withI=1 "L o
(0.08)  (0.14) (0.10) (0.06)

The posterior means of the transition probabilities of s;; are p; = 0.93 and ¢; = 0.45 with
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posterior standard deviations 0.03 and 0.20 respectively. The posterior means of p, and
¢z are 0.81 (0.07) and 0.65 (0.18) with posterior standard deviations between parentheses.
Before analysing the business cycles in the series, we first focus on the trend specification.
The results in (7.42) imply the posterior means of the four Markov trend slope values.
These are —1.76, —0.87, 0.26 and 1.15 for the income series and —1.00, —0.31, 0.31 and
1.00 for the consumption series. Note that the negative slopes of the Markov trend in
income are larger in absolute value than in consumption. The same is true for the largest
positive slope.

To analyse the presence of the stochastic trends in the two series, we first consider the
possibility of a common Markov trend. The prior on the parameter matrix I'y implies via
decomposition (7.36) a prior on (*. As we already have seen in Section 7.5.2 a common
Markov trend corresponds to (* = 0. Using the Savage-Dickey density ratio we can
compute the Bayes factor for ¢(* = 0 (7.37). The logarithm of this Bayes factor equals
1.73, which suggest the presence of a common Markov trend in consumption and income.
Since we have used a diffuse prior for the I'y parameter, the Bayes factor is constructed
based on the (v/27)~! factor for the prior of ¢*.

To analyse further simplifications of the Markov trend specification in the model, we
use the decomposition of I'; in (7.38). Note that an analysis based on this decomposition
may be sensitive to the ordering of the variables in Y;. Since the I'j parameter belonging to
y; (=0.26) in the previous model lies within two posterior standard deviations from zero,
we restrict the number of possible states in the income series, i.e. we put a zero restriction
in Iy which concerns income variable y, (1,12 = 0). The prior for the multivariate
Markov trend stationary model with T’y equal to (7.38) is again given by (7.15)-(7.21)
with Gy = {T'o|Tp < 0} and G, = {['1|I'y + [';; < 0}. The posterior means with posterior
standard deviations between parentheses of the model parameters of this model are given
by

}/:‘, == Nt + Zt;
439.0 0.86 146 0
| s (0.09) B (0.57) S14
Ne==1 4622 | T| 031 |C-UFL 056 038 ( - )
(0.6) (0.07) (0.16) (0.13)
—0.54  0.63 0.62 0.23 (7.43)
_ (0.15)  (0.22) . | (011 (0.06)
AZi=1 96 029 |Zrtes withI=1 o g3 |
(0.07)  (0.09) (0.06) (0.06)

with p; = 0.85 (0.06), ¢ = 0.76 (0.07), p, = 0.32 (0.23) and ¢» = 0.53 (0.27). The
posterior means of the slopes of the Markov trend for the income series equal —0.60 and
0.86. For the consumption series we have one negative slope —0.25 and three positive
slopes 0.13, 0.31 and 0.69. The posterior mean of I'y 95 is 0.38 does not lie within two
posterior standard deviations from zero indicating no common business cycle. However,
the posterior expectations of the state variable sy, fluctuate intensively within the region
0.25 and 0.90 without displaying a clear switching pattern, see Figure 7.3. Hence, it seems
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Figure 7.3. Posterior expectation of the state variable s, for
model (7.43).

that this state variable mimics random walk behaviour. The posterior expectation of the
first state variable is similar to Figure 7.4 and displays clear switches between two states.
Unreported results show that a zero restriction in I'y which concerns the ¢; variable leads
to the same conclusion. Since we already have seen in Section 5.3 that unit roots in Z;
introduce a cumulative sum of ; type stochastic trend in Y;, we decide to remove the state
variable sy from the multivariate Markov trend specification and analyse the number of
unit roots in the autoregressive part of the model.

To determine the cointegration rank, we consider the multivariate Markov trend model
(7.7), where we restrict I'y to be a (2 x 1) parameter vector and hence we allow only for
one unobserved state variable s;;. The priors for the model parameters are the same
as in the previous model. To identify the two regimes in the Markov trend we define
Go = {Iy € R*|Ty > 0} and G; = {I'; € R*|Ty + I'; < 0}. This leads to the following
posterior means with posterior standard deviations between parentheses of the model
parameters

}/:‘, = Nt + Zt;
439.1 1.02 1.67
| s (0.08) | 016
Ne=—1 401 || 073 [E—D 0.81 |
(0.6) (0.06) (0.08)
~0.52  0.60 0.62 0.23 (7.44)
B (0.11)  (0.15) . [ (0.10) (0.05)
AZr=1 94 o7 |Z1ten withI=1 000 o |
(0.06) (0.08) (0.05)  (0.05)

with posterior means of the transition probabilities p; = 0.87 (0.04) and ¢; = 0.76 (0.08).
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To analyse the number of non-Markov stochastic trends we consider the decomposition of
IT as described in (7.30). The diffuse prior on IT implies a prior on A*. Bayes factors for
rank reduction (7.33) are computed using the Savage-Dickey density ratio (7.35). Since
we have specified an uninformative prior for II, the Bayes factors are computed using
the (2r)~2™"? factor. The logarithm of the Bayes factors for \* = 0 and Il = 0 are
In(BF*(1]2)) = 5.20 and In(BF*(0[2)) = —3.26, respectively. Under equal prior probabil-
ities Prjrank = r] = %, r = 0,1,2, this implies 99% posterior probability for the model
with one cointegration relation, see (7.34).

