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Chapter 1Introduction
1.1 MotivationMany macroeconomic time series, like industrial production, gross national product andconsumption are characterised by long periods of positive growth, expansions, and shortperiods of decline, recessions. The overall positive growth in these series may be modelledby a linear deterministic trend with a positive slope. If however the short periods ofdecline have a large impact on future values of the series, a trend speci�cation withconstant growth rate may not be 
exible enough to capture the trend in the time series.Therefore, the deterministic trend is often extended.One interesting possibility is to include a stochastic trend. A popular stochastic trendspeci�cation is the random walk, which consists of a cumulative sum of uncorrelatedstochastic shocks generated by a continuous distribution. This random walk speci�cationassumes that positive and negative shocks, occurring in every time period, have a perma-nent e�ect on future values of the series. However, if only shocks during recession periodshave a permanent e�ect, then the random walk may be too 
exible to model the trend.An alternative strategy to model the shocks in the recession periods, which are likely tohave a permanent e�ect, is to use appropriate dummy variables. Due to the deterministiccharacter of this solution, this implies that in forecasting exercises the model does nottake into account the possibility of a period of negative growth in the future and providesunjustly less forecast uncertainty.Hamilton (1989) exploits the fact that recessions are recurrent events. Based on theideas of modelling the business cycle by Neft�ci (1984), he formulates a trend speci�cation,where shocks during recessions have a di�erent e�ect on future values of the series thanshocks during expansions. This so-called Markov trend is a segmented trend with twoslopes to model the di�erent growth rates in the recession and expansion periods. Thedirection of the slope in every period depends on the value of an unobserved �rst-ordertwo-state Markov process. Instead of a continuous shock in every period like in the randomwalk speci�cation, the stochastic Markov trend is determined by discrete shocks, whichdo not have to occur in every period. The Markov trend can be represented in a way,



2 Introductionwhere the growth in expansion periods is modelled by a linear deterministic trend and thegrowth during recessions by discrete shocks. The Markov structure in the trend impliesthat the current slope of the trend depends on the value of the slope in the previousperiod to model persistency in the time series. This is not the case for the random walk,which consists of a cumulative sum of uncorrelated shocks. Therefore, the Markov trendis more restricted than the random walk.The Markov trend has been applied to analyse the business cycle in macroeconomictime series. The transition probabilities of the Markov process determine the expectedduration of recessions and expansions and inference on regime changes can be used todetermine turning points. Hamilton (1989) models real gross national product of theUnited States using a Markov trend, where the deviations from this trend are assumed tobe an autoregressive process. He assumes that the trend in this series can be describedby a Markov trend plus a random walk, resulting from a unit root in the autoregressivepolynomial. Hence, the future values of the series depend on discrete shocks which haveoccurred during recession periods and continuous shocks which have happened in everyperiod in the past. Lam (1990) however assumes that the series is stationary arounda Markov trend so that only shocks during recessions matter. His results show thatthe estimated duration of recessions and the dating of turning points depend on thespeci�cation of the trend, see also Gordon (1997). This is not surprising, since the Markovtrend speci�cation models the trend and the business cycle simultaneously and addingan extra stochastic trend in
uences inference on the Markov trend. It is therefore forbusiness cycle analysis necessary to have an accurate description of the trend in the series.Furthermore, the trend speci�cation also plays an important role in forecast exercises andimpulse-response analysis. Overspeci�cation of stochastic trends leads to super
uousforecast uncertainty, while underspeci�cation assumes unfairly less forecast uncertainty.In this thesis we focus on the analysis of trends in macroeconomic time series usingMarkov trend models. For the univariate analysis, we consider model speci�cation, theimpact of shocks on future values of the series for several trend speci�cations and forecastuncertainty. Additionally, we link the slopes of the Markov trend with the stages of thebusiness cycle. The univariate Markov trend model is extended with a seasonal componentto analyse the business cycle and the seasonal variation in time series simultaneously. Toanalyse multivariate macroeconomic time series, we consider a straightforward multivari-ate extension of the univariate Markov trend model of Hamilton (1989) and Lam (1990).The model consists of a multivariate version of a univariate Markov trend speci�cationand the deviations from this multivariate Markov trend are assumed to be a vector au-toregressive process. We focus on model speci�cation and on the role of the trend and inparticular on common stochastic trend speci�cations. Again, the impact of shocks underdi�erent trend speci�cations is discussed. The slopes of the multivariate Markov trendcan be linked with the stages of business cycle and common Markov trends may implythe presence of common business cycles in multivariate time series.To analyse univariate and multivariate Markov trend models, we use Bayesian meth-ods. Recent developments in simulation techniques, like Gibbs sampling, has made the



1.2 Short Overview of Markov Switching Literature 3Bayesian analysis of Markov trend models possible as shown by e.g. Albert and Chib(1993) and McCulloch and Tsay (1994b). Inference on for instance the business cycleis not only based on single optimal parameter values like in classical analyses but alsotakes into account parameter uncertainty. The same arguments holds for out-of-sampleinference, like the analysis of forecast distributions. The Bayesian inference in this thesisis based on di�use prior speci�cations and can be seen as an extensive way to analysethe information in the likelihood function. It enables us to examine the amount of infor-mation in macroeconomic time series as posterior variances are completely dominated byvariation in the time series and not heavily in
uenced by prior speci�cation. Informativepriors can however easily be included in the analysis.To determine the appropriate trend speci�cation in univariate Markov trend modelswe can build on existing Bayesian methods. However, the analysis of stochastic trendsin multivariate Markov trend models is not straightforward and requires new techniques.Therefore, we provide in this thesis a new general Bayesian framework to analyse thenumber of (common) stochastic trends in vector autoregressive models. This frameworkis adapted to analyse the presence of common Markov trends in the multivariate Markovtrend models to analyse common business cycles.In the next section, we provide a short overview of the literature about Markov switch-ing including model extensions. Although we usually do not consider all of these exten-sions, several of them can easily be incorporated in the models considered in this thesis.The last section of this chapter provides a more detailed outline of the thesis.1.2 Short Overview of Markov Switching LiteratureThe introduction of the Markov trend model by Hamilton (1989) has resulted in a rapidlyexpanding literature on the implementation of Markov processes in econometric modelling.Just as for business cycle analysis, the Markov processes are used to model switchesbetween regimes. In this section we provide a short overview of some major contributionsof Markov switching in the modelling of economic time series.One of the main applications of Markov switching models is in business cycle analysis.Hamilton (1989) proposes a time series model, where the growth rate of the series dependson the stage of the business cycle. The business cycle is modelled by an unobserved �rst-order Markov process like in Neft�ci (1984) and Falk (1986). The Hamilton Markov trendmodel has been used to analyse business cycles in macroeconomic time series. Hamilton(1989) and Lam (1990) use this model to analyse the business cycle in gross nationalproduct [GNP] of the United States, Goodwin (1993) analyses the business cycle in realGNP of seven other countries, Layton (1994) considers Australian gross domestic prod-uct and Diebold and Rudebusch (1996) compare several composite indexes of coincidentindicators.Several extensions to the original Hamilton model have been proposed. Durland andMcCurdy (1994) consider duration-dependent transition probabilities to change from re-cession to expansion regimes and vice versa. In their model the value of transition proba-



4 Introductionbility depends on the number of periods that the process has been in the regime. Filardo(1994) and Diebold, Lee and Weinbach (1994) model the transition probabilities usinglogistic functions, which include explanatory variables. The Hamilton model assumes aconstant dynamic pattern over the business cycle. To allow for di�erent dynamics duringrecession and expansion periods, Markov switching in the autoregressive parameters havebeen proposed, see e.g. McCulloch and Tsay (1994b) and Hansen (1992). Additionally,for seasonally unadjusted series Ghysels (1994) and Ghysels, McCulloch and Tsay (1994)propose transition probabilities, which are di�erent in every season. Finally, McCullochand Tsay (1994a) consider Markov switching between trend stationary and di�erencestationary regimes.A few studies have extended the univariate Markov trend model to a multivariatemodel. Phillips (1991a) considers a simple two-dimensional version of the Hamilton toanalyse transmissions of business cycles between countries using industrial productionseries. Kim and Yoo (1995) propose a multivariate Markov switching factor model toconstruct a composite index of coincident indicators, while Dwyer and Potter (1996)consider multivariate versions of the Markov trend.Finally, Markov switching dynamics are also found in �nancial time series. For in-stance, Hamilton (1988), Ceccheti, Lam and Mark (1990) and Garcia and Perron (1996)detect Markov switching in the conditional mean of interest rates. Engel and Hamilton(1990), Kaminsky (1993) and Engel (1994) model depreciation and appreciation periodsin exchange rates with a simple Markov switching model. Tyssedal and Tj�stheim (1988)use Markov switching in the autoregressive structure of dividend rates, while Ceccheti,Lam and Mark (1990) and Bonomi and Garcia (1994) only consider Markov switchingin the mean and variance. An extension to regime changes in the conditional variancedynamics of stock returns can be found in Hamilton and Susmel (1994), see also Cai(1994) and Dueker (1997). Hamilton and Lin (1996) investigate the relation betweenstock market volatility and the business cycle.In this thesis we focus on the original Markov trend speci�cation of Hamilton (1989)to model macroeconomic time series. We only consider Markov switching structure in themean of the series and not in the variance. The possibilities and limitations of several ofthe above mentioned model extensions are discussed. The next section provides a moredetailed outline of the thesis.1.3 OutlineIn this section we provide a general outline of the thesis. A detailed outline with refer-ences to related literature can be found in the introduction of each chapter. The thesis ispartitioned in two parts. In the �rst part we consider the modelling of the trend compo-nent in univariate macroeconomic time series. The second part deals with a multivariateanalysis of trends in time series.The outline of the �rst part is as follows. In Chapter 2 we provide a short introductioninto the modelling of the trend component in univariate time series. We focus on three



1.3 Outline 5trend speci�cations: the linear deterministic trend, the Markov trend and the even more
exible random walk plus drift. The latter two speci�cations are stochastic trends andresult in a better within-sample description of the trend component in time series, butimply more forecast uncertainty. Additionally, we brie
y discuss the modelling of thedeviations from the trend component using autoregressive models. We show that a unitroot in the autoregressive structure also implies the presence of a stochastic trend in themodel.The univariate Markov trend model is considered in Chapter 3. The ideas in thischapter are based on Hoek and Paap (1994). Following Hamilton (1989) the model isautoregressive in deviation from a Markov trend. We discuss the presence of stochastictrends and especially the impact of exogenous shocks on the level and the �rst di�erencesof the series under various speci�cations of the model. The chapter provides a Bayesianstrategy to analyse the presence of stochastic trends in time series using the Markovtrend model. This includes prior speci�cation, a simulation scheme to obtain posteriorresults, posterior odds ratios for the presence of stochastic trends and a predictive Bayesiananalysis. Finally, we investigate using the Markov trend model the trend in quarterlyobserved German industrial production and compare forecast distributions generated byMarkov and non-Markov trend models.In Chapter 4 the univariate Markov trend model is extended with a seasonal compo-nent to analyse quarterly observed seasonally unadjusted series. This chapter is basedon ideas in Franses and Paap (1996) and uses techniques from Franses, Hoek and Paap(1997). We �rst discuss the consequences of seasonal adjustment on business cycle analy-sis using Markov switching models and conclude that it is preferable to model the businesscycle and the seasonal pattern in a time series simultaneously. In the model the devi-ations from the Markov trend component now consist of a seasonal component and anautoregressive model. To allow for changes in the seasonal pattern over time, the autore-gressive structure may include seasonal unit roots, which lead to the presence of seasonalstochastic trends. The seasonal component consists of seasonal dummies and incorporatesvia seasonal mean shifts the possibility that changes in the seasonal pattern coincide withchanges in the business cycle. The Bayesian techniques in Chapter 3 are extended toanalyse the presence of seasonal stochastic trends and seasonal mean shifts. Finally,we consider quarterly observed seasonally adjusted and non-adjusted German unemploy-ment. The estimated business cycle resulting from the model for the adjusted data iscompared with the business cycle resulting from the model for the seasonally unadjustedseries. We notice di�erences in the dating of turning points and in the expected durationof contraction and expansion periods.The second part of the thesis is organised as follows. Just as in the univariate part westart with a short introduction in the modelling of trends in multivariate time series inChapter 5. The univariate deterministic and stochastic trend speci�cations of Chapter 2are generalised to multivariate trend speci�cations. We discuss parameter restrictionswhich lead to the presence of common trends. We speak of common trends if the num-ber of trends needed to model the multivariate time series is smaller than the number



6 Introductionof trends needed to model the individual time series separately. In addition, we discussthe modelling of the deviations from the trend component using vector autoregressivemoving average models. Just as in the univariate case, unit roots in the autoregressivestructure imply the presence of stochastic trends. We focus on the restrictions for com-mon stochastic trends in vector autoregressive models, which is usually referred to ascointegration.Contrary to univariate Bayesian analysis of unit roots in autoregressive models, thereis no complete Bayesian method to analyse cointegration in vector autoregressive models.Therefore, we provide in Chapter 6 a complete Bayesian framework to analyse cointegra-tion in vector autoregressive models. This chapter is an abbreviated version of Kleibergenand Paap (1996). The Bayesian analysis is based on a new decomposition of the parametermatrix which models the error correction. Although the Bayesian framework is developedfor the standard linear vector autoregressive model, it turns out to be easy to implementin more complicated models like the multivariate Markov trend model in Chapter 7. Theframework includes prior speci�cation, posterior simulation, and Bayesian Lagrange mul-tiplier statistics and posterior odds ratios to analyse the number of cointegration relations.To illustrate the Bayesian cointegration analysis we compare posterior results with classi-cal outcomes of cointegration analysis for the Johansen and Juselius (1990) Danish seriesand the United Kingdom series of Hendry and Doornik (1994).In Chapter 7 we consider a multivariate Markov trend model. This model is a multi-variate generalisation of the univariate Markov trend model of Chapter 3. It consists of avector autoregressive model in deviation from a multivariate Markov trend speci�cation.First, we discuss several simpli�cations of the most general model speci�cation includingcommon Markov trends, cointegration and reduced rank Markov trend cointegration. Wefocus on the impact of exogenous shocks on the level and the �rst di�erences of the seriesunder several speci�cations. The Bayesian framework to analyse the models includes priorspeci�cation, a simulation scheme to obtain posterior results and posterior odds ratios forcommon Markov trends and cointegration. The analysis of common stochastic trends isbased on the techniques presented in Chapter 6. Using the multivariate Markov trendmodel we conclude that quarterly observed per capita income and consumption of theUnited States contains one common Markov trend and one cointegration relation. Ne-glecting the Markov structure leads to favouring the hypothesis of no common stochastictrends.Finally, we end this thesis with a summary of the main results and conclusions inChapter 8. Additionally, we provide some directions for further research.
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Chapter 2Univariate Stochastic Trends
2.1 IntroductionMany macroeconomic variables, like real gross national product [GNP], real consumption,total investment, industrial production have a tendency to grow over time. It is importantfor policy makers to have accurate forecasts of these variables. For forecasting trendingtime series, it is crucial to have a well speci�ed trend component. A misspeci�cation ofthe trend component can lead to a forecast path which lies totally above or below futurerealisations of the series, see e.g. Stock and Watson (1988). The trend of the logarithmof macroeconomic time series is often modelled with a linear deterministic trend. Thistrend speci�cation corresponds to the assumption of constant exponential growth in thelevel of the series and implies no forecast uncertainty since it is fully deterministic. Inpractice, a deterministic trend may not be 
exible enough to model the trend in a timeseries. Therefore, the linear deterministic trend is often extended with a stochastic trend,like a random walk. The random variable in this trend speci�cation allows for a di�erentdirection of the trend in every period and produces a better within-sample description ofthe trend. However, including random variables in the trend speci�cation leads to forecastuncertainty. Hence, from a forecasting point of view it is necessary to avoid over�ttingof the trend component by making it too 
exible with random variables. The samearguments hold for impulse-response analysis. A misspeci�cation of the trend componentmay lead to incorrect conclusions about the impact of shocks on future values of the timeseries. In this part of the thesis, we investigate techniques to analyse trends in univariatetime series. As an introduction we provide in this chapter a short overview of the varioustrend speci�cations, which have been used to model the trend in macroeconomic timeseries. Additionally, we discuss the way in which the trend component can be included ina time series model.The outline of this chapter is as follows. In Section 2.2 we discuss various possibilitiesfor the speci�cation of the trend component in macroeconomic time series. In Section 2.3we discuss how these trend components may enter a time series model. A simple illus-tration of the modelling of the trend in GNP of the United States is given in Section 2.4.



10 Univariate Stochastic TrendsFinally, in Section 2.5 we give a short outline of the chapters in the �rst part of the thesis.2.2 Trend Speci�cationsIn this section, we consider the most applied trend speci�cations, for modelling macroe-conomic time series. The simplest trend speci�cation nt, t = 1; 2; 3; : : : isnt = nt�1 + 
0; (2.1)which corresponds to a linear deterministic trendnt = n1 + 
0(t� 1) (2.2)with slope 
0 and initial value n1. This speci�cation assumes a constant growth rate.For known values of 
0 and n1 there is no forecast uncertainty so that the expectationand the variance of nt at t = 1 is n1 + 
0(t � 1) and zero, respectively.1 If this lineardeterministic trend is too restrictive, one can replace the linear speci�cation in (2.2) witha polynomial in t of degree > 1. This however implies that limt!1 jnt � nt�1j ! 1,which may be unrealistic for the time series under consideration. Of course, any functionof time, g(t), can be used to model the trend, see for instance Granger (1989, p. 28) foruseful alternatives. Note that the trend of the logarithm of an exponential growing seriescan be modelled by a deterministic trend, since ln(exp(
0t)) = 
0t.Another possibility for a more 
exible trend is to introduce a random variable in thetrend speci�cation nt = nt�1 + 
0 + 
1ut; (2.3)where ut � NID(0; 1). If 
0 = 0 this trend is called a random walk, while for 
0 6= 0 werefer to this trend as a random walk plus drift (=
0). The direction of the trend (2.3) attime t is 
0 plus an unanticipated shock ut and is therefore more 
exible than the lineardeterministic trend (2.2). This follows directly from the backward solution of (2.3)nt = n1 + 
0(t� 1) + 
1 tXi=2 ui: (2.4)The random walk plus drift consists of a deterministic trend plus accumulated shocksPti=2 ui, which will be referred to as a stochastic trend in this thesis. The expectationof nt at t = 1 is n1 + 
0(t � 1) and its variance is 
21(t � 1), which implies that theforecast uncertainty about this trend increases linear over time. Note that instead of astandard normal distribution for ut, one can also assume other continuous distributions,like t-distributions. Sometimes (2.3) is extended with a stochastic drift termnt = nt�1 + 
0;t + 
1ut;
0;t = 
0;t�1 + �t; (2.5)1Strictly speaking, the expectation and variance are not de�ned since the trend component does notcontain a random variable.



2.2 Trend Speci�cations 11where �t � NID(0; �2�) and E[�tut] = 0, see e.g. Harvey (1989). The backward solution ofthis trend, nt = n1 + 
0;1(t� 1) +Pti=2(
1ui +Pij=2 �j), shows that the expectation of ntat t = 1 is still linear in t, nt + 
0;1(t � 1). However contrary to the random walk (2.3),the variance of nt at t = 1, 
21(t � 1) + 12�2�(t2 � t), increases quadratic over time, sinceit includes the uncertainty in the drift term 
0;t. In general, this implies that the randomwalk plus drift (2.3) has smaller forecasts intervals than the random walk plus stochasticdrift term (2.5).An alternative to the random walk plus deterministic drift was proposed by Hamilton(1989), which is now known in the literature as a Markov trendnt = nt�1 + 
0 + 
1st; st = 0; 1; (2.6)where st is an unobserved �rst-order Markov process with transition probabilitiesPr[st = 0jst�1 = 0] = p; Pr[st = 1jst�1 = 0] = 1� p;Pr[st = 1jst�1 = 1] = q; Pr[st = 0jst�1 = 1] = 1� q; (2.7)with 0 < p < 1 and 0 < q < 1. The direction of this trend at time t is 
0 if st = 0 and
0 + 
1 if st = 1. Instead of a cumulative sum of a continuous random variable ut, thestochastic trend now is a cumulative sum of a discrete random variable stnt = n1 + 
0(t� 1) + 
1 tXi=2 si: (2.8)We will refer toPti=2 si as a stochastic Markov trend. Note that this trend does not consistof a cumulative sum of independent shocks, since E[stst�1] 6= 0. To derive the expectationof nt at t = 1, we consider the following �rst-order autoregressive representation of stst = (1� p) + 'st�1 + vt; (2.9)where ' = (�1 + p+ q) and conditional on st�1 = 0vt = �(1� p) with probability p;vt = p with probability (1� p); (2.10)and conditional on st�1 = 1vt = (1� q) with probability q;vt = �q with probability (1� q); (2.11)so that E[vtjst�1 = 0] = E[vtjst�1 = 1] = 0, see Hamilton (1989) and Hamilton (1994,p. 683{684). If ' = 0 (i.e. p + q = 1), st is not correlated with the past and the Markovstructure disappears. In this case st has an uncorrelated Bernoulli distribution with



12 Univariate Stochastic TrendsPr[st = 1] = 1� p and Pr[st = 0] = p. Using (2.9) it is easy to show that the expectationof st at t = 1 given the initial value s1 equalsE[stjs1] = t�2Xi=0(1� p)'i + 't�1s1= (1� p)(1� 't�1)(1� ') + 't�1s1= � + 't�1(s1 � �) = Pr[st = 1js1]; (2.12)
where � = (1 � p)=(2 � p � q). The unconditional probability that st = 1, Pr[st = 1],equals limt!1 E[stjs1], which is � if ' < 1. Also the expectation E[stjPr[s1 = 1] = �]equals �. Hence, the expectation of nt at t = 1 equalsE[ntjn1; s1] = E"n0 + 
0(t� 1) + 
1 tXi=2 si�����n1; s1#= n0 + 
0(t� 1) + 
1 tXi=2(� + 'i�1(s1 � �))= n1 + (
0 + �
1)(t� 1) + 
1(s1 � �) t�1Xi=1'i= n1 + (
0 + �
1)(t� 1) + '
1(s1 � �)1� 't�11� ' ; (2.13)
see also Hamilton (1989). In practice the value of s1 is seldom known. If we have nouseful information about s1 apart from Pr[s1 = 1] = �, the expectation of nt at t = 1simpli�es to n1 + (
0+ �
1)(t� 1). In the same way it can be shown that the variance ofnt at t = 1 given that Pr[s1 = 1] = � equalsE[(nt � E[nt])2jPr[s1 = 1] = �]= 
21E24 tXi=2 si � E" tXi=2 si#!2 �����Pr[s1 = 1] = �35= 
21E24 tXi=2 si!2 �����Pr[s1 = 1] = �35� 
21E" tXi=2 si�����Pr[s1 = 1] = �#2= 
21E24 tXi=2 s2i + 2 tXi=2 tXj=i+1 sjsi�����Pr[s1 = 1] = �35� 
21E" tXi=2 si�����Pr[s1 = 1] = �#2= 
21�(1� �) (t� 1) + 2'((1� ')(t� 1)� (1� 't�1)(1� ')2 ! ; (2.14)
where we use that E[sjsijPr[s1 = 1] = �] = Pr[sj = 1jsi = 1] Pr[si = 1jPr[s1 = 1] = �].Note that the variance of the Markov trend for large t increases linear over time.



2.3 Model Speci�cations 13In summary, we have discussed in this section the properties of four trend speci�-cations. We started with the linear deterministic trend, which incorporates no forecastuncertainty. The random walk plus drift and the random walk plus stochastic drift termtrend speci�cation are more 
exible but lead to forecast uncertainty. Finally, we haveconsidered the properties of the Markov trend. Since this trend allows for two possibleslope values, it is less 
exible than a random walk but more 
exible than a linear deter-ministic trend. It can be seen as a segmented trend, where the slope changes according toa �rst-order Markov process. Although it is possible to think of more trend speci�cations,we limit ourselves in this section to the most applied trends. In Section 2.4 we discuss asan illustration the �t and the forecast uncertainty of the linear deterministic trend, therandom walk and the Markov trend in modelling gross national product of the UnitedStates. In the next section, we discuss the role of trend components in time series models.2.3 Model Speci�cationsTo include a trend in a time series models there are several possibilities. One can modelthe time series in deviation from a trend component nt or one can simply add the trendcomponent to the time series model in a linear way. The former corresponds to theassumption that a univariate time series fytgTt=1 can be decomposed asyt = nt + zt; (2.15)where nt is the trend component and zt represents the deviations from the trend. Some-times (2.15) is extended with a seasonal component and/or a cyclical component. Thedeviations from the trend are usually assumed to be an autoregressive moving average[ARMA(k,l)] process zt � kXi=1 �izt�i = �t � lXi=1  i�t�i; (2.16)where �t � NID(0; �2).2 If we use the lag operator L, de�ned as Lizt = zt�i, i = 0; 1; 2; : : : ,we can write (2.16) as(1� �1L� �2L2 � � � � � �kLk)zt = (1�  1L�  2L2 � � � � �  lLl)�t;�(L)zt =  (L)�t (2.17)where �(L) and  (L) are polynomials in the lag operator L of order k and l respectively.The process zt is stationary if the roots of the polynomial �(x) are outside the unitcircle and also invertible if the roots of the polynomial  (x) are outside the unit circle,see among others Granger and Newbold (1987). If this is the case yt is a stationary andinvertible ARMA process around the trend nt. If however one of roots of �(x) is one (unit2It is of course possible to assume other continuous distributions.



14 Univariate Stochastic Trendsroot), the process zt contains a stochastic trend. We refer to zt in this case as a unit rootprocess or an integrated process of order one, zt � I(1). We can write the polynomial�(L) as �(L) = (1� L)��(L); (2.18)where ��(L) = (1 � ��1L � � � � � ��k�1Lk�1) is a polynomial in the lag operator of order(k � 1). This implies an ARMA(k � 1; l) model for the �rst di�erence of zt��(L)(1� L)zt =  (L)�t;(1� ��1L� � � � � ��k�1Lk�1)(1� L)zt = (1�  1L� � � � �  lLl)�t;�zt � k�1Xi=1 ��i�zt�i = �t � lXi=1  i�t�i; (2.19)where �zt = (1� L)zt = zt � zt�1. To show that zt contains a stochastic trend we write�zt as a MA(1) ��(L)�zt =  (L)�t;�zt = (��(L))�1 (L)�t;�zt = c(L)�t; (2.20)where c(L) = (��(L))�1 (L) is a lag polynomial with c1 = 1 and P1i=0 ijcij <1. The lagpolynomial c(L) can be decomposed asc(L) = c(1) + (1� L)c�(L); (2.21)where c�(L) is a lag polynomial see Johansen (1995, p. 47), so thatzt = z1 + c(1) tXi=2 �i + c�(L)�t: (2.22)The process zt is the sum of a stochastic trend Pti=2 �i and a MA(1) process c�(L)�t.This decomposition was �rst made by Beveridge and Nelson (1981) and is known as theBeveridge-Nelson decomposition.From (2.22) if follows that under the decomposition (2.15) nt does not have to bethe sole trend component. If the ARMA process zt contains a unit root, yt(= nt + zt)consists of the sum of two trends, for instance a stochastic Markov trend Pti=2 si in ntplus a stochastic trend Pti=2 �i through zt, or a linear deterministic trend t in nt plus astochastic trend Pti=2 �i through zt.Finally, it is also possible to have two unit roots in the polynomial �(x), i.e. zt isintegrated of the order two, zt � I(2). In this case the stochastic trend consists of a doublesum of unanticipated shocks, like for the trend speci�cation (2.5). In practice, there arenot many examples of economic series, which seem to have two unit roots. Therefore, weconsider the analysis of these processes beyond the scope of this thesis.



2.4 Illustration of Trend Modelling 15An alternative model speci�cation isyt � kXi=1 �iyt�i = nt + �t � lXi=1  i�t�i: (2.23)Instead of modelling the time series in deviation from its trend, the trend component nt isadded in a linear way. The interpretation of nt is di�cult since it does not represent thetrend component in yt. Note that if nt is a linear deterministic trend, it is possible to �nda one-to-one relation between the parameters in the decomposition in (2.15) and in (2.23)unless �(L) contains a unit root. In that case n1 is not identi�ed, if we use decomposition(2.15) but still identi�ed in (2.23).If �(L) contains a unit root, the �rst di�erence of yt still contains the trend componentnt �yt � k�1Xi=1 ��i�yt�1 = nt + �t � lXi=1  i�t�i (2.24)and it is straightforward to show thatyt = y1 + c(1) tXi=2(ni + �i) + c�(L)�t (2.25)so that yt consists of a stochastic trend Pti=2 �i plus the accumulated sum of the trendcomponent ni. Loosely speaking, nt now acts as a drift term. If nt contains a lineardeterministic trend, like in the linear deterministic trend speci�cation (2.2) but also inthe random walk plus drift (2.4) and the Markov trend (2.8), a unit root in �(x) impliesthe presence of a quadratic trend in yt.In this thesis we use speci�cation (2.15). In this speci�cation the component nt can beinterpreted as a trend in yt, which is not the case in (2.23). Furthermore, the role andhence the interpretation of the trend component nt does not change if a unit root entersthe autoregressive part of the model.2.4 Illustration of Trend ModellingTo illustrate the modelling of the trend, we consider in this section seasonally adjustedquarterly observed real GNP of the United States [US], 1951.I{1984.IV. Figure 2.1 displaysa plot of the level of the series. We notice that the series increases over time with shortperiods of decrease, for instance in the middle of the 1970s and in the beginning of the1980s. Since the growth in the series seems exponential, one usually models the logarithmof this series. To model the trend component of the logarithm of the series, severalspeci�cations have been proposed. In this section, we focus on four trend speci�cations,which play an important role in this thesis. The aim of this section is to show the
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Figure 2.1. Seasonally adjusted US real GNP, 1951.I{1984.IV.properties and implications of the various trend speci�cations and not to �nd the besttrend speci�cation for this series.To analyse the series we consider yt = 100 � ln(GNPt). A simple model for thistransformed series is the trend stationary [TS] model. One assumes that the series is astationary process around a linear deterministic trend (2.2)3yt = nt + zt;nt = nt�1 + 0:75;zt = 1:31zt�1 � 0:36zt�1 + �t; � = 0:99:The slope of the linear deterministic trend is 0.75, which implies an average quarterlygrowth rate of 0.75%. The deviations from the trend follow an AR(2) process. The �rstrow of Figure 2.2 shows the transformed GNP series plus the �tted linear deterministictrend and the series minus this linear trend. In the deviations from the trend one can seethe several recessions in the US economy. The roots of the zt process are 0.92 and 0.39and hence a unit root in the zt process may be plausible. Imposing a unit root in theautoregressive part of the model leads to the following di�erence stationary [DS] modelfor yt3yt = nt + zt;nt = nt�1 + 0:72;�zt = 0:34�zt�1 + �t; � = 1:00:The �rst di�erence of yt is a stationary process with mean 0.72. This implies that theestimated average quarterly growth percentage (=0.72) is somewhat smaller than for3Parameter values are obtained using ordinary least squares.
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Figure 2.2. US real gross national product and �tted trends plus deviations from thesetrends, 1952.I{1984.IV.



18 Univariate Stochastic Trendsthe trend stationary model. The yt series contains a deterministic linear trend nt and astochastic trend resulting from the unit root in zt, see (2.22). The second row of Figure 2.2shows the series and the sum of the two trends. The second column shows the deviationsfrom the total trend. Contrary to the deterministic trend speci�cation, we cannot detectrecessions any more and hence the stochastic trend seems to capture the recessions.The stochastic trend allows for a continuum of slope values for the trend in everyperiod. A more restrictive stochastic trend, which allows for only two di�erent slopes isthe Markov trend (2.6). Usually, the two di�erent slopes are related to the stages of thebusiness cycle, i.e modelling an expansion and a recession regime. Lam (1990) assumesthat the deviations from a Markov trend in US real GNP follow a stationary AR process.We refer to this model speci�cation as a Markov trend stationary [MTS] model4yt = nt + zt;nt = nt�1 + 0:96� 2:45st; p = 0:96; q = 0:51;zt = 1:24zt�1 � 0:38zt�2 + �t; � = 0:77:The Markov trend allows for a di�erent direction of the trend during recession (st = 1)and expansion periods (st = 0). During an expansion period the quarterly growth rate ofGNP is 0.96%, while during a recession �1:49% (=0:96�2:45). The probability of stayingin an expansion period is 0.96 and the probability of staying in a recession is 0.51. Hence,the unconditional probability of being in a recession is (1� p)=(2� p� q) = 0:08. Usingthis probability and (2.13) the unconditional expectation of the slope of the Markov trendis 0:96�2:45�0:08 = 0:76, which is close to the value of the slope of the trend stationarymodel. The third row of Figure 2.2 shows yt and the Markov trend.5 The trend capturessome of the recessions but not all. This is even more clear from the deviations from theMarkov trend, which are shown in the second column.Hamilton (1989) imposes a unit root in the deviations from the Markov trend6yt = nt + ztnt = nt�1 + 1:16� 1:52st; p = 0:90; q = 0:76�zt = 0:01�zt�1 � 0:06�zt�2 � 0:25�zt�3 � 0:21�zt�4 + �t; � = 0:77:We refer to this model a Markov di�erence stationary [MDS] model, since the �rst dif-ference of yt minus the Markov drift term (1:16 � 1:52st) is stationary. The averagequarterly growth rate during an expansion period is 1.16% and during a recession �0:36%(= 1:16�1:52). The unconditional probability of being in a recession is 0.29 and hence theunconditional expectation of the slope of the Markov trend equals 1:16�1:52�0:29 = 0:72,which is almost the same as the drift term in the di�erence stationary model. The �nal4Parameter values are obtained from Table 1 in Lam (1990).5Since st is not observed, we have to construct the Markov trend using the ex-post probabilities ofbeing in a recession Pr[st = 1jy1; : : : ; yT ], which result from the estimation procedure, see Table 3 in Lam(1990). We have set st = 1 if Pr[st = 1jy1; : : : ; yT ] > 0:5 and zero elsewhere.6Parameter values are obtained from Table I in Hamilton (1989).
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Figure 2.3. Standard deviations of the one- through eight-stepahead forecast distribution of the trend in US GNP.row of Figure 2.2 shows a plot of the Markov trend7 plus the stochastic trend result-ing from the unit root in zt. The deviations from the Markov and stochastic trend donot display any recessions. Note that this model produces the smallest deviations fromthe trend, followed by the di�erence stationary model and the Markov trend stationarymodel. This does not have to imply that the Markov di�erence stationary model is thebest model, since it may su�er from over�tting the trend component.Finally, we consider the forecast uncertainty of the various trend speci�cations. Wetreat the parameter values as �xed and hence the forecast uncertainty results only fromthe random variables in the trend component. Figure 2.3 shows the standard deviationsof the one- through eight-step head forecast distributions of the trend for the four models.Since the trend in the trend stationary model is deterministic the standard deviation iszero. This does not imply that we can obtain perfect forecasts of the trend in US GNPwith this model, since the trend may be misspeci�ed. Since E[stst�i] 6= 0, the forecastuncertainty resulting from the Markov trend depends on the value of the state in thelast period of the sample sT . We assume that the probability that sT = 1 equals theunconditional probability that sT equals one, i.e. Pr[sT = 1] = �. The variance of theforecast distribution of the Markov trend simpli�es to (2.14), where (t�1) has to replacedby the number of periods ahead h, one wants to forecast. The forecast variance of thestochastic trend, which results from the unit root in zt, is �2h.We see from Figure 2.3 that the forecast standard deviation of the trend of the Markovtrend [MT] stationary model is the smallest. For one- and two-step ahead the forecaststandard deviation of the trend of the Markov di�erence stationary [MDS] model is smallerthan for the di�erence stationary [DS] model but for more periods ahead it is the oppo-7The Markov trend is constructed using the ex-post probabilities, see Figure 1 in Hamilton (1989).



20 Univariate Stochastic Trendssite way. In general, it seems that imposing more 
exible trends leads to more forecastuncertainty. It is therefore necessary to specify a trend which is 
exible enough to pro-vide a good within-sample description of the trend without implying too much forecastuncertainty.2.5 Outline of Part IIn this part of the thesis, we propose Bayesian methods to analyse univariate Markovtrend models. The Bayesian analysis focuses on the analysis of the presence of stochastictrends in univariate time series. In Chapter 3 we discuss the properties of the four models,discussed in the previous section, in more detail and we apply the proposed Bayesian trendanalysis to German industrial production. To evaluate the out-of-sample performance wecompare the forecast distributions of the four models.Markov trend models are also used to analyse business cycles in time series. Theunobserved state variables represent the stage of the business cycle. In Chapter 4 we paymore attention to modelling the business cycle with Markov trend models. We extendthe Markov trend model with a seasonal component to analyse seasonally unadjustedquarterly observed time series. We propose Bayesian methods to analyse the seasonalcomponent, including the analysis of the presence of seasonal stochastic trends. Addi-tionally, we examine the consequences of seasonal adjustment on business cycle analysisin German unemployment.



Chapter 3Univariate Markov Trend Model
3.1 IntroductionUntil the middle of the 1970s, it was widely believed that the trend component of macroe-conomic series, like the logarithm of output, could be described accurately by a determin-istic linear trend, see for instance Lucas (1973). As we already have seen in Chapter 2 thiscorresponds to the assumption of a constant growth rate in the series. However, Nelsonand Plosser (1982), using the unit root tests of Fuller (1976) and Dickey and Fuller (1979),were unable to reject the hypothesis of a unit root in the autoregressive representation ofthe deviations from a linear trend for thirteen macroeconomic time series of the UnitedStates [US]. This result suggests the presence of a stochastic trend so that all shocks inthe past have a permanent e�ect on the future level of the series.Perron (1989) argues that only a few shocks, like the 1929 Great Depression and the1973 oil crisis, are likely to have had permanent e�ects. Modelling these events by appro-priate dummy variables, Perron rejects the null hypothesis of a stochastic trend againstthe alternative hypothesis of a shifting and segmented linear trend for many of the Nelsonand Plosser series. Subsequent econometric inference has shown that Perron's conclusionsare sensitive to his assumptions about the breakpoints. Treating the breakpoints as un-known parameters results in non-rejection of the stochastic trend hypothesis, see amongothers Zivot and Andrews (1992), Chu and White (1992) and Hoek (1997).Hamilton (1989) recognizes that the growth of series like real gross national product[GNP] depends on the stage of the business cycle. He uses the idea of modelling thebusiness cycle with a Markov process by Neft�ci (1984) in a time series model, where thevalue of the growth rate of a series depends on the stage of the business cycle, see alsoGoldfeld and Quandt (1973) and Lindgren (1978). The model consists of a Markov trenddriven by an unobserved two-state �rst-order Markov process. By considering growthrates, the unit root is implicitly imposed. Therefore, Hamilton assumes that the seriescontains a stochastic trend and all shocks have a permanent e�ect on the level of theseries. Lam (1990) avoids imposing the unit root in the autoregressive part of the model byextending Hamilton's model to analyse the level of the series instead of the �rst di�erences.