The Bayes factors suggest a multivariate Markov trend model with one cointegration
relation imposed (7.9). The priors for the model parameters are the same as for the
previous model. The prior for @ and 3 (7.24) follows from the diffuse prior on II, see the
end of Section 7.3. The following posterior means and standard deviation result from the

Bayesian analysis®

Y, =N, + Z,,
439.0 0.74 157
| s (0.05) | (0
Ne=—1 4600 | | 04g |~V 0.68 |1
(0.6) (0.05) (0.13)
0.52 0.63 0.24 (7.45)
_ (0.13) ( 1 —1.20 ) . . (0.13) (0.06)
AZy = 0.25 (014) ) Dt e With X =100 039 |
(0.06) (0.06) (0.05)

p1 = 0.87 (0.04) and ¢; = 0.76 (0.08). Figure 7.4 shows the posterior expectations of
the state variable s;,. If we identify the regimes based on the fact whether E[s; Y] is
smaller or larger than 0.5, we detect the following periods which correspond to s;; = 1:
1957.1 — 1958.11, 1960.1T — 1960.1V, 1966.11 — 1967.1V, 1968.1V — 1970.11, 1974.11T - 1975.1,
1979.1V-1980.11, 1981.1V-1983.1, 1984.1V-1987.1 and 1990.11-1991.1. These periods cor-
respond reasonably well with the low growth periods in the income and consumption
series. The posterior means of the growth rates of the income series are 0.74% during
an expansion regime and —0.83% (= 0.74 — 1.57) during a contraction regime. For the
consumption series we find 0.48% and —0.20% (= 0.48 — 0.68) respectively. Hence, during
recessions the negative growth rate in consumption is smaller in absolute value than the
growth rate in income. To correct for this difference in the growth rates, the growth rate
in income has to be larger than the growth rate in consumption during expansions.

The posterior mean of cointegration relation parameter 3, = —1.20 does not differ
more than two standard errors from one. The adjustment parameters o are both negative,
which indicates that there is no adjustment towards the equilibrium for the consumption
equation. This phenomenon is not due to the non-linear Markov trend in the model,
since unreported results show that this also arises in a simple VAR model with and even

5Note that we have to incorporate the Metropolis-Hastings step in the Gibbs framework to sample
from the full conditional posterior of a, see the end of Section 7.4. In this step less than 10% of the
candidate draws for a were rejected.
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Figure 7.4. Posterior expectations of the state variable s, ; for
model (7.45).

without a deterministic trend instead of a Markov trend, see also (7.46). Note that this
does not imply that the series move away from the equilibrium, since the adjustment of
income towards the equilibrium is larger than the non-adjustment in consumption, see
also Johansen (1995, p. 39-42). Reduced rank Markov trend cointegration is not likely
since based on the posterior means 3'I'; equals 1.57—1.20 x 0.68 = 0.75, which is relatively
far away from zero.

Figure 7.5 shows the difference of the logarithm of US income and consumption. The
shaded areas correspond to the periods where E[s;;]Y7] > 0.5. In these periods the
posterior means of the slope of the Markov trend for the income series is smaller than for
the consumption series, which results in a negative slope of about —0.63% (= —0.83+0.20)
in the cointegration relation. The positive slope of 0.26% in the cointegration in the other
periods results from the larger positive slope of the Markov trend for the income series.
The unconditional expectation of the slope of the Markov trend in the cointegration
relation follows from the unconditional probability that s;, = 1, i.e. Pr[s;; = 1] =1 =
(1—=p1)/(2—p1 —q1), see Section 2.2. Based on the posterior means of p; and ¢; of model
(7.45) this unconditional expectation of the slope in the cointegration relation is about
—0.03%, which is almost zero. This implies that the unconditional expectation of the
slopes of the Markov trends in the per capita income and consumption series are roughly
the same.

Finally, to analyse the role of the Markov trend, we consider a multivariate VAR(1)
model without Markov trends, i.e. model (7.7) with I'; = 0 and & = 1. The priors for the
parameters of this model are given by (7.15)—(7.16) and (7.21). For [y we take a diffuse
prior, p(T'g) o 1. The posterior means with standard deviations between parentheses of
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Figure 7.5. Difference between the logarithm of US per capita
income and consumption, 1957.1-1992.1V. The shaded areas
correspond to recessions.

this model are

Yi =N+ 2y,
438.7 0.41
| ay (0.09) B
Ne = 462.3 0.44 (t-1)
(0.7) (0.08)
—0.17  0.20 132 0.52 (7.46)
_ (0.05) (0.06) . | (0.16) (0.08)
AZi=1 _go6 007 |Z-rtee withI=1 00 049
(0.03) (0.04) (0.08) (0.06)

Removing the Markov trend from the model results in larger posterior means of the
elements of the covariance matrix. The posterior means of the slopes of the deterministic
trend are 0.41 for the income series and 0.44 for the consumption series. Note that
the difference in the growth rate (=0.03%) is the same as the posterior mean of the
unconditional expectation of the slope in the cointegration relation in the previous model.
The flat prior on IT implies via decomposition (7.30) a prior on A*. To analyse rank
reduction, we consider Bayes factors for A* = 0 and II = 0. Since we have specified
an uninformative prior for II these Bayes factors are computed using the Savage-Dickey
density ratio with the factor (27) 2" ™" in the denominator. The logarithm of the
Bayes factors equal In(BF*(1]2)) = 4.88 and In(BF*(0]2)) = 10.06. Under equal prior
probabilities Prjrank = r] = %, r = 0,1,2 the posterior odds ratios lead to assigning
99% posterior probability to the model with two stochastic trends. Hence, the evidence
for cointegration disappears if we remove the Markov trend from the model. This may
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be explained by the fact that the Markov trend in the model (7.45) implies that the
cointegration relation between consumption and income does not have a constant mean,
see Figure 7.5. Therefore, neglecting the Markov structure does not results in a stationary
cointegration relationship between the two series.

In summary, the analysis of the presence stochastic trends in US per capita income and
consumption using multivariate Markov trend models shows that specifying the Markov
trend is the most difficult task. We have seen that if the model does not contain enough
information for more than one Markov trend, the extra Markov trend can mimic random
walk behaviour. It can also happen that overspecification of the Markov trend leads to
modelling one or more outlying observations as a regime. Considering these outlying
observations as a possible regime in the Markov trend may result in a better description
of the multivariate time series, but is not likely to result in better forecasts since it leads
to larger forecast uncertainty. If one however has strong beliefs about the presence of
more than one Markov trend, it is better to impose informative priors to identify the
regimes. Prior information can also enter the model by imposing a priori more structure
on the multivariate Markov trend, for instance imposing that a regime change in one series
happens one period earlier than in the other series or limiting the number of transitions
between the states by restricting the transition probabilities, see also Dwyer and Potter
(1996) for other suggestions.

7.7 Concluding Remarks

In this chapter we have presented a multivariate version of the Markov trend model of
Chapter 3. The model incorporates a multivariate Markov trend specification, which
allows for different stochastic Markov trends for the multivariate time series. The devia-
tions from the multivariate Markov trend are modelled by a vector autoregressive model.
Unit roots in this VAR specification also introduce stochastic trends. To analyse the
number of stochastic trends, we have proposed a Bayesian framework based on the ideas
in Chapter 6. The practical usefulness of this framework has been shown in stochastic
trend analysis of three simulated series and in the analysis of seasonally adjusted US per
capita income and consumption. The latter two series seem to have one common Markov
trend plus one non-Markov common stochastic trend. The posterior results of the Markov
trend show that during recessions the negative growth rate of consumption is smaller in
absolute value than the growth rate of income. This is compensated by a larger positive
growth rate in income than in consumption during the expansion periods. Removing the
common Markov trend from the model suggest the presence of two stochastic trends and
therefore no cointegration relation amongst the two series.

The model in this chapter can be extended to analyse seasonally unadjusted series, like
in Chapter 4. Therefore, we need to extend the analysis of unit roots in vector autoregres-
sive model to include the presence of possible seasonal unit roots and seasonal cointegra-
tion, see Engle et al. (1993) and Lee (1992). Other extensions include Markov switching
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cointegration, where the parameters modelling the cointegration relations and/or adjust-
ment parameters are different in the regimes like in threshold cointegration, see Balke and

Fomby (1997).



Chapter 8

Summary and Conclusions

In this thesis we analysed trends in quarterly observed macroeconomic times series using
Markov trend models. The analysis has been partitioned in two parts. In the first part we
have focused on modelling univariate time series. The analysis of trends in multivariate
time series has been considered in the second part.

The basic model in the first part of the thesis consists of a Markov trend where the
deviations from the Markov trend are assumed to be an autoregressive process. The
Markov trend is a stochastic trend where the direction of the slope depends on the value
of an unobserved two-state first-order Markov process. Since the Markov trend allows for
two possible slope values, the Markov trend is more flexible than a linear deterministic
trend but more restricted than a random walk plus drift specification. Therefore, the
Markov trend has less forecast uncertainty than the random walk.