22 Univariate Markov Trend ModelLam's model only contains a Markov trend, where the slope depends on the stage of thebusiness cycle. Now only shocks during recessions have a permanent e�ect on the futurelevel of the series. The trend component in the model proposed by Lam (1990) is thereforemore restricted than the overall trend in the model proposed by Hamilton (1989) or in anautoregressive model in �rst di�erences, but less restricted than the deterministic trend.In Chapter 2 we have seen that introducing more stochastic trends in a time seriesmodel may lead to a better within-sample �t, but leads to larger forecast intervals andhence more forecast uncertainty. It is therefore necessary for forecasting exercises tohave an adequate impression of the nature and the number of stochastic trends in atime series. This chapter focuses on econometric inference in so-called Markov trendmodels via a likelihood approach. We consider Bayesian techniques to provide a posteriorcomparison of the above mentioned trend speci�cations for modelling the trend in timeseries. The within-sample comparison is combined with a predictive Bayesian analysis forout-of-sample evaluation of the models.The outline of this chapter is as follows. In Section 3.2 the Markov trend modelis presented and the implications of a unit root in the autoregressive component arediscussed. Section 3.3 provides a Bayesian framework to analyse the Markov trend models.Furthermore, a posterior odds ratio test for a unit root and for the presence of a Markovtrend is proposed. To obtain posterior results, a simulation procedure is discussed inSection 3.4. This simulation procedure is extended in Section 3.5 to compute predictivedensities. In Section 3.6 the Bayesian analysis of stochastic trends in Markov trendmodels is illustrated with two simulated series and quarterly observed German industrialproduction series. For the latter series we also analyse the business cycle. Forecasts fromthe Markov trend models are compared with forecasts from di�erence and trend stationarymodels. Finally, Section 3.7 concludes.3.2 The Markov Trend ModelSuppose that a time series fytgTt=1 can be decomposed into two parts,yt = nt + zt; (3.1)where nt is a Markov trend and zt represents the deviations from this trend. The Markovtrend is de�ned as nt = nt�1 + 
0 + 
1st; st = 0; 1; (3.2)where the unobserved state variable st is a two-state �rst-order Markov process1 withtransition probabilities,Pr[st = 0jst�1 = 0] = p; Pr[st = 1jst�1 = 0] = 1� p;Pr[st = 1jst�1 = 1] = q; Pr[st = 0jst�1 = 1] = 1� q: (3.3)1If st � NID(0; 1) the model becomes a structural time series model, see e.g. Harvey (1989).



3.2 The Markov Trend Model 23The state variable st represents the stage of the business cycle, see Hamilton (1989). Weassume in this thesis that st = 0 corresponds to an expansion regime, while st = 1 denotesa recession. The Markov trend (3.2) is a stochastic segmented trend, whose slope is 
0during an expansion and 
0 + 
1 during a recession. Since st can only take the value 0or 1 the Markov trend is more restricted than a Gaussian random walk process, see alsoSection 2.2.The deviations from the Markov trend fztgTt=1 are modelled by an autoregressive pro-cess of order k [AR(k)], (1� �1L� �2L2 � � � � � �kLk)zt = �t;�(L)zt = �t; (3.4)where �(L) is a polynomial in the lag operator L, de�ned by Lizt = zt�i, i = 0; 1; 2; : : : ,and �t � NID(0; �2). Replacing zt by (yt � nt) and substituting the backward solution of(3.2) nt = 
0(t� 1) + 
1 tXi=2 si + n1 (3.5)equation (3.4) can be rewritten as�(L)(yt � 
0(t� 1)� 
1 tXi=2 si � n1) = �t: (3.6)Stochastic TrendsFrom the backward solution of the Markov trend (3.5) we can see that past stochasticshocks, denoted by st, have a permanent e�ect on the future level of the series yt. Thein
uence of the these shocks on the �rst di�erences of yt depends on the presence of aunit root in the polynomial �(x). To analyse the implications of a unit root in the ARpolynomial, we decompose �(L) as follows�(L) = (1� �L) + ��(L)(1� L); (3.7)where � = Pkj=1 �j and ��(L) = (1 � ��1L � � � � � ��k�1Lk�1), a lag polynomial of order(k � 1) with ��i = �Pkj=i+1 �j, i = 1; : : : ; k � 1. Note that for � = 1 the polynomial �(x)contains a unit root. Using (3.7) we can write (3.6) as(yt � nt) = �(yt�1 � nt�1) + k�1Xi=1 ��i�(yt�i � nt�i) + �t; (3.8)where � is a di�erence operator de�ned as �yt = (1� L)yt = yt � yt�1.Hamilton (1989) assumes that the polynomial �(L) contains a unit root, in other words� = 1. In that case the model simpli�es to(�yt � 
0 � 
1st) = k�1Xi=1 ��i(�yt�i � 
0 � 
1st�i) + �t: (3.9)



24 Univariate Markov Trend ModelThis implies that the series is described by a random walk with a stochastic drift term
0 + 
1st. If the roots of the polynomial ��(x) are outside the unit circle, past shocks stonly have a transitory e�ect on the �rst di�erence of yt. Stochastic shocks, denoted by�t, have a permanent e�ect on the deviation from the Markov trend and therefore on thelevel of the series yt but not on the �rst di�erences. As we have seen in Section 2.3 ytcontains a stochastic Markov trend Pti=2 si plus the stochastic trend Pti=2 �i. Note thatthe initial value of the Markov trend n1 does not enter (3.9).Lam (1990) assumes that the roots of the polynomial �(x) are outside the unit circleso that the series is a stationary AR process around the Markov trend (3.2). From (3.8)it can be seen that past st shocks have a permanent e�ect on the �rst di�erence of yt.The past �t shocks have only a transitory e�ect on yt. We will call such a series Markovtrend stationary.The Markov process st introduces a non-linear trend in a time series model. If st = 0the slope of the Markov trend (3.2) is 
0, while if st = 1 the slope is 
0 + 
1. Under therestriction 
1 = 0 the Markov trend (3.2) degenerates to a deterministic trend with slope
0 and intercept n1. Model (3.8) with � < 12 becomes a trend stationary AR(k) model,(yt � 
0(t� 1)� n1) = �(yt�1 � 
0(t� 2)� n1) + k�1Xi=1 ��i�(yt�i � 
0) + �t; (3.10)while model (3.9) results in a di�erence stationary model with drift 
0(�yt � 
0) = k�1Xi=1 ��i(�yt�i � 
0) + �t: (3.11)The Likelihood FunctionTo analyse the Markov trend model we have to specify the likelihood function. First,we consider the density function of yt given the past observations yt�1 = fy1; : : : ; yt�1gand given the past and current states st = fs1; : : : ; stg for model (3.8). This conditionaldensity function readsf(ytjyt�1; st; 
0; 
1; n1; �; �; ��) = 1�p2� exp(� 12�2 �2t ); (3.12)where �t is given in (3.8) and �� = f��1; : : : ; ��k�1g. Note that we consider the initial valueof the Markov trend n1 as a parameter. Conditional on the states and on the initialobservations yk = fy1; : : : ; ykg the likelihood function can be written as the product ofthe conditional densities in (3.12)L(yT jyk; sT ; �) = pN00 (1� p)N01 qN11 (1� q)N10TYt=k+1 f(ytjyt�1; st; 
0; 
1; n1; �; �; ��); (3.13)2The exact restriction is that the roots of the polynomial �(x) are outside the unit circle.



3.3 Bayesian Analysis 25where � = f
0; 
1; n1; �; �; ��; p; qg, Nij denotes the number of transitions from state i tostate j. Note that we use that fyt�1; st�2g does not Granger cause st, i.e. the conditionaldistribution p(stjst�1; yt�1) equals the conditional distribution p(stjst�1).The unconditional (on the states) likelihood function is given byL(yT jyk; �) = 1Xs1=0 1Xs2=0 � � � 1XsT=0L(yT jyk; sT ; �): (3.14)The evaluation of this likelihood requires the summation and evaluation of 2T uncondi-tional likelihood functions. To avoid this huge summation Hamilton (1989) derives a �lterto compute the unconditional likelihood function in case � = 1. Lam (1990) adjusts thiscomputationally intensive �lter for the � < 1 case, see also Kim (1994). Fortunately, inour Bayesian analysis we can circumvent the evaluation of the unconditional likelihoodfunction, see Section 3.4.Finally, the unconditional likelihood function of the Markov trend model with � = 1(3.9) denoted by L0(yT jyk; �0) is given byL0(yT jyk; �0) = L(yT jyk; �)j�=1 (3.15)where �0 = �nf�; n1g.In the next section we propose a Bayesian framework to analyse the stochastic trendsin Markov trend models. We specify prior distributions and discuss posterior odds ratiosfor the presence of a unit root in the polynomial �(x) versus stationarity and for theabsence of a Markov trend, i.e. 
1 = 0.3.3 Bayesian AnalysisClassical inference concerning the stochastic trends in Markov trend models turns out tobe far from standard. The distribution of a likelihood ratio [LR] test for the presence ofa unit root in the autoregressive component (� = 1) is unknown and technical di�cultiesare such that no formal strategy is available for a classical test procedure. Instead, Lam(1990) performs a small Monte Carlo experiment (100 trials) to obtain a critical valuefor an LR test for � = 1 in his model for US real GNP. At a 5% signi�cance level thepresence of a unit root is rejected. The same simulation experiment shows that, like inthe standard AR model [see, e.g. Dickey and Fuller (1979)], the estimator of the dominantroot of the autoregressive component is downward biased. Furthermore, a standard LRtest for 
1 = 0 is not possible since under 
1 = 0 the transition probabilities p and q arenot identi�ed. Hansen (1992, 1996) provides a very computationally intensive procedureto perform a classical test for 
1 = 0, see also Garcia (1995).In this section we provide a Bayesian framework to analyse the Markov trend model.The Bayesian analyses of the non-Markov models proceed in a similar way. The discussedtheory is limited to the speci�c problems under consideration. For a more general intro-duction in Bayesian analysis, we refer to Zellner (1971) or Box and Tiao (1973). In Section



26 Univariate Markov Trend Model3.3.1 we specify priors for the model parameters. In Section 3.3.2 and Section 3.3.3 wederive posterior odds ratios for the presence of a unit root and for the absence of theMarkov trend.3.3.1 Prior Speci�cationThe Markov trend model (3.8) is non-linear in certain parameters. This phenomenonoften leads to local non-identi�cation for certain parameters in the model. It is easy tosee that for � = 1, the parameter n1 is not identi�ed. Specifying a di�use prior on n1implies that the conditional posterior of n1 given � is constant and non-zero when � = 1.The integral over this conditional posterior at � = 1 is therefore in�nity, favouring theunit root. Hoek and Paap (1994) correct for this problem by imposing a conditionalnormal prior on n1 with mean y1 and variance �2=(1 � �2), which is based on the ideasof Schotman and van Dijk (1991a, 1991b). This prior re
ects the uncertainty about n1 if� approaches one by letting the variance of n1 going to in�nity if � ! 1. This solutionprovides a proper marginal posterior for �. Here, we specify a simpli�ed version of thisprior for n1 n1 j y1; � � N(y1; �2); (3.16)where y1 is the �rst observation. The advantage of this simple prior speci�cation is that thecomputation of the marginal posterior of � becomes easier, see Section 3.4. Furthermore,Hoek (1997, Chapter 2) shows that this simpli�cation leads to almost the same answers instandard unit root analysis. Although this prior is more 
exible since it allows for valuesof � larger than one, we specify a uniform prior distribution for � on the interval [�lb; 1]to exclude explosive AR structuresp(�) = 1(1� �lb)I[�lb;1]; (3.17)where I is an indicator function, which is one on [�lb; 1] and zero elsewhere. The value of�lb will be discussed in the next subsection.As already mentioned in the previous section the transition parameters p and q arenot identi�ed if 
1 = 0. In a Bayesian framework this does not cause any problems aslong as we specify proper priors on the non-identi�ed parameters. The prior distributionsfor p and q are independent and uniform on the open interval (0; 1)p(p) = I(0;1)p(q) = I(0;1): (3.18)Under 
at priors for p and q special attention must be payed to the priors for 
0 and 
1.It is easy to show that the likelihood has the same value if we switch the role of the statesand change the values of 
0, 
1, p and q into 
0 + 
1, �
1, q and p respectively. Thiscomplicates proper posterior analysis if we specify uninformative priors on 
0 and 
1.



3.3 Bayesian Analysis 27A simple solution to this problem is to restrict the intervals on which the priors haveprobability mass p(
0) = 1(
0;ub � 
0;lb)I[
0;lb;
0;ub] (3.19)p(
1) = 1(
1;ub � 
1;lb)I[
1;lb;
1;ub]; (3.20)where 
i;lb and 
i;ub, i = 0; 1 denote the upper- and lowerbound of the intervals. Anotheroption is to specify informative priors for 
0 and 
1, for instance normal priors, see Dieboltand Robert (1994) for a discussion on prior speci�cation in mixture models.Finally, the priors for � and �� are given byp(�) / ��1 (3.21)p(��) / I[stat]; (3.22)where I[stat] is an indicator function, which is one if the autoregressive parameters �imply that the roots of the autoregressive polynomial are outside the unit circle and zeroelsewhere.The joint prior p(�) is given by the product of the marginal priors (3.16){(3.22). Thejoint prior for the model parameters under the restriction � = 1, p0(�0), is just the productof the marginal priors (3.18){(3.22).3.3.2 Unit Root AnalysisSeveral methods for a Bayesian analysis of unit roots have been proposed. The di�erencesresult from prior speci�cation, the initial value problem and model representation, see foran overview Hoek (1997, Section 2.2) and Schotman (1994). Here we follow a standardposterior odds ratio analysis to analyse the presence of a unit root. Since our null hypo-thesis, H0 : � = 1, is a sharp hypothesis, we have to assign a discrete prior probability tothe event � = 1. The alternative hypothesis is H : � < 1. The relative prior beliefs aboutthe two hypotheses is given by the prior odds ratio [PROR]PROR(�) = Pr[H0]Pr[H] ; (3.23)where Pr[H0] and Pr[H] denote the prior probabilities for both hypotheses. The posteriorodds ratio is the product of the prior odds ratio and the ratio of the averaged likelihoodswith the priors under the competing hypotheses serving as weighting functions see, e.g.,Leamer (1978, Chapter 4) and Zellner (1971, Chapter X). Formally, the posterior oddsratio [POR] is de�ned asPOR(�) = PROR(�)� Pr[H0jyT ]Pr[HjyT ]= Pr[H0]Pr[H] � R p0(�0)L0(yT jyk; �0) d�0R p(�)L(yT jyk; �) d� ; (3.24)



28 Univariate Markov Trend Modelwhere L(yT jyk; �) and L0(yT jyk; �0) denote the unconditional likelihood functions givenin (3.14) and (3.15), respectively. If the PROR(�)=1, i.e. both hypotheses are a prioriequally likely, the POR(�) equals the Bayes factor [BF], which corresponds to the lastterm in (3.24).Computation of the Bayes factor requires the evaluation of two integrals. Fortunately,Dickey (1971) shows that the Bayes factor also equals the ratio of the height of themarginal posterior and the height of the marginal prior, both evaluated in the point ofinterest (� = 1) BF(�) = p(�jyT )j�=1p(�)j�=1 ; (3.25)where p(�jyT ) denotes the marginal posterior for �. This ratio is known as the Savage-Dickey density ratio. Two regularity conditions are required for the use of the Savage-Dickey density ratio, see also Verdinelli and Wasserman (1995). The total prior under thealternative hypothesis must equal the conditional prior under the null hypothesis in thepoint of interest, i.e., p(�0j�)j�=1 = p0(�0): (3.26)Furthermore, the marginal posterior of the parameter of interest and the total prior of allparameters must be bounded in the parameter point of interest. In our case the conditionsare 0 < p(�jyT )j�=1 <1 (3.27)0 < p(�)j�=1 <1: (3.28)The prior speci�cation in the previous subsection ensures that condition (3.26) is satis�ed.Since we have speci�ed a proper prior on n1 it is easy to see that condition (3.27) is alsoful�lled. Although condition (3.28) is formally not satis�ed in our prior speci�cation, wecan construct theoretically equal uniform priors for the parameters �� and ln(�) in bothcompeting models such that condition (3.28) is satis�ed with the same posterior resultsas for the improper priors.It is easily seen from (3.25) that the role of the prior on � is important. Underour uniform prior for � the value of �lb is important. If we choose �lb too small thePOR becomes very large favouring the unit root hypothesis. We follow the solution bySchotman and van Dijk (1991a), who choose �lb such that [�lb; 1] corresponds to the 99%highest posterior density [HPD] region.3.3.3 Markov Trend AnalysisTesting for the absence of a Markov trend can be done in the same way. Koop and Potter(1995) use the Savage-Dickey density ratio to test for 
1 = 0 versus 
1 6= 0. The Bayes



3.4 Simulating Posterior Distributions 29factor for this hypothesis simpli�es toBF(
1) = p(
1jyT )j
1=0p(
1)j
1=0 (3.29)where p(
1jyT ) is the marginal posterior of 
1 and p(
1) the prior for 
1, de�ned in (3.19),see Koop and Potter (1995) for more details. The priors for the models under 
1 = 0have to satisfy a condition like (3.26). For the other conditions the same arguments asfor the test for � = 1 hold. If one wants to specify a 
at prior on 
1, a HPD region for 
1is required to avoid favouring the hypothesis 
1 = 0.To compute the Bayes factors we need the marginal posterior density of � and 
1. Inthe next section we use Markov chain Monte Carlo [MCMC] methods to obtain posteriorresults.3.4 Simulating Posterior DistributionsThe posterior distribution is proportional with the product of the marginal priors in(3.16){(3.22) and the unconditional likelihood in (3.14). This posterior distribution is toocomplicated to derive analytical posterior results. As Albert and Chib (1993), McCul-loch and Tsay (1994b) and Chib (1996) demonstrate, the Gibbs sampling algorithm ofGeman and Geman (1984) is very useful tool for the computation of posterior results formodels with unobserved states. The state variables fstgTt=1 can be treated as unknownparameters and simulated alongside the model parameters. This technique is known asdata augmentation, see Tanner and Wong (1987).To describe the Gibbs sampler, let  be a random vector which can be divided in dblocks ( 1; : : : ;  j; : : : ;  d), Also, let  j j  �j denote the distribution of  j conditional onthe other random variables  �j =  n j. The simulation algorithm to sample from thejoint distribution of  works as follows:Step 1: Specify starting values  0 = ( 01; : : : ;  0j ; : : : ;  0d) and set i = 0.Step 2: Simulate i+11 from  1 j  i2;  i3; : : : ;  id, i+12 from  2 j  i+11 ;  i3; : : : ;  id, i+13 from  3 j  i+11 ;  i+12 ;  i4; : : : ;  id,... ... i+1d from  d j  i+11 ;  i+12 ; : : : ;  i+1d�1.Step 3: Set i = i+ 1 and go to step 2.



30 Univariate Markov Trend ModelThe described iterative scheme generates a Markov chain. After the chain has converged,say at H iterations, the simulated values f i; i � Hg can be used as a sample from thejoint distribution of  to compute means, variances and marginal densities. For instance,the marginal density of  j is obtained byp( j) = 1N N+HXi=H+1 p( jj i1; : : : ;  ij�1;  ij+1; : : : ;  id); (3.30)where N denotes the number of useful draws. For an overview and some details onconvergence, see among others Smith and Roberts (1993) and Tierney (1994).In the remainder of this section, we show how the Gibbs sampler can be implementedto obtain posterior results from the Markov trend model. To apply the Gibbs samplerwe need the full conditional posterior densities of the model parameters, which play therole of  jj �j in step 2. Additionally, the full conditional posterior distributions of thestate variables are needed. We focus on the unrestricted Markov trend model (3.8) with� < 1. The full conditional posterior densities of the models (3.9){(3.11) can be derivedin a similar way. The Gibbs sampling scheme described above results in draws �i fromthe posterior distribution, which can be used to compute posterior means, variances andmarginal densities.3.4.1 Full Conditional Posterior DistributionsFull Conditional Posterior of the StatesTo sample the states, we need the full conditional posterior density of st, denoted byp(stjs�t; �; yT ), t = 1; : : : ; T , where s�t = sTnfstg. Since st follows a �rst-order Markovprocess, it is easily seen thatp(stjs�t) / p(stjst�1) p(st+1jst); (3.31)due to the Markov property. Following Albert and Chib (1993), we can writep(stjs�t; �; yT ) = p(stjs�t; �; yt) f(yt+1; : : : ; yT jyt; s�t; st; �)f(yt+1; : : : ; yT jyt; s�t; �)/ p(stjs�t; �; yt) f(yt+1; : : : ; yT jyt; s�t; st; �): (3.32)Using the rules of conditional probability, the �rst term of (3.32) can be simpli�ed asp(stjs�t; �; yt) / p(stjs�t; �; yt�1) f(yt; st+1; : : : ; sT jyt�1; st; �)/ p(stjst�1; �) f(ytjyt�1; st; �)p(st+1jst; �; yt) p(st+2; : : : ; sT jst+1; �; yt)/ p(stjst�1; �) f(ytjyt�1; st; �) p(st+1jst; �); (3.33)



3.4 Simulating Posterior Distributions 31where we use the fact that fst+2; : : : ; sTg is independent of st given st+1. The second termof (3.32) is proportional tof(yt+1; : : : ; yT jyt; st; �) / TYi=t+1 f(yijyi�1; si; �): (3.34)Next, using (3.33) and (3.34) the full conditional distribution of st for t = k + 1; : : : ; T isgiven by p(stjs�t; �; yT ) / p(stjst�1; �) p(st+1jst; �) TYi=t f(yijyi�1; si; �); (3.35)where f(ytjyt�1; st; �) is de�ned in (3.12) and the constant of proportionality can be ob-tained by summing over the two possible values of st. At time t = T the term p(sT+1jsT ; �)drops out. The �rst k states can be sampled from the full conditional distributionp(stjs�t; �; yT ) / p(stjst�1; �) p(st+1jst; �) TYi=k+1 f(yijyi�1; si; �); (3.36)for t = 1; : : : ; k, where at time t = 1 the term p(stjst�1; �) is replaced by the unconditionaldensity p(s1j�), which is a binomial density with probability � = (1� p)=(2� p� q).As Albert and Chib (1993) show, sampling of the state variables if a unit root is presentin �(x) is easier. Under the restriction � = 1 only the �rst (k � 1) future conditionaldensities of yt depend on st instead of all future conditional densities. However, samplingis possible in the same way: take the most recent value of sT and sample the statesbackward in time, one after another, starting with sT . After each step, the t-th elementof sT is replaced by its most recent draw.Full Conditional Posterior of p and qIt is easy to see from the conditional likelihood function (3.13) that the full conditionalposterior densities of the transition parameters are given byp(pjsT ; �nfpg; yT ) / pN00(1� p)N01 (3.37)and p(qjsT ; �nfqg; yT ) / qN11(1� q)N10; (3.38)where Nij again denotes the number of transitions from state i to state j. This impliesthat the transition probabilities can be sampled from beta distributions.



32 Univariate Markov Trend ModelFull Conditional Posterior of 
0, 
1 and n1To derive the full conditional posterior distribution of 
0, 
1 and n1 we rewrite (3.8) in alinear regression equation representation�(L)yt = �(L) � t� 1 Pti=2 st 1 �0B@ 
0
1n1 1CA+ �t; (3.39)for t = k+1; : : : ; T . Using the properties of the likelihood of a regression model it is easyto show that the full conditional density of (
0 
1 n1)' is normal, see e.g. Zellner (1971,p. 65{67). Note that we also have to add the normal prior for n1 (3.16) to the regressionequation (3.39) via y1 = (0 0 1)(
0 
1 n1)0 + �1. Normal priors for 
0 and/or 
1 can beincluded in the same way.Full Conditional Posterior of � and ��If we condition on 
0, 
1 and n1 and the states fstgTt=1, model (3.8) can be seen as aregression model in the parameters � and ��. Using the same argument as above the fullconditional posterior distribution of (�, ��) is normal. The restriction �lb � � � 1 can beincorporated by rejecting draws for which � > 1 or by drawing from a truncated normaldistribution.Full Conditional Posterior of �To derive the full conditional posterior distribution of � we consider the conditional like-lihood function (3.13). This function is proportional to an inverted gamma-2 density, sothe sampling of � can be based onPTt=k+1 �2t + (y1 � n1)2�2 ���� �nf�g; yT � �2(T � k + 1); (3.40)see Zellner (1971, p. 61{62). The term (y1�n1)2 results from the normal prior speci�cationon n1 (3.16).3.5 ForecastingTime series models are not only used to analyse trends, business cycles, seasonal pat-terns within-sample, but also to generate out-of-sample forecasts. In a Bayesian analysisthis implies the analysis of predictive densities. The one-step ahead predictive densityf(yT+1jyT ) for the Markov trend model (3.8) results fromf(yT+1jyT ) = ZZ f(yT+1jyT ; sT+1; sT ; �) dsT+1 d�; (3.41)



3.6 Application 33where f(yT+1jyT ; sT+1; sT ; �) is given in (3.12). Note that contrary to standard classicalapproaches this predictive density incorporates state uncertainty and parameter uncer-tainty. The computation of the one-step ahead predictive density f(yT+1jyT ) can easilybeen done by extending the sampling scheme from the previous section, see Albert andChib (1993). To obtain posterior results we simulate in each iteration of the Gibbs sam-pling procedure from the full conditional distribution of sT+1 and yT+1. In other words,for each draw (sT ; �), which results from the Gibbs sampler we generate� sT+1 from p(sT+1jsT ; �) and� yT+1 from f(yT+1jyT ; sT+1; sT ; �) given in (3.12).These extra steps can be implemented in the Gibbs sampling scheme without any di�-culties. The same is true for the computation of h-step ahead predictive densities. Theh-step ahead predictive density f(yT+hjyT ) is given byf(yT+hjyT ) = ZZZ f(yT+hjyT+h�1; sT+h; �) d(yT+h�1; : : : ; yT+1) d(sT+h; : : : ; sT+1) d�;(3.42)where f(yT+hjyT+h�1; sT+h; �) is given in (3.12). For the computation of the h-step aheadpredictive density we use the simulation results for the computation of the one- through(h� 1)-step ahead predictive densities as the following simulation scheme shows:� Generate sT+h from p(sT+hjsT+h�1; �), where sT+h�1 results from the simulation ofthe (h� 1)-step ahead predictive density.� Generate yT+h from f(yT+hjyT+h�1; sT+h; �) given in (3.12), where fsT+h�1; : : : ; sT+1gand fyT+h�1; : : : ; yT+1g are draws resulting from the simulation of the 1- through(h� 1)-step ahead predictive densities.The simulation output can be used to compute predictive means, variances and the pre-dictive densities like in (3.30).3.6 ApplicationTo illustrate the proposed Bayesian analysis of a unit root in a Markov trend model we�rst analyse in Section 3.6.1 two simulated series. In Section 3.6.2 we consider Germanindustrial production.3.6.1 Simulated SeriesWe consider the following data generating process [DGP],yt = nt + zt;nt = nt�1 + 2� 4 st; n1 = 0;zt = �zt�1 + �t; �t � NID(0; 1); (3.43)



34 Univariate Markov Trend ModelTable 3.1. Posterior means with posterior standard deviations between paren-theses of the model parameters in (3.8) with Bayes factors for � = 1, for thetwo DGPs.series1 
0 
1 n1 p q � � BF(�)2DGP I 1:98 �4:05 0:57 0:90 0:60 0:79 0:88 0.61(0:04) (0:24) (0:79) (0:03) (0:11) (0:09) (0:07)DGP II 1:94 �3:81 0:34 0:89 0:58 0:94 0:85 3.00(0:06) (0:23) (0:91) (0:04) (0:11) (0:06) (0:07)1The DGP is given in (3.43) with � = 0:8 (DGP I) and � = 1 (DGP II).2BF(�) denotes the Bayes factor. A Bayes factor exceeding one implies that � = 1 is aposteriori more likely than � < 1.where fstg100t=1 is generated by a �rst-order Markov process with transition probabilitiesp = 0:9 and q = 0:6. We analyse two DGPs using the same set of disturbances f�tg100t=1 andstate variables fstg100t=1 but with di�erent values for the autoregressive coe�cient, � = 0:8and � = 1 respectively. The simulated series are denoted by DGP I and DGP II and areplotted in the top left cells of Figure 3.1 and 3.2.To analyse the two series we consider the Markov trend model (3.8) with a �rst-order AR component, which corresponds to the AR order of the DGPs. The priors forthe model parameters are given in (3.16){(3.21). For 
0 and 
1 we take 
at priors onthe intervals [1;1) and (�1; 0] respectively. Table 3.1 displays the posterior meansand posterior standard deviations between parentheses of the model parameters for bothDGPs. Posterior results are obtained using the Gibbs sampling algorithm explained inSection 3.4. The posterior means of the parameters match the parameter values of theDGPs. The posterior results are almost identical for the two DGPs except of course for �.The posterior mean of � for DGP I is 0.79, which is clearly below unity. For DGP II wehave a posterior mean for � of 0.94. Note that due to truncation to the right the mode ofthe marginal posterior density is closer to one. The �nal column of Table 3.1 shows theBayes factors for � = 1, which are computed using the Savage-Dickey density ratio (3.25).The value �lb has been chosen such that [�lb; 1] corresponds to the 99% HPD region for �.Under equal prior odds, these Bayes factors are equal to posterior odds ratios for � = 1.For DGP I the Bayes factor for � = 1 equals 0.61, which indicates that the hypothesisof � < 1 is a posteriori more likely than the hypothesis � = 1. However, the unit roothypothesis is strongly favoured for the second DGP: the Bayes factor 3.00 clearly exceedsunity. Note that the posterior standard deviation of n1 for the Markov trend stationaryDGP I is smaller than for DGP II, which contains a unit root.
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Figure 3.1. Simulated series and marginal posterior densities for DGP I.



36 Univariate Markov Trend Model

Figure 3.2. Simulated series and marginal posterior densities for DGP II.



3.6 Application 37Figures 3.1 and 3.2 display the marginal posterior densities of the model parameters.The shapes of the marginal posterior densities of � support the results of the Bayes factors.For DGP I the density mass is situated far away from one, while for DGP II the mode isvery close to one. The top right cells of the �gures denote the posterior expectations ofthe states E[stjyT ], t = 1; : : : ; 100. The peaks in these graph correspond reasonably wellwith the periods of negative growth. The posterior distributions of 
0 and 
1 and thetransition probabilities re
ect the fact that the DGPs consist of a relatively small numberof observations with st = 1 and many observations with st = 0. The posterior variancesof q are much larger than the posterior variances of p. The same is true for the posteriorvariances of 
1 and 
0. Finally, the marginal posteriors of 
1 show that Bayes factors for
1 = 0 are zero for both DGPs, since there is no probability mass in 
1 = 0.The simulation experiment gives some indication of the practical usefulness of Bayesianunit root analysis in Markov trend models. Since only two simulated series have beenconsidered, it must be emphasized that no general conclusion can be drawn about theperformance of the approach. In the next subsection we analyse seasonally adjustedquarterly observed German industrial production series.3.6.2 German Industrial ProductionIn this subsection we consider quarterly observed seasonally adjusted industrial productionof Germany for the period 1957.I{1993.IV. The data source is the International FinancialStatistics. The top left cell of Figure 3.3 shows a plot of the series. Since the industrialproduction series is an index and does not exhibit exponential growth, we do not applya logarithmic transformation. There are three major periods of negative growth in theindustrial production 1966.III{1967.II, 1973.III{1975.III and 1992.II{1993.II. Also in theperiod 1980.II{1982.IV there is an overall tendency of decrease in German industrialproduction. The periods of positive growth are much longer than the periods of negativegrowth, which points to an asymmetric cycle in the series. Furthermore, the averageincrease during a positive growth regime is smaller than the average decrease during anegative growth regime. A Markov trend model seems to be a suitable model to analysethis series.First, we consider the Markov trend model without the unit root in the autoregressivecomponent. The priors for the model parameters are given by (3.16){(3.22). For 
0 and
1 we take 
at priors on the intervals [0:2;1) and (�1; 0] respectively. This ensuresthat st = 0 corresponds to an expansion regime and st = 1 corresponds to a contractionregime. The lag order k of the model is determined using Bayes factors tests. We startwith an AR model of order six and decrease the order with one until the Bayes factor forthe zero restriction on the highest order ��j coe�cient is smaller than one.3The �rst column of Table 3.2 shows the posterior results for the Markov trend sta-tionary model. The posterior mean of the slope of the Markov trend is 0.70 during the3The Bayes factors are computed using a Savage-Dickey density ratio like in (3.25) and based on 99%HPD regions.
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Figure 3.3. German industrial production and marginal posterior densities.



3.6 Application 39Table 3.2. Posterior means with posterior standard deviations between parenthesesand Bayes factors for � = 1 for German industrial production, 1957.I{1993.IV.para- MTS1 MDS TS DSmeters mean s.d. mean s.d. mean s.d. mean s.d.
0 0:70 (0:04) 0:72 (0:17) 0:47 (0:08) 0:44 (0:18)
1 �2:56 (0:36) �2:31 (0:56) 0 { 0 {n1 31:41 (0:79) { { 31:46 (1:35) { {p 0:95 (0:02) 0:92 (0:06) { { { {q 0:57 (0:14) 0:53 (0:16) { { { {� 0:75 (0:07) 1 { 0:98 (0:02) 1 {��1 0:02 (0:09) �0:01 (0:11) 0:14 (0:08) 0:14 (0:09)��2 0:19 (0:09) 0:16 (0:10) 0:16 (0:08) 0:16 (0:09)��3 0:35 (0:10) 0:24 (0:10) 0:14 (0:08) 0:16 (0:08)��4 0:29 (0:09) 0:10 (0:10) 0 { 0:03 (0:09)��5 0 { �0:23 (0:10) 0 { �0:18 (0:09)� 1:01 (0:07) 1:08 (0:09) 1:32 (0:08) 1:33 (0:08)BF(�)2 0.02 { 1.74 {1MTS=Markov trend stationary model (3.8), MDS=Markov di�erence stationary model (3.9),TS=trend stationary model (3.10) and DS=di�erence stationary model (3.11).2BF(�) denotes the Bayes factor. A Bayes factor exceeding one implies that � = 1 is a posteriorimore likely than � < 1.expansion regime and �1:86 (�2:56+0:70) during a recession. The posterior mean of theprobability of staying in the expansion regime is 0.95, which is larger than the posteriormean of the probability of staying in a recession 0.57. The posterior probability thatp is larger than q is 0.99, which indicates an asymmetric business cycle. The transitionprobabilities determine the expected duration of recessions and expansions. The expectedduration of staying in an expansion regime (st = 0) conditional on being in an expansionregime is 1Xi=1 ipi�1(1� p) = 11� p; (3.44)see Hamilton (1989). The posterior mean of this expected duration is 23.31 quarters.