The autoregressive deviations from the Markov trend may also results in the presence
of a stochastic trend in the model. In most studies a unit root in the autoregressive
polynomial is imposed, which implies that one assumes that the series can be described
by a Markov trend plus a random walk. Sometimes this trend specification may be too
variable to describe the trend in a time series and results in too much forecasts uncer-
tainty. For instance, in Chapter 3 we show that quarterly observed seasonally adjusted
German industrial production can be better described within-sample and out-of-sample
by a Markov trend stationary model.

The two slopes of the Markov trend can be linked with the stage of the business cycle
to model the growth rate in recession and expansion periods. The transition probabilities
of the Markov process determine the expected duration of recessions and expansions and
inference about regimes changes can be used to determine turning points. Since the
Markov trend models the trend and the business cycle simultaneously, it is important
for business cycle inference to have a proper specification of the trend of the time series
in the Markov trend model. Furthermore, since the idea behind the Markov trend is
that recessions are recurrent events, it is necessary for business cycle analysis that the
characteristics of every recession are roughly the same. If this is not the case, the Markov
trend may not capture all the recession periods. For instance, the empirical example of
Chapter 3 shows that for German industrial production the Markov trend model does not
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capture the recession in the 1960s. Contrary to the other recession periods, this recession
was followed by a period of very high growth to reach the same growth path as before
the recession. This problem may be solved by allowing for an extra regime in the Markov
trend, but inference about the parameters modelling this extra regime will be totally
based on the information in the recession period in the 1960s.

Business cycle analysis is usually based on seasonally adjusted time series. Seasonally
adjusted series are often constructed from seasonally unadjusted series via a sequence of
moving average operations. Therefore, some observations of a seasonal adjusted series
may consist of a weighted average of recession and expansion observations. This may
influence the inference on the business cycle, especially the dating of turning points. Ad-
ditionally, many studies show that the business cycle and the seasonal fluctuations are
not independent, which suggest that seasonal variation may contain valuable information
about the business cycle. To model the business cycle and the seasonal variation simul-
taneously, we have extended the Markov trend model with a seasonal component. The
seasonal component consists of seasonal dummies and incorporates the possibility that
seasonal mean shifts may coincide with changes in the stage of the business cycle. Fur-
thermore, we allow for changes in the seasonal pattern due to seasonal stochastic trends.
The analysis of quarterly observed German unemployment with the (seasonal) Markov
trend model shows that there is a difference in the estimated duration of recession and
expansion periods and in the dating of turning points for the seasonally adjusted and un-
adjusted series. After correcting for different growth rates during recession and expansion
periods, the seasonal pattern in the unemployment series seems to be constant.

In the second part of the thesis we have considered a multivariate version of the
univariate Markov trend model for the analysis of multivariate time series. The model
consist of a multivariate Markov trend and the deviations from this trend follow a vector
autoregressive process. The multivariate Markov trend specification consists of correlated
univariate Markov trends. Just as in the univariate model, imposing unit roots in the
vector autoregressive polynomial corresponds to the assumption of random walk type
stochastic trends in the multivariate time series.

Just as in the univariate case, the slopes of the Markov trend can be linked with the
stages of the business cycle. It allows for different business cycles in every univariate se-
ries, for instance different turning points and durations of recession and expansion periods.
However, there may be not enough information in the data to analyse a general multi-
variate Markov trend. In practice, it may happen that one of the Markov trends mimics
the behaviour of a random walk stochastic trend, as the example in Chapter 7 shows, or
that it models one or two more or less outlying observations as a regime. Although the
latter possibility is interesting, this indicates an overspecification of the Markov trend. To
limit the number of Markov trends, we have considered common Markov trends. Com-
mon Markov trends occur if a linear combination of two series, which contain a Markov
trend, does not contain a Markov trend. Additionally, we have analysed the number of
(common) stochastic trends resulting from unit roots in the vector autoregressive part of
the model. The determination of the number of Markov trend can be based on inference,
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but if the data do not contain enough information it may be wishful to impose a prior:
some structure, like common Markov trends. As a special case we have considered the
situation of common business cycles, where the turning points and hence the expected
duration of recession and expansion periods in time series are the same. The empirical
illustration in Chapter 7 suggest that quarterly observed seasonally adjusted per capita
income and consumption of the United States have one common Markov trend, which
can be interpreted as a common business cycle and one common random walk trend. The
posterior results of the Markov trend show that during recessions the negative growth
rate of consumption is smaller in absolute value than the growth rate of income. This is
compensated by a larger positive growth rate in income than in consumption during the
expansion periods. If we remove the Markov trend from the model there is no posterior
evidence for common stochastic trends in the series anymore.

For the inference in the Markov trend models we have chosen a Bayesian approach.
The inference has been based on a relatively diffuse prior specification to let the data
information in the likelihood dominate the inference. Informative priors can easily be
included in the analysis. However, one has to be careful for including strong prior infor-
mation, which is not in accordance with the information in the data. Since the number
of observations in the recession periods is relatively small, one may expect that posterior
results for parameters which model the recessions are very sensitive to prior information
for these parameters. The determination of the appropriate trend specification in the
time series has been based on posterior odds ratios. For the univariate Markov trend
models, we have build on available Bayesian methods, while for the multivariate models,
we have developed a new Bayesian framework to analyse the number of stochastic trends.
The practical usefulness of these posterior odds ratios has been illustrated with simulated
examples. A topic for further research is to analyse the sensitivity of the results with
respect to several prior specifications.