40 Univariate Markov Trend ModelLikewise, the expected duration of staying in a recession (st = 1) equals1Xi=1 iqi�1(1� q) = 11� q : (3.45)The posterior mean of the expected duration of a recession is 2.64 quarters. There isclear evidence for an asymmetric business cycle. Note that there is again more posterioruncertainty for 
1 and q than for 
0 and p.The posterior mean of � is 0.75, which is far away from one. The Bayes factor for � = 1is 0.02, which indicates that a posteriori the unit root is not plausible. Hence, a Markovtrend stationary model is more appropriate than a Markov di�erence stationary model.Figure 3.3 displays the marginal posterior densities for the most important parametersof the model. The marginal posterior of � supports the outcome of the Bayes factor for� = 1. There is very little probability mass in � = 1. The marginal posterior densitiesof 
0 and 
1 are shown in the third row in Figure 3.3. Since the height of the marginalposterior density of 
1 in 
1 = 0 is almost zero, the Bayes factor for 
1 = 0 is also veryclose to zero. Hence, for the industrial production series a Markov trend stationary modelis a posteriori more likely than a linear trend stationary model.The top right cell of Figure 3.3 denotes the posterior expectations of the states E[stjyT ].Using the 0.5 rule as in Hamilton (1989) we can distinguish the two stages of the businesscycle. We de�ne a recession by two consecutive data points for which E[stjyT ] > 0:5.A peak is de�ned by the last expansion observation before a recession. A trough is de�nedby the last observation in a recession. Using this rule we detect four recessions in Germanindustrial production. The following quarters are labelled as peaks: 1974.II, 1980.I, 1982.Iand 1992.II. The troughs are found in 1975.II, 1980.IV, 1982.III and 1993.I. Note that thestates do not completely pick up the period of decrease in industrial production in the1960s. This may be explained by the fact that the growth rate in the period just afterthis recession was larger than the growth rate after the other recessions and the level ofindustrial production returned to the same growth path as before the recession in the1960s, see the top left cell of Figure 3.3. The Markov trend model considers this recessionas a large temporary deviation from the Markov trend, since it did not have a permanente�ect on the level of the series like the other periods of negative growth. Similar �ndingsare reported in Sichel (1994) who suggest that there exist an extra phase in the businesscycle of the United States. In this so-called recovery phase the series returns to its originalgrowth path so that recessions do not have a permanent e�ect on the level of US GNP,see also Beaudry and Koop (1993).Some alternative models for the German industrial production series are the Markovtrend model with a unit root in the autoregressive component (3.9), the trend stationarymodel (3.10) and the di�erence stationary model (3.11). Note that these models arenested in the Markov trend stationary model but that Bayes factors indicate that neitherof these models are preferred. Table 3.2 displays the posterior results for these threemodels. The lag order for these models is determined in the same way as for Markovtrend stationary model. Also, the priors for the model parameters are the same as in the



3.6 Application 41Markov trend stationary model except that we take a di�use prior for 
0 on (�1;1) forthe models without Markov trend. The second column shows that the posteriors meansof the parameters of the Markov di�erence stationary model are roughly the same asfor the Markov trend stationary model except for the autoregressive parameters. Theposterior standard deviations of the parameters are however larger. Note that the lagorder of the model in �rst di�erences is larger than of the model in levels, probably dueto overdi�erentiation.The �nal two columns of Table 3.2 display the posterior means for the trend stationaryand di�erence stationary model. The posterior mean of the slope of the trend and thedrift term are roughly 0.45. The posterior mean of the variance of the error process �2is larger than for the Markov trend models. This leads to more forecast uncertainty dueto the noise component. The last row of the table displays the Bayes factor for � = 1 inthe trend stationary model. Contrary to the Markov trend model, the Bayes factor nowfavours the unit root hypothesis, indicating that all past shocks have a permanent e�ecton the future level of the series.As Markov trend models are designed to model the recession in a time series onemay expect that these models produce superior forecasts than standard AR models forrecession periods. To evaluate the out-of-sample performance of our Markov trend models,we remove the last eight observations (1992.I{1993.IV) from the sample for a forecastexercise. Note that the posterior expectation of the states indicate a recession during thisforecast evaluation period. We reanalyse the models again for the sample 1957.I{1991.IVand consider one- through eight-step ahead forecast distributions, see Section 3.5.Table 3.3 displays the posterior means with posterior standard deviations betweenparentheses of the one- through eight-step ahead forecasts distributions together withthe true values of the series. The results are obtained by extending the Gibbs samplingprocedure with the extra steps mentioned in Section 3.5. Considering posterior means, wesee that in 1992.I the trend stationary model, in 1992.II the di�erence stationary modeland in 1992.III the Markov di�erence stationary model produces the best forecasts. After1992.III the Markov trend stationary model is superior. Contrary to the non-linear ARmodels, the Markov models take into account the possibility of a recession, which occurredafter 1992.II. The standard deviations of the forecast distribution increase if we forecastmore periods ahead, although this does not have to be the case for non-linear models. Notethat imposing the unit root leads to a larger standard deviation of the forecast distributionfor the Markov di�erence stationary model than for the Markov trend stationary model.This is also the case for the non-Markov models. The smaller posterior variances ofthe disturbances of the Markov trend models than of the standard AR models lead tosmaller standard deviations in the forecast distributions. This is even more clear fromFigure 3.4, which shows the one- through eight-step ahead predictive error densities forthe four models. These densities are obtained by a horizontal shift of the predictivedensities of minus the true value. The predictive densities of the Markov trend modelsare unimodal but skewed. It is very clear from these �gures that the Markov trend modelproduces superior forecast distributions after 1992.II. However in the �rst three periods
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Figure 3.4. One- through eight- step ahead predictive error densities for German industrialproduction, 1992.I{1993.IV.



3.7 Concluding Remarks 43Table 3.3. Posterior means with posterior standard deviations between parentheses ofthe one- through eight-step ahead forecast distributions for the period 1992.I-1993.IV.1period true MTS2 MDS TS DSvalue mean s.d. mean s.d. mean s.d. mean s.d.1992.I 104:40 100:40 (1:31) 101:59 (1:84) 102:74 (1:29) 102:60 (1:29)1992.II 102:50 99:02 (2:01) 100:85 (2:93) 103:03 (1:89) 102:59 (1:92)1992.III 100:80 97:26 (2:40) 100:19 (4:06) 103:27 (2:44) 102:86 (2:49)1992.IV 97:50 95:99 (2:97) 99:64 (5:16) 103:72 (3:00) 103:19 (3:15)1993.I 94:60 94:88 (3:38) 98:40 (6:25) 104:19 (3:50) 103:84 (3:74)1993.II 94:20 93:94 (3:79) 98:97 (7:28) 104:66 (3:97) 104:35 (4:19)1993.III 94:50 92:15 (4:10) 98:64 (8:31) 105:22 (4:38) 104:92 (4:62)1993.IV 94:60 92:58 (4:42) 98:27 (9:32) 105:76 (4:75) 105:50 (5:00)1Posterior results for the forecasts are conditional on the sample 1957.I{1991.IV.2MTS=Markov trend stationary model (3.8), MDS=Markov di�erence stationary model (3.9),TS=trend stationary model (3.10) and DS=di�erence stationary model (3.11).the Markov trend stationary model performs very bad compared to the other models.In summary the Markov trend model seems a useful model to describe the trend andthe business cycle in German industrial production. However, the model does not detectthe recession in the 1960s. This recession is characterized by the fact that the growthin the period after the recession was so large that that the same growth path as beforethe recession was reached. This recession did not have a permanent e�ect on the levelof German industrial production, like for the other recessions. One could extend theMarkov trend with an extra regime to model the recession in the 1960s, see for instanceBoldin (1996). However inference about the parameters modelling this extra regime willbe totally based on a single event.3.7 Concluding RemarksIn this chapter we have considered Markov trend models and discussed the role of thestochastic trends in these models. A Bayesian method to test for the presence of a unitroot in the autoregressive part of the model is proposed and a test for the presence ofMarkov switching is discussed. The theory is applied to two simulated series and to quar-terly observed seasonally adjusted German industrial production. For the latter series, astationary AR model around a Markov trend is a posteriori preferred to a Markov dif-ference stationary model and to non-linear AR models. The model detects the recessions



44 Univariate Markov Trend Modelin German industrial production, which have had a permanent impact on the level ofthe series. The recession in the 1960s is however not detected. Contrary to the otherrecession periods, this recession was followed by a period of very high growth to reach thesame growth path as before the recession. Finally, the Markov trend stationary providessuperior multi-step ahead forecast distributions for the period 1992.III{1993.IV.We conclude with some remarks concerning model extensions. The �rst extensionconcerns time varying transition probabilities. Durland and McCurdy (1994) proposeduration-dependent transition probabilities, i.e. the value of transition probability de-pends on the number of periods that the process has been in the regime. Filardo (1994)and Diebold, Lee and Weinbach (1994) model the transition probabilities using logis-tic functions, which include explanatory variables. McCulloch and Tsay (1994b) andPaap (1995) among others allow for regime dependent autoregressive parameters, like inthreshold autoregressive models [see e.g. Potter (1995)] or smoothed threshold autoregres-sive models [see e.g. Ter�asvirta and Anderson (1992)]. The dynamic properties of theseswitching autoregressive models are however not easy to derive, see Holst, Lindgren, Holstand Thuvesholmen (1994) and Warne (1996). Obviously, also extensions to moving aver-age models are possible, see Billio, Monfort and Robert (1996). Boldin (1996) considersa third-order transition process to model the regime switches and extends the Markovtrend with an extra slope. Since the number of observations in a recession are usuallyvery small, it remains however to be seen whether the data contain enough information toallow for a useful analysis of these 
exible models. Finally, the models are extended withseasonal components to analyse seasonal time series, see for instance Ghysels, McCullochand Tsay (1994). In the next chapter we extend the Markov trend model with a seasonalcomponent to analyse seasonal unadjusted series.



Chapter 4Seasonal Markov Trend Model
4.1 IntroductionTo date business cycle turning points in the past is one of the applications of Markovtrend models. This dating is usually based on seasonally adjusted time series, see amongothers Hamilton (1989), Goodwin (1993) and Filardo (1994) since one expects that theseasonal movements possibly blur inference on business cycles. Recent studies have ques-tioned the accuracy of business cycle analysis using seasonal adjusted series, see amongothers Ghysels (1994, 1997) and Franses and Paap (1996).A widely applied seasonal adjustment method is Census X-11, which transforms aseasonal time series via a sequence of moving average �lters to an approximately non-seasonal time series. To construct seasonally adjusted series for business cycle analysis itis necessary that the seasonal adjustment �lter fully removes the seasonal pattern fromthe series without a�ecting the non-seasonal pattern. The application of the Census X-11seasonal adjustment �lter has however a number of implications on the dynamic structureof time series. Ghysels, Granger and Siklos (1996) show that seasonal adjustment canintroduce non-linear features in a time series with a linear dynamic pattern. Ghysels andPerron (1996) show that for time series with a one-time structural break, the probabilityof detecting this break decreases if one analyses the series after seasonal adjustment.Finally, seasonal adjustment biases inference fromMarkov switching models. Since CensusX-11 consists of a moving average �ltering process, a current recession observation isreplaced by a weighted average of previous and forthcoming observations, which mayinclude expansion observations. This leads to a decrease in the transition probability ofchanging regimes and an increase in the probability of staying in a regime, see Fransesand Paap (1996) for a simulation study. In turn, this causes a bias in the estimatedduration of recession and expansion periods. Furthermore, their results suggest thatseasonal adjustment may in
uence the correct dating of business cycle turning points.Apart from the above mentioned negative side e�ects of seasonal adjustment, theCensus X-11 �lter is also not capable of fully removing the seasonal pattern from a timeseries. In fact, Ghysels (1994) using seasonally adjusted data still detects seasonal patterns



46 Seasonal Markov Trend Modelin turning points, in the sense that the turning points are not equally distributed over theyear. This may result from the fact that seasonal 
uctuations and the business cycle arenot independent [see e.g. Miron (1994)] and hence, it may be impossible to fully removethe seasonal pattern without a�ecting the business cycle. Canova and Ghysels (1994)discover, using the o�cial NBER peaks and troughs, a signi�cant change in the seasonalmeans during recessions, which indicates that seasonal 
uctuations can contain valuableinformation about the business cycle.The above arguments suggest that it is in most cases better for business cycle analysisto consider seasonally unadjusted series. The seasonal 
uctuations have to be modelledsimultaneously with the business cycle. In this chapter we introduce a seasonal variant ofthe Markov trend model of the previous chapter. The model allows for di�erent meansin every season. To allow for changes in the seasonal pattern we examine the presence ofseasonal stochastic trends caused by seasonal unit roots.1 Since it may be the case thatchanges in the seasonal means coincide with changes in stage of the business cycle [seeCanova and Ghysels (1994)], we also extend the model with di�erent seasonal means in arecession and an expansion period.The outline of this chapter is as follows. In Section 4.2 we brie
y discuss the modellingof seasonal patterns in quarterly observed time series. In Section 4.3 we propose a seasonalMarkov trend model. This model extends the Markov trend model from Chapter 3 toinclude di�erent means for every season and a changing seasonal pattern during recessions.Furthermore, we allow for the presence of seasonal unit roots. The Bayesian frameworkto analyse this seasonal variant of the Markov trend model is discussed in Section 4.4. Wepropose prior distributions and discuss posterior odd ratios for the presence of seasonalunit roots. To illustrate the Bayesian analysis of seasonal unit roots, we consider inSection 4.5 several simulated series. In Section 4.6 we examine the business cycle inquarterly observed German unemployment and its relation with the seasonal 
uctuations.To analyse the consequences of seasonal adjustment on the dating of turning points andthe estimation of the expected duration of recession and expansion periods, we considerseasonal adjusted and non-adjusted data. Finally, Section 4.7 concludes.4.2 Modelling SeasonalityThe modelling of the seasonal pattern in quarterly observed macroeconomic time serieshas been an important issue in the past decade. In this section we discuss some basictopics of modelling seasonal 
uctuations, which concern the issues raised in this chapter.For a recent and detailed overview of modelling seasonality we refer to Franses (1996).The top left cell of Figure 4.1 shows a plot of quarterly observed seasonally unad-justed German unemployment for the period 1962.I{1991.IV. The series clearly exhibitsintra-year di�erences, which are referred to as seasonal 
uctuations. The easiest way tomodel the seasonal pattern in the series is to use deterministic seasonal dummies. This1See Hylleberg et al. (1990) for a discussion about seasonal stochastic trends.
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Figure 4.1. Seasonally unadjusted German unemployment, 1961.I{1991.IV.corresponds to the assumption of a constant seasonal pattern over time in the time se-ries. To display the seasonal pattern more explicitly, we consider a plot of the quartersof unemployment as four separate series, see the top right cell of Figure 4.1. We see thatthe unemployment rate in the �rst quarter (solid line) is almost always larger than inthe other quarters. In the years 1966, 1973-1974 and 1980{1982 however the unemploy-ment rate in the fourth quarter is larger than in the �rst quarter. The second row ofFigure 4.1 shows a plot of the �rst di�erences of German unemployment and a plot ofthe �rst di�erences split up in a series for each separate quarter. The �rst plot showsthat the amplitude of the seasonal pattern does not seem to be constant over time. Thesecond plot shows that the distance between the �rst di�erences in each separate quarterchanges over time. Hence, at �rst sight the seasonal pattern does not seem to be constantover time and deterministic seasonal dummies are probably not su�cient to model theseasonal 
uctuations.Apart from the seasonal 
uctuations, we notice in the German unemployment seriesperiods of overall increase and periods of decrease or constant unemployment, see Fig-ure 4.1. To model the business cycle in this series, one may apply a Markov trend modelwith a seasonal component. To use this Markov trend model for business cycle analysisit is necessary to have an accurate modelling of the seasonal pattern in the time series tohave precise dating of turning points. In general, changes in the seasonal pattern may beinterpreted by this Markov trend model as a change in the growth rate and hence as a



48 Seasonal Markov Trend Modelrecession. On the other hand, if one models changes in the seasonal pattern too 
exible,a change from an expansion to a recession period or vice versa, may be interpreted aschanges in the seasonal means of the growth rate of the series. Although it is not likelythat the model considers the complete recession as a continuous change in the seasonalpattern, it can however lead to a mistake in the dating of a turning point. The top rightcell of Figure 4.1 shows that that in our example the change in the order of magnitudeof quarter one and quarter four almost always coincide with the periods of increase inunemployment. From the plot of the �rst di�erences it seems that the changes in theseasonal pattern coincide with the changes in the stage of the business cycle, see Canovaand Ghysels (1994) for similar phenomena in macroeconomic time series of the UnitedStates. In Section 4.6.1 we analyse the seasonal pattern and the business cycle in theGerman unemployment series in more detail.To deal with changing seasonal patterns, quarterly observed series are often trans-formed by taking fourth di�erences. The fourth di�erence �lter �4 = (1 � L4) can bedecomposed as (1� L4) = (1� L) (1 + L) (1� iL) (1 + iL)= (1� L) (1 + L) (1 + L2)= (1� L) (1 + L + L2 + L3): (4.1)It is easy to see that a time series which needs fourth di�erences to obtain stationarity hasfour roots on the unit circle. Such a series is said to be seasonally integrated. The non-seasonal root at the zero frequency (1) corresponds to a non-seasonal stochastic trend.The seasonal unit root at the frequency 1=2 (�1) corresponds to two cycles per year andthe seasonal unit roots at the frequencies 1=4 and 3=4 (i and �i) correspond to one cycleper year. A seasonal unit root corresponds to the presence of a seasonal stochastic trend,see Hylleberg et al. (1990) and Engle et al. (1993). For instance, the process (1+L)yt = �tconsists of the seasonal stochastic trend Pt�1j=0(�1)j�t�j. Therefore, a seasonal unit rootimplies a continuously changing seasonal pattern. Shocks, denoted by �t, have a permanente�ect on the seasonal pattern. Notice from (4.1) that the (1�L4) �lter can be decomposedin a part with a non-seasonal unit root and a part with three seasonal unit roots.A typical outcome for test for the presence of seasonal unit roots is that quarterly ob-served macroeconomic time series tend to have one or more seasonal stochastic trends. Forexample, Osborn (1990) detects seasonal unit roots in six out of thirty UK macroeconomicvariables. Otto and Wirjanto (1990) obtain similar results for Canadian macroeconomictime series and Hylleberg, J�rgensen and S�rensen (1993) �nd that several country-speci�cgross domestic product series have one or more seasonal unit roots. As we already haveseen, the presence of a seasonal unit root in a time series implies a continuously changingseasonal pattern. However, it may be the case that changes in the seasonal patterns onlyoccur during changes in the stage of the business cycle, see also Canova and Ghysels(1994). In that case a seasonal stochastic trend is too 
exible to model the changing sea-sonal pattern. For instance, each stage of the business cycle can have di�erent seasonalmeans, so that a change in regime leads to a seasonal mean shift and hence the changing



4.3 The Seasonal Markov Trend Model 49seasonal pattern can be described by recurrent seasonal mean shifts.The in
uence of seasonal mean shifts on seasonal unit root inference is analysed inseveral recent papers. Simulation results in Paap, Franses and Hoek (1997) show thatneglecting seasonal means shift, when they are present, yields evidence of seasonal unitroots. In practice, Franses, Hoek and Paap (1997) show in a Bayesian analysis that theevidence for seasonal unit roots in three consumption series tends to disappear when oneallows for a possible seasonal mean shift. Likewise, Franses and Vogelsang (1998) �nd,using classical methods, that the evidence for the bi-annual unit root �1 in US industrialproduction disappears when allowing for a seasonal mean shift. Finally, Paap, Fransesand Hoek (1997) show that neglecting seasonal mean shifts and modelling these shiftsusing seasonal unit roots may lead to inferior forecasts.In the next section, we propose the Markov trend model to analyse the business cyclein seasonally unadjusted time series. The model incorporates the possibility of changingseasonal patterns due to seasonal unit roots. To account for possible di�erent seasonalmeans during the stages of the business cycle, we allow for di�erent seasonal means duringrecessions and expansions.4.3 The Seasonal Markov Trend ModelTo analyse quarterly observed seasonally unadjusted series fytgTt=1, we extend the decom-position in (3.1) with a seasonal componentyt = nt + dt + zt; (4.2)where nt is a trend component, dt is a seasonal component and zt represents the deviationfrom the trend and seasonal component. The trend component is again a Markov trendnt = nt�1 + 
0 + 
1st; st = 0; 1; (4.3)with n1 = 0.2 The unobserved state variable st follows a �rst-order Markov process withtransition probabilitiesPr[st = 0jst�1 = 0] = p; Pr[st = 1jst�1 = 0] = 1� p;Pr[st = 1jst�1 = 1] = q; Pr[st = 0jst�1 = 1] = 1� q: (4.4)In the simplest case the seasonal component consists of four seasonal dummiesdt = 4Xs=1 �0;sDs;t; (4.5)where Ds;t represents deterministic seasonal dummies, i.e. Ds;t = 1 if t lies in the s-th quarter and zero elsewhere, and �0;s, s = 1; : : : ; 4 model the seasonal means. The2This restriction enables us to de�ne four seasonal dummies in dt, see (4.5).



50 Seasonal Markov Trend Modeldeviations from the trend and seasonal component are modelled by an autoregressiveprocess of order k [AR(k)] �(L)zt = �t; (4.6)where �(L) = (1��1L��2L2�� � ���kLk) is a polynomial in the lag operator L, de�nedby Liyt = yt�i, i = 0; 1; : : : .Seasonal Unit RootsIn Section 3.2, we have shown in (3.7) that it is possible to rewrite the polynomial �(L)such that a restriction on a single parameter (i.e. � = 1) implies the presence of a unitroot in the polynomial. Hylleberg et al. (1990) [HEGY] show that it is also possible torewrite the polynomial such that zero restrictions on parameters imply the presence ofthe non-seasonal root 1, and the seasonal unit roots �1, i and �i�(L) = ��1L(1 + L+ L2 + L3)� �2L(�1 + L� L2 + L3)� (�3L2 + �4L)(�1 + L2) + ���(L)(1� L4); (4.7)where ���(L) = (1 � ���1L � � � � � ���k�4Lk�4), a lag polynomial of order (k � 4) and ���ii = 1; : : : ; k� 4 and �j j = 1; : : : ; 4 are functions of the �i parameters. Applying (4.7) to(4.6) results in the so-called HEGY test equation�4zt = �1z1;t�1 + �2z2;t�1 + �3z3;t�2 + �4z3;t�1 + k�4Xi=1 ���i�4zt�i + �t; (4.8)where z1;t = (1 + L+ L2 + L3)zt = zt + zt�1 + zt�2 + zt�3z2;t = (�1 + L� L2 + L3)zt = �zt + zt�1 � zt�2 + zt�3z3;t = (�1 + L2)zt = �zt + zt�2: (4.9)If �1 = 0 the series contains a unit root at the zero frequency. A unit root at the frequency1=2 (�1) corresponds to �2 = 0. If �3 = �4 = 0 the series contains the complex roots iand �i. For details we refer to Hylleberg et al. (1990) and Engle et al. (1993).Identi�cation ProblemWe have seen in Section 3.2 that in case of a unit root the initial value of the Markov trendn1 is not identi�ed, since it drops out of the model. Likewise, in case of seasonal unit roots,linear combinations of the seasonal dummy parameters �0;s are not identi�ed. To makethis identi�cation problem explicit, consider the following one-to-one transformation ofthe seasonal mean parameters �0 = (�0;1 �0;2 �0;3 �0;3)0 into the parameters !s, s = 1; : : : ; 4,0BBB@ !1!2!3!4 1CCCA = 0BBB@ 1 1 1 11 �1 1 �11 0 �1 00 1 0 �1 1CCCA0BBB@ �0;1�0;2�0;3�0;4 1CCCA (4.10)



4.3 The Seasonal Markov Trend Model 51or in matrix notation ! = F�0, where ! = (!1 !2 !3 !4)0. Using this transformation andreplacing zt by (yt � nt � dt) in (4.8) results in�4~yt = �1(~y1;t�1 � !1) + �2(~y2;t�1 � !2(�1)t) + �3(~y3;t�2 � !3�t�1 � !4�t�2)+ �4(~y3;t�1 � !3�t � !4�t�1) + k�4Xi=1 ���i�4~yt�i + �t; (4.11)where ~yt = yt � nt, �t = 12(it + (�i)t) and where we assume that t = 1 correspondsto a �rst quarter observation. It is easy to see that in (4.11) the parameter !1 is notidenti�ed if �1 = 0. Analogously, if �2 = 0 the parameter !2 is not identi�ed. Roots atthe frequencies 1/4 and 3/4 (�3 = �4 = 0) imply that !3 and !4 are not identi�ed, seealso Franses, Hoek and Paap (1997). Note that zero restrictions on the � parameters donot lead to non-identi�cation of 
0 and 
1. This follows directly from the annual growthof the trend component nt at time t�4nt = nt � nt�4= (
0(t� 1) + 
1 tXi=2 si)� (
0(t� 5) + 
1 t�4Xi=2 si)= 4
0 + 
1 tXi=t�3 si; (4.12)where we use the backward solution of nt given in (3.5). Note that the interpretationof 
0 and 
1 does not change under zero restrictions on the � parameters. Under therestriction 
1 = 0 the model simpli�es to an AR model with a deterministic trend. Theannual growth in yt equals 4
0. This model speci�cation is examined in Franses, Hoekand Paap (1997).Markov Switching in Seasonal MeansFranses, Hoek and Paap (1997) correct in their model for a possible seasonal mean shiftin a series by extending the seasonal component (4.5) with a di�erent seasonal meanafter a certain point in time. Likewise, to allow for changes in the seasonal means duringrecessions we replace (4.5) by dt = 4Xs=1(�0;s + �1;sst)Ds;t; (4.13)so that during a recession the seasonal means change from �0;s to (�0;s+�1;s), s = 1; : : : ; 4.Since �4dt = 4Xs=1(�0;s + �1;sst)Ds;t � (�0;s + �1;sst�4)Ds;t�4= 4Xs=1(�1;sst � �1;sst�4)Ds;t (4.14)



52 Seasonal Markov Trend Modelthe �1;s parameters s = 1; : : : ; 4 are identi�ed if there is at least one observation in everyquarter, which corresponds to a recession, st = 0. To see the consequences of theserecurrent seasonal mean shifts on the growth of the series yt we consider�yt = �nt +�dt +�zt= 
0 + 
1st + 4Xs=1((�0;s � �1;s�1) + (�1;sst � �1;s�1st�1))Ds;t +�zt; (4.15)where �i;0 = �i;4, i = 0; 1. If st = st�1 = 0 the quarterly growth in yt in season s is 
0 plusthe seasonal variation (�0;s � �0;s�1). Note that the sum of the seasonal variations over ayear is 0, i.e. P4s=1(�0;s � �0;s�1) = 0. If st = st�1 = 1, the growth rate is (
0 + 
1) plusthe seasonal variation (�0;s+ �1;s)� (�0;s�1� �1;s�1), so that under no regime changes, thesum of the seasonal variation over a year is again zero. However, if st 6= st�1 the quarterlygrowth is corrected by the factor (�1;sst��1;s�1st�1) for the di�erence in seasonal variationin the two regimes.The Likelihood FunctionThe derivation of the likelihood function of the seasonal Markov trend model proceedsin the same way as for the non-seasonal Markov trend model in Section 3.2. Under theassumption �t � NID(0; �2), the conditional density of yt given the past observationsyt�1 = fy1; : : : ; yt�1g and given the past and current states st = fs1; : : : ; stg readsf(ytjyt�1; st; 
0; 
1; �0; �1; �; �; ���) = 1�p2� exp(� 12�2 �2t ); (4.16)where �1 = f�1;1; �1;2; �1;3; �1;4g, ��� = f ���1; : : : ; ���k�4g, � = f�1; �2; �3; �4g and �t is de�nedin (4.11). Hence, the likelihood function for model (4.11) conditional on the statessT = fs1; : : : ; sTg and conditional on the initial k observations yk = fy1; y2; : : : ; ykg isgiven byL(yT jyk; sT ; �) = pN00 (1� p)N01 qN11 (1� q)N10TYt=k+1 f(ytjyt�1; st; 
0; 
1; �0; �1; �; �; ���); (4.17)where � = f
0; 
1; !; �1; �; �; ���; p; qg3, Nij denotes the number of transitions from statei to state j. Again, we have used that fyt�1; st�2g does not Granger cause st, i.e. theconditional distribution p(stjst�1; yt�1) equals the conditional distribution p(stjst�1). Theunconditional (on the states) likelihood function L(yT jyk; �) readsL(yT jyk; �) = 1Xs1=0 1Xs2=0 � � � 1XsT=0L(yT jyk; sT ; �): (4.18)3Note that we have speci�ed the likelihood as a function of ! instead of �0. This turns out to be moreconvenient for the seasonal unit root analysis, see Section 4.4.



4.4 Bayesian Analysis 53This unconditional likelihood function can be evaluated using the algorithm of Lam(1990). As we already have seen in Chapter 3 we do not have to compute this un-conditional likelihood for our Bayesian analysis.The unconditional likelihood functions under zero restrictions on the � parameters arede�ned in the same way. The unconditional likelihood function under �1 = 0 equalsL1(yT jyk; �1) = L(yT jyk; �)j�1=0; (4.19)where �1 = �nf�1; !1g.4 Likewise, the unconditional likelihood functions given the statesunder �2 = 0 and �3 = �4 = 0 areL2(yT jyk; �2) = L(yT jyk; �)j�2=0L34(yT jyk; �34) = L(yT jyk; �)j�3=�4=0; (4.20)where �2 = �nf�2; !2g and �34 = �nf�3; �4; !3; !4g.In the next section we consider prior speci�cation, posterior simulation and the analysisof the presence of seasonal unit roots for the seasonal Markov trend model.4.4 Bayesian AnalysisThe Bayesian analysis of the seasonal Markov trend model is similar to the analysis ofthe non-seasonal model in Chapter 3. Therefore, we focus in this section on the Bayesiantreatment of the seasonal part of the model: the prior speci�cation for the parameters,which model the seasonal pattern, and posterior odds ratios to examine the presence ofseasonal unit roots.4.4.1 Prior Speci�cationIn the previous section we have seen that the presence of (seasonal) unit roots implies thatcertain linear combination of the seasonal dummy parameters �0 are not identi�ed. Thiscorresponds to the non-identi�edness of the n1 parameter when � = 1 in the non-seasonalMarkov trend model. Hence, using the same arguments as in the previous chapter speci-fying di�use priors on �0 results in improper posterior distributions for the � parametersfavouring the presence of (seasonal) unit roots. In Section 3.3.1 we have used the ini-tial observation y1 to de�ne a prior for n1. Likewise, we use the �rst four observationsfy1; y2; y3; y4g to de�ne a prior on the seasonal dummy parameters. Consider the followinginitial model for the �rst four observations0BBB@ ~y1 � �1;1s1~y2 � �1;2s2~y3 � �1;3s3~y4 � �1;4s4 1CCCA = 0BBB@ 1 0 0 00 1 0 00 0 1 00 0 0 1 1CCCA0BBB@ �0;1�0;2�0;3�0;4 1CCCA+ 0BBB@ �1�2�3�4 1CCCA (4.21)4Note that the subscript correspond to which � parameters is equal to zero.



54 Seasonal Markov Trend Modelor in matrix notation ~~y = I4 �0 + e; (4.22)where e = (�1 �2 �3 �4)0, ~~y is a (4 � 1) vector containing yi � ni � �1;isi for i = 1; : : : ; 4and I4 a (4 � 4) identity matrix. Instead of assuming that e is normally distributedwith zero mean and the covariance matrix of an AR(4) model, like in Franses, Hoek andPaap (1997), we assume that e � N(0; �2I4). This simpli�es the computation of marginalposteriors for the � parameters, see also Hoek (1997) and Chapter 3 for a similar argumentconcerning the � parameter. The presence of (seasonal) unit roots implies that certainlinear combinations of the elements of �0 are not identi�ed. To compare models withdi�erent number of (seasonal) unit roots it is more convenient to have a single parameterwhich is not identi�ed under a certain hypothesis, like !1 = 0. Therefore, we transform theseasonal dummy parameters �0 to ! using (4.10). Hence, we consider the parameterisationin (4.11). Applying the transformation (4.10) (or �0 = F�1!) to (4.22) results in~~y = F�1 ! + e: (4.23)This implies the following conditional prior for !! j �1; s4; y4 � N(F ~~y; FF 0): (4.24)Note that this prior is conditional on the �rst four observations y4, the �rst four statess4, and �1.The priors for the �i parameters, i = 1; : : : ; 4, are uniform. Since we want to testthe presence of unit roots against roots outside the unit circle we de�ne uniform andindependent priors for �1 and �2 on the the intervals [�1;lb; 0] and [�2;lb; 0]p(�1) = 1��1;lbI[�1;lb;0]p(�2) = 1��2;lbI[�2;lb;0]; (4.25)where I is again an indicator function, which is one on [�i;lb; 0] and zero elsewhere. Thevalues �1;lb and �2;lb are chosen such that they de�ne highest posterior density [HPD]regions for �1 and �2, respectively, see Section 4.4.3 for a discussion. Since the presentsof the roots i and �i corresponds to the restriction �3 = �4 = 0, we de�ne a joint priorfor (�3; �4) on the HPD region for the join posterior of �3 and �4p(�3; �4) = ( 1area(P) if (�3; �4) 2 P0 elsewhere (4.26)where P denotes the HPD region for (�3; �4) and area(P) corresponds to the area of thisregion. Of course P has to be inside the stationary region.



4.4 Bayesian Analysis 55As we already have seen, the �1;s parameters, s = 1; : : : ; 4, are identi�ed if there is atleast one st in quarters s which corresponds to a recession observation st = 1. Since thereis no guarantee that this is the case we impose informative priors to avoid identi�cationproblems. We take normal prior distributions for �1;s parameters�1;s � N(0; �2�1;s) s = 1; : : : ; 4; (4.27)so that we do not a priori suggest a seasonal mean shift and we can control the amountof information in the prior via the prior variance �2�1;s .The priors on the remaining parameters follow directly from Section 3.3.1. Brie
y, thepriors for p and q are again uniform and independent on the interval (0; 1)p(p) = I(0;1)p(q) = I(0;1): (4.28)For the 
0 and 
1 we take uniform and independent priors on bounded intervals to identifythe two regimes p(
0) = 1(
0;ub � 
0;lb)I[
0;lb;
0;ub]p(
1) = 1(
1;ub � 
1;lb)I[
1;lb;
1;ub]: (4.29)and the priors for � and ��� are given byp(�) / ��1p( ���) / I[stat]; (4.30)where I[stat] is an indicator function, which is one if the autoregressive parameters �imply that the roots of the autoregressive polynomial are outside the unit circle and zeroelsewhere.The joint prior of the parameters � = f
0; 
1; !; �1; �; �; ���; p; qg, p(�), is given by theproduct of (4.24){(4.30). The joint priors for the parameters under zero restrictions on�, i.e. p1(�1), p2(�2) and p34(�34), are de�ned by simply neglecting the marginal prior forthe parameters which are not in the parameter set.4.4.2 Posterior DistributionsThe joint posterior distribution of the parameters is proportional to the product of thepriors (4.24){(4.30) and the unconditional likelihood function (4.18). To obtain marginalresults, we use again the Gibbs sampling techniques discussed in Section 3.4. Since theseasonal Markov trend model is a generalisation of the Markov trend model of Chapter 3,simulation from the posterior can be done in a similar way. Again, the state variablesfstgTt=1 are sampled alongside the model parameters from similar full conditional distribu-tions as in (3.35). The full conditional distributions of p and q are beta distributions, see



56 Seasonal Markov Trend Model(3.37) and (3.38). The variance � given the states and the other parameters is invertedgamma-2 distributed. The full conditional distributions of the remaining parameters �,!, �1 and ��� are (truncated) normal.4.4.3 Seasonal Unit Root AnalysisTo analyse the presence of (seasonal) unit roots in a quarterly observed time series weconsider the following four hypothesesH : �1;lb < �1 < 0 ^ �2;lb < �2 < 0 ^ (�3; �4) 2 P;H1 : �1 = 0 ^ �2;lb < �2 < 0 ^ (�3; �4) 2 P;H2 : �1;lb < �1 < 0 ^ �2 = 0 ^ (�3; �4) 2 P;H34 : �1;lb < �1 < 0 ^ �2;lb < �2 < 0 ^ �3 = �4 = 0 (4.31)and hence H1 corresponds to the hypothesis of the presence of the root 1, H2 to thepresence of the root �1 and H34 to the presence of i and �i. Of course it is also possibleto consider other joint tests, for instance for the presence of the non-seasonal and theseasonal unit roots 1 and �1, but for our purpose it is su�cient to consider the hypothesesin (4.31).To analyse the presence of (seasonal) unit roots we compare the three hypothesesHi, i = 1; 2; 34, against the hypothesis H using posterior odds ratios. To illustrate thecomputation of the posterior odds ratios, we focus on the test for the presence of thecomplex root i and �i, i.e. �3 = �4 = 0. A priori we assign prior probabilities to thehypotheses H34 and H. These prior probabilities imply the prior odds ratioPROR(�3; �4) = Pr[H34]Pr[H] : (4.32)This prior odds ratio times the Bayes factor [BF] provides the posterior odds ratio [POR]POR(�3; �4) = PROR(�3; �4)� BF(�3; �4)= Pr[H34]Pr[H] � R p34(�34)L34(yT jyk; �34) d�34R p(�)L(yT jyk; �) d� : (4.33)To compute the Bayes factor we again use the Savage-Dickey density ratio of Dickey(1971), see Section 3.3.2 for a discussion. The Bayes factor for �3 = �4 = 0 equals theratio of the marginal posterior of (�3; �4) evaluated in �3 = �4 = 0 and the prior for(�3; �4) evaluated in �3 = �4 = 0BF(�3; �4) = p(�3; �4jyT )j�3=�4=0p(�3; �4)j�3=�4=0 (4.34)where p(�3; �4jyT ) denotes the marginal posterior of (�3; �4) and the prior p(�3; �4) isde�ned in (4.26). We choose the region P such that it corresponds to the 99% HPD



4.5 Illustration of Seasonal Unit Root Analysis 57region for (�3; �4) to avoid favouring the H34 hypothesis, see Section 3.3.2 for a similarargument concerning the prior for the � parameter.The Bayes factors for �1 = 0 and �2 = 0 can be constructed in the same way. TheSavage-Dickey density ratios for both hypotheses equalBF(�1) = p(�1jyT )j�1=0p(�1)j�1=0BF(�2) = p(�2jyT )j�2=0p(�2)j�2=0 ; (4.35)where p(�1jyT ) and p(�2jyT ) are the marginal posteriors of �1 and �2 and the priors p(�1)and p(�2) are de�ned in (4.25). The lowerbounds �1;lb and �2;lb in these priors de�ne the99% HPD region for �1 and �2 respectively.An alternative Bayesian approach for seasonal unit root analysis can be found in Koopand Pitarakis (1992). They, however, consider an linear model speci�cation like in (2.23)instead of the speci�cation from the previous section and hence can follow the Bayesianunit root analysis of DeJong and Whiteman (1991) and Zellner and Siow (1980). Sincethey do not consider a time series in deviation from a trend and seasonal component,the interpretation of intercept, seasonal dummies and trend parameters changes underthe various hypotheses. Furthermore, in this linear trend stationary AR speci�cation thetrend parameter does not represent the growth rate of a series unless the AR order iszero, see also Section 2.3.In the next section we illustrate the Bayesian seasonal unit root analysis, presentedin this section, on simulated series. In Section 4.6 we test for the presence seasonal unitroots in seasonally unadjusted German unemployment.4.5 Illustration of Seasonal Unit Root AnalysisTo illustrate the Bayesian seasonal unit root analysis we consider four simulated series.The data generating process [DGP] is given byyt = nt + dt + zt;nt = nt�1 + 1; n1 = 0;dt = �D1;t +D2;t �D3;t +D4;t (4.36)with I : zt = �t;II : zt = zt�1 + �t;III : zt = �zt�1 + �t;IV : zt = zt�4 + �t; (4.37)



58 Seasonal Markov Trend ModelTable 4.1. Posterior means with posterior standard deviations between paren-theses of the parameters of a trend stationary model with seasonal dummies andBayes factors for the presence of (seasonal) unit roots for the four DGPs.para- DGP I1 DGP II DGP III DGP IVmeters mean s.d. mean s.d. mean s.d. mean s.d.
0 0:99 (0:00) 0:98 (0:03) 1:00 (0:00) 1:00 (0:01)w1 0:60 (0:59) �0:73 (1:69) �0:29 (0:63) �2:91 (1:81)w2 3:67 (0:25) 4:16 (0:14) 4:69 (2:11) 3:46 (1:70)w3 0:17 (0:24) 0:24 (0:19) 0:03 (0:21) 1:56 (1:46)w4 �0:36 (0:24) �0:07 (0:19) �0:04 (0:21) �0:89 (1:36)�1 �0:29 (0:06) �0:01 (0:01) �0:39 (0:09) �0:04 (0:03)�2 �0:34 (0:06) �0:63 (0:10) �0:01 (0:00) �0:03 (0:02)�3 �0:49 (0:07) �0:43 (0:09) �0:57 (0:09) �0:02 (0:01)�4 �0:03 (0:07) �0:46 (0:09) 0:47 (0:10) �0:01 (0:02)� 0:80 (0:06) 1:08 (0:06) 1:06 (0:08) 0:95 (0:07)BF(�1)2 0.00 2.07 0.00 1.62BF(�2) 0.00 0.00 1.47 1.31BF(�3; �4) 0.00 0.00 0.00 5.361The DGPs are given in (4.36) and (4.37).2BF(�i) denotes the Bayes factor. A Bayes factor exceeding one implies that �i = 0 is aposteriori more likely than �i < 0. BF(�3; �4) denotes the Bayes factor for �3 = �4 = 0.where �t � NID(0; 1). DGP I does not contain any unit roots, DGP II contains thenon-seasonal unit root 1, DGP III contains the seasonal unit root �1 and the �nal DGPcontains the roots 1, �1, i and�i. The simulated series denoted by DGP I{IV are analysedusing the model presented in Section 4.3. Since we have not introduced a Markov trendin the DGPs, we remove the Markov structure from the model, i.e. 
1 = 0 and �1 = 0.In the previous section, we have seen that we need at least four lags to test for seasonalunit roots. Since the maximum lag order of the AR process in our DGPs is four, we takek = 4. The joint prior is given by the product of (4.24){(4.26) and a 
at prior for 
0 on(�1;1). We assume equal prior probabilities for the hypothesis under consideration sothat the posterior odds ratios equal the Bayes factors. Table 4.1 shows posterior resultsfor the four DGPs.For the �rst DGP we see that the posterior means of �1, �2 and �3 are more than twoposterior standard deviations away from zero. However, since the posterior densities are
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Figure 4.2. Marginal posterior densities of the � parameters for DGP I.

Figure 4.3. Marginal posterior densities of the � parameters for DGP II.
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Figure 4.4. Marginal posterior densities of the � parameters for DGP III.

Figure 4.5. Marginal posterior densities of the � parameters for DGP IV.



4.6 German Unemployment 61truncated, care must be exercised in interpreting the standard deviations. In Figure 4.2 wedepict the marginal posterior densities of the � parameters. The modes of the distributionsare far away from zero, except for �4. However, this does not imply the presence of aseasonal unit root, since the condition for the presence of the roots i and �i is �3 = �4 = 0.The Bayes factors for this joint test is clearly smaller than one, see Table 4.1. The sameis true for the Bayes factors for the hypothesis of the presence of the roots 1 and �1.5The overwhelming evidence for the absence of any unit roots is not surprising, since thezt process in the DGP has only roots equal to zero. The posterior means of � and 
0 areclose to their true value. The posterior means of !1, (!2 � 4), !3 and !4 lie within twoposterior standard deviations from zero as expected.The second column of Table 4.1 shows the posterior results for the second DGP. Nowthe posterior mean of �1 parameter is near zero and the Bayes factor for the presence of theroot 1 is 2.07. The posterior means of �2, �3 and �4 are more than two posterior standarddeviations away from zero, see also Figure 4.3. The Bayes factors for the presence of theseasonal unit roots are clearly below one. Again the posterior means of the remainingparameters are near their true values. Note that the posterior standard deviation of !1,is relatively large.For the third DGP the Bayes factor for the presence of the seasonal unit root �1exceeds one, as expected. Figure 4.4 shows that the marginal posterior densities of the�1, �3 and �4 are situated far away from zero, which leads to very small Bayes factorsfor the presence of the roots 1, i and �i. This is not surprising since the DGP containsonly the root �1 and no other non-zero roots. The posterior means of �, 
0, and the !parameters are near their true values. Note that now the posterior standard deviation ofthe !2 parameter is relatively large compared to the posterior standard deviations of theother ! parameters.The marginal posterior densities of the � parameters for the fourth DGP are shown inFigure 4.5. The modes of the posterior densities are near zero. Table 4.1 show that thethree Bayes factors exceed one and hence indicate that a fourth di�erence �lter is necessaryto obtain stationarity. Now, the posterior standard deviations of all ! parameters arerelatively large. The posterior means of � and 
0 do not di�er more than two times theposterior standard deviation from their true value.In summary, the posterior results of the four DGPs show the applicability of Bayesianseasonal unit root analysis. However, since we have only considered four DGPs, no generalconclusions can be drawn about the performance of this approach. In the next subsectionwe apply the seasonal unit root analysis on German unemployment.4.6 German UnemploymentA macroeconomic variable which obviously displays seasonal patterns is unemployment.In this section we analyse the business cycle in quarterly observed German unemployment,5The Bayes factors reported in this section are based on 
at priors on the 99% HPD region for theparameters of interest, namely �1, �2 and (�3; �4), as explained in the previous section.
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Figure 4.6. Seasonally adjusted [SA] and seasonally unadjusted [NSA] German unem-ployment. The shaded areas correspond to recessions.



4.6 German Unemployment 631962.I{1991.IV. Figure 4.6 shows plots of the level and the �rst di�erences of the o�ciallyseasonally adjusted [SA] and seasonally unadjusted [NSA] German unemployment series.It is clear from the plots that there is more variation in the unadjusted series than theadjusted series. The periods with an increase in unemployment are shorter than theperiods with a decrease, which points towards asymmetry in the series. Furthermore, theincrease per quarter in the recessions is much larger than the decrease per quarter in theexpansion periods.In this section we analyse the business cycle in German unemployment. To investi-gate the consequences of seasonal adjustment on the business cycle, we �rst consider inSection 4.6.1 the seasonal adjusted series. Section 4.6.2 deals with the analysis of theseasonal unadjusted series to examine the relation between seasonal 
uctuations and thebusiness cycle.4.6.1 Seasonal Adjusted SeriesTo analyse the business cycle in seasonally adjusted German unemployment, we use theMarkov trend model from Chapter 3. Although it is not likely from Figure 4.6 that theseries is stationary around a Markov trend, we start with a Markov trend model withoutunit roots in the autoregressive component (3.8) and test for the presence of a unit root.A model with one lag turns out to be the best model to analyse the business cycle inthe adjusted series. The priors for the model parameters n1, p, q and � are given by(3.16){(3.18) and (3.21). For 
0 and 
1 we take 
at priors on the intervals (�1; 0:2] and[0;�1) respectively. This ensures us that st = 0 corresponds to an expansion regime andst = 1 corresponds to an recession regime. The �rst row of Table 4.2 shows the posteriorresults of this model. The posterior mean of the � parameter (0.98) is very close to oneand the presence of a unit root seems likely. Indeed, the Bayes factor for � = 1, whichequals 2.76, favours the unit root hypothesis. This Bayes factor is again constructed suchthat [�lb; 1] corresponds to the 99% HPD region for �, see Section 3.3.2 for details.The second row of Table 4.2 shows the posterior results for a Markov trend modelwith a unit root in the autoregressive component (3.9). The marginal priors for the modelparameters are the same as the marginal priors for the Markov trend model without theunit root imposed. Note that the posterior means and posterior standard deviations ofthe parameters are almost exactly the same as for the Markov trend stationary model.During an expansion regime the unemployment rate decreases on average with 0.05% perquarter, while during a recession there is an average increase of �0:05+0:53 = 0:48% perquarter. The posterior mean of the probability of staying in this recession is 0.84. Theposterior mean of the probability of staying in an expansion regime equals 0.96. The solidlines in Figure 4.7 on page 66 show the marginal posterior densities of these transitionprobabilities and the 
0 and 
1 parameters. The posterior uncertainty about 
0 and pis smaller than the posterior uncertainty about 
1 and q. As we already have seen inSection 3.6.1, this may follow from the fact that the number of expansion observations islarger than the number of recession observations. Using (3.44) and (3.45) we can computethe expected duration of a recession and an expansion, which turn out to be 8.0 and 31.4



64 Seasonal Markov Trend ModelTable 4.2. Posterior means with posterior standard deviations between paren-theses and Bayes factors for � = 1 for seasonally adjusted German unemploy-ment 1962.I{1991.IV.model1 
0 
1 n1 p q � � BF(�)2MTS �0:05 0:53 0:62 0:96 0:84 0:98 0:15 2.76(0:01) (0:04) (0:15) (0:02) (0:07) (0:02) (0:01)MDS �0:06 0:53 { 0:96 0:84 1 0:15 {(0:04) (0:04) { (0:02) (0:07) { (0:01)1MTS=Markov trend stationary model (3.8) and MDS=Markov di�erence stationarymodel (3.9).2BF(�) denotes the Bayes factor. A Bayes factor exceeding one implies that � = 1 is aposteriori more likely than � < 1.quarters respectively. In the next subsection, we analyse the business cycle in seasonallyunadjusted German unemployment4.6.2 Seasonal Unadjusted SeriesThe Bayesian analysis of the seasonal unadjusted series is based on the seasonal Markovtrend model proposed in Section 4.3. However, �rst we examine the nature of the seasonalpattern in the series using a model with a deterministic trend instead of a Markov trend.This model follows from the seasonal Markov trend model of Section 4.3 with 
1 = 0and �1;s = 0, s = 1; : : : ; 4. The prior for the model parameters is given by the productof (4.24){(4.26), (4.30) and a 
at prior for 
0 on (�1;1). Posterior odds test for zero���i parameters, like described in Section 3.6.1 indicate that a model with k = 9 lags isnecessary to analyse the series. The �rst column of Table 4.3 shows posterior results forthis model. The posterior mean of �1 is almost zero, but its posterior standard deviationis relatively small. The Bayes factor for �1 = 0 equals 1.02, which suggests that trendstationarity and a unit root are a posteriori roughly equally likely. This Bayes factor isbased on a 
at prior for �1 on the region [�1;lb; 0], where the prior parameter �1;lb is chosensuch that [�1;lb; 0] corresponds to the 99% HPD region for �1, see Section 4.4.3. Likewise,the Bayes factor for �2 = 0 is constructed. This Bayes factor equals 1.45 and henceindicates the presence of the seasonal unit root �1. The Bayes factor for �3 = �4 = 0 issmaller than one and hence the presence of the seasonal unit roots i and �i is a posteriorinot likely.The second column of Table 4.3 shows the posterior results for a seasonal Markov



4.6 German Unemployment 65Table 4.3. Posterior means with posterior standard deviations between parentheses andBayes factors for �i = 0 for seasonally unadjusted German unemployment.para- TS+SD1 MTS+SD MDS+SD MDS+SM3meters mean s.d. mean s.d. mean s.d. mean s.d.
0 0:06 (0:02) �0:05 (0:02) �0:03 (0:05) 0:04 (0:11)
1 0 { 0:54 (0:06) 0:57 (0:08) 0:62 (0:11)w1 2:28 (0:60) 2:66 (0:85) { { { {w2 �0:64 (0:35) �0:64 (0:27) �0:75 (0:23) �0:76 (0:23)w3 0:16 (0:15) 0:23 (0:12) 0:21 (0:11) 0:21 (0:10)w4 �1:01 (0:16) �1:00 (0:13) �1:01 (0:11) �1:05 (0:09)�1;1 0 { 0 { 0 { 0:04 (0:05)�1;2 0 { 0 { 0 { 0:00 (0:05)�1;3 0 { 0 { 0 { 0:02 (0:05)�1;4 0 { 0 { 0 { 0:01 (0:05)p { { 0:95 (0:02) 0:95 (0:03) 0:95 (0:03)q { { 0:81 (0:09) 0:75 (0:13) 0:60 (0:22)�1 �0:01 (0:00) �0:02 (0:02) { { { {�2 �0:10 (0:07) �0:12 (0:07) �0:13 (0:07) �0:14 (0:08)�3 �0:16 (0:10) �0:14 (0:10) �0:13 (0:08) �0:13 (0:08)�4 �0:25 (0:12) �0:24 (0:10) �0:30 (0:11) �0:37 (0:12)���1 0:98 (0:15) 0:58 (0:11) 0:55 (0:10) 0:58 (0:02)���2 �0:35 (0:16) 0 { 0 0 0 0���3 0:16 (0:17) 0 { 0 0 0 0���4 0:29 (0:16) 0 { 0 0 0 0���5 0:15 (0:08) 0 { 0 0 0 0� 0:29 (0:02) 0:23 (0:02) 0:24 (0:02) 0:24 (0:02)BF(�1)2 1.02 1.45 { {BF(�2) 1.45 0.63 0.44 0.46BF(�3; �4) 0.27 0.06 0.07 0.021TS+SD=trend stationary model + seasonal dummies (4.5), MTS+SD=Markov trend stationarymodel + seasonal dummies (4.5), MDS+SD=Markov di�erence stationary model + seasonal dummies(4.5) and MDS+SM=Markov di�erence stationary model + seasonal dummies (4.13) where the �0;sparameters are transformed into ws parameters using (4.10), s = 1; : : : ; 4.2BF(�i) denotes the Bayes factor. A Bayes factor exceeding one implies that �i = 0 is a posteriorimore likely than �i < 0. BF(�3; �4) denotes the Bayes factor for �3 = �4 = 0.3Results are based on normal priors for �1;s with zero mean and variance 0:052, s = 1; : : : ; 4.
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Figure 4.7. Some marginal posterior densities for the seasonal adjusted and unadjustedGerman unemployment series.trend model with �1 = 0. These results are based on a prior speci�cation (4.24){(4.30)with a uniform prior for 
0 on (�1; 0:2] and a uniform prior for 
1 on [0;1). Posteriorodds tests for ���i = 0 suggest that a model of order 5 is enough to analyse the series.6Figure 4.8 shows the marginal posterior densities for the � parameters for the seasonalMarkov trend model (dashed lines) and for the deterministic trend stationary modeldiscussed above (solid lines). The introduction of a Markov trend does almost have noe�ect on the modes of the marginal posterior densities of �3 and �4. It results only in aminor increase in the variance. The Bayes factor for �3 = �4 = 0 decreases from 0.27 to0.06, see Table 4.3. The mode of the marginal posterior of �2 however shifts to the left.This leads to a decrease in the Bayes factor for �2 = 0 from 1.45 to 0.63 and the presenceof the seasonal unit root �1 is not favoured any more. A possible explanation for thisphenomenon is that model without the Markov trend interprets a change in the regime asa sudden increase in the seasonal 
uctuation so that the hypothesis of a seasonal unit rootis more likely, see also Section 4.2 for a discussion. The largest e�ect of the introduction ofa Markov trend can be found in the marginal posterior of �1. The mode of this posteriorshifts to the left but the posterior variance increases substantially, see also Table 4.3. TheBayes factor for �1 = 0 (=1.45) clearly favours the non-seasonal unit root hypothesis.6The Bayes factors for the presence of (non)-seasonal unit roots favour the same hypotheses, if wetake k = 9.
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Figure 4.8. Marginal posterior densities of the � parameters under a deterministic trendstationary [TS] speci�cation and under a Markov trend stationary [MTS] speci�cation.Note that all Bayes factors are again based on uniform priors on the 99% HPD regionsfor the parameters of interest.The Bayes factors suggest that a model in �rst di�erences without seasonal unit rootsis appropriate to analyse the unadjusted series. The third column of Table 4.3 showsthe posterior results for a seasonal Markov trend model under the restriction �1 = 0 and�1 = 0. Note that this model can be rewritten in a model in �rst di�erences with driftterm 
0 + 
1st and three seasonal dummies with zero mean. Bayes factors for �2 = 0 and�3 = �4 favour the absence of seasonal units. The parameters in the seasonal Markovtrend model have the same interpretation as in the non-seasonal Markov trend model andhence we can compare the results directly. Because of the seasonal 
uctuations, we mayexpect that the posterior standard deviations of the various parameters are larger. Themarginal posterior densities of 
0, 
1 p and q are displayed in Figure 4.7 together with themarginal posteriors of the same parameters of the Markov di�erence stationary model forthe adjusted series analysed in the previous subsection. The posterior variances of theparameters of the Markov model for the seasonal unadjusted series are clearly larger thanfor the adjusted series. The posterior means of 
0 and 
1 indicate that during an expansionthe unemployment rate decreases apart from seasonal 
uctuations with 0.03% per quarterand during a recession increases apart from seasonal 
uctuations with 0.54% per quarter.The latter percentage is about 0.06% higher than we have found for the seasonal adjusted



68 Seasonal Markov Trend ModelTable 4.4. Peaks and troughs datesfor German unemployment.1German unemploymentSA NSApeak 1966:III 1966:Itrough 1967:II 1967:IIpeak 1973:III 1973:IVtrough 1975:II 1975:IIIpeak 1980:II 1980:Itrough 1983:II 1983:I1Turning points are based on the poste-rior expectations of the states E[stjyT ].series. The posterior mean of the probability of staying in a recession for the unadjustedseries equals 0.75, which is smaller than the same probability for the seasonally adjustedseries, which equals 0.84. The posterior mean of staying in an expansions is 0.95, whichis roughly the same as for the adjusted series analysed in the previous subsection. Thisleads to a drop in the expected duration of a recession from 8.0 to 5.1 quarters and a dropin the expected duration of an expansion from 31.4 to 25.7 quarters for the seasonallyunadjusted series.The last row of of Figure 4.6 shows the posterior expectation of the states E[stjyT ],t = 1; : : : ; T for the Markov di�erence stationary model (3.9) for the seasonally adjustedseries and the Markov di�erence stationary model with seasonal dummies for the unad-justed series. Using the 0.5 rule as in Hamilton (1989) we can determine the turning points.Again, we de�ne a recession by two consecutive data points for which E[stjyT ] > 0:5.A peak is de�ned by the last expansion observation, while a trough is de�ned by the lastobservation in a recession. Table 4.4 shows the peaks and troughs based on the posteriorresults of the Markov models for the seasonal adjusted and seasonal unadjusted series.For the seasonally unadjusted data, we �nd that the recession in the eighties starts andends one quarter earlier than with the adjusted series. In the seventies, however the reces-sion starts and ends one quarter later with the unadjusted series. We detect the largestdi�erence in the sixties, where based on seasonal adjusted series the recession starts in1966.IV and based on the unadjusted series two quarters earlier. The shaded areas inFigure 4.6 denote the recession periods.Although the Bayes factors do not indicate the presence of seasonal unit roots, it is



4.7 Concluding Remarks 69still possible that the seasonal means change during recessions. Note that the graphsin Section 4.2 seem to indicate some change in the seasonal pattern during recessions.To analyse this possible change, we consider the seasonal Markov trend with changingmeans as in (4.13). The prior speci�cation for the parameters is the same as for the otherMarkov seasonal trend models analysed in this section. Unfortunately, the likelihood doesnot contain enough information to impose a 
at prior on the �1;s parameters, s = 1; : : : ; 4.Therefore, we opt for the normal prior speci�cation in (4.27) and compute Bayes factorsfor �1;1 = �1;2 = �1;3 = �1;4 = 0 for di�erent values of ��1;s . These Bayes factors are 0.94,0.62, 0.64 for ��1;s = 0:01, 0.05 and 0.1, s = 1; : : : ; 4, respectively and hence a seasonalmean shift is a posteriori not preferred. For lower values of ��1;s the Bayes factor arearound one and we do not learn from the data. It seems that after correcting for possiblechanges in the slope of the trend during recessions the changes in the seasonal pattern arenot so pronounced any more. The �nal column of Table 4.3 shows the posterior resultsfor ��1;s = 0:05, s = 1; : : : ; 4. In comparison with the third column we see a decrease inthe posterior mean of q and an increase in the posterior mean of 
0 and 
1. The posteriormeans of �1;s do not di�er more than two standard deviations from zero.To summarize the empirical �ndings in this section, we can simply state that transitionprobabilities and hence the expected duration of a recession and the business cycle turningpoints obtained from a Markov trend model for German unemployment, di�er acrossseasonal adjusted and unadjusted series. Additionally, there is little evidence in Germanunemployment for a seasonal mean shift during recessions. After correcting for a changein the growth rate during recessions, there is no posterior indication for changing seasonalpatterns due to seasonal unit roots.4.7 Concluding RemarksIn this chapter we have proposed a seasonal Markov trend model to analyse seasonallyunadjusted time series. This model extends the Markov trend model from the previouschapter with seasonal dummies, possible seasonal unit roots and allows for di�erent sea-sonal means during the stages of the business cycle. The model is used to analyse thebusiness cycle in seasonally unadjusted German unemployment. This analysis indicatesthat there exists a substantial di�erence in posterior results, obtained from a Markovtrend model, about the transition probabilities and the dating of turning points for sea-sonal unadjusted and seasonal adjusted series. Additionally, posterior results indicatethat there does not seem to be a major change in the seasonal means during recessions.Just as for the non-seasonal Markov trend model of the previous chapter, we can extendthe seasonal Markov trend model with the extensions suggested in Section 3.7. Furtherextensions of the model concern the modelling of the seasonality in the series. We may forinstance use periodic varying transition probabilities as in Ghysels, McCulloch and Tsay(1994) or consider seasonally varying autoregressive parameters as e.g. in Osborn andSmith (1989) and Franses and Paap (1994). Finally, one may argue that the dynamics ina time series changes with the business cycle, see for instance, Ter�asvirta (1995) and Tiao



70 Seasonal Markov Trend Modeland Tsay (1994). However, these extension imply extra parameters and non-linearities inour already ample speci�ed model.
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Chapter 5Multivariate Stochastic TrendsIn the �rst part of this thesis, we have used Markov trend models to analyse business cyclesand the presence of stochastic trends in univariate time series. In this part we extend thesemodels for multivariate analysis. In this chapter, we give a short introduction into themodelling of trends in multivariate time series. We consider trend speci�cations, whichare multivariate generalisations of the univariate trend speci�cation of Chapter 2. Specialattention will be given to situations where time series have one or more common trends.This occurs if the number of trends needed to model the time series in a multivariate modelis less than the total number of trends needed to model the separate series in univariatemodels. The deviations from the trend are usually modelled by a vector autoregressivemodel. Just as in the univariate case, a unit root in the autoregressive structure impliesthe presence of a stochastic trend.The outline of this chapter is as follows. In Section 5.1, we consider some multivariatetrend speci�cations. In Section 5.2 the conditions for common trends in the multivariatetrend speci�cations are discussed. Section 5.3 deals with stochastic trends caused by unitroots in vector autoregressive models. We discuss the conditions for common stochastictrends or cointegration. Finally, we give in Section 5.4 a brief outline of the contents ofthe second part of this thesis.5.1 Multivariate Trend Speci�cationsTo model the trend in multivariate time series, we can take for each series a separateunivariate trend component. However, the trends of the univariate time series may becorrelated and hence this valuable information may be used in a multivariate trend spec-i�cation. In this section we discuss some multivariate trend speci�cations, which aregeneralisations of the univariate trend speci�cations in Section 2.2. We de�ne the (n� 1)vector Nt, t = 1; : : : ; T as an n-dimensional trend component.It is easy to generalise the linear deterministic trend (2.2) to an n-dimensional trendspeci�cation Nt = Nt�1 + �0; (5.1)



74 Multivariate Stochastic Trendswhere �0 is now an (n � 1) parameter vector. This trend implies deterministic lineartrends for each element in Nt with n di�erent slopes �0 and n di�erent initial values N1,Nt = N1 + �0(t� 1): (5.2)Again, there is no forecast uncertainty for known values of �0 and N1. Since this trenddoes not contain random variables, there is no correlation between the elements of Nt.The multivariate version of the random walk plus drift (2.3) is given byNt = Nt�1 + �0 + �1Ut; (5.3)where �0 is an (n� 1) parameter vector, �1 an (n� n) parameter matrix and the (n� 1)vector Ut � NID(0; In). The direction of this trend is given by the n drift terms, whichare the elements of �0 plus a linear combination (rows of �1) of n random shocks Ut. Thebackward solution of this multivariate random walkNt = N1 + �0(t� 1) + �1 tXi=2 Ui: (5.4)consists of a multivariate linear deterministic trend �0(t�1) and an n-dimensional stochas-tic trendPti=2 Ui. Since the covariance between the elements of the n-dimensional stochas-tic trend is zero, the trend consists of n independent stochastic trends. The matrix �1�01denotes the covariance between these n independent stochastic trends. The expectationof Nt at t = 1 is N1 + �0(t � 1) and the variance is �1�01(t � 1). Hence, the forecastuncertainty increases linear over time.A multivariate generalisation of the Markov trend can be represented as follows1Nt = Nt�1 + �0 + �1St; (5.5)where �0 is an (n � 1) parameter vector, �1 an (n � n) parameter matrix and then-dimensional vector St = (s1;t; : : : ; sn;t)0 a random variable with sj;t = 0; 1, j = 1; : : : ; n,which evolves according to a �rst-order Markov process. The backward solution of theMarkov trend Nt = N1 + �0(t� 1) + �1 tXi=2 Si (5.6)consist of the linear deterministic trend �0(t�1) and an n-dimensional stochastic Markovtrend Pti=2 Si.Since the state variable St can take 2n di�erent values, the Markov trend allows manyslope directions for each univariate series for large values of n. To model the transitionsbetween these 2n states there are several possibilities. The easiest possibility is to assume1Other multivariate generalisations of the Markov trend can be found in Phillips (1991a), Kim andYoo (1995) and Dwyer and Potter (1996).



5.1 Multivariate Trend Speci�cations 75that each element sj;t, j = 1; : : : ; n evolves according to an independent �rst-order Markovprocess with transition probabilitiesPr[sj;t = 0jsj;t�1 = 0] = pj; Pr[sj;t = 1jsj;t�1 = 0] = 1� pj;Pr[sj;t = 1jsj;t�1 = 1] = qj; Pr[sj;t = 0jsj;t�1 = 1] = 1� qj: (5.7)The trend Nt now consists of n independent stochastic Markov trends and the matrix�1 models the correlation between these Markov trends. Since St consist of indepen-dent Markov processes, we can use the expectation (2.13) and the variance (2.14) of theunivariate Markov trend speci�cation to compute the expectation and variance of Nt att = 1. For instance, the unconditional probability that sj;t = 1 equals Pr[sj;t = 1] = �j =(1� pj)=(2� pj � qj), j = 1; : : : ; n, see Section 5.1, so that the unconditional expectationof Nt at t = 1 equals (�0 + �1P )(t� 1) where P = (�1 �2 : : : �n)0. The variance of theMarkov trend can be derived in the same way using the result in (2.14).The most general possibility to model the transitions is to de�ne (2n� 1)2n transitionprobabilities between the 2n possible realisations of St. These transition probabilitiescan be put in an (2n � 2n) transition matrix, see below for an example. The (2n � 1)eigenvector of this transition matrix belonging to the eigenvalue one contains the uncon-ditional probabilities of the 2n possible realisations of St, see Hamilton (1994, p. 681{682)for details. Using the 2n unconditional probabilities we can compute the unconditionalexpectation of the Markov trend as before. The derivation of the variance of the Markovtrend is however more complicated but can easily be obtained using simulation. Note thatthe speci�cation with independent Markov processes with transition probabilities (5.7) isjust a restricted version of the latter possibility.To illustrate the multivariate Markov trend, assume that n = 2 and St =(s1t s2t)0.Now de�ne a new state variable s�t which equalss�t = 8>>><>>>: 1 if St = (0 0)02 if St = (1 0)03 if St = (0 1)04 if St = (1 1)0: (5.8)The direction of the Markov trend at time t is �0 if s�t = 1, �0 plus the �rst row of �1 ifs�t = 2, �0 plus the second row of �1 if s�t = 3 and �0 plus the sum of the rows of �1 ifs�t = 4.To model the transitions between the four realisations of St we de�ne a (4� 4) tran-sition matrix. The (i; j)-th element of this matrix denotes the transition probabilityPr[s�t = ijs�t�1 = j], i; j = 1; : : : ; 4. The most general transition matrix for s�t contains4 � 3 = 12 free parameters. If we however assume that St = (s1;t s2;t)0 consists of twoindependent Markov processes with transition probabilities (5.7) the (4 � 4) transitionmatrix equals0BBB@ p1p2 (1� q1)p2 p1(1� q2) (1� q1)(1� q2)(1� p1)p2 q1p2 (1� p1)(1� q2) q1(1� q2)p1(1� p2) (1� q1)(1� p2) p1q2 (1� q1)q1(1� p1)(1� p2) q1(1� p2) (1� p1)q2 q1q2 1CCCA : (5.9)



76 Multivariate Stochastic TrendsThis transition matrix only consists of four parameters, p1, p2, q1 and q2.In this section we have speci�ed n-dimensional trend components to model the trendin multivariate time series. In practice, it is sometimes not realistic to assume di�erenttrends for each separate time series. In the next section, we show the conditions forcommon trends in time series. These conditions imply restrictions on the parametermatrices in the multivariate trend speci�cations of this section.5.2 Common TrendsJust as in the univariate case, there are two possibilities to include the trend component ina time series model. One can model the time series in deviation from a trend componentNt or one can simply add the trend component to the time series model in a linearway. In the former approach we assume that an n-dimensional time series fYtgTt=1 can bedecomposed as Yt = Nt + Zt; (5.10)where Nt represents the trend component and Zt the deviations from this trend. As wealready have seen in Section 2.2 we can interpret Nt in this speci�cation as a trend inYt. In this section we focus on the role of the trend component and assume that Zt isa stationary process around the multivariate trend component Nt. In the next sectionwe consider the speci�cation of the Zt component and discuss the second possibility toinclude the trend component.The trend components Nt, which we have discussed in the previous section, de�ne foreach of the n univariate series in Yt a single trend. These n trends can be correlated. Itmay however be the case that less than n trends are su�cient to describe the trend in then-dimensional time series Yt. In other words, the univariate series in Yt have a commontrend. We speak of a common trend if a linear combination of two or more series whichcontain the trend does not contain the trend. Hence, if there are m linearly independentcombinations of Yt, which do not contain the trend, they are (n�m) common trends inYt. It is easy to see that if we specify a linear deterministic trend for Nt (5.1) we assumethat there are (n � 1) common trends. De�ne the (n � (n � 1)) matrix �0?, which isorthogonal to �0, i.e. �00?�0 = 0. Since �00?Nt = �00?(N1 + �1), the linear combinations�00?Yt do not contain a linear deterministic trend so that we have one common lineardeterministic trend.To have common stochastic trends, we need linear combinations of Nt (5.4), whichcancel out the stochastic trend Pti=2 Ui. From (5.4) it is clear that if rank(�1) = n it isnot possible to �nd a non-zero matrix, which by premultiplying cancels out Pti=2 Ui. Itis therefore only possible to have common stochastic trends if the rank of �1 is less thann. If the 0 < rank(�1) = m < n we can write �1 as the product of two (n�m) full rankmatrices 
 and � �1 = 
�0: (5.11)



5.2 Common Trends 77The (n�m) linear combinations, which remove the stochastic trend from Yt are given bythe rows of the (n � (n �m)) matrix 
?, which is de�ned such that 
0?
 = 0. Hence, ifthe rank of �1 is m there are m common stochastic trends. These m trends are given by�0Pti=2 Ui. The matrix 
 models the magnitude of the impact of the m common stochastictrends on the elements in Nt and therefore on each of the univariate time series in Yt.Note that the (n � m) linear combinations 
0? which remove the stochastic trend fromYt do not automatically remove the deterministic trend �0(t � 1) from Nt in (5.4), since
0?�0 does not have to be a zero matrix.Under rank reduction of �1 there are only (nm + (n � m)m) free parameters andhence the � and 
 have to be restricted to become estimable. We propose the followingrestriction � =  Im�2 ! ; (5.12)where �2 is an ((n �m)�m) matrix. This phenomenon of common stochastic trends isa simple case of cointegration, which will be discussed in the next section in more detail.Likewise, we can de�ne common stochastic Markov trends in speci�cation (5.5). Tohave common stochastic Markov trends �1 has to have reduced rank so that it can bewritten as 
�0 like in (5.11). The (n �m) linear combinations, which remove the trendfrom Yt are given by the rows of 
? and the m stochastic common Markov trends are�0Pti=2 Si. Note again that the linear combinations which de�ne the common stochasticMarkov do not have to remove the deterministic linear trend �0(t� 1) from (5.6) unless
0?�0 = 0.To understand the meaning of a common Markov trend, consider the example of thetwo-dimensional Markov trend with transition probabilities (5.7) discussed in the previoussection. We already have discussed the direction of the Markov trend if �1 has full rank.If the rank of the (2� 2) matrix �1 is one, we can write �1 as the product (5.11) of thetwo (2 � 1) vectors 
 and �. Hence, the common Markov trend is given by �0Pti=2 Si.Since under rank reduction of �1 there are only three free parameters, we have to torestrict one parameter in � or 
 to make them estimable. We impose restriction (5.12),i.e. �0 = (1 � �2). This implies that the common Markov trend at time t apart from theslope in �0 can have four directions: 0, 1, ��2 and (1� �2). If �2 = 1 or �2 = �1 it hasthree directions (�1, 1 and 0) and for �2 = 0 it has only two directions, 1 and 0. Thestochastic trend is common since under under rank reduction of �1 the stochastic Markovtrend for the �rst series in Yt is proportional to the stochastic trend for the second seriesin Yt. The elements of 
 determines the magnitude of the impact of the common Markovtrend on each of the two univariate series.In the next section, we consider the deviations from the trend Zt = Yt � Nt. Wemodel these deviations with a vector autoregressive moving average model. Just as in theunivariate case, unit roots in the autoregressive part of Zt correspond to the presence ofstochastic trends in Yt.



78 Multivariate Stochastic Trends5.3 CointegrationIn the previous section, we have discussed the possibility of common stochastic trends inthe multivariate trend speci�cation Nt. In this section we consider the deviations Zt fromthis trend speci�cation. These deviations are often assumed to be a vector autoregressivemoving average [VARMA(k,l)] modelZt � kXi=1�iZt�i = "t � lXj=1	i"t�j; (5.13)where �i, i = 1; : : : ; k and 	j, j = 1; : : : ; l are (n�n) parameter matrices and the (n�1)vector "t � NID(0;�) with a positive de�nite symmetric (n � n) covariance matrix �.Using the lag operator L we can write(In � �1L� � � � � �kLk)Zt = (In �	1L� � � � � 	kLl)"t;�(L)Zt = 	(L)"t: (5.14)The process Zt is stationary if the roots of j�(x)j are outside the unit circle and invertibleif the roots of j	(x)j are outside the unit circle, see L�utkepohl (1993) for an introductioninto VARMA models. Just as in the univariate case, a unit root in �(x) corresponds tothe presence of a stochastic trend in Zt. To make this more explicit we neglect the MAcomponent for notational convenience and rewrite the model (5.13) in error correctionform �Zt = �Zt�1 + k�1Xi=1 ��i�Zt�i + "t; (5.15)where the (n� n) matrix � = Pkj=1�j � In and the (n� n) matrices ��i = �Pkj=i+1�j,i = 1; : : : ; k� 1, see e.g. Johansen (1991). Since �(1) = �� unit roots enter the model if� has reduced rank. If � = 0, Zt contains n unit roots and we can write (5.15) as2��(L)�Zt = "t;�Zt = (��(L))�1"t; (5.16)where ��(L) = (In� ��1L � � � � ��k�1Lk�1). De�ning C(L) = (��(L))�1 and using (2.21) weobtain the multivariate version of the Beveridge-Nelson decompositionZt = Z1 + C(1) tXi=2 "i + C�(L)"t; (5.17)where C(1) = (��(1))�1 and C�(L)"t is a stationary vector moving average process. SinceC(1) is of full rank Zt contains n stochastic trends Pti=2 "i.2Remember that we do not consider I(2) type trends in this thesis.



5.3 Cointegration 79If the rank of � is r with 0 < r < n, Zt contains (n� r) unit roots. The matrix � canbe written as a product of two full rank (n� r) matrices � and �� = �� 0: (5.18)The multivariate version of the Beveridge-Nelson decomposition has the same form as(5.17) but now C(1) = �?(�0?��(1)�?)�1�0? and �? and �? are de�ned such that � 0�? = 0and �0�? = 0, see Johansen (1991, p. 49). Note that if � = 0, which corresponds to� = 0 and � = 0, �?(�0?��(1)�?)�1�0? = (��(1))�1. Since � 0Zt = � 0Z1 + � 0C�(L)"t doesnot contain a stochastic trend, there are (n � r) common stochastic trends. Engle andGranger (1987) refer to this phenomenon as cointegration and the � matrix is calledthe cointegration vector. The rank r of the matrix � denotes the number of commonstochastic trends and is called the cointegration rank.3 The cointegrating vector � re
ectsthe stationary long run relations between the elements of Yt. Since the number of freeparameters in � under rank reduction (= nr + (n � r)r) is smaller than the numberof parameters in � and � (=2nr) we have to restrict some parameters. Common usedrestrictions are � 0� = Ir or � 0 = (Ir � � 02); (5.19)where �2 is an ((n � r) � r) matrix. The vector � contains the so-called adjustmentparameters, which take care of the adjustment of deviations from long term equilibrium tothe equilibrium. From C(1) = �?(�0?��(1)�?)�1�0? it can be seen that the (n�r) commonstochastic trends are represented by �0?Pti=2 "i. An extensive treatment of cointegrationcan be found in Johansen (1995) and Banerjee et al. (1993).As we already have seen in Section 2.3 the trend component Nt can also be added in alinear way to a time series model instead of modelling the time series in deviation fromthe trend component as in (5.10). The former approach usually leads to a linear modelspeci�cation. Therefore from an estimation point of view it is more convenient to extendthe error correction model (5.15) with deterministic elements in a linear way�Yt = �+ �(t� 1) + �Yt�1 + k�1Xi=1 ��i�Yt�i + "t; (5.20)where � and � are (n � 1) parameter vectors. If the roots j�(x)j are outside the unitcircle it is possible to rewrite Yt in deviations from a linear deterministic trend like inthe univariate case. This is not possible if (n � r) roots of j�(x)j are equal to one. TheBeveridge-Nelson decomposition in this case readsYt = Y1 + C(1) tXi=2(�+ �(i� 1) + "i) + C�(L)(�+ �(t� 1) + "t); (5.21)3Note that rank reduction in � implies the presence of more stochastic trends, while rank reductionin �1 in Section 5.1 implies less stochastic trends.