Alternative specifications to model business cycle characteristics are threshold au-
toregressive [TAR| models, see e.g. Potter (1995) and smoothed threshold autoregressive
[STAR] models, see e.g. Terdsvirta and Anderson (1992). Instead of transition probabil-
ities like in the Markov trend models, a change in regime occurs if a lagged value of the
times series exceeds a certain threshold level. These models allow for different dynamic
structure during recession and expansion periods for the first or fourth differences of the
series and permit even explosive dynamic behaviour in some regimes. A regime dependent
constant is usually added in a linear way to the autoregressive model, so that there is
no explicit modelling of the trend. A nice interpretation of different growth rates during
recession and expansion periods as in the Markov trend models is therefore not possi-
ble. Due to the complex structure of these models, the characteristics of the estimated
threshold model usually have to be analysed using Monte Carlo simulations.

Just as in the threshold models we may allow for different dynamic structures in re-
cession and expansion regimes in the Markov trend models considered in this thesis. It
remains however to be seen whether there is enough information in the relatively small
number of recession observations for this extensions, since this may lead to a substantial
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increase in the number of parameters modelling the recession. A more promising strategy
to extend the basic Markov trend model is to consider time varying transition probabili-
ties. Durland and McCurdy (1994) consider transition probabilities, which depend on the
number of periods that the process has been in the regime. Filardo (1994) and Diebold,
Lee and Weinbach (1994) consider logistic functions of explanatory variables to model the
transition probabilities. Possible explanatory variables are functions of the lagged values
of the time series or exogenous variables, for instance leading indicators. For a multivari-
ate modelling of macroeconomic time series using Markov trend models, it seems better
to develop a priori model structures than to simplify general models via a sequence of
tests. Model structures, which model common business cycles as for instance in Kim and
Yoo (1995) or where regime switches in one variable help to forecast regime switches in
other variables seem interesting, see e.g. Phillips (1991a).

In this thesis we have modelled the deviations from the trend with autoregressive
processes with uncorrelated normal distributed errors. FExtensions to moving average
models and to e.g. t-distributed errors are of course possible. Geweke (1993) provides
Bayesian techniques to include ¢-distributed errors in a time series model. It will however
make the Markov trend less important since under the assumption of ¢-distributed errors
deviations from a deterministic linear trend are more likely, see Hoek, Lucas and van
Dijk (1995) for a similar result. Kleibergen and Hoek (1995) and Chib and Greenberg
(1994) show that Bayesian analysis of univariate time series models with moving average
errors is feasible. Extending the vector autoregressive model with moving average errors
is still a topic for further research. Furthermore, it seems interesting to examine how in
a Bayesian analysis the initial observations in autoregressive moving average models have
to be treated.



Nederlandse Samenvatting
(Summary in Dutch)

Veel macro-economische tijdreeksen, zoals industriéle productie en bruto nationaal pro-
duct, worden gekarakteriseerd door lange perioden met positieve groei, de expansie peri-
oden, en korte perioden met negatieve groei, de recessies. Wanneer de korte recessie
perioden gezien worden als tijdelijke afwijkingen van de lange termijn positieve groei, dan
wordt de lange termijn groei in deze tijdreeksen meestal beschreven met een lineaire deter-
ministische trend. Vaak blijkt deze lineaire trendspecificatie met een constante groeivoet
te restrictief om de trend in de tijdreeks te beschrijven, bijvoorbeeld wanneer de tijdelijke
afwijkingen van de lange termijn groei een permanente invloed hebben op de toekomstige
waarde van de tijdreeks. Daarom wordt de deterministische lineaire trend vaak uitgebreid.

Een populaire uitbreiding van de lineaire trend is het toevoegen van een kansvariable
in de trendspecificatie, zodat de richting van de trend in elke periode niet deterministisch
maar stochastisch is. De bekendste specificatie in dit verband is de stochastische wande-
ling. Deze bestaat uit een som van ongecorreleerde schokken, die voortkomen uit een
continue kansverdeling. Schokken in elke periode hebben een permanente invloed op
toekomstige waarden van de tijdreeks. Er wordt bij deze trendspecificatie echter geen
onderscheid gemaakt tussen de invloed van schokken tijdens recessie en expansie peri-
oden. Een alternatieve trendspecificatie, die schokken tijdens recessies en expansies wel
asymmetrische behandelt, is de Markov trend. Dit is een stochastische trend, waarbij
de richting van de trend bepaald wordt door een niet-waargenomen eerste orde Markov
proces met twee toestanden. De overgangskansen van het Markov proces modelleren de
overgangen tussen recessies en expansies. Dit impliceert dat de huidige richting van de
Markov trend afhankelijk is van de richting van de trend in de vorige periode, hetgeen
niet van toepassing is voor de stochastische wandeling. Aangezien het aantal mogelijke
richtingen van de Markov trend ook nog beperkt is tot twee, is deze minder flexibel dan
de stochastische wandeling, die een continu scala aan mogelijke richtingen van de trend
toelaat.