80 Multivariate Stochastic Trendswith C(1) = �?(�0?��(1)�?)�1�0?. The process Yt contains (n� r) stochastic trends plusa quadratic deterministic trend, which results from Pti=2 �(i� 1) = 12�(t2� t). In general,this quadratic trend disappears if � = 0. Note however that under cointegration therestriction �0?� = 0 also corresponds to the absence of a quadratic trend in Yt. Likewise,the deterministic linear trend in Yt disappears if � = 0 and �0?� = 0. If however C(1)has full rank the latter condition changes to � = 0.In the next chapter we consider a Bayesian analysis of cointegration. For analyticalsimplicity and to meet with classical studies, we use the error correction model speci�ca-tion (5.20), where the deterministic trend is added in a linear way. As we have seen in(5.21) it is still possible in this speci�cation to relate the deterministic elements to thetrend in the series. This is however not the case if we replace � + �(t � 1) by a multi-variate random walk plus drift (5.4) or the Markov trend (5.6). Therefore, we consider inChapter 7 speci�cation (5.10) to analyse multivariate Markov trend models.5.4 Outline of Part IIContrary to the Bayesian analysis of the presence of unit roots in univariate time series,there does not exist a Bayesian framework for the analysis of unit roots and cointegra-tion in multivariate time series. Therefore, we propose in Chapter 6 a complete frame-work for Bayesian cointegration analysis in VAR models. This framework includes, priorspeci�cation, posterior odds ratio analysis for determining the number of unit roots orcointegration relations and simulation techniques to obtain the posterior distributions ofthe cointegration vectors and adjustment parameters. This standard framework will beused in Chapter 7 to analyse stochastic trends in a multivariate version of the Markovtrend model of Chapter 3. This model is used to analyse the presence of common Markovtrends and cointegration in per capita consumption and income of the United States.



Chapter 6Cointegration Analysis
6.1 IntroductionIn the previous chapters we have analysed the presence of stochastic trends in univariatetime series. In this chapter we consider a multivariate analysis of stochastic trends. Theintroduction of the concept of common stochastic trends or cointegration by Engle andGranger (1987) has introduced a rapidly expanding literature on multivariate analysis ofstochastic trends. This has lead to a largely uni�ed theory of classical statistical analysisof cointegration, see among others Johansen (1991) and Phillips (1991b). However, theredoes not exist a complete framework for Bayesian analysis of cointegration, like in theclassical literature. The main contributions to Bayesian analysis of cointegration are:Koop (1991) analyses implied moving averages/impulse responses resulting from the Wolddecomposition of a time series, DeJong (1992) considers the posterior distributions ofthe roots of vector autoregressive models, Kleibergen and van Dijk (1994) analyse theconsequences of local non-identi�cation and prior speci�cation on the posteriors of theparameters, Dorfman (1995) tests for the number of cointegrating vectors by analysingthe di�erence between the number of unit roots in the di�erent univariate models and thenumber of unit roots in the multivariate model, and Geweke (1996) proposes posteriorsimulators using the Gibbs sampler.These studies typically consider a speci�c problem in the sequence of steps involved inBayesian cointegration analysis. They do not provide a full cointegration model selectionstrategy which allows one to start with an unrestricted multivariate time series model andto end with the posteriors of the parameters in a cointegration model. In this chapter weprovide a full modelling strategy for Bayesian cointegration analysis. The sections, whichdiscuss the di�erent steps in the model selection strategy are organised as follows.In Section 6.2 we give a short introduction of cointegration in vector autoregressivemodels and provide the notation we will use in this chapter. A vector autoregressivemodel is rewritten in an error correction form in which a zero restriction on a parametermatrix re
ects cointegration. In Section 6.3 a prior framework for the Bayesian analysisof this error correction model is proposed. This prior framework does not depend on



82 Cointegration Analysisthe functional form of the prior. Therefore, we also derive the functional forms under adi�use (Je�reys') and a natural conjugate prior speci�cation. In Section 6.4 the posteriordistributions are derived. The posteriors of the cointegration model do not belong to aknown class of distribution. In Section 6.4.1 a Metropolis-Hastings simulation algorithmis proposed to simulate from the unknown posterior distributions.To analyse the number of cointegration relations, we consider in Section 6.5 a Bayesianversion of a Lagrange multiplier [LM] statistic. This Bayesian LM statistic can be seenas an alternative to a highest posterior density [HPD] region type test. The statistic isbased on a transformation of a multidimensional HPD region into a one-dimensional HPDregion. This transformation resembles the functional form of a classical Lagrange multi-plier statistic but has a di�erent interpretation. Since the derivation and interpretationof the Bayesian version of an LM statistic to test for cointegration is not straightforward,we use a linear regression model to show the involved steps. In Section 6.6 we proposeposterior odds/Bayes factors to compare models with di�erent number of cointegrationrelations and therefore di�erent number of unit roots. We consider Bayes factors under anatural conjugate prior speci�cation and propose a Bayes factor in case of di�use priors.Unfortunately, the outcomes of the Bayes factors and the LM statistics depend on theorder of the variables in the error correction model. Therefore, we propose in Section 6.7an alternative error correction model representation which leads to posterior results thatare invariant with respect to the order of the variables. Using the same prior frameworkas in Section 6.3 we derive priors, posteriors and Bayes factors. Since it is under theinvariant speci�cation not possible to derive any analytical marginal prior and posteriorresults, we propose new simulation procedures to obtain these results.Finally, Section 6.8 shows some illustrative examples of the derived procedures usingfour simulated series, the United Kingdom [UK] data analysed in Hendry and Doornik(1994) and the Danish data analysed in Johansen and Juselius (1990). Section 6.9 con-cludes.6.2 The Cointegration ModelConsider a vector autoregressive model of order k [VAR(k)] for an n-dimensional vectorof time series fYtgTt=1 Yt = �+ �(t� 1) + kXi=1�iYt�i + "t; (6.1)where "t is an independent n-dimensional vector normal process with zero mean and(n � n) positive de�nite symmetric covariance matrix �. The (n � 1) vectors � and �contain the constant and trend coe�cients and �i, i = 1; : : : ; k are (n� n) matrices withautoregressive coe�cients. The initial values Y1; : : : ; Yk are �xed. The VAR model in(6.1) can be rewritten in the error correction form�Yt = �+ �(t� 1) + �Yt�1 + k�1Xi=1 ��i�Yt�i + "t; (6.2)



6.2 The Cointegration Model 83where the (n� n) matrix � = Pkj=1�j � In and the (n� n) matrices ��i = �Pkj=i+1�j,i = 1; : : : ; k � 1, see e.g. Johansen (1991).The characteristic polynomial of model (6.1) is equal to j�(z)j = jInzk�Pki=1�izk�ij.Since by de�nition �(1) = ��, unit roots enter the model when �(1) has a lower rankvalue. If � is a zero matrix, the characteristic polynomial has n unit roots, which corre-sponds to n stochastic trends. Common stochastic trends appear if (n � r) roots of thepolynomial j�(z)j are equal to one, 0 < r < n, see Section 5.3. In that case the rankof � equals r and we say that series generated by model (6.1) are cointegrated. Hence,cointegration implies that we can write the matrix � as a product of two full rank (n� r)matrices � and � � = �� 0: (6.3)The matrix � contains the cointegrating vectors, which re
ect the stationary long termrelations (or equilibria) between the univariate series in Yt. The � matrix contains theadjustment parameters, which determine the speed of adjustment to the equilibria � 0Yt.Since the number of parameters in �� 0, 2nr is larger than the number of free param-eters in �, under reduced rank (= nr + (n � r)r) the � and/or � parameters have tobe restricted to become estimable. Here we choose for the following restriction on thecointegration vectors � � 0 = (Ir � � 02); (6.4)where �2 is an ((n� r)� r) matrix. Note that due to this normalization the � matrix hasalways full rank.To save on notation we write the error correction model (6.2) in matrix notation,�Y = Y�1�0 +X�+ "; (6.5)where �Y = (�Yk+1 : : :�YT )0, Y�1 = (Yk : : :YT�1)0, " = ("k+1 : : : "T )0,X = (X 0k+1 : : :X 0T )0,Xt = (�Y 0t�1 : : :�Y 0t�k+1 1 (t � 1)), and � = (��1 : : : ��k�1 � �)0. To save even fur-ther on notation, we focus in the remainder of this chapter on a simple VAR(1) modelwithout deterministic elements. This is not a serious restriction since under a di�useprior speci�cation on �, integrating out the � parameters from the likelihood functionleads to analysing a VAR(1) model for the transformed data MX�Y and MXY�1, whereMX = IT�k�X(X 0X)�1X 0. We refer to this VAR(1) model in error correction form as alinear error correction [lec] model �Y = Y�1�+ "; (6.6)where we de�ne � = �0 for notational convenience. Under the restriction � = �� 0 thismodel simpli�es to an error correction cointegration [ecc] model�Y = Y�1��+ "= Y1;�1�� Y2;�1�2�+ "; (6.7)



84 Cointegration Analysiswhere Y1;�1 consists of the �rst r columns of Y�1, Y2;�1 consists of the last (n�r) columnsof Y�1 and � = �0. To clarify the parameter restriction, which leads to rank reductionin �, we reparameterise the linear error correction model (6.6) into an unrestricted errorcorrection [uec] model �Y = Y1;�1�� Y2;�1�2�+ Y2;�1(0 �) + "; (6.8)where � is an ((n � r) � (n � r)) matrix. The error correction cointegration model(6.7) corresponds to � = 0, see Kleibergen (1996b) and Kleibergen and van Dijk (1994)for details. We have rewritten the linear error correction model (6.6) in such a waythat rank reduction corresponds to a parameter restriction. To see the relation betweenthis unrestricted error correction model and the linear error correction model (6.6) wedecompose � in submatrices� =  �11 �12�21 �22 ! =  �1 �2��2�1 ��2�2 + � ! ; (6.9)where �11 is an (r � r) matrix, �12 is an (r � (n � r)) matrix, �21 is an ((n � r) � r)matrix, �22 is an ((n� r)� (n� r)) matrix and where � = (�1 �2) with �1 an (r � r)matrix and �2 an (r � (n� r)) matrix.Note that the decomposition of � in (6.9) is not unique. A di�erent order of theelements of Yt results in a di�erent de�nition of �. This implies that the posterior of� also depends on the order of the univariate series in Yt. Tests, which are based onthis posterior, like the posterior odds ratios in Section 6.6, are therefore sensitive to theorder of the series in Yt. The Bayesian version of the LM statistic, which is discussedin Section 6.5.2, is less sensitive for the order since it is calculated using the posterior ofthe parameters of the error correction cointegration model (6.7) in which � = 0, see alsoLucas (1996, chapter 8) for a discussion about this phenomenon. In Section 6.7 we discussa decomposition of �, which leads to posterior results which are invariant to the order ofthe variables in Yt. The disadvantage of this decomposition is that contrary to the simpledecomposition in (6.9) it does not allow for an analytical decomposition of the prior andposterior in known conditional/marginal densities. Posterior results are obtained usingcomplicated simulation methods. Therefore, we �rst discuss as an introduction in thenext sections Bayesian cointegration analysis using the simple decomposition in (6.9). InSection 6.7 we consider the invariant decomposition and discuss the computation of theorder invariant posterior results.The Likelihood FunctionThe likelihood function of the unrestricted error correction model (6.8) conditional on theinitial observations Y1 is given byLuec(Y j�;�; �; �2) = (p2�)�(T�1)nj�
 Inj� 12 exp(�12(vec(")0(��1 
 I�1n )vec(")))= (p2�)�(T�1)nj�j� 12 (T�1)jIT�1j� 12n exp(�12tr(��1"0")); (6.10)



6.3 Prior Framework 85where " is given in (6.8). In addition, the likelihood function of the cointegration model(6.7) equals the likelihood function of the unrestricted model (6.10) evaluated in � = 0Lecc(Y j�;�; �2) = Luec(Y j�;�; �; �2)j�=0: (6.11)In the next section we propose a prior framework to analyse the unrestricted errorcorrection models (6.8) and the cointegration models (6.7).6.3 Prior FrameworkTraditional Bayesian analysis of the cointegration model starts directly with specifyingpriors on the parameters �, � and �2 in the cointegration model (6.7). The cointegrationmodel (6.7) is non-linear in the parameters � and �2. It is easy to see that the parameter�2 is not identi�ed when � = 0 (or when � is of reduced rank), see Phillips (1989) for morediscussion on local non-identi�cation. Consequently, if a di�use prior is used, such thatthe joint posterior of the parameters is proportional to the likelihood, the conditionalposterior of �2 given � is constant and non-zero when � = 0. The integral over thisconditional posterior at � = 0, which is part of the marginal posterior of �, is thereforeproportional to the volume of the parameter region of �2 (R(n�r)r), which is in�nity. Thisleads to a a posteriori favour for locally non-identi�ed parameter values when di�usepriors are used for the parameters (�; �2), see Kleibergen and van Dijk (1994) for a moreelaborate discussion of this phenomenon. Di�use priors for models which are non-linearin the parameters like the cointegration model (6.7) do not lead to posteriors with similarproperties as posteriors of linear models under a di�use prior speci�cation. Hence, froma posterior perspective, di�use priors in non-linear models like the cointegration model(6.7) are not the natural extension of di�use priors in linear models.Since the error correction cointegration model (6.7) is nested in the unrestricted er-ror correction model (6.8) it seems natural that the joint posterior distribution of theunrestricted error correction model (6.8) evaluated in � = 0 is proportional to the jointposterior of the cointegration model (6.7). Note that in case of linear restrictions, this re-quirement is automatically ful�lled, as we can condition on the parameters modelling therestriction. For non-linear restrictions, like cointegration, however, we cannot conditionon the restrictions and we have to use the joint posterior explicitly, see also Kleibergen(1996a). Since the likelihood of the cointegration model (6.7) equals the likelihood ofthe unrestricted error correction model (6.8) evaluated in � = 0 the prior has to obeythe same rule. Note that the unrestricted error correction model (6.8) is also non-linearand su�ers from the same identi�cation problem as the cointegration model. However,the unrestricted error correction model is observationally equivalent with the linear errorcorrection model (6.6). Therefore, specifying di�use priors for the � and � parametersin the latter model implies priors for the �, �, � and �2 parameters in the unrestrictederror correction model (6.8), which leads to well-behaved posterior distributions. Thejoint prior of the error correction cointegration model (6.7) equals the joint prior of theunrestricted error correction model (6.8) evaluated in � = 0. This prior framework can be



86 Cointegration Analysisseen as a natural extension of de�ning di�use prior in non-linear error correction modelsand does not lead to improper posteriors, see also Kleibergen (1996a). Notice that everycointegration model, r = 1; : : : ; n, is nested in the linear error correction model (6.6),which ensures also that there exists a natural transition between the joint posteriors ofcointegration models with di�erent number of cointegration relations.The ideas behind this prior framework can also be applied to natural conjugate priors,like the informative Minnesota priors of Doan, Litterman and Sims (1984) and Litterman(1986). In general one starts with specifying a prior on the parameters � and � of thelinear error correction model (6.6) plec(�);plec(�j�): (6.12)Note that we have not speci�ed a functional form for the priors yet. The prior on �implies a prior on the submatrices of � de�ned in (6.9)plec(�11;�12j�);plec(�21;�22j�11;�12;�): (6.13)The decomposition in (6.9) shows the relation between the submatrices of � and theparameters �, � and �2. The prior distribution of �, � and �2 can now be constructedusing the Jacobian of the transformation of � to (�; �; �2). The priors for �, � and �2implied by the prior for �11, �21, �12 and �22 are constructed such that they obey thesequence, in which the parameter matrices should be analysed conditional on one another,dictated by the model: � has to be analysed given � and �, and the cointegrating vectors�2 have to be analysed given �, �, and �. Only this sequence allows for an analyticaldecomposition of the joint prior/posterior into conditional posteriors/priors as will beshown in Section 6.4. The marginal/conditional priors readpuec(�);puec(�j�);puec(�j�;�);puec(�2j�;�; �): (6.14)Note that of course puec(�) = plec(�) and puec(�j�) = plec(�11;�12j�)(�11 �12)=�. Thejoint prior of the unrestricted error correction model (6.8) puec(�;�; �; �2) is given by theproduct of the conditional/marginal priors in (6.14).Finally, the joint prior for the error correction cointegration model (6.7) is proportionalto the joint prior for the unrestricted error correction model (6.8) evaluated in � = 0pecc(�;�; �2) = 1cr puec(�;�; �; �2)j�=0; (6.15)where the constant cr is a correction factor, which corrects the integrating constant inpuec. This correction factor is de�ned bycr = ZZZ puec(�;�; �; �2)j�=0 d� d� d�2: (6.16)



6.3 Prior Framework 87To demonstrate the implications of this prior framework, we derive the implicit condi-tional priors the �, �2, and � parameters if we specify a di�use (Je�reys') and a naturalconjugate prior for the � parameter.Di�use Prior Speci�cationA Je�reys' prior for � and � is proportional to the square root of the determinant ofthe information matrix of the linear error correction model (6.6). Since the informationmatrix is block diagonal [see L�utkepohl (1993, section 3.4)] the Je�reys' prior for � resultsfrom the information matrix of � given ��E " @2 lnL(Y j�;�)@(vec(�))@(vec(�))0 ������# = (��1 
 (Y 0�1Y�1)): (6.17)Note that we only take the expectation of the disturbances and we, as Bayesians, treatY1 as �xed and given so that the expectation equals its realisation. This implies that thedi�use prior for the linear error correction model (6.6) readsplec(�) / j�j� 12 (n+1);plec(�j�) / j�j� 12njY 0�1Y�1j 12n: (6.18)The conditional prior for � implies the following conditional priors for the submatricesof � plec(�11;�12j�) / j�j� 12 rjY 01;�1MY2;�1Y1;�1j 12n;plec(�21;�22j�11;�12;�) / j�j� 12 (n�r)jY 02;�1Y2;�1j 12n; (6.19)where MY2;�1 = IT�1�Y2;�1(Y 02;�1Y2;�1)�1Y 02;�1. Appendix 6.A shows the derivation of thepriors for unrestricted error correction model (6.8) based on the prior (6.19) including theJacobian for the transformation of (�11;�12;�21;�22) to (�, �, �2). These priors readpuec(�) / j�j� 12 (n+1);puec(�j�) / j�j� 12 rjY 01;�1MY2;�1Y1;�1j 12n;puec(�j�;�) / j�?��0?j� 12 (n�r)jY 02;�1Y2;�1j 12 (n�r);puec(�2j�;�; �) / j���1�0j 12 (n�r)jY 02;�1Y2;�1j 12 r; (6.20)where � = (�1 �2) with �1 an (r � r) matrix and �2 an (r � (n � r)) matrix and�? = (��02(��11 )0 In�r). The joint prior puec(�;�; �; �2) is given by the product of themarginal/conditional priors in (6.20).Now, the joint prior for the error correction cointegration model (6.7) is given bypecc(�;�; �2) / puec(�;�; �; �2)j�=0: (6.21)



88 Cointegration Analysisor pecc(�;�) / j�j� 12 (n+r+1)jY 01;�1MY2;�1Y1;�1j 12njY 02;�1Y2;�1j 12 (n�r)j�?��0?j� 12 (n�r);pecc(�2j�;�) / j���1�0j 12 (n�r)jY 02;�1Y2;�1j 12 r: (6.22)Note that in the case of di�use priors we cannot de�ne cr according to (6.16). For thederivation of the posteriors the value of cr is not important since it is only an integratingconstant. However, for model comparison via posterior odds this integrating constant isimportant. In Section 6.6.1 we discuss the value of cr in posterior odds analysis in caseof a di�use prior speci�cation.Natural Conjugate Prior Speci�cationIn case of natural conjugate priors we specify an inverted Wishart prior for � and a matrixnormal prior for � given �plec(�) / jSj 12hj�j� 12 (h+n+1) exp(�12tr(��1S));plec(�j�) / j�j� 12njAj 12n exp(�12tr(��1(�� P )0A(�� P ))); (6.23)where h and the positive de�nite symmetric [PDS] (n�n) matrix S are prior parametersfor the inverted Wishart and the PDS (n� n) matrix A and the (n� n) matrix P priorparameters for the matrix normal prior. The matrices A and P can be decomposed asA =  A11 A12A21 A22 ! and P =  P11 P12P21 P22 ! ; (6.24)where A11; P11 are (r� r) matrices, A12; P12 (r� (n� r)) matrices, A21; P21 ((n� r)� r)matrices and A22; P22 ((n� r)� (n� r)) matrices. Appendix 6.A shows the derivation ofthe priors for the unrestricted error correction model (6.8) implied by the priors for theparameters of the linear error correction model (6.23). The marginal/conditional priorsread puec(�) / jSj 12hj�j� 12 (h+n+1) exp(�12tr(��1S));puec(�j�) / j�j� 12 rjA11:2j 12n exp(�12tr(��1(�� (P11 P12))0A11:2(�� (P11 P12))));puec(�j�;�) / j�?��0?j� 12 (n�r)jA22j 12 (n�r)exp(�12tr((�?��0?)�1(�� l)0A22(�� l)));puec(�2j�;�; �) / j���1�0j 12 (n�r)jA22j 12 r exp(�12tr(A22(�2 � b2)���1�0(�2 � b2)0));(6.25)where A11:2 = A11�A12A�122 A21, (Q21 Q22) = (P21 P22)�A�122 A21((�11 �12)� (P11 P12)),l = (Q21 Q22)�0? and b2 = �(Q21 (Q22 � �))��1�0(���1�0)�1: The joint prior for the



6.4 Posterior Distributions 89parameters in the unrestricted error correction model (6.8), puec(�;�; �; �2), is given bythe product of the marginal/conditional priors in (6.25). Note that it is also possibleto specify the marginal/conditional priors (6.25) for a cointegration model with rank rdirectly without starting with the prior speci�cation for the linear error correction model(6.23). These priors automatically imply the priors for the cointegration models withrank 6= r. Furthermore, to re
ect the prior belief about a cointegration rank, one canassign prior probabilities to every cointegration rank in a posterior odds analysis, seeSection 6.6.Now, the joint prior for the error correction cointegration model (6.7) is given bypecc(�;�; �2) = 1cr puec(�;�; �; �2)j�=0: (6.26)or pecc(�;�) / puec(�)puec(�j�)puec(�j�;�)j�=0;pecc(�2j�;�) / puec(�2j�;�; �)j�=0 (6.27)where puec's are de�ned in (6.25). The value of cr can be computed according to (6.16).In Section 6.6 we provide a simulation procedure to obtain cr.In the next section we derive posterior distributions for the parameters of the unrestrictederror correction and the cointegration models both for the di�use and natural conjugateprior speci�cation.6.4 Posterior DistributionsAs already mentioned, only for the speci�c sequence of the parameters, in which westated the conditional priors of the parameters in the previous section, it is possible toderive analytical expressions for the conditional posteriors of the parameters from theunrestricted error correction model (6.8). If we follow this speci�c conditioning sequence,� has to be analysed given (�;�) and �2 has to be analysed given (�;�; �). First,we consider the posterior distributions of the restricted and unrestricted error correctionmodels in case of di�use priors.Posterior under Di�use Prior Speci�cationThe posterior of the unrestricted error correction model (6.8) is proportional to the like-lihood (6.10) times the product of the marginal/conditional priors in (6.20). Due to thestructure of the model it is only possible to derive an analytical expression for marginalposteriors of � and �. Fortunately, there exist a decomposition of the posterior in known



90 Cointegration Analysisdensities, see Appendix 6.B. The kernels of these marginal/conditional posteriors readpuec(�jY ) / j�j� 12 (T+n) exp(�12tr(��1�Y 0MY�1�Y ));puec(�j�; Y ) / j�j� 12 rjY 01;�1MY2;�1Y1;�1j 12nexp(�12tr(��1(�� �̂)0Y 01;�1MY2;�1Y1;�1(�� �̂)));puec(�j�;�; Y ) / j�?��0?j� 12 (n�r)jY 02;�1Y2;�1j 12 (n�r)exp(�12tr((�?��0?)�1(�� �̂)0Y 02;�1Y2;�1(�� �̂)));puec(�2j�;�; �; Y ) / j���1�0j 12 (n�r)jY 02;�1Y2;�1j 12 rexp(�12tr(Y 02;�1Y2;�1((�2 � �̂2)���1�0(�2 � �̂2)0);
(6.28)

where �̂ = (Y 01;�1MY2;�1Y1;�1)�1Y 01;�1MY2;�1�Y;�̂ = (Y 02;�1Y2;�1)�1Y 02;�1�Y�0?;�̂2 = �(Y 02;�1Y2;�1)�1Y 02;�1(�Y � Y1;�1�� Y2;�1(0 �))��1�0(���1�0)�1; (6.29)and MY�1 = IT�1 � Y�1(Y 0�1Y�1)�1Y 0�1. All marginal/conditional posteriors belong toa known class of probability densities functions: inverted Wishart for the � parameterand matrix normal for the remaining parameters, see Zellner (1971, appendix B) for ade�nition of these densities. Marginal results for the � and �2 parameters can be obtainedvia simulation in a straightforward way.Since the prior and the likelihood of the error correction cointegration model (6.7)equal the prior and the likelihood of the unrestricted error correction model (6.8) in� = 0, the posterior of the cointegration model is proportional to the posterior of theunrestricted error correction model in � = 0pecc(�;�; �2jY ) / puec(�;�; �; �2jY )j�=0/ puec(�;�jY ) puec(�j�;�; Y )j�=0 puec(�2j�;�; �; Y )j�=0: (6.30)The posterior of the cointegration model (6.30) can not be decomposed in known densities.The conditional posterior of �2 restricted in � = 0 is still matrix normal, which meansthat we can simulate �2 if we know how to simulate from the marginal posterior of � and�. In Section 6.4.1 we construct a simulation procedure to simulate from the marginalposterior distribution of � and �. This simulation procedure is based on the ratio ofthe marginal posterior of � and � in the error correction cointegration model (6.30) andthe marginal posterior of the same parameters in the unrestricted error correction model(6.28)pecc(�;�jY )puec(�;�jY ) / j�?��0?j� 12 (n�r)jY 02;�1Y2;�1j 12 (n�r)exp(�12tr(�?��0?)�1�̂0Y 02;�1Y2;�1�̂)): (6.31)



6.4 Posterior Distributions 91Note that this ratio is proportional to the conditional posterior of � given � and � de�nedin (6.28) evaluated in the parameter point � = 0, puec(�j�;�; Y )j�=0. Not surprisingly,this ratio plays an important role in the computation of posterior odds ratios to comparethe error correction cointegration model with the unrestricted error correction model, seeSection 6.6.Posterior under Natural Conjugate Prior Speci�cationIn a similar way it is possible to derive marginal/conditional posteriors of the unrestrictederror correction model (6.8) in case of natural conjugate priors, see Appendix 6.B. Thekernels of these posteriors arepuec(�jY ) / jS + P 0AP +�Y 0�Y � ~�0(A+ Y 0�1Y�1) ~�j 12 (T+h)j�j� 12 (T+h+n)exp(�12tr(��1(S + P 0AP +�Y 0�Y � ~�0(A+ Y 0�1Y�1) ~�)));puec(�j�; Y ) / j�j� 12 rj(A+ Y 0�1Y�1)11:2j 12nexp(�12tr(��1(�� ( ~�11 ~�12))0(A+ Y 0�1Y�1)11:2(�� ( ~�11 ~�12)));puec(�j�;�; Y ) / j�?��0?j� 12 (n�r)j(A+ Y 0�1Y�1)22j 12 (n�r)exp(�12tr((�?��0?)�1(�� ~�)0(A+ Y 0�1Y�1)22(�� ~�)));puec(�2j�;�; �; Y ) / j���1�0j 12 (n�r)j(A+ Y 0�1Y�1)22j 12 rexp(�12tr((A+ Y 0�1Y�1)22(�2 � ~�2)���1�0(�2 � ~�2)0));
(6.32)

with ~� =  ~�11 ~�12~�21 ~�22 ! = (A+ Y 0�1Y�1)�1(AP + Y 0�1Y�1�̂);~� = (R21 R22)�0?;~�2 = �(R21 (R22 � �))��1�0(���1�0)�1; (6.33)where (R21 R22) = (( ~�21 ~�22) � (� � (A + Y 0�1Y�1)�122 (A + Y 0�1Y�1)21( ~�11 ~�12))) and(A+ Y 0�1Y�1)= �(A+ Y 0�1Y�1)11 (A+ Y 0�1Y�1)12(A+ Y 0�1Y�1)21 (A+ Y 0�1Y�1)22�. Since all the marginal/conditional densitiesare of a known class of distributions, the marginal posteriors of � and �2 can be obtainedvia straightforward simulation.Just as in the di�use case, the posterior of the cointegration model (6.7) is proportionalto the posterior of the unrestricted error correction model (6.8) evaluated in � = 0,see (6.30). Again the ratio of the marginal posterior of � and � resulting from theerror correction cointegration model (6.7) and the marginal posterior of � and � in theunrestricted error correction model plays an important role in the simulation from theposterior distribution and the computation of posterior odds ratios. In the next subsectionwe show a simulation scheme to sample from the posterior of the cointegration model.



92 Cointegration Analysis6.4.1 Simulating Posterior DistributionsTo evaluate the posterior distributions of the error correction cointegration models (6.7)with di�use or natural conjugate priors, we use Markov chain Monte Carlo techniques.Since not all of the full conditional posterior distributions are of a known type, standardGibbs sampling is not possible. Therefore, we apply the Metropolis-Hastings sampler ofMetropolis et al. (1953) and Hastings (1970).To describe the Metropolis-Hastings [M-H] sampling algorithm, let  be a randomvariable with density function f( ). Let g(�j ) be a candidate-generating density functionin �. The simulation algorithm to sample from the density f( ) works as follows:Step 1: Specify starting values  0 and set i = 0.Step 2: Simulate � from g(�j i).De�ne a(�;  i) = 8>><>>: min � f(�)g( ij�)f( i)g(�j i) ; 1� f( i)g(�j i) > 01 f( i)g(�j i) = 0:Choose  i+1 = � with probability a(�;  i)and  i+1 =  i with probability (1� a(�;  i)).Step 3: Set i = i+ 1 and go to step 2.The described iterative scheme generates a Markov chain. After the chain has converged,say at H iterations, the simulated values f i; i � Hg can be used as a sample from thedistribution of  to compute means, variances, etc. Di�erent choices for the candidate-generating function result in di�erent speci�c forms of the algorithm. For example, ifg( ij�) = g(�j i) the acceptance probability simpli�es to a(�;  i) = min(f(�)=f( i); 1).This describes the original Metropolis algorithm. If g(�;  i) = g(�), we get a( i; �) =min(w(�)=w( i); 1), where w(�) = f(�)=g(�), which can be interpreted as importanceweights, see also Section 6.6.1. For details we refer to Smith and Roberts (1993) andTierney (1994).The simulation framework to sample from the posterior of the cointegration model(6.7) is the same for di�use and natural conjugate priors. The sampling scheme is based onthe fact that the posterior of the error correction cointegration model (6.7) is proportionalto the posterior of the unrestricted error correction model (6.8) evaluated in � = 0pecc(�;�; �2jY ) / puec(�jY ) puec(�j�; Y ) puec(�j�;�; Y )j�=0 puec(�2j�;�; �; Y )j�=0/ puec(�jY ) puec(�j�; Y )w(�;�jY ) puec(�2j�;�; �; Y )j�=0; (6.34)where w(�;�jY ) = puec(�j�;�; Y )j�=0. If we ignore the function w(�;�jY ) in (6.34),simulation from the posterior distribution is easy, since the remainder consists of a productof standard densities. Since w(�;�jY ) is a bounded function, we can use an acceptance-rejection simulation algorithm. This may, however, lead to large rejection frequencies if



6.5 Bayesian Lagrange Multiplier Statistics 93the cointegration rank is not correctly speci�ed. Chib and Greenberg (1995) show that inthis case a M-H algorithm can speed up the simulation process. Since �2 does not enterthe weight function w, the M-H step only enters the simulation scheme for the samplingof the � and the � parameters. If we take as candidate-generating density puec(�;�jY ) orpuec(�jY ) puec(�j�; Y ), the acceptance-rejection probability simpli�es to a ratio of weightfunctions w, as discussed above. Given the draws of � and �, we sample �2 conditionalon (�;�) from a matrix normal distribution.The three steps to sample from the posterior distribution of the cointegration modelcan be summarized as follows:Step 1: Draw �i+1 from puec(�jY ).Draw �i+1 from puec(�j�i+1; Y ).Step 2: Accept (�i+1;�i+1) with probability min �w(�i+1;�i+1jY )w(�i;�ijY ) ; 1�,otherwise (�i+1;�i+1) = (�i;�i).Step 3: Draw �i+12 from puec(�2j�i+1;�i+1; �; Y )j�=0.This simulation scheme has advantages if one wants to analyse the model under everycointegration rank r. Since the sampling distribution of � does not depend on the rank r,one only needs one draw � for every cointegration rank. Furthermore, using the propertiesof the matrix normal distribution, the sampling of � parameters can be accelerated.Instead of sampling an � matrix for every rank r, one can sample the � matrices at onceusing one draw �i+1 from p(�j�; Y ), which is a matrix normal density. The candidatedraws of �i+1 under the cointegration rank r, r = 1; : : : ; n, are obtained by taking the�rst r rows of the draw �i+1.Finally, the presented sampling scheme is not unique. It is possible to use a di�erentdecomposition than the one proposed in (6.34). Furthermore, the decomposition (6.34) isalso suitable for importance sampling, see Kloek and van Dijk (1978) and Geweke (1989).The weight functions w evaluated in the draws represent in that case the importanceweights. However, the M-H sampling method has the advantage that it is easier to applyin more complicated cointegration models, like for instance cointegration models witha break in the constant and/or in the cointegration relation or threshold cointegrationmodels. These more complicated models are often analysed in a Gibbs framework. Thesampling of the block (�;�; �2) given the remaining parameters in the model can thenbe done using the simulation steps presented in this subsection, see Section 7.4 for anexample.6.5 Bayesian Lagrange Multiplier StatisticsIn the previous section, we assumed for the derivation of the posterior simulators, thatthe number of cointegrating vectors r is known a priori. This is in practice seldom the



94 Cointegration Analysiscase and procedures, which analyse whether the chosen number of cointegrating vectorsis plausible, are needed. In classical statistical analysis diagnostic test statistics likeLagrange Multiplier or score statistics are intended for this purpose. In this section,we will construct the Bayesian analog of these classical LM statistics to test whetherthe assumed number of cointegrating vectors is plausible. Since the computation andinterpretation of the Bayesian LM statistic to test for cointegration is not straightforward,we start in Section 6.5.1 with a Bayesian LM test for a zero regression coe�cient in asimple linear regression model. The Bayesian LM cointegration statistics are extensionsof the LM statistic in a linear regression model. To save on notation we only considerthe Bayesian LM statistics under a di�use prior speci�cation. The results can easily beextended for the natural conjugate prior case.6.5.1 Bayesian LM Statistic in the Linear Regression ModelConsider a linear regression model with two explanatory variables,y = z1
1 + z2
2 + �= Z
 + �; (6.35)where y, �, z1, z2 are (T � 1) matrices, Z = (z1 z2), 
 = (
1 
2)0 and � � N(0; �2IT ). Ifwe are interested whether the parameter 
1 is zero, we can test this hypothesis using ahighest posterior density region, see Box and Tiao (1973). An alternative method to testthe hypothesis 
1 = 0; is to use a Bayesian analog of an LM statistic. Since in the linearregression model the marginal posterior distributions are of a known type, it is possibleto derive the LM statistic for 
1 = 0 analytically. In the cointegration model, however,the marginal distributions are of an unknown form and we use a M-H sampler to simulatefrom the posterior distribution. Therefore, we also show in the linear regression modelhow to calculate the LM statistic for the restriction 
1 = 0 using M-H output. The latterapproach mimics the computation of the more complicated LM statistic for cointegration,which will be discussed in Section 6.5.2.Analytical ApproachAssuming di�use priors for the di�erent parameters,p(
1; 
2; �2) / ��3; (6.36)some conditional and marginal posteriors of the parameters of the linear regression model(6.35) read,p(
2j
1; �2; y; Z) / ��1 exp(� 12�2 (
2 � 
̂2)0z2z2(
2 � 
̂2)); (6.37)p(�2j
1; y; Z) / ��(T+3) exp(� 12�2 (y � z1
1)0Mz2(y � z1
1)); (6.38)p(
1j�2; y; Z) / ��1 exp(� 12�2 (
1 � 
̂1)0z01Mz2z1(
1 � 
̂1)); (6.39)



6.5 Bayesian Lagrange Multiplier Statistics 95where 
̂1 = (z01Mz2z1)�1z01Mz2y; 
̂2 = (z02z2)�1z02(y � z1
1) and Mz2 = IT � z2(z02z2)�1z02:To derive the distribution of the Bayesian version of the LM statistic for the hypothesis
1 = 0 under the alternative hypothesis we use the conditional posterior of 
1 given �2(6.37): (
1 � 
̂1) � N(0; �2(z01Mz2z1)�1) ,��1(z01Mz2z1) 12 (
1 � 
̂1) � N(0; 1) ,��1(z01Mz2z1)� 12 z01Mz2(y � z1
1) � N(0; 1); (6.40)and hence given ���2(y � z1
1)0Mz2z1(z01Mz2z1)�1z01Mz2(y � z1
1) � �2(1): (6.41)This results holds regardless of the value of �2 so that this property is not lost when wego to the marginal result for 
1 by integrating out �2,E�2 [��2(y � z1
1)0Mz2z1(z01Mz2z1)�1z01Mz2(y � z1
1)] � �2(1): (6.42)If we substitute 
1 = 0 in this expression and take the expectation with respect to theconditional posterior of �2 in (6.38) with 
1 = 0; we obtain the value of the LM statisticunder the hypothesis 
1 = 0LM(
1 = 0) = E�2 [��2(y � z1
1)0Mz2z1(z01Mz2z1)�1z01Mz2(y � z1
1)j
1=0]: (6.43)We reject the hypothesis 
1 = 0 when the resulting LM statistic (6.43) lies outside theone-sided HPD region of a �2(1) distribution. This can be seen as an alternative oftesting whether 
1 = 0 using a HPD region for the marginal distribution of 
1, which ist-distributed.Likewise, it can be shown that the expression��2(y � Z
)0Z(Z 0Z)�1Z 0(y � Z
): (6.44)is �2(2) distributed, when 
1 and 
2 are non-zero. So, the LM test for 
1 = 
2 = 0 isobtained by evaluating (6.44) in 
1 = 
2 = 0 and taking the expectation over �2 given
1 = 
2 = 0.It is also possible to compute the LM statistic (6.43) by adjusting the expression (6.44).This expression can be decomposed as��2(y � Z
)0Z(Z 0Z)�1Z 0(y � Z
) =��2(y � Z
)0Mz2z1(z01Mz2z1)�1z01Mz2(y � Z
) +��2(y � Z
)0z2(z02z2)�1z02(y � Z
); (6.45)



96 Cointegration Analysissee Davidson and MacKinnon (1993, section 3.5). Under 
1 = 0 the second part has a�2(1) distribution and the �rst part equals (6.41), which implies that (6.43) is equal toLM(
1 = 0) = E�2 [��2(y � z1
1)0Mz2z1(z01Mz2z1)�1z01Mz2(y � z1
1)j
1=0]= E
2E�2 [��2(y � Z
)0Z(Z 0Z)�1Z 0(y � Z
)j
1=0]� E[�2(1)]= E
2E�2 [��2(y � Z
)0Z(Z 0Z)�1Z 0(y � Z
)j
1=0]� 1: (6.46)This results extends also to other kind of hypotheses on 
1 and 
2, and can be used inany kind of linear model. For certain non-linear hypotheses on the parameters of a linearmodel, like the reduced rank restriction for cointegration models, Bayesian LM statisticscan only be constructed by using a generalization of the result in (6.46).Metropolis-Hastings Sampling ApproachConsider the case that we do not construct the Bayesian LM statistic using the marginaland conditional posteriors assuming that 
1 = 0, but use the marginal posterior of �2,and the posterior of 
2 given �2 from the unrestricted model in a M-H sampling approach.So, the marginal/conditional densities from which �2 and 
2 are sampled read,p(�2jy;X) / ��(T+2) exp(� 12�2 y0M(z1 z2)y);p(
2j�2; y; X) / ��1 exp(� 12�2 (
2 � ~
2)0z02Mz1z2(
2 � ~
2)); (6.47)where ~
2 = (z02Mz1z2)�1z02Mz1y. To correct for not sampling from the true posterior, weneed again the ratio of the true posterior and the sampling density, which is needed to con-struct the acceptance probability a in the Metropolis-Hastings sampler, see Section 6.4.1.This ratio is given by ��1 exp(� 12�2 ~
01z01z1~
1); (6.48)where ~
1 = (z01z1)�1z01(y� z2
2); i.e. the mean of the conditional posterior of 
1 given 
2.The LM statistic to test 
1 = 0 can be computed by evaluating (6.43) using the M-Houtput. We can also use the M-H output to calculate the LM statistic using (6.46).Although (6.44) can be decomposed in the expression in the exponent of the kernel of thesampling density of 
2 (6.47) and in the expression of the exponent of (6.48),��2(y � Z
)0Z(Z 0Z)�1Z 0(y � Z
)
1=0= ��2(y � z2
2)0(Mz1z2(z02Mz1z2)�1z02Mz1 + z1(z01z1)�1z01)(y � z2
2)= ��2((
2 � ~
2)0z02Mz1z2(
2 � ~
2) + ~
01z01z1~
1) (6.49)the Bayesian LM statistic does not correspond to the expectation of ��2~
01z01z1~
1 basedon the M-H output. Since �2 and 
2 are sampled given 
1 = 0 using the M-H sampler,E�2 [��2(
2 � ~
2)0z02Mz1z2(
2 � ~
2)] does not have a �2(1) distribution.



6.5 Bayesian Lagrange Multiplier Statistics 97For the cointegration hypotheses, discussed in the next subsection, the speci�c depen-dence of the parameters on one another does only allow for the kind of decompositions asin (6.45). Closed form expressions of the Bayesian LM cointegration statistic, like (6.43),do therefore not exist. However, these Bayesian LM statistics can still be calculated us-ing a multivariate generalization of the result in (6.46) together with a M-H samplingprocedure, like discussed above.6.5.2 Bayesian LM Statistic in the Cointegration ModelThe parameter restriction for rank reduction in the unrestricted error correction model(6.8) is � = 0. Since the marginal posterior of the parameter re
ecting cointegration, �, inthe unrestricted error correction model, cannot be constructed analytically, the BayesianLM statistic to test for cointegration does not have a closed form analytical expressionas in the linear regression model. Therefore, we need the M-H sampling approach incombination with a multivariate extension of the result in (6.46) to calculate the BayesianLM statistic. The Bayesian LM statistic is based on the expressionE�[tr(��1(�� �̂)0Y 0�1Y�1(�� �̂)] =E�[tr(��1(Y � Y�1�)0Y�1(Y 0�1Y�1)�1Y 0�1(Y � Y�1�))]; (6.50)where �̂ = (Y 0�1Y�1)�1Y 0�1�Y . It is straightforward to show that this expression has a�2 distribution with n2 degrees of freedom. Hence, the Bayesian LM statistic for � = �0is given by E�[tr(��1(Y � Y�1�)0Y�1(Y 0�1Y�1)�1Y 0�1(Y � Y�1�))j�=�0], which has to becompared with a �2(n2) distribution.To compute the Bayesian LM statistic for � = 0 we consider (6.50) in � = 0 and takethe expectation with respect to � and �2 given � = 0E�;�;�2[tr(��1(Y � Y�1��)0Y�1(Y 0�1Y�1)�1Y 0�1(Y � Y�1��))]= E�;�2;�[tr(��1(�� �̂)0Y1;�1MY2;�1Y1;�1(�� �̂)) +tr((�?��0?)�1�̂0Y 02;�1Y2;�1�̂) + tr(Y 02;�1Y2;�1(�2 � �̂2)���1�0(�2 � �̂2)0)];(6.51)where �̂, �̂ and �̂2 are given in (6.29) with � = 0. Under the restriction of cointegration,� = 0, draws from �, � and �2 can be obtained using a M-H sampler, as outlined inSection 6.4.1. Since the same reasoning holds for equation (6.51) as for equation (6.49),the Bayesian LM statistic for testing for cointegration, � = 0, does not correspond toE�;�2;�[tr((�?��0?)�1�̂0Y 02;�1Y2;�1�̂)]. Therefore, we have to apply a generalization of(6.46) to calculate the Bayesian version of the LM statistic to test for rank reductionversus full rank using the M-H outputLM(rjn) = LM(� = 0)= E�;�2;�[tr(��1(Y � Y�1��)0Y�1(Y 0�1Y�1)�1Y 0�1(Y � Y�1��))]� E[�2(r(2n� r)]= E�;�2;�[tr(��1(Y � Y�1��)0Y�1(Y 0�1Y�1)�1Y 0�1(Y � Y�1��))]� r(2n� r): (6.52)



98 Cointegration AnalysisThe correction factor r(2n � r) equals the number of parameters in � and �2. Theresulting Bayesian LM cointegration statistic has to be compared with a �2 distributionwith (n�r)2 degrees of freedom. If it is not plausible that the calculated statistic has beengenerated by this distribution, the hypothesis that � = 0 is not considered plausible, whichimplies that a cointegration model with r cointegration relations is not likely. Typicalextensions of the cointegration hypothesis � = 0 towards hypotheses including parametersof deterministic components, for example to test whether deterministic components lie inthe cointegration space, can be dealt with in a straightforward way.6.6 Posterior Odds AnalysisThe in the previous sections developed procedures for calculating the posteriors of theparameters of the cointegration model for di�erent number of cointegrating vectors r, allowus to compare models with di�erent cointegration ranks using posterior odds analysis.Since the number of cointegration vectors r can only take n+ 1 di�erent discrete values,we can consider prior and posterior probabilities of the cointegration rank r and theimplied number of unit roots (n� r), r = 0; : : : ; n.First we assign prior probabilities to every cointegration rank r,Pr[rank = r] r = 0; : : : ; n: (6.53)These prior probabilities imply prior odds ratios [PROR] to compare a priori the cointe-gration models with di�erent number of cointegration relations. Since every cointegrationmodel (6.7) is nested in the full rank model (6.8) it is convenient to considerPROR(rjn) = Pr[rank = r]Pr[rank = n] ; r = 0; : : : ; n: (6.54)The Bayes factor [BF] which compares the cointegration model (6.7) with the unrestrictederror correction model (6.8) is given byBF(rjn) = Pr[Y jrank = r]Pr[Y jrank = n] ; r = 0; : : : ; n= RRR pecc(�;�; �2)Lecc(Y j�;�; �2) d� d�d�2RRRR puec(�;�; �; �2)Luec(Y j�;�; �; �2) d� d�d� d�2 ; (6.55)see e.g. Poirier (1995) for a formal de�nition of a Bayes factor. Now we can de�nethe posterior odds ratios [POR] to compare a posteriori a cointegration model with rcointegrating vectors with a model with n cointegrating vectorsPOR(rjn) = PROR(rjn)� BF(rjn); r = 0; : : : ; n: (6.56)These posterior odds ratios imply posterior probabilities for every cointegration rank. Theposterior probability for a cointegration model with rank r equalsPr[rank = rjY ] = POR(rjn)Pni=0 POR(ijn) ; r = 0; : : : ; n: (6.57)



6.6 Posterior Odds Analysis 99The posterior probabilities can be used to choose the cointegration rank, or as weights infurther analyses, like forecasting exercises.Bayes factors are only well de�ned in case of proper priors. Especially for the �parameter a proper prior is required, see Section 3.3.2 for a discussion. In the nextsubsection we show how the Bayes factors can be computed in case of natural conjugatepriors. Additionally, we provide a Bayes factor under a di�use prior speci�cation, whichcan be seen as a limiting case of a natural conjugate prior speci�cation on �.6.6.1 Computation of Bayes FactorsSince the prior and the likelihood of the error correction cointegration model (6.7) equalthe prior and the likelihood of the unrestricted error correction model (6.8) evaluated in� = 0, times the constant 1=cr, de�ned in (6.16), the Bayes factor (6.55) is equal toBF(rjn) = RRR 1cr puec(�;�; �; �2)j�=0Luec(Y j�;�; �; �2)j�=0 d� d�d�2RRRR puec(�;�; �; �2)Luec(Y j�;�; �; �2) d� d� d� d�2= RRR 1cr puec(�;�jY ) puec(�j�;�; Y )j�=0 puec(�2j�;�; �; Y )j�=0 d� d� d�2RRRR puec(�;�jY ) puec(�j�;�; Y ) puec(�2j�;�; �; Y ) d� d�d� d�2= 1cr RR puec(�;�jY ) puec(�j�;�; Y )j�=0 d� d�RR puec(�;�jY ) d� d� ; (6.58)where the last step is obtained by integrating over �2 and �. We can calculate the ratioof integrals of conditional posteriors e�ciently by simulating � and � from puec(�;�jY )which is the product of an inverted Wishart for � and a matrix normal for � given �.For the sampled parameters we calculate the ratio of the integrandsw(�i;�ijY ) = puec(�i;�ijY ) puec(�j�i;�i; Y )j�=0puec(�i;�ijY ) = puec(�j�i;�i; Y )j�=0; (6.59)where i corresponds to the i-th draw of (�;�). The average of the simulated weightsw(�i;�ijY ) then converges to the ratio of the integrals (6.58)pN  1N NXi=1w(�i;�ijY )� RR puec(�i;�ijY ) puec(�j�i;�i; Y )j�=0 d� d�RR puec(�i;�ijY ) d� d� !) N(0; v);(6.60)where N is the number of draws, v = var(w(�;�jY )), ) stands for weak convergence,and � 1N PNi=1w(�i;�ijY )2 � ( 1N PNi=1w(�i;�ijY ))2�) v, see Geweke (1989).To compute the Bayes factor we need the value of cr. As we have already seen,this correction factor (6.16) is only properly de�ned in case of proper priors. Under anatural conjugate prior speci�cation the factor cr can easily be computed using the above



100 Cointegration Analysismentioned simulation method. Since we can write (6.16) ascr = RRR puec(�;�; �; �2)j�=0 d� d�d�2RRRR puec(�;�; �; �2) d� d�d� d�2= RRR puec(�;�) puec(�j�;�)j�=0 puec(�2j�;�; �)j�=0 d� d� d�2RRRR puec(�;�) puec(�j�;�) puec(�2j�;�; �) d� d�d� d�2= RR puec(�) puec(�j�) puec(�j�;�)j�=0 d� d�RR puec(�) puec(�j�) d� d� (6.61)we can sample � and � from the prior puec(�;�), which is again the product of an invertedWishart puec(�) and a matrix normal puec(�j�), and calculate the mean of the ratio ofthe integrands puec(�i;�i) puec(�j�i;�i)j�=0puec(�i;�i) = puec(�j�i;�i)j�=0; (6.62)which converges to cr. Note that the simulation steps to compute the Bayes factor ba-sically consists of the computation of the ratio of the marginal posterior distribution of� evaluated in � = 0, puec(�jY )j�=0, and the marginal prior of � in � = 0, puec(�)j�=0.This implies that we in fact calculate the Savage-Dickey density ratio of Dickey (1971),see also Section 3.3.2.In case of di�use priors the value of cr is in�nity. We can again apply the empiricalBayes rule of Schotman and van Dijk (1991a) and choose a 
at prior for � on the 99% HPDregion, like in Section 3.3.2. This is however not a straightforward solution since we havespeci�ed a conditional prior for �, see (6.20). In this chapter we follow another approach.In order to de�ne an interpretable Bayes factor, we start with natural conjugate priorsand degenerate these proper priors such that they become di�use priors. As we alreadyhave seen, the correction factor cr depends on the ratio of the prior of the error correctioncointegration model (6.7) and the prior of the unrestricted error correction model (6.8),which is the conditional prior of � evaluated in � = 0. Hence, to determine the correctionfactor in case of di�use priors we degenerate the proper conditional prior for � (6.25) in� = 0. The conditional prior for � readspuec(�j�;�) = (2�)� 12 (n�r)2 j�?��0?j� 12 (n�r)jA22j 12 (n�r)exp(�12tr((�?��0?)�1(�� l)0A22(�� l))); (6.63)where l is de�ned below (6.25). To degenerate this proper prior we consider the densityfunction of _� = A 1222�,puec( _�j�;�) = (2�)� 12 (n�r)2 j�?��0?j� 12 (n�r) exp(�12tr((�?��0?)�1( _�� _l)0( _�� _l)));(6.64)where _l = A 1222l. Substituting � = 0 (which implies _� = 0) and degenerating by lettingk _lk going to zero, results inlimk _lk!0 puec( _�j�;�)j _�=0 = (2�)� 12 (n�r)2 j�?��0?j� 12 (n�r): (6.65)



6.7 Invariant Speci�cation 101The second part of this limit ends up in the marginal prior of the error correction coin-tegration model for � and �, see (6.22), while the �rst part equals the correction factorcr. The Bayes factors (6.55) in case of a di�use prior speci�cation can now be computed byaveraging the simulated w(�i;�ijY ) as for the natural conjugate priors and by replacingcr by (2�)� 12 (n�r)2 ; r = 0; : : : ; n: (6.66)The resulting Bayes factor is closely related to the Posterior Information Criterion [PIC]of Phillips and Ploberger (1994, 1996), see Kleibergen and Paap (1996) for more details.6.7 Invariant Speci�cationAs we already have discussed, cointegration implies that the long run multiplier � ofthe linear error correction model (6.6) has reduced rank. In the previous sections, wehave analysed rank reduction as a restriction in the unrestricted error correction model(6.8). When the parameter showing the deviation from cointegration � equals 0, thismodel simpli�es to the error correction cointegration model (6.7). A drawback of thisspeci�cation is however that di�erent orderings of the variables in Yt can lead to di�erentresults for the Bayes factors and the marginal posteriors under cointegration. This resultsas � is correlated with the other parameters, even at � = 0. In order to obtain aspeci�cation whose posterior of the parameters of the cointegration model is invariant withrespect to parameter transformations, we need to model the restriction such that whenit holds, the parameter resembling the restriction is (locally) uncorrelated with the otherparameters. We therefore specify the parameter re
ecting deviations from cointegrationsuch that it only captures deviations which lie in spaces orthogonal to the cointegratingvectors � and their multiplicators �� = ��+ �?���? = (� �?) Ir 00 �� ! ��? ! ; (6.67)where � = (Ir �� 02)0 and �? and �? are speci�ed such that �?�0 = 0 with �?�0? = In�rand � 0�? = 0 with � 0?�? = In�r. Note that now �? does not equal (��02(��11 )0 In�r)any more. When �� = 0, the long run multiplier � in (6.67) displays rank reduction andcointegration occurs. This decomposition leads to an informationmatrix in the parameters�, �� and �2, which is in �� = 0 block diagonal indicating the (local) uncorrelatednessbetween �� and (�; �2). The decomposition of � in (6.67) is identical to a singular valuedecomposition of �, � = U S V 0; (6.68)where U and V are (n�n) orthonormal matrices, S is an (n�n) diagonal matrix containingthe positive singular values of � (in decreasing order), see e.g. Magnus and Neudecker



102 Cointegration Analysis(1988). If we writeU =  U11 U12U21 U22 ! ; S =  S11 00 S22 ! and V =  V11 V12V21 V22 ! (6.69)with U11; S11; V11 (r� r), U22, S22, V22 ((n� r)� (n� r)), U21, V12 ((n� r)� r) and U12,V21 (r � (n� r)) matrices, we obtain the following expressions for �, �� and �2� = U11 S11 (V 011 V 021)�� = (U22U 022)� 12U22 S22 V 022(V22V 022)� 12�2 = �U21 U�111 ; (6.70)where we use that for a positive de�nite real symmetric matrix M , M 12 = C� 12C 0 where� is a diagonal matrix containing the eigenvalues of M and C contains the orthonormaleigenvectors of M and M� 12 = C�� 12C 0, see e.g. Johansen (1995, p. 222). The singularvalue decomposition (6.69) also shows how �� is identi�ed, namely through the (n � r)smallest singular values of �, which end up in S22.Note that under speci�cation (6.67) for �� = 0 the error correction cointegration modelis still the same as in (6.7), while for �� 6= 0 we have a di�erent parameterisation of theunrestricted error correction than in (6.8). The same is true for the likelihood functions,but not for the prior and the posterior distributions. Since we have a new decompositionof � the prior for the parameters of the unrestricted error correction model is di�erentthan in Section 6.3. We will use an asterisk to denote the priors, posteriors, likelihoodfunctions and Bayes factors resulting from the new speci�cation. Note that the prior forthe cointegration model still equals the prior for the unrestricted error correction modelevaluated in �� = 0. In the following subsections, we show how priors, posteriors andBayes factors are constructed using the decomposition of � in (6.67).6.7.1 Prior Speci�cationThe prior densities for the new decomposition of � (6.67) can be constructed using theprior framework in Section 6.3. We specify a prior on � and �, which implies a prior for(�;�; ��; �2) p�uec(�;�; ��; �2) = p�lec(�;�(�; ��; �2))jJ(�; ��; �2)j; (6.71)where �(�; ��; �2) means that we evaluate � in (�; ��; �2) and jJ(�; ��; �2)j is the Jaco-bian of the transformation from� to (�; ��; �2). In Appendix 6.C we show the derivationand the analytical expression of this Jacobian transformation. This Jacobian transforma-tion can be combined with a di�use or natural conjugate prior for �. The prior density(6.71) cannot be decomposed into a product of conditional and marginal densities belong-ing to a known class of probability density functions, like for the previous speci�cationof the unrestricted error correction model (6.8), see Section 6.3. In case of a natural



6.7 Invariant Speci�cation 103conjugate prior for �, the properties of the priors for �, �� and �2 therefore have tobe obtained through simulation. The simulation algorithm constructed in the next sub-section to obtain random draws from the posterior, can also be used to simulate from anatural conjugate prior.For the cointegration model, the prior equals the prior (6.71) evaluated in �� = 0,p�ecc(�;�; �2) = 1cr p�uec(�;�; ��; �2)j��=0= 1cr p�uec(�;�(�; ��; �2))j��=0jJ(�; ��; �2)j��=0j; (6.72)where cr is the integrating constant like in (6.16).In case of a di�use prior for � given �, plec(�j�) / j��1 
 (Y 0�1Y�1)j 12 , the quadraticform of jJ(�; �2; ��)j��=0j with (��1 
 (Y 0�1Y�1)), i.e. the information matrix, is blockdiagonal. This quadratic form (information matrix) is not block diagonal when �� 6= 0.The block diagonality implies that when cointegration occurs, the posterior of � and �2is invariant with respect to the speci�cation of � and �2; i.e. the posteriors of di�erentspeci�cations of � and �2 can be constructed from one another. When the informationmatrix of the unrestricted error correction model (6.8) is not block diagonal, the posteriorsof � and �2 do depend on the chosen order of the elements of Yt.6.7.2 Posterior DistributionsThe posterior of the unrestricted error correction model for the invariant speci�cation isproportional to the prior (6.71) times the likelihood L�uec(�;�; ��; �2), which is de�nedlike in (6.10), p�uec(�;�; ��; �2jY ) / p�uec(�;�; ��; �2)L�uec(Y j�;�; ��; �2): (6.73)This posterior density cannot be decomposed into a product of conditional and marginaldensities belonging to a known class of probability density functions, like for the speci�-cation of the unrestricted cointegration model (6.8) in Section 6.4. We can however stillsimulate from this posterior since it is possible to sample from the posterior of the linearerror correction model (6.6) which is the product of an inverted Wishart and a matrixnormal distributionStep 1: Draw �i from plec(�jY )Draw �i from plec(�j�i; Y ).Step 2: Perform a singular value decomposition of �i = U i Si V i0.Step 3: Compute �i, ��i and �i2 using (6.70).



104 Cointegration AnalysisThe simulated values �i, ��i and �i2 can be used to compute marginal results. Likewise,we can use this simulation scheme to obtain marginal prior results for �, �� and �2 if wespecify a natural conjugate prior for � and �.The posterior of the cointegration model equals the posterior of the error correctionmodel evaluated in �� = 0p�ecc(�;�; �2jY ) / p�ecc(�;�; �2)L�ecc(Y j�;�; �2)/ p�uec(�;�; ��; �2jY )j��=0: (6.74)Also under �� = 0 the conditional posterior of �2 is of an unknown type. For instanceunder a di�use prior speci�cation for (�;�), plec(�;�) / j�j� 12 (n+1)j��1 
 (Y 0�1Y�1)j 12 ,the posterior of the cointegration model readsp�ecc(�;�; �2jY ) / j�j� 12 (T+n+1)����� (���1�0)
 (Y 02;�1Y2;�1) (���1)
 (Y 02;�1Y�1�)(��1�0)
 (�0Y 0�1Y2;�1) ��1 
 (�0Y 0�1Y�1�) !�����12j�?��1�0?j 12 (n�r)j� 0?Y 0�1Y�1�?j 12 (n�r) exp(�12tr(��1(�Y � Y�1��)0(�Y � Y�1��)));(6.75)where we use the expression for the Jacobian transformation jJ(�; ��; �2)j evaluated in�� = 0 given in Appendix 6.C. This means that we cannot sample from the marginalposterior of � and � using a Metropolis-Hastings algorithm and sample �2 from theconditional posterior of �2 given (�;�) like in Section 6.4.1. Hence, we need to sample�, � and �2 at once. If we opt for a M-H algorithm, we can take the posterior of theunrestricted error correction model (6.73) as candidate-generating density function, sincewe have already shown how to sample from this distribution. However, in this case wealso sample �� which does not show up in the posterior of the cointegration model (6.74).To circumvent this problem we extend the posterior of the cointegration model (6.74)with a proper conditional density g(��j�;�; �2; Y )1g(��j�;�; �2; Y ) pecc(�;�; �2jY ) / g(��j�;�; �2; Y ) p�uec(�;�; ��; �2jY )j��=0; (6.76)and sample from this distribution using the M-H approach. Since g is a proper density,the draws �, � and �2 can be seen as draws from the posterior (6.74). The acceptance-rejection step now depends on the ratio of the extended posterior of the cointegrationmodel (6.76) and the posterior of the unrestricted error correction model (6.73)w�(�;�; ��; �2jY ) = g(��j�;�; �2; Y ) p�uec(�;�; ��; �2jY )j��=0p�uec(�;�; ��; �2jY ) : (6.77)Implementing this in a M-H sampler results inStep 1: Draw (�i+1;�i+1; ��i+1; �i+12 ) from (6.73).1This solution is based on the ideas in Chen (1994).



6.7 Invariant Speci�cation 105Step 2: Accept (�i+1;�i+1; ��i+1; �i+12 ) with probability min�w�(�i+1;�i+1;��i+1;�i+12 jY )w�(�i;�i;��i;�i2jY ) ; 1�otherwise (�i+1;�i+1; ��i+1; �i+12 ) = (�i;�i; ��i; �i2).Since the candidate-generating density function has to approximate the density from whichone wants to sample, it is necessary to take for g(��j�;�; �2; Y ) a density function whichis close to the conditional posterior of ��. Therefore, the choice of g depends on thefunctional form of the prior for (�;�). The decomposition of the trace of the likelihoodfunction given in Appendix 6.C shows that under a di�use prior speci�cation a convenientchoice for g isg(��j�;�; �2; Y ) = (2�)� 12 (n�r)2 j�?��1�0?j 12 (n�r)j� 0?Y 0�1Y�1�?j 12 (n�r)exp(�12tr(� 0?Y 0�1Y�1�?(�� � �̂�)�?��1�0?(�� � �̂�)0)); (6.78)with �̂� = (� 0?Y 0�1Y�1�?)�1� 0?Y 0�1�Y ��1�0?(�?��1�0?)�1: This results in the followingexpression for the weight function w�w�(�;�; ��; �2jY ) = (2�)� 12 (n�r)2 jJ(�; ��; �2)j��=0jjJ(�; ��; �2)j j�?��1�0?j 12 (n�r)j� 0?Y 0�1Y�1�?j 12 (n�r) exp(�12tr((� 0?Y 0�1Y�1�?)�̂�(�?��1�0?)�̂�0)): (6.79)The functional form of the Jacobian is given in Appendix 6.C. It is straightforward toshow how the density g and the weight function w� change when we, instead of a di�useprior, use a natural conjugate prior for (�;�): (Y 0�1Y�1) changes to (Y 0�1Y�1 + A) and(Y 0�1�Y ) changes to (AP + Y 0�1�Y ), see also Section 6.4The Metropolis-Hastings sampler presented in this section may lead to high rejectionfrequencies and therefore slow convergence. An alternative approach is importance sam-pling, see Kloek and van Dijk (1978) and Geweke (1989). The weight function w� in(6.79), evaluated in the draws, represents in that case important weights, see also Chen(1994) and Verdinelli and Wasserman (1995, p. 615). In the next subsection we showhow we can use importance sampling techniques to compute posterior odds to comparecointegration models with di�erent number of cointegration relations for the speci�cation(6.67).6.7.3 Bayes FactorsWe can perform posterior odds analysis for the new decomposition of � (6.67) the sameway as in Section 6.6. However, since we cannot decompose the posterior in knowndensities the computation of the Bayes factors is more complicated. Again the Bayesfactors are de�ned as the ratio of the marginal likelihoods of the cointegration model andthe unrestricted error correction model like in (6.55). Since it is still true that the priorand the likelihood of the error correction cointegration model equals the prior and the



106 Cointegration Analysislikelihood of the unrestricted error correction model times 1=cr, the Bayes factor simpli�esto BF�(rjn) = RRR p�ecc(�;�; �2)L�ecc(Y j�;�; �2) d� d� d�2RRRR p�uec(�;�; ��; �2)L�uec(Y j�;�; ��; �2) d� d� d�� d�2= RRR 1cr p�uec(�;�; ���2)j��=0L�uec(Y j�;�; ��; �2)j��=0 d� d�d�2RRRR p�uec(�;�; ��; �2)L�uec(Y j�;�; ��; �2) d� d� d�� d�2= RRR 1cr p�uec(�;�; ��; �2jY )j��=0 d� d� d�2RRRR p�uec(�;�; ��; �2jY ) d� d� d�� d�2 : (6.80)For the computation of this Bayes factor we encounter di�erences with Section 6.6.1.Since we cannot decompose the posterior in known densities, we cannot integrate out �2analytically in the numerator and denominator. The same is true for the �� in the denom-inator. Since �� enters the integral in the denominator but not the in the numerator wecannot use the simulation procedure, which is proposed in Section 6.6.1. However, Chen(1994) shows that we can adjust the simulation procedure by extending the numeratorwith the integral R g(��j�;�; �2)d��, where g is a proper density functionBF�(rjn) = RRR 1cr p�uec(�;�; ��; �2jY )j��=0 (R g(��j�;�; �2) d��) d� d�d�2RRRR p�uec(�;�; ��; �2jY ) d� d�d�� d�2= 1cr RRRR p�uec(�;�; ��; �2jY )j��=0 g(��j�;�; �2) d� d�d�� d�2RRRR p�uec(�;�; ��; �2jY ) d� d� d�� d�2 : (6.81)An appropriate candidate for g(��j�;�; �2) is a density function which is close to theconditional posterior of ��, see Chen (1994) for details. Therefore, the conditional densityfunction (6.78) is again a good candidate. We can now calculate the ratio of the twointegrals by simulating �, �, �� and �2 from the posterior of the unrestricted errorcorrection model (see previous subsection). For the sampled parameters, we calculatethe ratio of the two integrands, which equals the importance weights (6.79). The sum ofthese simulated importance weights converges to the ratio of the two integrals in (6.81),see Geweke (1989).To compute the Bayes factors we need the value of cr. For a di�use prior speci�ca-tion we take again for cr the factor (6.66). To obtain cr for a natural conjugate priorspeci�cation we can use the above mentioned simulation technique of Chen (1994)cr = ZZZ p�uec(�;�; ��; �2)j��=0 d� d� d�2= RRR p�uec(�;�; ��; �2)j��=0 d� d� d�2RRRR p�uec(�;�; ��; �2) d� d� d��d�2= RRR p�uec(�;�; ��; �2)j��=0 (R h(��j�;�; �2) d��) d� d�d�2RRRR p�uec(�;�; ��; �2) d� d�d��d�2= RRRR p�uec(�;�; ��; �2)j��=0 h(��j�;�; �2) d� d� d�� d�2RRRR p�uec(�;�; ��; �2) d� d�d��d�2 ; (6.82)



6.8 Illustrative Examples 107where h(��j�;�; �2) is a proper conditional density function. Simulate from the priorp�uec(�;�; ��; �2) (6.71) and compute the ratio of the integrands of the numerator anddenominator. The sum of these ratios converges to cr. An appropriate density functionh for the prior speci�cation (6.23) is a density function which is close to the conditionalprior of ��h(��j�;�; �2) = (2�)� 12 (n�r)2 j�?��1�0?j 12 (n�r)j� 0?A�?j 12 (n�r)exp(�12tr(� 0?A�?(�� � l�)�?��1�0?(�� � l�)0)); (6.83)with l� = (� 0?A�?)�1� 0?AP��1�0?(�?��1�0?)�1:Finally, in Section 6.6.1 we have seen that the Bayes factor can be computed usingthe Savage-Dickey density ratio of Dickey (1971). In fact, the above proposed simulationmethod to compute the Bayes factor basically computes the height of the marginal pos-terior of �� in 0. Hence, an alternative strategy to compute the Bayes factor is to usethe simulated values of �� and a kernel estimator to compute the height of this marginalposterior, see Silverman (1986). The same reasoning holds for the computation of cr.In the next section we use the invariant speci�cation to compute Bayes factors forsimulated and real time series.6.8 Illustrative ExamplesTo illustrate the applicability of the, in the previous sections, constructed methods andprocedures for Bayesian cointegration analyses, we consider four simulated time series,the UK data analysed in Hendry and Doornik (1994) and the Danish data analysed inJohansen and Juselius (1990).6.8.1 Simulated SeriesWe consider the following four data generating processes [DGPs],I : �Yt = 0B@ 0:10:10:1 1CA+ "tII : �Yt = 0B@ 0:10:10:1 1CA+ 0B@ �0:20:20:2 1CA� 1 0 �1 �Yt�1 + "tIII : �Yt = 0B@ 0:10:10:1 1CA+ 0B@ �0:2 �0:20:2 �0:20:2 0:2 1CA 1 0 �10 1 �1 !Yt�1 + "tIV : �Yt = 0B@ 0:10:10:1 1CA+ 0B@ �0:2 �0:2 �0:20:2 �0:2 �0:20:2 0:2 �0:2 1CA0B@ 1 0 �10 1 �10 0 1 1CAYt�1 + "t; (6.84)



108 Cointegration Analysiswhere "t � NID(0; I3) and the sample size T is 100 observations. The four DGPs contain0, 1, 2 and 3 cointegration relations, respectively. DGP I contains three unit roots,DGP II contains 2 unit roots and a root 0.6, DGP III contains the roots 1, 0.6 and 0.6,and DGP IV contains the roots 0.8, 0.6 and 0.6.To analyse the simulated series, we consider a VAR(1) model with a constant term,which corresponds to the speci�cation in the DGP. The �rst step in the Bayesian analysisis to specify a prior on the vector autoregressive parameters � and on the covariancematrix �. We use the di�use prior speci�cation (6.18).First, we discuss Bayes factors for rank reduction. We give each cointegration rankthe same prior probability Pr[rank = r] = 14 , r = 0; : : : ; 3, see (6.53). Given the priorsand prior probabilities, we can compare models with reduced rank (cointegration models)with the full rank unrestricted error correction model. The Bayes factors are based onposterior distributions resulting from the invariant decomposition of � given in (6.67).The second column of Table 6.1 displays the Bayes factors (6.81) for the four DGPs. TheBayes factors are calculated using the correction factor (6.66). A Bayes factor exceedingone (or ln(BF�) exceeding zero) indicates that rank r is preferred above the full ranksituation. For instance, for DGP I every rank reduction is preferred, while for DGP IVthe full rank situation is always preferred. The Bayes factors can be translated intoposterior probabilities for the cointegration ranks, see (6.57). These are displayed in thesecond column of Table 6.1. They assign in all cases more than 85% probability to thecorrect cointegration rank.The fourth column of Table 6.1 contains the Bayesian LM statistics. These statisticsindicate whether rank reduction in � (cointegration) is plausible with respect to the fullrank situation, i.e. three cointegration relations, see Section 6.5.2. The LM statistics arecalculated using the posterior distribution resulting from decomposition (6.9). These LMstatistics have to be compared with a �2 distribution with (3 � r)2 degrees of freedomwhich number is shown in the �fth column. The sixth column of Table 6.1 shows thep-values of the calculated statistics. For instance, for DGP IV none of the models withreduced rank is plausible, while for DGP III only a model with two cointegration relationsis plausible. In general, the Bayesian LM results lead to the right cointegration rank. Inthe last two columns we report the results of the classical Johansen trace tests denoted byLR(rj3). Notice that the values of these statistics are often roughly of the same magnitudeas the computed Bayesian LM statistics. The p-values based on the classical asymptoticdistribution show that the Johansen trace statistics also point out the right decision aboutthe cointegration rank.6.8.2 Small Monetary Model for the UKHendry and Doornik (1994) construct a small linear dynamic monetary model for theUnited Kingdom. The model consist of the variables nominal M1, denoted by mt, total�nal expenditure yt, the total �nal expenditure de
ator pt, and the di�erential betweenthe three-month local authority interest rate and the M1 retail sight-deposit interest ratedenoted by rt. The latter represents the opportunity cost of holding M1. All variables



6.8 Illustrative Examples 109
Table 6.1. Bayes factors, posterior probabilities, Bayesian LM statisticsand classical likelihood ratio tests for the four DGPs.r ln(BF�(rj3))1 Pr[rjY ]2 LM(rj3) dof p-value LR(rj3)3 p-value4DGP I0 25:06 1:00 10:71 9 0:30 10:97 0:961 12:59 0:00 5:72 4 0:22 5:10 0:802 3:61 0:00 0:72 1 0:39 1:38 0:243 0:00 0:00 DGP II0 6:82 0:01 38:20 9 0:00 44:98 0:001 12:04 0:99 6:85 4 0:14 6:39 0:642 3:78 0:00 1:75 1 0:18 1:09 0:293 0:00 0:00 DGP III0 �23:87 0:00 74:76 9 0:00 94:86 0:001 �4:18 0:00 28:59 4 0:00 33:05 0:002 2:10 0:89 2:84 1 0:09 2:95 0:093 0:00 0:11 DGP IV0 �23:96 0:00 75:52 9 0:00 90:93 0:001 �8:86 0:00 36:15 4 0:00 39:68 0:002 �2:88 0:05 11:69 1 0:00 12:32 0:003 0:00 0:951A Bayes factor ln(BF�(rj3)) > 0 denotes that a cointegration model with r coin-tegration relations is more likely than a model with n cointegration relations.2Posterior probability of the cointegration rank (6.57) is based on equal priorprobabilities (6.53) for every rank r.3 Johansen (1991) trace test statistic.4The p-values are based on the asymptotic classical distribution.



110 Cointegration Analysisare in logs except for the interest rate rt.In this section we analyse the same UK data as in Hendry and Doornik (1994). Wehave the same quarterly observed series of mt, yt, pt and rt for the period 1963.I{1989.II.The data are seasonally adjusted. The �rst step in the modelling strategy is to specify anunrestricted VAR model. Hendry and Doornik (1994) propose a VAR(2) model for thefour-dimensional vector of time series Yt = (mt � pt; yt;�pt; rt)0�Yt = �+ �t+�Yt�1 + ��1�Yt�1 + �1DOILt + �2DOUTt + "t (6.85)where "t � NID(0;�), �1 and �2 are (4 � 1) parameter vectors and DOILt and DOUTtare dummy variables to capture outlying observations caused by the Heath-Barber boomand the �rst e�ects of the Thatcher government, and the two oil crises respectively, seeHendry and Doornik (1994) for details.2 The trend t and the dummy variable DOUTtare restricted in the cointegration space, i.e. �0?� = 0 and �0?�2 = 0, which means thatthe vector (t DOUTt)0 is added to the Yt�1 vector and that � becomes a (6� 4) matrix.The �rst part of Table 6.2 displays the results of a Bayesian cointegration analysis forthe model (6.85). In the �rst row the results for a model without the dummy variablesDOILt and DOUTt are reported. The results are based on a di�use (Je�reys') prior forthe parameters in (6.85). The Bayes factor are computed using the posterior distributionsresulting from the invariant decomposition in (6.67), while the Bayesian LM statistics arebased on the posterior distributions resulting from decomposition (6.9). We assume equalprior probabilities Pr[rank = r] = 15 , r = 0; : : : ; 4. The second and third column of thetable show the Bayes factors and the implied posterior probabilities over the cointegrationrank. The Bayes factors favour every rank reduction over a full rank model. The posteriorprobabilities assign about 100% probability to rank one and 0% to every other rank. Theresults of the classical Johansen trace tests are reported in the last two columns. Thesetests indicate no cointegration relation at a 5% level of signi�cance. On basis of theBayesian LM statistics we even opt for two cointegration relations.The results change if we include the dummy variables DOUTt and DOILt like inHendry and Doornik (1994), see second row of Table 6.2. The posterior probabilitiesnow also indicate two cointegration relations between the series in Yt. The same is truefor the Johansen trace statistics. However, a model with three cointegration relation isnot unlikely according to the Bayesian LM statistic. Note that the degrees of freedomare di�erent from (n� r)2 due to the restricted trend. The di�erence in results betweenthe Bayesian LM statistics and the Johansen trace statistics follow from the fact the LMstatistic is exactly �2 distributed and not asymptotically a functional of Brownian motionssince we consider the data as given.6.8.3 Danish Money DemandJohansen and Juselius (1990) analyse the demand function for money for the Danisheconomy using a VAR model. Their model consist of M2 denoted by mt, real income yt,2DOUTt is zero except for unity in 1972.IV, 1973.I and 1979.II and DOILt is zero except in 1973.III,1973.IV and 1979.III.