Naast het modelleren van de trend in macro-economische tijdreeksen, is de Markov
trend ook geschikt voor het analyseren van conjunctuurcycli. Aangezien de twee richtingen
van de Markov trend corresponderen met de groeivoeten in recessie en expansie peri-
oden, kan de analyse van regime veranderingen gebruikt worden voor het bepalen van
omslagpunten. De overgangskansen van het Markov proces bepalen de verwachte duur
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van recessie en expansie perioden. Voor het modelleren van de afwijkingen van de trend
wordt meestal een autoregressief proces gekozen. Vaak modelleert men echter de eerste
verschillen van de afwijkingen met een autoregressief proces, hetgeen komt overeen met
veronderstelling van de aanwezigheid van een Markov trend plus een stochastische wande-
ling in de tijdreeks. Het analyseren van de lengte en de omslagpunten van de conjunctuur-
cyclus blijkt afhankelijk te zijn van de trendspecificatie. Dit is niet verwonderlijk aangezien
de trend en de conjunctuurcyclus door de Markov trend simultaan gemodelleerd worden,
en het toevoegen van een extra stochastische trend de schattingsresultaten van de Markov
trend beinvloedt. Een adequate trendspecificatie is daarom gewenst.

In dit proefschrift beschouwen we methoden voor het analyseren van trends in macro-
economische tijdreeksen. We beperken ons tot de hiervoor besproken trendspecificaties.
De analyse vindt plaats vanuit een Bayesiaans perspectief. In tegenstelling tot een
klassieke benadering, wordt bij een Bayesiaanse analyse de onzekerheid in parameters
meegenomen, bijvoorbeeld bij het bepalen van omslagpunten van de conjunctuurcyclus
en bij het bepalen van voorspelonzekerheid. De Bayesiaanse analyse in dit proefschrift
is gebaseerd op niet-informatieve prioren en kan gezien worden als uitgebreide analyse
van de informatie in de aannemelijkheidsfunctie. De onzekerheid in de uitkomsten wordt
gedomineerd door de variatie in de tijdreeksen zonder grote invloed van priorspecificatie.
Informatieve prioren kunnen echter op eenvoudige wijze worden ingebracht in de analyse.

Het proefschrift is opgebouwd uit twee delen. In het eerste deel beschouwen we het
modelleren van de trend in univariate tijdreeksen. Het tweede deel behandelt trends
in multivariate tijdreeksen, waarbij we ons concentreren op het analyseren van gemeen-
schappelijke trends. De inleiding en motivatie voor het proefschrift worden gegeven in
Hoofdstuk 1. Bovendien bevat dit hoofdstuk een kort literatuuroverzicht van het gebruik
van Markov processen bij het modelleren van macro-economische en financiéle tijdreeksen.

Hoofdstuk 2 geeft een korte inleiding in het modelleren van de trend in univariate
macro-economische tijdreeksen. We beschrijven verschillende veel gebruikte trendspe-
cificaties, waaronder de lineaire deterministische trend, de stochastische wandeling en
de Markov trend. Voor de genoemde trendspecificaties wordt de nauwkeurigheid van
het beschrijven van de trend binnen de steekproef vergeleken met voorspelonzekerheid.
We laten zien dat een trendspecificatie, die in elke periode een groot aantal mogelijke
richtingen van de trend toelaat, resulteert in een grotere voorspelonzekerheid dan een
specificatie met slechts een beperkt aantal mogelijke richtingen. Daarom zal onder-
specificatie van de trend in een tijdreeks ten onrechte leiden tot een kleine voorspel-
onzekerheid en een te flexibele beschrijving van de trend binnen de steekproef tot een
te grote voorspelonzekerheid. Tot slot besteden we aandacht aan het modelleren van de
afwijkingen van de trend door middel van autoregressieve modellen. We laten zien dat
een eenheidswortel in de autoregressieve structuur de aanwezigheid van een stochastische
trend, te weten een stochastische wandeling, in de tijdreeks impliceert.