6.8 Illustrative Examples 111Table 6.2. Bayes factors, posterior probabilities, Bayesian LM statisticsand classical likelihood ratio tests for the UK and Danish data.r ln(BF�(rj4))1 Pr[rjY ]2 LM(rj4) dof p-value LR(rj4)3 p-value4UK datano dummies and restricted trend0 24:58 0:00 94:84 20 0:00 119:38 0:001 37:30 1:00 39:75 12 0:00 40:89 0:082 28:02 0:00 15:12 6 0:02 12:12 0:803 14:96 0:00 6:22 2 0:05 4:48 0:684 0:00 0:00dummies and restricted trend0 25:71 0:05 119:07 24 0:00 152:85 0:001 18:50 0:00 69:88 15 0:00 71:42 0:002 28:56 0:95 19:28 8 0:01 19:65 0:243 20:84 0:00 6:32 3 0:10 6:43 0:404 0:00 0:00 Danish dataunrestricted constant0 20:65 0:08 37:86 16 0:00 45:67 0:081 23:06 0:92 17:54 9 0:04 17:07 0:632 15:92 0:00 7:75 4 0:10 6:71 0:613 5:18 0:00 1:18 1 0:27 0:38 0:544 0:00 0:00 restricted constant0 44:36 1:00 40:63 20 0:00 49:14 0:111 26:10 0:00 19:03 12 0:08 19:06 0:792 21:43 0:00 10:09 6 0:12 8:69 0:773 10:69 0:00 3:21 2 0:20 2:35 0:704 0:00 0:001A Bayes factor ln(BF�(rj4)) > 0 denotes that a cointegration model with r coin-tegration relations is more likely than a model with n cointegration relations.2Posterior probability of the cointegration rank (6.57) is based on equal priorprobabilities (6.53) for every rank r.3 Johansen (1991) trace test statistic.4The p-values are based on the asymptotic classical distribution.



112 Cointegration Analysisprice level pt and the costs of holding money. The costs of holding money is approximatedby a di�erence between the bank deposit rate idt for interest bearing deposits and thebond rate ibt . All variables are in logs. Since the in
ation rate �pt does not alter thecointegration analysis signi�cantly, this variable is not considered in the Johansen andJuselius study.In this subsection we analyse the same Danish data as in Johansen and Juselius (1990).We have quarterly observed series of mt, idt , ibt and yt for the period 1974.1{1987.3. Thecointegration analysis is performed in the following VAR(2) model,0BBB@ �mt�yt�ibt�idt 1CCCA = �+ 3Xs=1 ��s �Ds;t +�0BBB@ mt�1yt�1ibt�1idt�1 1CCCA+ ��10BBB@ �mt�1�yt�1�ibt�1�idt�1 1CCCA+ "t; (6.86)where �Ds;t represents seasonal dummies with zero mean and ��s is a four-dimensionalparameter vector, s = 1; : : : ; 3. Although it is not likely that real income does not havea linear trend, Johansen and Juselius restrict the constant in the cointegrating space,i.e. �0?� = 0, see the end of Section 5.3. Hence, the � matrix is extended with an extrarow and the Y�1 matrix with an extra column.The second part of Table 6.2 displays the results of a Bayesian cointegration analysisfor the Danish data. The results are based on a di�use (Je�reys') prior for the param-eters and equal prior probabilities (6.53) Pr[rank = r] = 15 , r = 0; : : : ; n. Again, theresults are based on posterior distributions resulting from the decomposition (6.9) exceptfor the Bayes factor analyses, which uses the posterior of the invariant decomposition(6.67). First, we consider a model where the constant is not restricted in the cointe-grating space (�0?� 6= 0). The second and third column show the Bayes factors and theimplied posterior probabilities over the cointegration rank. The Bayes factors favour everyrank reduction over a full rank model and lead to 92% posterior probability for a modelwith one cointegration relation. The fourth column of Table 6.2 display the outcomes ofthe Bayesian LM statistics. Only the LM(3j4) and LM(2j4) statistics lie inside the 95%one-sided HPD interval, which implies that two cointegration relations between mt, idt , ibtand yt are plausible. The Johansen trace test statistics indicate no cointegration relationat a 5% level of signi�cance as in the classical approach the asymptotic distribution is not�2 but a functional of Brownian motions.In case we restrict the constant in the cointegrating space, we see that the Bayes factorsagain favour every rank reduction over a full rank model. The posterior probabilities assign100% probability to the model with zero cointegration relations and no probability to theother models. The Bayes factor that compares within the model with one cointegrationrelation whether the constant has to be restricted in the cointegrating space, equals theratio of the Bayes factors of the analysis with the restricted and the unrestricted constant.The natural logarithm of this ratio (26.10�23.06=3.04) is positive, which indicates thatthe restriction of the constant in the cointegration space (�0?� = 0) is more likely thanan unrestricted constant (�0?� 6= 0). Since only the LM(0j4) statistic is outside the 95%
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Figure 6.1. Marginal posterior densities of the adjustment parameters � and the cointe-grating vector � for the UK series.



114 Cointegration Analysisone-sided HPD interval, the LM tests indicate one cointegration relation between mt, idt ,ibt and yt. Note that the degrees of freedom are di�erent from (n�r)2 due to the restrictedconstant. In the classical analysis, we have to test at 11% level of signi�cance to �nd onecointegration relation according to the Johansen trace statistics.Using the M-H simulation algorithm in Section 6.4.1 we compute posterior results forthe cointegration model with one cointegration relation and the constant restricted inthe cointegrating space (�0?� = 0) under a di�use prior speci�cation (6.22). This is themodel proposed by Johansen and Juselius (1990). The posterior means of the � and �parameters are�0 = ( mt yt ibt idt�0:26 0:08 0:03 0:03(0:07) (0:07) (0:02) (0:02)) and � 0 = (mt yt ibt idt 11 �1:02 4:99 �3:76 �6:23(�) (0:15) (0:76) (1:42) (0:95));where the posterior standard deviations are between parentheses. Note that the poste-rior means correspond reasonably well to the maximum likelihood estimates in Table 2of Johansen and Juselius (1990). Figure 6.1 shows the marginal posterior densities ofthe adjustment parameters � and the cointegrating vector �. The �rst column showsthe marginal posteriors of the � parameters. The marginal posterior of the adjustmentparameter for the money equation is situated far away from zero. This is not the casefor the other adjustment parameters, where zero lies within the 95% one-sided HPD re-gions of the marginal posteriors. The second column of Figure 6.1 shows the marginalposteriors of the � parameters. These marginal posterior distributions are more skewedand have fatter tails. The posterior masses of the marginal posteriors of the cointegrationparameters are situated far away from zero except for the ib-element.In summary, although the examples in this section are simple, they show that Bayesiantechniques provide useful tools to analyse cointegration. Bayes factors and Bayesian LMstatistics indicate whether rank reduction is plausible. In the empirical examples, theBayesian LM statistics often result in more cointegration relations than the Bayes factorsand the classical LR tests. This is due to the fact that the Bayesian LM statistic have tobe compared with standard �2 distributions instead of functionals of Brownian motions.The Bayes factors can be used to calculate posterior probabilities for each cointegrationrank, to show the best model. If there is no clear preference for one of the cointegrationranks, it is also possible to use the posterior probabilities as weights in a forecastingexercise.6.9 Concluding RemarksThe chapter discusses a Bayesian modelling framework for the analysis of cointegrationmodels. This framework is based on a speci�cation of an unrestricted error correctionmodel which contains a parameter re
ecting cointegration, i.e. it is equal to zero when



6.9 Concluding Remarks 115cointegration occurs. Posteriors for parameters in the cointegration model are then pro-portional to conditional posteriors of the parameters in the unrestricted error correctionmodel given that the parameter re
ecting cointegration is equal to zero. This is identicalto the classical analysis where the likelihood of the cointegration model is proportionalto the conditional likelihood of the unrestricted error correction model given that theparameter re
ecting cointegration is equal to zero. The di�erence is though that we canonly construct these conditional posteriors given the parameters re
ecting cointegrationnumerically as analytical expressions do not exist. A Metropolis-Hastings sampler is usedto calculate the posteriors of the cointegration model. The prior framework, which isproposed, allows for a full Bayesian treatment of all aspects of a cointegration model un-der various prior speci�cations, like di�use and natural conjugate. The prior is speci�edon the autoregressive parameter matrices of the vector autoregressive model. This priorimplies the prior for the unrestricted error correction model and the prior for the cointe-gration models. Therefore, one speci�cation of the prior for the parameters of the VARsu�ces as it implies the functional speci�cation of the priors for the cointegration models.For posterior odds analysis it is possible to give prior probabilities to models with dif-ferent number of cointegration relations. These prior probabilities can be combined withBayes factors to determine posterior probabilities. The proposed Bayes factors under adi�use prior speci�cation are related to the posterior information criterium of Phillipsand Ploberger (1994, 1996). We also compare di�erent cointegration models using theBayesian analog of a Lagrange Multiplier statistic.The Bayesian cointegration analysis framework in this chapter can be extended forcointegration analysis in more complicated models. We can for instance allow for struc-tural breaks or consider non-linear cointegration models, like Markov switching cointegra-tion and threshold cointegration. Also we can change the assumption of normal distributederrors and extend the analysis to t-distributed errors or vector moving average errors. Inthe next chapter we use this Bayesian cointegration framework to analyse multivariateMarkov trend models.



116 Cointegration Analysis6.A Derivation of Prior DistributionsDi�use Prior Speci�cationThe priors for the parameters �, � and �2 follow from the prior (6.19) and the Jacobianof the transformations of (�11;�12;�21;�22) to (�, �; �2). As � = (�11;�12) the priorfor � given � readspuec(�j�) = plec(�11;�12j�)j(�11;�12)=� / j�j� 12 rjY 01;�1MY2;�1Y1;�1j 12n:Since (�21;�22) can only be transformed to (�; �2) when � = (�11;�12) is known, weconsider a prior for � and �2 given � and �. This prior is proportional to the product ofthe prior plec(�21;�22j�11;�12;�) given in (6.19) and the Jacobian. Since (�21;�22) =�(0 In�r)� �2� the Jacobian jJ(�; �; �2)j = j(J1 J2)j results fromJ1 = @(vec(�21;�22))@(vec(�2))0 ������ = �(�0 
 In�r);J2 = @(vec(�21 �22))@(vec(�))0 ������ = �� 0In�r �
 In�r�:Therefore, the priors for � and �2 readpuec(�; �2j�;�)/ plec(�21;�22j�11;�12;�) jJ(�; �; �2)j/ jJ(�; �; �2)0 plec(�21;�22j�11;�12;�) J(�; �; �2)j 12and since j�j� 12 (n�r)jY 02;�1Y2;�1j 12n = j�� 12 
 Y 02;�1Y2;�1j 12/ jJ(�; �; �2)0 (��1 
 Y 02;�1Y2;�1) J(�; �; �2)j 12/ ������0B@ (���1�0)
 (Y 02;�1Y2;�1) �� 0In�r �0��1�0�
 (Y 02;�1Y2;�1)����1� 0In�r ��
 (Y 02;�1Y2;�1) �� 0In�r �0��1� 0In�r ��
 (Y 02;�1Y2;�1) 1CA������12/ j(���1�0)
 (Y 02;�1Y2;�1)j 12����� 0In�r �0(��1 � ��1�0(���1�0)�1���1)� 0In�r ��
 (Y 02;�1Y2;�1)��� 12/ j���1�0j 12 (n�r)���� 0In�r �0�0?(�?��0?)�1�?� 0In�r ���� 12 (n�r)jY 02;�1Y2;�1j 12n/ j���1�0j 12 (n�r)j�?��0?j� 12 (n�r)jY 02;�1Y2;�1j 12nso that puec(�j�;�) / j�?��1�0?j� 12 (n�r)jY 02;�1Y2;�1j 12 (n�r);puec(�2j�;�; �) / j���1�0j 12 (n�r)jY 02;�1Y2;�1j 12 r;where � = (�1 �2), �? = (��02(��11 )0 In�r) and �1 is an (r�r) and �2 an (r � (n� r))matrix and we use that (��1 � ��1�0(���1�0)�1���1) equals �0?(�?��0?)�1�?.



6.A Derivation of Prior Distributions 117Natural Conjugate Prior Speci�cationThe natural conjugate prior for � given � (6.23) implies the following conditional priorsfor the submatrices of � de�ned in (6.9)plec(�11;�12j�) / j�j� 12 rjA11:2j 12n exp(�12tr(��1((�11 �12)� (P11 P12))0A11:2((�11 �12)� (P11 P12))));plec(�21;�22j�11;�12;�) / j�j� 12 (n�r)jA22j 12n exp(�12tr(��1((�21 �22)� (Q21 Q22)0A22((�21 �22)� (Q21 Q22))));where A11:2 = A11�A12A�122 A21; (Q21 Q22) = (P21 P22)�A�122 A21((�11 �12)� (P11 P12)).Since � = (�11 �12) the conditional prior for � equals the conditional prior of (�11;�12)evaluated in �: puec(�j�) = plec(�11;�12j�)j(�11 �12)=�. To derive the conditional priorsof � and �2 we need the Jacobian jJ(�; �; �2)j of the transformation of (�21;�22) to (�; �2)derived above. The following two decompositionsj�j� 12 (n�r)jA22j 12njJ j = jJ(�; �; �2)0 (��1 
 A22)J(�; �; �2)j 12= j���1�0j 12 (n�r)j�?��0?j� 12 (n�r)jA22j 12nandexp(�12tr(��1((�21 �22)� (Q21 Q22))0A22((�21 �22)� (Q21 Q22)))) =exp(�12(tr((�?��0?)�1(�� l)0A22(�� l)) + tr(A22(�2 � b2)���1�0(�2 � b2)0)));where l = (Q21 Q22)�0? and b2 = �(Q21 (Q22 � �))��1�0(���1�0)�1 lead to the condi-tional priors puec(�j�;�) and puec(�2j�;�; �) in (6.25).



118 Cointegration Analysis6.B Derivation of Posterior DistributionsPosterior under Di�use Prior Speci�cationThe joint posterior puecm(�;�; �; �2jY ) is proportional to the product of the prior (6.20)and likelihood (6.10). Due to the structure of the unrestricted error correction model (6.8)it only possible to decompose the joint posterior in marginal and conditional posteriors,puecm(�jY ) puecm(�j�; Y ) puecm(�j�;�; Y ) puecm(�2j�;�; �; Y ), which is the product of aninverted Wishart and three matrix normal densities. The marginal/conditional posteriorsfollow from the following decomposition of the elements in the trace operator from thelikelihood (6.8)tr(��1"0") = tr(��1(�Y � Y1;�1�+ Y2;�1�2�� Y2;�1(0 �))0(�Y � Y1;�1�+ Y2;�1�2�� Y2;�1(0 �)))= tr(��1(�Y 0MY�1�Y + (�� �̂)0Y 01;�1MY2;�1Y1;�1(�� �̂)+ (�2�� (0 �)� �̂2)0Y 02;�1Y2;�1(�2�� (0 �)� �̂2))= tr(��1(�Y 0MY�1�Y + (�� �̂)0Y 01;�1MY2;�1Y1;�1(�� �̂))+ tr(Y 02;�1Y2;�1(�2�� (0 �)� �̂2)��1(�2�� (0 �)� �̂2)0)= tr(��1(�Y 0MY�1�Y + (�� �̂)0Y 01;�1MY2;�1Y1;�1(�� �̂))+ tr(Y 02;�1Y2;�1((�2 � �̂2)���1�0(�2 � �̂2)0 ++ ((0 �)� �̂2)(��1 � ��1�(�0��1�)�1�0��1)((0 �)� �̂2)0)= tr(��1(�Y 0MY�1�Y + (�� �̂)0Y 01;�1MY2;�1Y1;�1(�� �̂))+ tr(Y 02;�1Y2;�1(�2 � �̂2)���1�0(�2 � �̂2)0)+ tr(Y 02;�1Y2;�1((0 �)� �̂2)�0?(�?��0?)�1�?((0 �)� �̂2)0)= tr(��1(�Y 0MY�1�Y + (�� �̂)0Y 01;�1MY2;�1Y1;�1(�� �̂))+ tr(Y 02;�1Y2;�1(�2 � �̂2)���1�0(�2 � �̂2)0)+ tr((�?��0?)�1�?((0 �)� �̂2)0Y 02;�1Y2;�1((0 �)� �̂2)�0?)= tr(��1(�Y 0MY�1�Y + (�� �̂)0Y 01;�1MY2;�1Y1;�1(�� �̂))+ tr(Y 02;�1Y2;�1(�2 � �̂2)���1�0(�2 � �̂2)0)+ tr((�?��0?)�1(�� �̂)0Y 02;�1Y2;�1(�� �̂));where we have used that �0?(�?��0?)�1�? = (��1 � ��1�0(���1�0)�1���1) and�̂2 = (Y 02;�1Y2;�1)�1Y 02;�1(�Y � Y1;�1�);�̂ = (Y 01;�1MY2;�1Y1;�1)�1Y 01;�1MY2;�1�Y;�̂ = (Y 02;�1Y2;�1)�1Y 02;�1�Y;�0?�̂2 = �(Y 02;�1Y2;�1)�1Y 02;�1(�Y � Y1;�1�� Y2;�1(0 �))��1�0(���1�0)�1:



6.B Derivation of Posterior Distributions 119Combining this decomposition with the prior speci�cation (6.20) provides the condi-tional/marginal posterior distributions in (6.28).Posterior under Natural Conjugate Prior Speci�cationThe conditional posteriors of �, � and �2 (6.32) under a natural conjugate prior spec-i�cation for � and � (6.23) follow directly from the joint posterior of � and �, whichreadsplec(�;�jY ) / jSj 12hjAj 12nj�j� 12 (T+h+n) exp(�12tr(��1(S +(�� P )0A(�� P ) + (�Y � Y�1�)0(�Y � Y�1�))))/ jSj 12hjAj 12nj�j� 12 (T+h+n+1) exp(�12tr(��1(S +�Y 0�Y + P 0AP� ~�0(A+ Y 0�1Y�1) ~�+ (�� ~�)0(A+ Y 0�1Y�1)(�� ~�))));where �̂ = (Y 0�1Y�1)�1Y 0�1�Y;(A+ Y 0�1Y�1) = �(A+ Y 0�1Y�1)11 (A+ Y 0�1Y�1)12(A+ Y 0�1Y�1)21 (A+ Y 0�1Y�1)22�;~� =  ~�11 ~�12~�21 ~�22 ! = (A + Y 0�1Y�1)�1(AP + Y 0�1Y�1�̂):



120 Cointegration Analysis6.C Derivations for the Invariant Speci�cationJacobian for the Invariant Speci�cationFor the derivation of the Jacobian transformation, it is convenient to split up the trans-formation from � to �, �� and �2 in two steps, �rstly from � to (�1; #2; ��; �2), where� = (�1 �2) and #2 = ���11 �2, and secondly from (�1; #2; ��; �2) to (�; ��; �2). In thefollowing we construct the Jacobians for the two transformations. We can denote � as afunction of (�1; #2; ��; �2)� = � � �? � �1 00 �� ! ##? !where # = (Ir � #2) with � = �1#, � = (Ir � � 02)0, #? = (In�r + #02#2)� 12 (#02 In�r) and�? = (�2 In�r)0(In�r + �2� 02)� 12 so that #?#0? = In�r and � 0?�? = In�r.3 The derivativesof � with respect to �1, #2, �� and �2 readJ1 = @ vec(�)@(vec(�1))0 = (#0 
 �)J2 = @ vec(�)@(vec(#2))0 = ��� 0In�r �
 ��1�+ (In 
 �?��) @ vec(#?)@(vec(#2))0J3 = @ vec(�)@(vec(��))0 = (#0? 
 �?)J4 = @ vec(�)@(vec(�2))0 = ��#0�01 
 � 0In�r ��+ (#0?��0 
 In) @ vec(�?)@(vec(�2))0 ;with @ vec(#?)@(vec(#2))0 = (In 
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 (�2 In�r)0) @ vec(�� 12n )@ (vec(� 12n ))0 @ vec(� 12n )@(vec(�n))0 @ vec(�n)@(vec(�2))03If M is a positive de�nite real symmetric matrix, then M 12 = C� 12C 0 where � is a diagonal matrixcontaining the eigenvalues ofM and C contains the orthonormal eigenvectors ofM andM� 12 = C�� 12C 0,see e.g. Johansen (1995, p. 222).



6.C Derivations for the Invariant Speci�cation 121where we de�ne for notational convenience #n = (In�r + #02#2) and �n = (In�r + �2� 02) sothat #? = #� 12n (#02 In�r), �? = (�2 In�r)0�� 12n with # 12n# 12n = #n, � 12n � 12n = �n,@ vec(#02 In�r)@(vec(#2))0 = �� Ir0 �
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 #� 12n )@ vec(# 12n)@(vec(#n))0 = ((# 12 0n 
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 # 12n ))�1@ vec(#n)@(vec(#2))0 = (In�r 
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 In�r) + (In�r 
 � 12n ))�1@ vec(�n)@(vec(�2))0 = (�2 
 In�r) + (In�r 
 �2)K n�r;rwhere K i;j are so-called commutation matrices. For any (i � j) matrix W , vec(W ) =K i;jvec(W 0), vec(W 0) = K j;ivec(W ), and K 0i;j = K j;i , see L�utkepohl (1993, p. 466). TheJacobian of the transformation from � to (�1; #2; ��; �2) becomes����� @ vec(�)@(vec(�1)0 vec(#2)0 vec(��)0 vec(�2)0) ����� = j(J1 J2 J3 J4)j:Since #2 = ���11 �2 the derivatives of (�1; #2; ��; �2) with respect to �1, �2, �� and �2are respectivelyG1 = @(vec(�1)0 vec(#2)0 vec(��)0 vec(�2)0)0@(vec(�1))0 = 0BBB@ Ir 
 Ir(��11 �2)0 
 ��1100 1CCCAG2 = @(vec(�1)0 vec(#2)0 vec(��)0 vec(�2)0)0@(vec(�2))0 = 0BBB@ 0�In�r 
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122 Cointegration AnalysisG3 = @(vec(�1)0 vec(#2)0 vec(��)0 vec(�2)0)0@(vec(��))0 = 0BBB@ 00In�r 
 In�r0 1CCCAG4 = @(vec(�1)0 vec(#2)0 vec(��)0 vec(�2)0)0@(vec(�2))0 = 0BBB@ 000Ir 
 In�r 1CCCAThe Jacobians of the two transformations determine the Jacobian of the total transfor-mation from � to (�; ��; �2)jJ(�; ��; �2)j= ����� @ vec(�)@(vec(�)0 vec(��)0 vec(�2)0) �����= ����� @ vec(�)@(vec(�1)0 vec(#2)0 vec(��)0 vec(�2)0) ����� �����@(vec(�1)0 vec(#2)0 vec(��)0 vec(�2)0)0@(vec(�)0 vec(��)0 vec(�2)0)0 �����= j(J1 J2 J3 J4)j j(G1 G2 G3 G4)j:Straightforward algebra shows that the Jacobian evaluated in �� = 0 equalsjJ(�; ��; �2)j��=0j = j(In 
 �) (�0 
 � 0In�r �) (�0? 
 �?)j:Decomposition of the Trace of the Likelihood FunctionFor the invariant decomposition (6.67) the trace in the likelihood function (6.10) can bedecomposed as followstr(��1"0") = tr(��1(�Y ��Y�1�)0(�Y ��Y�1�))= tr(��1(�YMY�1�Y + (�� �̂)0Y 0�1Y�1(�� �̂)))= tr(��1(�YMY�1�Y + (��+ �?���? � �̂)0Y 0�1Y�1(��+ �?���? � �̂)))= tr(��1(�YMY�1�Y + (��� �̂)0Y 0�1Y�1(��� �̂)+ (�?���? � �̂)0Y 0�1Y�1(�?���? � �̂)� �̂0Y 0�1Y�1�̂))= tr(��1(�YMY�1�Y ) + ��1(�� �̂)0� 0Y 0�1Y�1�(�� �̂))� ��1�̂0(� 0Y 0�1Y�1�)�̂+ (�?��1�0?)(�� � �̂�)0� 0?Y 0�1Y�1�?(�� � �̂�)� (�?��1�0?)�̂�0� 0?Y 0�1Y�1�?�̂� + ��1�̂0Y 0�1Y�1�̂)= tr(��1(�YMY�1�Y ) + ��1(�� �̂)0� 0Y 0�1Y�1�(�� �̂)+ (�?��1�0?)(�� � �̂�)0� 0?Y 0�1Y�1�?(�� � �̂�))where we use thattr(��1�̂0Y 0�1Y�1�̂) = tr(��1�̂0(� 0Y 0�1Y�1�)�̂) + tr((�?��1�0?)(�̂�0� 0?Y 0�1Y�1�?�̂�))



6.C Derivations for the Invariant Speci�cation 123and �̂ = (Y 0�1Y�1)�1Y 0�1�Y�̂ = (� 0Y 0�1Y�1�)�1� 0Y 0�1�Y�̂� = (� 0?Y 0�1Y�1�?)�1� 0?Y 0�1�Y��1�0?(�?��1�0?)�1:





Chapter 7Multivariate Markov Trend Model
7.1 IntroductionIn Section 5.3 we have seen that cointegration implies that there exist a linear combinationof univariate time series with stochastic trends, which can be described by a stationaryprocess. Although shocks have a permanent e�ect on the level of the separate univariateseries, they only have a temporary e�ect on the linear cointegration relation between theunivariate series. A shock only leads to a temporary deviation from the linear relationbetween the series. The cointegration relations re
ect the long run equilibria betweenseries. Therefore, cointegration analysis is often used to detect long run relations (equi-libria) between economic variables, see for instance King et al. (1991) and Hendry andEricsson (1991).Standard analysis of cointegration is usually performed in linear vector autoregres-sive models as described in the previous chapter. However, as we already have seen inSection 3.6.2 neglecting the possibility of changes in the growth rates during recessionsin univariate time series can favour the presence of unit root stochastic trends in thistime series. Generalising this to a multivariate setting, it is not unlikely that neglectingchanges in the growth rate of series may in
uence the analysis of long run equilibria intime series. Changes in growth rate of series may lead to temporary or even permanentchanges in the mean of the cointegration relation. This happens for instance if changesin the growth rate do not occur simultaneously for every series, which belong to the coin-tegration relation. Additionally, even if growth rate changes in cointegrated time seriesoccur at the same time, it is still possible that the mean of the cointegration relationchanges. For instance, when during a recession the decrease in one variable is larger thanthe decrease in another variable. For instance, Figure 7.1 shows a candidate cointegrationrelation for the logarithm of quarterly observed per capita income and consumption ofthe United States.1 As candidate we have taken the di�erence between the two series.The �gure shows that the mean of the candidate cointegration relation is not constantover time but displays a more or less changing regime pattern. This may imply that the1In Section 7.6.2 we consider the two series in more detail.
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Figure 7.1. Di�erence between the logarithm of US per capitaincome and consumption, 1957.I{1992.IV.cointegration relation is not a stationary process, but it is a�ected by occasionally shocksin the mean caused by regime changes, see also Krolzig (1996) for a discussion. One caninterpret such a cointegration relation as a long run equilibrium between variables, whichhas a mean revision during or after recessions. A special case occurs if the growth ratesof the series are a�ected by changes in regimes, but that the mean of the cointegrationrelation is not a�ected by regime changes. Dwyer and Potter (1996) refer to this situationas reduced rank Markov trend cointegration.Neglecting permanent changes in the mean of cointegration relations, caused by regimechanges, may lead to evidence in favour of no cointegration. To analyse cointegration inthe presence of regime changes, we propose in this chapter a multivariate version of theMarkov trend model in Chapter 3. The model allows for di�erent Markov trends for eachseries, so that every series can have a di�erent business cycle. Common business cyclesin series result from common stochastic Markov trends. The deviation from the Markovtrends are modelled by a vector autoregressive process, which may include stochastictrends. Hence, cointegration analysis can be performed in a regime changing environment.Markov trend cointegration occurs, if the linear cointegration relations also remove theMarkov trend from the multivariate series.The outline of this chapter is as follows. In Section 7.2 we propose the multivariateMarkov trend model. We discuss the role of the stochastic trends in this model andthe possibilities of common trends. Section 7.3 deals with prior speci�cation. To obtainposterior results, we propose in Section 7.4 a Gibbs sampling algorithm to sample fromthe posterior distribution. The analysis of cointegration and common stochastic Markovtrends is discussed in Section 7.5. In Section 7.6 we illustrate the analysis of multivariateMarkov trends with some simulated series. Additionally, we analyse the role of stochastic



7.2 The Model 127trends in quarterly observed real gross domestic product and consumption of the UnitedStates, on which Figure 7.1 is based. We conclude in Section 7.7.7.2 The ModelSuppose that an n-dimensional vector of time series fYtgTt=1 can be decomposed asYt = Nt + Zt; (7.1)where Nt is a multivariate Markov trend and Zt is a vector autoregressive [VAR] processof order k Zt = kXi=1�iZt�i + "t; (7.2)or using the lag polynomial �(L) = (In � �1L� � � � � �kLk)(In � �1L� � � � � �kLk)Zt = "t; (7.3)where "t is an n-dimensional vector normally distributed process with zero mean and(n� n) positive de�nite symmetric covariance matrix � and �i, i = 1; : : : ; k, are (n� n)parameter matrices. The n-dimensional Markov trend is de�ned asNt = Nt�1 + �0 + �1St; (7.4)where St = (s1;t : : : sn;t)0 an n-dimensional unobserved random variable with sj;t = 0; 1,j = 1; : : : ; n, �0 is an (n� 1) parameter vector and �1 an (n� n) parameter matrix, seealso Dwyer and Potter (1996) who use a di�erent parameterisation. The random variableSt can take 2n di�erent values and hence implies 2n possible slope values for each of then elements in Nt. To model the transitions between these 2n states, we assume thateach element sj;t, j = 1; : : : ; n is an unobserved �rst-order two-state Markov process withtransition probabilitiesPr[sj;t = 0jsj;t�1 = 0] = pj; Pr[sj;t = 1jsj;t�1 = 0] = 1� pj;Pr[sj;t = 1jsj;t�1 = 1] = qj; Pr[sj;t = 0jsj;t�1 = 1] = 1� qj: (7.5)These transition probabilities imply a restricted (2n�2n) transition matrix, which containsthe transition probabilities between the 2n possible outcomes of St, see also the end ofSection 5.1.Using the backward solution of (7.4)Nt = �0 (t� 1) + �1 tXi=2 Si +N1 (7.6)



128 Multivariate Markov Trend Modeland rewriting (7.2) in the error correction notation (6.6) results in(�Yt � �0 � �1St) = �(Yt�1 � �0 (t� 2)� �1 t�1Xi=2 Si �N1) +k�1Xi=1 ��i(�Yt�i � �0 � �1St�i) + "t; (7.7)where � = Pkj=1�j � In and ��i = �Pkj=i+1�j, i = 1; : : : ; k � 1. Note that the initialvalue of the Markov trend N1 is unknown and plays the role of an intercept parametervector.As already mentioned in Section 5.1 the multivariateMarkov trend implies the presenceof n stochastic trends in Yt. Additionally, unit roots in the vector autoregressive part ofthe Markov trend model also imply the presence of stochastic trends in Yt. In practiceit may therefore be wishful to limit the number of stochastic trends in the Markov trendmodel (7.7). In the remainder of this section we discuss the role of the stochastic trendsand provide parameter restrictions, which limit the number of trends in the model. Theserestrictions can be imposed from a theoretical point of view or they can be tested usingthe Bayes factors, which are proposed in Section 7.5.Common Markov trendsThe transition probability structure in (7.5) corresponds to the presence of n independentstochastic Markov trends Pti=2 Si in (7.6). The matrix �1 models the correlation betweenthe Markov trends. If the matrix �1 is diagonal, each of the univariate series in Yt containsa di�erent univariate Markov trend as described in (3.2) with transition probabilities piand qi. If we link the Markov trends with the business cycle, this implies n independentbusiness cycles in the univariate time series in Yt. In case of common business cycles lessthan n Markov trends su�ce. An extreme case arises if the series have only one commonbusiness cycle. Now only one state variable sj;t su�ces to model the business cycle. Thematrix �1 becomes an (n� 1) vector. Changes in the stage of the business cycle for eachseries in Yt occur at the same time, see also Krolzig (1996). Although this may not alwaysbe the case in practice, there may exist some common business cycle structure among theseries so that it is su�ces to specify less than n stochastic Markov trends to model theseries.We have seen that if �1 has full rank, Yt consists of n correlated stochastic Markovtrends �1Pti=2 Si. A reduction in the number of Markov trends, i.e. common Markovtrends, occurs if 0 < rank(�1) = m < n, see Section 5.2. In that case we can write �1 asa product of two (n�m) matrices 
 and � such that �1 = 
�0. The m common Markovtrends are given by �0Pti=2 Si and 
0?Nt and therefore 
0?Yt does not contain a stochasticMarkov trend. Since Yt = Nt + Zt shocks denoted by St have a permanent e�ect on Yt.The impact of the St shocks on the �rst di�erences of Yt depends on the number of unitroots (or the rank of �) in the vector autoregressive component Zt.



7.2 The Model 129To discuss the impacts of the possible trends in this model speci�cation, we �rst focuson the Markov trend.CointegrationIn Section 5.3 we have seen that unit roots in the VAR process Zt result in stochastictrends Pti=2 "i in Yt. Several situations can occur, depending on the number of unit roots.If the roots of the polynomial j�(x)j are outside the unit root circle, there are nostochastic trends in Zt. Hence, Yt is a stationary VAR process around a multivariateMarkov trend Nt. The matrix � in (7.7) has full rank and exogenous shocks representedby St have a permanent e�ect on future values of Yt and �Yt, while shocks representedby "t only have a transitory e�ect.As we already have seen in Section 5.3 stochastic trends enter Zt and therefore Yt ifthe � matrix has reduced rank. If � = 0 equation (7.7) simpli�es to(�Yt � �0 � �1St) = k�1Xi=1 ��i(�Yt�i � �0 � �1St�i) + "t; (7.8)and the �rst di�erence of Yt is a stationary VAR process with a stochastically changingmean (= �0 + �1St). This corresponds to the assumption of n stochastic trends, Pti=2 "i,in Yt. Now shocks St and "t have a permanent e�ect on future values of Yt, however noton the �rst di�erences of Yt. Note that the initial value of the Markov trend N1 dropsout of the model and the growth in Yt does not depend on the initial value of the Markovtrend.A special case arises if 0 < rank(�) = r < n. In that case � can be written as� = �� 0, where � and � are full rank (n� r) matrices. Model (7.7) becomes(�Yt � �0 � �1St) = �� 0(Yt�1 � �0(t� 2) + �1 t�1Xi=2 Si �N1) +k�1Xi=1 ��i(�Yt�i � �0 � �1St�i) + "t; (7.9)with the following normalisation � 0 = (Ir � 02), where �2 is an ((n � r) � r) matrix, toidentify �, see (5.19). We will refer to (7.9) as the multivariate Markov trend model inerror correction cointegration [ecc] form. According to (5.17) there are (n � r) commonstochastic trends in Yt given by �0?Pti=2 "i and r cointegration relations � 0Zt. Now thegrowth in Yt depends on the initial value of the Markov trend unless � 0N1 = 0. Thematrix � 0�1 represents the impact of the stochastic Markov trend Pt�1i=2 Si on the growthof Yt at time t. In case of m common Markov trends this matrix becomes � 0
�0. Not thatit is possible that � 0 contains one or more linear combinations which remove a stochasticMarkov trend from Nt, i.e. � 2 sp(
?). If r+m � n it is even possible that � 0
 = 0 and



130 Multivariate Markov Trend Modelpast shocks St�i do not have a permanent e�ect on �Yt since (7.9) simpli�es to(�Yt � �0 � �1St) = �� 0(Yt�1 � �0(t� 2)�N1) +k�1Xi=1 ��i(�Yt�i � �0 � �1St�i) + "t: (7.10)Furthermore, the relation � 0Yt = � 0Nt + � 0Zt is (trend)stationary and does not contain astochastic Markov trend. Dwyer and Potter (1996) refer to this phenomenon as reducedrank Markov trend cointegration.The Likelihood FunctionTo perform a Bayesian analysis of the multivariate Markov trend model, we consider thelikelihood conditional on the states St, see also Section 3.2. The conditional density ofYt for the multivariate Markov trend stationary model (7.7) given the past and currentstates St = fS1; : : : ; Stg and given the past observations Y t�1 = fY1; : : : ; Yt�1g is givenby f(YtjY t�1; St;�0;�1; N1;�;�; ��) = 1(p2�)n j�j� 12 exp(�12"0t��1"t); (7.11)where "t is given in (7.7) and �� = f��1; : : : ; ��k�1g. The likelihood function for model (7.7)conditional on the states ST and the �rst k initial observations Y k equalsL(Y T jY k; ST ;�) = nYj=1 pNj;00j (1� pj)Nj;01 qNj;11j (1� qj)Nj;10TYt=k+1 f(YtjY t�1; St;�0;�1; N1;�;�; ��); (7.12)where � = f�0;�1; N1;�;�; ��; pj; qj; j = 1; : : : ; ng, Nj;il denotes the number of transitionsfrom state i to state l for j-th state variable. The unconditional likelihood functionL(Y T jY k;�) can be obtained by summing over all possible realisations of STL(Y T jY k;�) =XS1 XS2 � � �XST L(Y T jY k; ST ;�): (7.13)The unconditional likelihood function for the Markov trend model in error correctioncointegration [ecc] form (7.9), Lecc, follows directly from (7.13)Lecc(Y T jY k;�ecc) = L(Y T jY k;�)j�=��0 (7.14)with �ecc = f�0;�1; N1;�; �; �2; ��; pj; qj; j = 1; : : : ; ng.In the next section we discuss the prior distributions for the model parameters for themultivariate Markov trend stationary VAR model (7.7) and the Markov trend model inerror correction cointegration form (7.9).