In Hoofdstuk 3 beschouwen we het univariate Markov trend model. Dit model bestaat
uit een univariate Markov trend, waarbij de afwijkingen van de trend worden gemodelleerd
door een autoregressief model. We bespreken de aanwezigheid van stochastische trends en
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de invloed van exogene schokken op het niveau en de eerste verschillen van de reeks onder
verschillende trendspecificaties in het model. Voor het analyseren van de trendcomponent
in het model stellen we een Bayesiaanse strategie voor. We beschouwen priorspecificatie,
een simulatiemethode voor het verkrijgen van posterior resultaten en voorspelverdelingen,
en posterior kansen voor de aanwezigheid van stochastische trends. Meestal wordt bij het
modelleren van macro-economische tijdreeksen met behulp van een Markov trend model
veronderstelt dat de reeks een Markov trend plus een stochastische wandeling bevat.
Dit komt tot uitdrukking in het analyseren van de eerste verschillen van de reeks. Het
analyseren van per kwartaal waargenomen seizoensgecorrigeerde industriéle productie van
Duitsland toont aan dat deze reeks beter beschreven kan worden door een stationair
autoregressief model rond een Markov trend. Deze trendspecificatie resulteert in betere
voorspellingen en minder voorspelonzekerheid dan de hiervoor genoemde veel gebruikte
specificatie. Bovendien leert de analyse van Duitse tijdreeks ons dat het modelleren van
recessies met een Markov trend vereist dat de karakteristieken van alle recessies ongeveer
hetzelfde zijn. Voor Duitse industriéle productie blijkt de Markov trend niet in staat om
de recessie in de jaren zestig te traceren. In tegenstelling tot de andere recessies wordt
deze recessies gevolgd door een periode van zeer snelle groei, waardoor de reeks weer
terugkeert naar het oude groeipad van voor de recessie.

Het analyseren van de conjunctuurcyclus vindt meestal plaats met behulp van seizoens-
gecorrigeerde tijdreeksen, aangezien men verwacht dat het sterk dominerende seizoens-
patroon het dateren van omslagpunten bemoeilijkt. Bij populaire seizoenscorrectiemetho-
den wordt de huidige waarde van de tijdreeks vervangen door een gewogen gemiddelde van
toekomstige waarnemingen en waarnemingen uit het verleden. Dus ook waarnemingen
die corresponderen met omslagpunten worden vervangen door een gewogen gemiddelde
van waarnemingen die corresponderen met expansie en recessie perioden. Dit kan leiden
tot een incorrecte datering van omslagpunten op basis van seizoensgecorrigeerde reek-
sen. In Hoofdstuk 4 onderzoeken we de invloed van seizoenscorrectie op het dateren
van omslagpunten in de conjunctuurcyclus. Hiervoor wordt het univariate Markov trend
model uit Hoofdstuk 3 uitgebreid met een seizoenscomponent bestaande uit seizoens-
dummies. Voor het modelleren van mogelijke veranderingen in het seizoenspatroon over
de tijd, maken we gebruik van stochastische seizoenstrends, die ontstaan door de aan-
wezigheid van seizoenseenheidswortels in het autoregressieve deel van het Markov trend
model. Aangezien veranderingen in het seizoenspatroon kunnen samenvallen met de
omslagpunten in de conjunctuurcyclus bevat het model ook verschillende seizoensgemid-
delden tijdens recessie en expansie perioden. Het uitgebreide Markov trend model biedt de
mogelijkheid voor een simultane modellering van het seizoenspatroon en de conjunctuur-
cyclus. Om veranderingen in het seizoenspatroon en regime veranderingen goed uit elkaar
te houden, is voor het analyseren van de conjunctuurcyclus naast een goede trendbeschrij-
ving ook een adequate beschrijving van het seizoenspatroon nodig. De Bayesiaanse metho-
den uit Hoofdstuk 3 worden uitgebreid voor het analyseren van de aanwezigheid van
stochastische seizoenstrends. De analyse van per kwartaal waargenomen Duitse werk-
loosheid toont verschillen in de datering van omslagpunten en in de verwachte lengte van
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de conjunctuurcyclus voor de seizoensgecorrigeerde en de ongecorrigeerde tijdreeks. Voor
de ongecorrigeerde reeks geldt bovendien dat na correctie voor verschillende groeivoeten
tijdens recessie en expansie perioden er geen significante verandering in het seizoens-
patroon te ontdekken valt.

In het tweede deel van het proefschrift beschouwen we het modelleren van trends
in multivariate tijdreeksen. Hoofdstuk 5 geeft een korte inleiding in multivariate trend-
specificaties. Deze trendspecificaties zijn multivariate generalisaties van de univariate
trendspecificaties uit Hoofdstuk 2, waaronder een multivariate stochastische wandeling en
een multivariate Markov trend. Speciale aandacht wordt besteed aan voorwaarden voor
gemeenschappelijke trends tussen univariate tijdreeksen. We spreken van een gemeen-
schappelijke trend in twee of meer tijdreeksen als een lineaire combinatie van deze tijd-
reeksen, die ieder univariaat een bepaalde trend bevatten, deze trend niet meer bevat. Net
zoals in de inleiding van het univariate gedeelte sluiten we af met het modelleren van de
afwijkingen van de multivariate trendspecificatie met behulp van vector autoregressieve
modellen. Eenheidswortels in de autoregressieve structuur impliceren de aanwezigheid
van stochastische trends (multivariate stochastische wandelingen) in de multivariate tijd-
reeksen. Wanneer het aantal eenheidswortels in het multivariate model kleiner is dan het
totaal aantal eenheidswortels in de univariate tijdreeksen, dan is er sprake van gemeen-
schappelijke stochastische trends. Dit verschijnsel staat bekend onder de term cointe-
gratie.

In tegenstelling tot univariate analyse van stochastische trends veroorzaakt door een-
heidswortels in de autoregressieve structuur, bestaat er nog geen makkelijk toepasbare
Bayesiaanse benadering voor het analyseren van stochastische trends in vector auto-
regressieve modellen. Daarom stellen we in Hoofdstuk 6 een Bayesiaanse methode voor
cointegratie-analyse in multivariate modellen voor. Deze methode is gebaseerd op een
nieuwe decompositie van de parametermatrix die de foutencorrectie modelleert. We be-
handelen priorspecificatie, simulatie-algoritme voor het verkrijgen van posterior resul-
taten en posterior kansen voor het aantal (gemeenschappelijke) stochastische trends in
tijdreeksen. Bovendien stellen we een Bayesiaanse versie van een Lagrange Multiplier
toetsgrootheid voor. Ter illustratie analyseren we twee bekende vector autoregressieve
modellen, die de Deense en Engelse geldvraag modelleren.

De in Hoofdstuk 6 ontwikkelde methode voor de analyse van stochastische trends blijkt
redelijk eenvoudig uit te breiden naar complexere modellen. In Hoofdstuk 7 passen we
de methode toe op een multivariate generalisatie van het Markov trend model uit Hoofd-
stuk 3. Dit model is vector autoregressief rond een multivariate Markov trendspecificatie.
We behandelen de invloed van exogene schokken onder verschillende specificaties van
het multivariate Markov model. De informatie in tijdreeksen kan te beperkt zijn om een
algemeen multivariaat Markov trend te analyseren. Overspecificatie van de Markov trend-
component kan leiden tot het modelleren van een of meer uitschieters in de tijdreeksen in
plaats van een zinnig regime, of de Markov trend kan zelfs het gedrag van een stochastische
wandeling imiteren. Het lijkt daarom wenselijk om a prior: zinnige modelstructuren te
specificiéren. Speciale aandacht wordt besteed aan gemeenschappelijke Markov trends,
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cointegratie en Markov trend cointegratie. Voor het analyseren van deze gemeenschap-
pelijke trends worden de Bayesiaanse technieken en methoden uit de Hoofdstukken 3 en 6
aangepast en uitgebreid. Net zoals in het univariate model kan de multivariate Markov
trend worden gekoppeld aan de conjunctuurcyclus. Een gemeenschappelijke Markov trend
kan worden geinterpreteerd als een gemeenschappelijke conjunctuurcyclus in tijdreeksen.
We concluderen op basis van posterior resultaten van het multivariate Markov trend model
dat er tussen per capita inkomen en consumptie van de Verenigde Staten een gemeen-
schappelijke Markov trend en een cointegratierelatie bestaat. De posterior resultaten
van de gemeenschappelijke Markov trend laten zien dat tijdens recessies de negatieve
groeivoet van het inkomen in absolute waarde kleiner is dan de groeivoet van consumptie.
Dit wordt gecompenseerd door een grotere positieve groeivoet in het inkomen dan in con-
sumptie tijdens expansie perioden. Het belang van de Markov trend blijkt uit het feit dat
er na verwijdering van de Markov trendspecificatie uit het model geen gemeenschappelijke
trend in beide tijdreeksen wordt gevonden.

Hoofdstuk 8 geeft een overzicht van de belangrijkste conclusies die uit het proefschrift
volgen. Het Markov trend model blijkt een bruikbaar model voor het modelleren van
trends in macro-economische tijdreeksen. Bovendien kan het model ook gebruikt worden
voor het analyseren van conjunctuurcycli. Voor het opsporen van recessies is het echter
van belang dat de karakteristieken van recessies ongeveer gelijk zijn. Seizoenscorrectie
beinvloedt het dateren van omslagpunten en het analyseren van de verwachte lengte van
recessie en expansie perioden met Markov trend modellen. Multivariate Markov trend
modellen kunnen worden gebruikt voor het modelleren van verschillen in groeivoeten van
variabelen tijdens recessie en expansie perioden en voor het analyseren van gemeenschap-
pelijke conjunctuurcycli. Dankzij moderne simulatietechnieken blijkt een Bayesiaanse
analyse van macroeconomische tijdreeksen met behulp van Markov trend modellen zeer
geschikt. Tot slot bespreken we in het laatste hoofdstuk de gevoeligheid van de uitkomsten
met betrekking tot priorspecificatie, alternatieve modelstructuren zoals drempelwaarde
modellen en besteden aandacht aan mogelijke richtingen voor toekomstig onderzoek en
modelextensies, waaronder het afhankelijk maken van de overgangskansen van het Markov
proces van bijvoorbeeld exogene variabelen, vertraagde endogene variabelen of het aantal
perioden dat men al in een recessie of expansie zit.
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