7.3 Prior Speci�cation 1317.3 Prior Speci�cationThe prior speci�cation for the multivariate Markov trend model is a combination of theprior speci�cation for the univariate model of Chapter 3 and the proposed prior frameworkfor cointegration analysis as derived in the previous chapter.As we have seen in the previous section, N1 is not identi�ed if � = 0. To correctfor this identi�cation problem we propose the same solution as for the univariate Markovtrend model, see Section 3.3.1. Hence, the prior distribution for N1 conditional on the�rst observation Y1 and � is normal with mean Y1 and covariance �N1jY1;� � N(Y1;�): (7.15)The prior for � is again di�use p(�) / j�j� 12 ; (7.16)and the prior distributions for the transition probabilities pj and qj are independent anduniform on the unit interval (0; 1)p(pj) = I(0;1) j = 1; : : : ; n;p(qj) = I(0;1) j = 1; : : : ; n: (7.17)Just as in the univariate Markov trend model, under a di�use prior speci�cation we needto restrict the parameter space on which �0 and �1 have probability mass to identify theregimes, see below (3.18). Note that in the multivariate case, also changing two columnsin �1, the corresponding two rows in St for t = 1; : : : ; T and changing the correspondingtransition probabilities, results in the same model and the same value of the likelihoodfunction. To circumvent this problem we de�ne the priors for �0 and �1 on subspaces G0and G1, which uniquely identify the regimes,p(�0) / ( 1 if �0 2 G00 elsewhere, (7.18)where G0 2 Rn and p(�1) / ( 1 if �1 2 G10 elsewhere, (7.19)where G1 2 Rn�n . Another option to circumvent the identi�cation problem is to specifyappropriate matrix normal prior distributions for �0 and �1. The priors for the autore-gressive parameters ��i are di�usep(��i) / 1; i = 1; : : : ; k � 1: (7.20)The prior for the � and the � and �2 parameters is based on the prior framework,derived in the previous chapter. We start with a di�use prior for � given �p(�j�) / j�j� 12n: (7.21)



132 Multivariate Markov Trend ModelTo obtain the prior for the Markov trend error correction cointegration model (7.9) wedecompose � as follows� =  �11 �12�21 �22 ! =  �1 ��1� 02�2 ��2� 02 + �0 ! ; (7.22)where � = (�01 �02)0 with �1 an (r� r) matrix and �2 an ((n� r)� r) matrix and � is an((n� r)� (n � r)) matrix, see also (6.9). The di�use prior for � given � (7.21) impliesthe following conditional priors for �, � and �22puec(�j�) / j�j� 12 rpuec(�j�; �) / j�0?��?j� 12 (n�r)puec(�2j�; �; �) / j�0��1�j 12 (n�r); (7.23)where �? = (��2��11 In�r)0, see Section 6.3. Under reduced rank, i.e. � = 0, theconditional priors for � and �2 in the error correction cointegration [ecc] model (7.9) obeythe rule that pecc(�; �2j�) / puec(�; �; �2j�)j�=0 so thatpecc(�j�) / j�j� 12 rj�0?��?j� 12 (n�r)pecc(�2j�; �; �) / j�0��1�j 12 (n�r); (7.24)see also (6.22).The joint prior p(�) for the Markov trend stationary VAR model (7.7) is given by theproduct of (7.15){(7.21). For the error correction cointegration model (7.9) the joint priorpecc(�ecc) is given by the product of (7.15){(7.20) times (7.24). Note that the joint priorof the Markov trend cointegration model (7.9) is proportional to the joint prior of theMarkov trend stationary VAR model (7.7) restricted in � = 0, the parameter restrictionwhich implies cointegration.7.4 Simulating Posterior DistributionsThe posterior distribution of the multivariate Markov trend model (7.7) is proportionalto the product of the prior p(�) and the unconditional likelihood (7.13). To obtainmarginal posterior results, we use again the Gibbs sampling algorithm, see Section 3.4.The state variables fStgTt=1 are treated as unknown parameters and sampled alongsidethe model parameter �. The next subsection provides the full conditional posteriordistributions, which are needed to sample the parameters. Special attention will be payedto the situation, where there is rank reduction in �. In that case we need to build aMetropolis-Hastings step in the Gibbs sampler to generate the � and �2 parameters.2The subscript corresponds to the fact that the priors are de�ned in an unrestricted error correction[uec] model, see Section 6.2.



7.4 Simulating Posterior Distributions 1337.4.1 Full Conditional Posterior DistributionsFull Conditional Posterior of the StatesThe derivation of the full conditional posterior of the state variables follows directlyfrom the derivation in the univariate case in Section 3.4. Since the state variables sj;t,j = 1; : : : ; n in St are independent, they can be sampled separately using the full condi-tional posterior distribution (3.35). The kernel of the full conditional distribution of sj;t,j = 1; : : : ; n, t = k + 1; : : : T now readsp(sj;tjSTnfsj;tg;�; Y T ) / p(sj;tjsj;t�1;�) p(sj;t+1jsj;t;�) TYi=t f(YijY i�1; Si;�); (7.25)where f(YijY i�1; Si;�) is de�ned in (7.11). The initial k values of the states can besampled using a full conditional posterior distribution like (3.36).Full Conditional Posterior of pj and qjThe full conditional posterior distributions of pj and qj, j = 1; : : : ; n are beta distributionssince according to (7.12)p(pjjST ;�nfpjg; Y T ) / pNj;00j (1� pj)Nj;01p(qjjST ;�nfqjg; Y T ) / qNj;11j (1� qj)Nj;10; (7.26)where Nj;il denotes the number of transitions from state i to state l for the j-th statevariable.Full Conditional Posterior of �It is easy to see from the conditional likelihood (7.12) that the full conditional posteriorof � is proportional top(�jST ;�n�; Y T ) / j�j� 12 (T�k+n+2) exp(�12tr(��1((Y1 �N1)(Y1 �N1)0 + TXt=k+1 �t�0t))(7.27)and hence the covariance matrix � can be sampled from an inverted Wishart distribution,see Zellner (1971, p. 395).Full Conditional Posterior of N1, �0 and �1To derive the full conditional posterior distribution of N1, �0 and �1 we write (7.7) as�(L)Yt = �(L)(�0(t� 1) + �1 tXi=2 Si +N1) + "t= � kXj=1�j(�0 �1 N1)0B@ Lj(t� 1)LjPti=2 Si1 1CA+ "t; (7.28)



134 Multivariate Markov Trend Modelwhere �0 = �In. Without the �j matrices, we have a multivariate regression model in theparameters N1, �0 and �1 and the full conditional distribution would be matrix normal.To reverse the order of �(L) and the parameters (�0 �0 N1), we apply the vec operator toboth sides of (7.28). Using the vec notation and the fact that vec(ABC) = (C 0
A)vec(B),we can write (7.28) as a linear regression model and hence the full conditional distributionsof vec(N1), vec(�0) and vec(�1) are normal.Full Conditional Posterior of � and ��To sample from the full conditional posterior of the autoregressive parameters we use thatconditional on �0, �1, N1 and the states fStgTt=1, equation (7.7) can be seen as a multi-variate regression model in the parameters � and ��. From Zellner (1971, chapter VIII)if follows that the full conditional posterior distribution of the parameter matrices arematrix normal.Sampling of � and �2To derive the full conditional posterior distributions for � and �2 we rewrite (7.9) suchthat conditional on ��, N1, �0, �1 and the states fSTgTt=1 it resembles the simple VAR(1)model (6.7) considered in the previous chapter. Using Zt = Yt �Nt we can write�Zt � k�1Xi=1 ��i�Zt�i = �� 0Zt�1;+"t�Z�t = �� 0Z�t�1 + "t; (7.29)where �Z�t = �Zt � Pk�1i=1 ��i�Zt�i and Z�t�1 = Yt�1 � Nt�1. The full conditional pos-terior distribution of (�; �2) is given by the product of conditional posterior distributionof � given (�; Z�), puec(�j�; Z�), �2 given (�; �; Z�), puec(�2j�; �; Z�) and the condi-tional posterior of � given (�; �; Z�) evaluated in � = 0, puec(�j�; �; Z�)j�=0. Thesedistributions are given in (6.28), where �Z� = (�Z�k : : :�Z�T )0 takes the role of �Y andZ��1 = (Zk�1 : : : ZT�1)0 takes the role of Y�1. Note that this conditional posterior distri-bution is the full conditional distribution since Z� is a function of the parameters ��, N1,�0 and �1.As we already have discussed in Section 6.4 it is not possible to sample directlyfrom this distribution and we have proposed a Metropolis-Hastings sampling algorithmin Section 6.4.1. Chib and Greenberg (1994, 1995) show that it is possible to buildsuch a Metropolis-Hastings step into the Gibbs sampling procedure. Brie
y, draw �from puec(�j�; Z�) and �2 from puec(�2j�; �; Z�), which are matrix normal distributions.The probability of accepting this draw is given by the ratio of the conditional posteriorpuec(�j�; �; Z�)j�=0 of the current drawing and the previous drawing, see Section 6.4.1 fordetails about the Metropolis-Hastings step.In the next section we propose a method to analyse the presence of (common) stochas-tic trends in the multivariate Markov trend model.



7.5 Bayesian Analysis of Common Trends 1357.5 Bayesian Analysis of Common TrendsThe Bayesian analysis of the presence of common trends in the multivariate Markovtrend model is based on the ideas in Chapter 6. In Section 7.5.1 we consider the analysisof stochastic trends caused by unit roots in the autoregressive part of the model. InSection 7.5.2 we propose a method to analyse common Markov trends, which proceeds ina similar way.7.5.1 Cointegration AnalysisTo investigate the presence of common stochastic trends (cointegration), we may analysethe posterior distribution of �, which results from the decomposition of � in (7.22). From(7.22) it follows that that � = 0 implies that the matrix � has reduced rank and hencethe presence of common trends. However, in Section 6.2 we have already discussed thata posterior odds ratio for rank reduction in � based on decomposition (7.22) depends onthe order of the variables in Yt. To analyse the number of common stochastic trends orthe cointegration rank it is better to use the invariant decomposition of � as proposed inSection 6.7 � = (� �?) Ir 00 (��)0 ! � 0� 0? ! ; (7.30)where �� is an ((n� r)� (n� r)) matrix, � 0?�? = In�r, �0?�? = In�r and where �? and�? are (n� (n� r)) matrices de�ned such that �0?� = 0 and � 0?� = 0 like in (6.67). Notethat due to the normalisation restriction �? does not equal (��2��11 In�r)0 any more.The decomposition in (7.30) is identi�ed trough a singular value decomposition on �, see(6.68). The matrix �� is based on the r smallest singular values of � and rank reductionin � corresponds to �� = 0.The di�use prior for � (7.21) implies via a Jacobian transformation the joint priorp�(�; ��; �)3, see Section 6.7. Appendix 6.C provides the Jacobian for the transformationfrom � to (�; ��; �). The joint posterior of the model parameters is the product of thejoint prior times the likelihood function (7.13) as function of (�; ��; �). This likelihoodfunction is denoted by L�(Y T jY k;��), where we replace � in � with (�; ��; �) to obtain��. Unfortunately it is not possible to derive any conditional posterior densities for �, ��and �. However it is easy to sample these parameters in the Gibbs framework from theirfull conditional distribution since we know how to sample �. To sample (�; ��; �) fromits full conditional posterior distribution, we perform a singular value decomposition onthe sampled � and compute �, �� and � according to (6.70).The analysis of the presence of one or more stochastic trends, can be done usingposterior odds ratios for �� = 0. We start with assigning prior probabilities to everypossible rank of � Pr[rank = r]; r = 0; : : : ; n; (7.31)3The asterisk denotes again that the prior follows from the invariant decomposition, like in Chapter 6.The same notation will be used for the likelihood functions and the posterior distributions.



136 Multivariate Markov Trend Modelwhich implies prior probabilities to the number of stochastic trends (n� r). These priorprobabilities imply the following prior odds ratios [PROR]PROR(rjn) = Pr[rank = r]Pr[rank = n] ; r = 0; : : : ; n: (7.32)The Bayes factor to compare rank r with rank n equalsBF�(rjn) = R L�ecc(Y T jY k;��ecc) p�ecc(��ecc) d��eccR L�(Y T jY k;��) p�(��) d�� ; (7.33)where L�(Y T jY k;�) and p�(��) denote the unconditional likelihood function and thejoint prior of the Markov trend stationary model (7.7) as function of (�; ��; �) instead of�. The prior and likelihood of the error correction cointegration model (7.9) are de�nedsuch that L�ecc(Y T jY k;��ecc) = L�(Y T jY k;��)j��=0 and p�ecc(��ecc) = p�(��)j��=0 with��ecc = ��nf��g. The posterior odds ratios to compare rank r with rank n equals priorodds ratio times the Bayes factor, POR(rjn) = PROR(rjn)�BF�(rjn), and the posteriorprobabilities for every rank are simplyPr[rank = rjY ] = POR(rjn)Pni=0 POR(ijn) ; r = 0; : : : ; n: (7.34)In Section 6.7.2 we have seen that the Bayes factor (7.33) can be computed usingthe Savage-Dickey density ratio of Dickey (1971), which states that the Bayes factor for�� = 0 equals the ratio of the marginal posterior density and the marginal prior densityof ��, both evaluated in �� = 0BF�(rjn) = p�(��jY T )j��=0p�(��)j��=0 : (7.35)This means that we need the marginal posterior density of �� to compute this Savage-Dickey density ratio. Since the full conditional distribution of �� is of an unknown type,we have to use an approximation of the full conditional posterior density of �� in combi-nation with importance weights to compute the marginal posterior of ��, see Chen (1994).A suitable approximation is given in (6.78) with �Y and Y�1 replaced by �Z� and Z��1,which are de�ned at the end of Section 7.4. Another solution to compute the marginalposterior density of �� in zero is to use a non-parametric kernel estimator on the �� draws,see e.g. Silverman (1986). As we have speci�ed an implicit di�use prior for ��, the heightof the marginal prior in �� = 0 is not de�ned. Therefore, we take for p(��)j��=0 the value(2�)� 12 (n�r)2 as in (6.66), which is related to the posterior information criterion [PIC]of Phillips and Ploberger (1994), see the end of Section 6.6.1 and Kleibergen and Paap(1996) for details.7.5.2 Common Markov Trends AnalysisIn Section 5.2 we have already seen that rank reduction in �1 implies the presence ofcommon stochastic Markov trends. Therefore, we can we can follow the same strategy as



7.5 Bayesian Analysis of Common Trends 137for analysing rank reduction in � to analyse the presence of common stochastic Markovtrends. The decomposition for �1 reads�1 = (
 
?) Im 00 �� ! �0�0? ! ; (7.36)where �� is an ((n � m) � (n � m)) matrix, 
0?
? = In�m, �0?�? = In�m and 
? and�? are (n � (n � m)) matrices de�ned such that 
0?
 = 0 and �0?� = 0, cf. (7.30).Decomposition (7.36) corresponds to a singular value decomposition on �1 like in (6.68).The �� parameters are identi�ed through the m smallest singular values of �1 such thatthe presence of common stochastic Markov trends corresponds to �� = 0.The analysis of rank reduction in �1 proceeds in the same way as rank reduction in�. The decomposition (7.36) relates the prior on �1 (7.19) to the joint prior on (
; ��; �),see Section 6.7 and 7.5.1. The posterior is given by the product of the prior times thelikelihood (7.13). Now, the Bayes factor for m versus n stochastic Markov trends canbe computed using the Savage-Dickey density ratio of Dickey (1971) for �� = 0. ThisBayes factor equals the ratio of the marginal posterior density of �� and the marginalprior density of �� both evaluated in �� = 0BF�(mjn) = p�(��jY T )j��=0p�(��)j��=0 : (7.37)Prior odds ratios PROR(mjn), which lead to posterior odds ratios POR(mjn) can beconstructed in the same way as in the previous section.To calculate these Bayes factors we can perform a singular value decomposition on thesampled �1 parameters, solve for �� like in (6.70) and use a kernel estimator [see Silverman(1986)] to evaluate the marginal of �� in zero. For the height of the marginal prior densityof �� we can perform a singular value decomposition on draws from the marginal priortogether with a kernel estimator. In case of a di�use prior for �1 we can take the factor(2�)� 12 (n�m)2 for p�(��)j��=0.Since the number of possible values of the state variable St is 2n, the multivariateMarkov trend allows for large n many slope values of the trend for the univariate seriesin Yt. In practice, it may be interested to link the state variables with stages of thebusiness cycle so that an expansion and a contraction regime for each series is su�cient.Furthermore, one wants to test whether several series have a common business cycle sothat only one sj;t is su�cient to describe the Markov trend and the business cycle. A directmethod to test for this possibility it to restrict some parameters in �1. For instance whenn = 2 one may consider �1 =  �1;11 0�1;21 �1;22 ! (7.38)so that �1;22 = 0 implies that s1;t is su�cient to describe the business cycle for the 2-dimensional time series Yt. The Bayes factor for �1;22 = 0 can be computed using a



138 Multivariate Markov Trend ModelSavage-Dickey density ratio BF(�1;22) = p(�1;22jY T )j�1;22=0p(�1;22)j�1;22=0 ; (7.39)where p(�1;22jY T ) is the marginal posterior density and p(�1;22) denotes the marginal priordensity of �1;22. Note that Bayes factors for a common Markov trend using decomposition(7.38) is likely to depend on the order of the variables in Yt.7.6 ApplicationIn this section we analyse the presence of stochastic trends in three simulated series and inper capita income and consumption of the United States using multivariate Markov trendmodels. The main focus of this section is the determination of the number of Markovtrends and stochastic trends caused by unit roots in the autoregressive part of the model.7.6.1 Simulated SeriesTo illustrate the cointegration analysis in the presence of Markov trends we consider thefollowing data generating process [DGP]Yt = Nt + Zt;Nt = Nt�1 +  22 !�  44 ! s1;t; N1 =  00 ! ;�Zt = �Zt�1 + "t; "t � NID(0; I2); (7.40)with three di�erent parameter values for �I : � =  0 00 0 ! ;II : � =  �0:250:25 ! (1 � 1);III : � =  �0:50 �0:500:25 �0:25 ! 1 �10 1 ! ; (7.41)
and hence for DGP I Zt contains two unit roots, for DGP II a unit root and a root 0.5 andfor the last DGP two roots of 0.5. The state variables fs1;tgTt=1 are generated accordingto a �rst-order Markov process with transition probabilities p1 = 0:9 and q1 = 0:6 andcontains the same realised values for the three simulated series.4 Note that we impose in(7.40) that Yt has one common Markov trend. The number of observations is T = 100.4The simulated states and therefore the Markov trends are exactly the same as for the simulated seriesin Section 3.6.1.
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Table 7.1. Posterior means with posterior standard deviations between paren-theses and Bayes factors for the cointegration rank for the three DGPs.par. DGP I DGP II DGP III
�0 0BB@ 1:80(0.08)2:03(0.11) 1CCA 0BB@ 2:06(0.06)2:06(0.06) 1CCA 0BB@ 1:99(0.02)1:99(0.02) 1CCA�1 0BB@�3:45(0.24)�4:12(0.31) 1CCA 0BB@�3:80(0.20)�3:84(0.19) 1CCA 0BB@�3:91(0.12)�3:96(0.12) 1CCAN1 0BB@ 1:20(0.93)1:96(1.04) 1CCA 0BB@ 0:68(0.80)1:16(0.74) 1CCA 0BB@�0:42(0.42)0:12(0.43) 1CCAp1 0.90 (0.03) 0.90 (0.03) 0.91 (0.03)q1 0.61 (0.11) 0.64 (0.11) 0.63 (0.11)� 0BB@�0:09 �0:02(0.07) (0.04)�0:08 �0:07(0.11) (0.06) 1CCA 0BB@�0:35 0:27(0.09) (0.09)0:35 �0:47(0.08) (0.09) 1CCA 0BB@�0:67 0:18(0.10) (0.11)0:27 �0:62(0.09) (0.10) 1CCA� 0BB@ 0:88 0:01(0.14) (0.10)0:01 1:09(0.10) (0.16) 1CCA 0BB@ 1:25 �0:14(0.19) (0.13)�0:14 1:07(0.13) (0.16) 1CCA 0BB@ 1:15 0:09(0.17) (0.10)0:09 0:85(0.10) (0.17) 1CCAr ln(BF�(rj2))1 Pr[rjY ]2 ln(BF�(rj2)) Pr[rjY ] ln(BF�(rj2)) Pr[rjY ]0 11.86 1.00 �8.41 0.00 �27.11 0.001 4.76 0.00 3.16 0.96 �2.11 0.102 0.00 0.00 0.00 0.04 0.00 0.901A Bayes factor ln(BF�(rj2)) > 0 denotes that the presence of (2� r) common trends or rcointegration relations is more likely than two cointegration relations.2Posterior probability of the cointegration rank (7.34) is based on equal prior probabilities(7.31) for every rank r.



140 Multivariate Markov Trend ModelTo analyse the three simulated series, we consider the multivariateMarkov trend model(7.7), where we restrict �1 to be a (2� 1) parameter vector and hence we only allow forone unobserved state variable s1;t in the model as in the DGP (7.40). The lag order ofthe model k is equal to one, which is the same as in the DGPs. The priors for modelparameters are given in (7.15){(7.17) and (7.21). The priors for �0 and �0 are 
at onthe regions G0 = f�0 2 R2 j�0 > 0g and G1 = f�1 2 R2 j�0 + �1 � 0g respectively, whichidenti�es the two regimes.Table 7.1 shows the posterior results for the three simulated series. The posteriormeans of parameters match the true values of the DGP quite well. All posterior meansare within two posterior standard deviations from their true value. The fact that thesimulated series contain more observations with s1;t = 0 than with s1;t = 1 shows up inthe posterior standard deviations of the parameters. These standard deviations are largerfor q1 and �1 than for p1 and �0. Note further that the posterior standard deviations ofthe elements of N1 increase with the number of unit roots in the DGP. Similar �ndingsare reported in Section 3.6.1.To analyse the number of non-Markov stochastic trends in the series, or in other wordsthe rank of �, we consider the invariant decomposition of � in (7.30). Bayes factorsfor the rank of � are computed using the Savage-Dickey density ratio, as described inSection 7.5.1. Since we have speci�ed an uninformative prior for �, these Bayes factorsare based on the factor (2�)� 12 (n�r)2 for the prior on �� in (7.35). We assign equal priorprobabilities to every cointegration rank, i.e. Pr[rank = r] = 13 , r = 0; 1; 2. The Bayesfactors and the posterior probabilities for the cointegration rank are shown in the bottomhalf of the table. The results for DGP I show that every rank reduction in � is very likelyand the posterior probability for two unit roots (zero cointegration relations) is one. ForDGP II, a model with rank one is more likely than a model with rank two, but a modelwith � = 0 is not very likely. The Bayes factors imply 0.96 posterior probability on thetrue cointegration rank. For DGP III the posterior probability for the true cointegrationrank is 0.90. The Bayes factors show that rank reduction in � is unlikely.The three simulated series show the possibility of Bayesian analysis of the cointegrationrank in the presence of Markov trends. Since only three simulated series have been consid-ered, it must be stressed that no general conclusion can be drawn about the performanceof the approach. In the next subsection we analyse per capita consumption and incomeof the United States in more detail.7.6.2 US Income and ConsumptionIn this section we consider seasonally adjusted real gross domestic product [GDP] and con-sumption per capita for the period 1957.I{1992.IV. The series are obtained from Citibase.Figure 7.2 shows a plot of the logarithm of the two series. Both series increase over thesample period with short periods of decline, for instance in the middle and the end ofthe 1970s. These periods of decline are more pronounced in the income series than in theconsumption series but seem to occur roughly simultaneously. The average growth rate
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Figure 7.2. The logarithm of US per capita income and con-sumption, 1957.I{1992.IV.of consumption series is 0.41% and for the income series 0.38%.To analyse the series we consider the multivariate Markov trend stationary model (7.7)for Yt = (yt ct)0, where yt and ct are 100 times the logarithm of the per capita incomeand the consumption series, respectively. The order of the VAR part of the model k isarbitrarily set to one to avoid overparametrisation, since the multivariate Markov trendspeci�cation already contains many parameters. The prior distributions of the modelparameters are given by (7.15){(7.21). To identify the regimes for the Markov trend wede�ne G0 = f�0j�0 > 0g and G1 = f�1j�0 + �1;1 < �0 + �1;1 + �1;2 < �0g where �1;idenotes the i-th column of �1. This implies the following four Markov trend slope valuesfor Yt in order of magnitude �0 + �1;1 < �0 + �1;1 + �1;2 < �0 < �0 + �1;2. Note thatthis prior already imposes a structure on the Markov trend. It assumes the same order ofmagnitude in the slopes of the Markov trend for both series.The posterior means with posterior standard deviations between parentheses of theposterior distributions of the model parameters readYt = Nt + Zt;Nt = �0BB@ 438:9(0.8)462:1(0.5) 1CCA+ 0BB@ 0:26(0.18)0:31(0.06) 1CCA (t� 1) + 0BB@ �2:02 0:89(0.59) (0.35)�1:31 0:69(0.35) (0.16) 1CCA s1;ts2;t ! ;�Zt = 0BB@ �0:29 0:54(0.13) (0.44)�0:06 �0:03(0.08) (0.14) 1CCAZt�1 + "t; with � = 0BB@ 0:69 0:18(0.18) (0.10)0:18 0:25(0.10) (0.06) 1CCA : (7.42)
The posterior means of the transition probabilities of s1;t are p1 = 0:93 and q1 = 0:45 with



142 Multivariate Markov Trend Modelposterior standard deviations 0.03 and 0.20 respectively. The posterior means of p2 andq2 are 0.81 (0.07) and 0.65 (0.18) with posterior standard deviations between parentheses.Before analysing the business cycles in the series, we �rst focus on the trend speci�cation.The results in (7.42) imply the posterior means of the four Markov trend slope values.These are �1:76, �0:87, 0:26 and 1:15 for the income series and �1:00, �0:31, 0:31 and1:00 for the consumption series. Note that the negative slopes of the Markov trend inincome are larger in absolute value than in consumption. The same is true for the largestpositive slope.To analyse the presence of the stochastic trends in the two series, we �rst consider thepossibility of a common Markov trend. The prior on the parameter matrix �1 implies viadecomposition (7.36) a prior on ��. As we already have seen in Section 7.5.2 a commonMarkov trend corresponds to �� = 0. Using the Savage-Dickey density ratio we cancompute the Bayes factor for �� = 0 (7.37). The logarithm of this Bayes factor equals1.73, which suggest the presence of a common Markov trend in consumption and income.Since we have used a di�use prior for the �1 parameter, the Bayes factor is constructedbased on the (p2�)�1 factor for the prior of ��.To analyse further simpli�cations of the Markov trend speci�cation in the model, weuse the decomposition of �1 in (7.38). Note that an analysis based on this decompositionmay be sensitive to the ordering of the variables in Yt. Since the �0 parameter belonging toyt (=0.26) in the previous model lies within two posterior standard deviations from zero,we restrict the number of possible states in the income series, i.e. we put a zero restrictionin �1 which concerns income variable yt (�1;12 = 0). The prior for the multivariateMarkov trend stationary model with �1 equal to (7.38) is again given by (7.15){(7.21)with G0 = f�0j�0 < 0g and G1 = f�1j�0 +�1;1 < 0g. The posterior means with posteriorstandard deviations between parentheses of the model parameters of this model are givenby Yt = Nt + Zt;Nt = �0BB@ 439:0(0.8)462:2(0.6) 1CCA+ 0BB@ 0:86(0.09)0:31(0.07) 1CCA (t� 1) + 0BB@ �1:46 0(0.57)�0:56 0:38(0.16) (0.13) 1CCA s1;ts2;t !�Zt = 0BB@ �0:54 0:63(0.15) (0.22)�0:26 0:29(0.07) (0.09) 1CCAZt�1 + "t; with � = 0BB@ 0:62 0:23(0.11) (0.06)0:23 0:34(0.06) (0.06) 1CCA ; (7.43)
with p1 = 0:85 (0:06), q1 = 0:76 (0:07), p2 = 0:32 (0:23) and q2 = 0:53 (0:27). Theposterior means of the slopes of the Markov trend for the income series equal �0:60 and0.86. For the consumption series we have one negative slope �0:25 and three positiveslopes 0:13, 0:31 and 0:69. The posterior mean of �1;22 is 0.38 does not lie within twoposterior standard deviations from zero indicating no common business cycle. However,the posterior expectations of the state variable s2;t 
uctuate intensively within the region0.25 and 0.90 without displaying a clear switching pattern, see Figure 7.3. Hence, it seems
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Figure 7.3. Posterior expectation of the state variable s2;t formodel (7.43).that this state variable mimics random walk behaviour. The posterior expectation of the�rst state variable is similar to Figure 7.4 and displays clear switches between two states.Unreported results show that a zero restriction in �1 which concerns the ct variable leadsto the same conclusion. Since we already have seen in Section 5.3 that unit roots in Ztintroduce a cumulative sum of "t type stochastic trend in Yt, we decide to remove the statevariable s2;t from the multivariate Markov trend speci�cation and analyse the number ofunit roots in the autoregressive part of the model.To determine the cointegration rank, we consider the multivariate Markov trend model(7.7), where we restrict �1 to be a (2� 1) parameter vector and hence we allow only forone unobserved state variable s1;t. The priors for the model parameters are the sameas in the previous model. To identify the two regimes in the Markov trend we de�neG0 = f�0 2 R2 j�0 � 0g and G1 = f�1 2 R2 j�0 + �1 < 0g. This leads to the followingposterior means with posterior standard deviations between parentheses of the modelparameters Yt = Nt + Zt;Nt = �0BB@ 439:1(0.8)462:1(0.6) 1CCA+ 0BB@ 1:02(0.08)0:73(0.06) 1CCA (t� 1)� 0BB@ 1:67(0.16)0:81(0.08) 1CCA s1;t;�Zt = 0BB@ �0:52 0:60(0.11) (0.15)�0:24 0:27(0.06) (0.08) 1CCAZt�1 + "t; with � = 0BB@ 0:62 0:23(0.10) (0.05)0:23 0:38(0.05) (0.05) 1CCA ; (7.44)
with posterior means of the transition probabilities p1 = 0:87 (0:04) and q1 = 0:76 (0:08).



144 Multivariate Markov Trend ModelTo analyse the number of non-Markov stochastic trends we consider the decomposition of� as described in (7.30). The di�use prior on � implies a prior on ��. Bayes factors forrank reduction (7.33) are computed using the Savage-Dickey density ratio (7.35). Sincewe have speci�ed an uninformative prior for �, the Bayes factors are computed usingthe (2�)� 12 (n�r)2 factor. The logarithm of the Bayes factors for �� = 0 and � = 0 areln(BF�(1j2)) = 5:20 and ln(BF�(0j2)) = �3:26, respectively. Under equal prior probabil-ities Pr[rank = r] = 13 , r = 0; 1; 2, this implies 99% posterior probability for the modelwith one cointegration relation, see (7.34).The Bayes factors suggest a multivariate Markov trend model with one cointegrationrelation imposed (7.9). The priors for the model parameters are the same as for theprevious model. The prior for � and � (7.24) follows from the di�use prior on �, see theend of Section 7.3. The following posterior means and standard deviation result from theBayesian analysis5Yt = Nt + Zt;Nt = �0BB@ 439:0(0.8)462:2(0.6) 1CCA+ 0BB@ 0:74(0.05)0:48(0.05) 1CCA (t� 1)� 0BB@ 1:57(0.17)0:68(0.13) 1CCA s1;t;�Zt = �0BB@ 0:52(0.13)0:25(0.06) 1CCA� 1 �1:20(0.14) �Zt�1 + "t; with � = 0BB@ 0:63 0:24(0.13) (0.06)0:24 0:39(0.06) (0.05) 1CCA ; (7.45)
p1 = 0:87 (0:04) and q1 = 0:76 (0:08). Figure 7.4 shows the posterior expectations ofthe state variable s1;t. If we identify the regimes based on the fact whether E[s1;tjY T ] issmaller or larger than 0.5, we detect the following periods which correspond to s1;t = 1:1957.I { 1958.II, 1960.II { 1960.IV, 1966.II { 1967.IV, 1968.IV { 1970.II, 1974.III { 1975.I,1979.IV{1980.II, 1981.IV{1983.I, 1984.IV{1987.I and 1990.II{1991.I. These periods cor-respond reasonably well with the low growth periods in the income and consumptionseries. The posterior means of the growth rates of the income series are 0.74% duringan expansion regime and �0:83% (= 0:74 � 1:57) during a contraction regime. For theconsumption series we �nd 0.48% and �0:20% (= 0:48�0:68) respectively. Hence, duringrecessions the negative growth rate in consumption is smaller in absolute value than thegrowth rate in income. To correct for this di�erence in the growth rates, the growth ratein income has to be larger than the growth rate in consumption during expansions.The posterior mean of cointegration relation parameter �2 = �1:20 does not di�ermore than two standard errors from one. The adjustment parameters � are both negative,which indicates that there is no adjustment towards the equilibrium for the consumptionequation. This phenomenon is not due to the non-linear Markov trend in the model,since unreported results show that this also arises in a simple VAR model with and even5Note that we have to incorporate the Metropolis-Hastings step in the Gibbs framework to samplefrom the full conditional posterior of �, see the end of Section 7.4. In this step less than 10% of thecandidate draws for � were rejected.
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Figure 7.4. Posterior expectations of the state variable s1;t formodel (7.45).without a deterministic trend instead of a Markov trend, see also (7.46). Note that thisdoes not imply that the series move away from the equilibrium, since the adjustment ofincome towards the equilibrium is larger than the non-adjustment in consumption, seealso Johansen (1995, p. 39{42). Reduced rank Markov trend cointegration is not likelysince based on the posterior means � 0�1 equals 1:57�1:20�0:68 = 0:75, which is relativelyfar away from zero.Figure 7.5 shows the di�erence of the logarithm of US income and consumption. Theshaded areas correspond to the periods where E[s1;tjY T ] > 0:5. In these periods theposterior means of the slope of the Markov trend for the income series is smaller than forthe consumption series, which results in a negative slope of about�0:63% (= �0:83+0:20)in the cointegration relation. The positive slope of 0.26% in the cointegration in the otherperiods results from the larger positive slope of the Markov trend for the income series.The unconditional expectation of the slope of the Markov trend in the cointegrationrelation follows from the unconditional probability that s1;t = 1, i.e. Pr[s1;t = 1] = �1 =(1�p1)=(2�p1� q1), see Section 2.2. Based on the posterior means of p1 and q1 of model(7.45) this unconditional expectation of the slope in the cointegration relation is about�0:03%, which is almost zero. This implies that the unconditional expectation of theslopes of the Markov trends in the per capita income and consumption series are roughlythe same.Finally, to analyse the role of the Markov trend, we consider a multivariate VAR(1)model without Markov trends, i.e. model (7.7) with �1 = 0 and k = 1. The priors for theparameters of this model are given by (7.15){(7.16) and (7.21). For �0 we take a di�useprior, p(�0) / 1. The posterior means with standard deviations between parentheses of
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Figure 7.5. Di�erence between the logarithm of US per capitaincome and consumption, 1957.I{1992.IV. The shaded areascorrespond to recessions.this model areYt = Nt + Zt;Nt = �0BB@ 438:7(1.1)462:3(0.7) 1CCA+ 0BB@ 0:41(0.09)0:44(0.08) 1CCA (t� 1)�Zt = 0BB@ �0:17 0:20(0.05) (0.06)�0:06 0:07(0.03) (0.04) 1CCAZt�1 + "t; with � = 0BB@ 1:32 0:52(0.16) (0.08)0:52 0:49(0.08) (0.06) 1CCA : (7.46)
Removing the Markov trend from the model results in larger posterior means of theelements of the covariance matrix. The posterior means of the slopes of the deterministictrend are 0.41 for the income series and 0.44 for the consumption series. Note thatthe di�erence in the growth rate (=0.03%) is the same as the posterior mean of theunconditional expectation of the slope in the cointegration relation in the previous model.The 
at prior on � implies via decomposition (7.30) a prior on ��. To analyse rankreduction, we consider Bayes factors for �� = 0 and � = 0. Since we have speci�edan uninformative prior for � these Bayes factors are computed using the Savage-Dickeydensity ratio with the factor (2�)� 12 (n�r)2 in the denominator. The logarithm of theBayes factors equal ln(BF�(1j2)) = 4:88 and ln(BF�(0j2)) = 10:06. Under equal priorprobabilities Pr[rank = r] = 13 , r = 0; 1; 2 the posterior odds ratios lead to assigning99% posterior probability to the model with two stochastic trends. Hence, the evidencefor cointegration disappears if we remove the Markov trend from the model. This may



7.7 Concluding Remarks 147be explained by the fact that the Markov trend in the model (7.45) implies that thecointegration relation between consumption and income does not have a constant mean,see Figure 7.5. Therefore, neglecting the Markov structure does not results in a stationarycointegration relationship between the two series.In summary, the analysis of the presence stochastic trends in US per capita income andconsumption using multivariate Markov trend models shows that specifying the Markovtrend is the most di�cult task. We have seen that if the model does not contain enoughinformation for more than one Markov trend, the extra Markov trend can mimic randomwalk behaviour. It can also happen that overspeci�cation of the Markov trend leads tomodelling one or more outlying observations as a regime. Considering these outlyingobservations as a possible regime in the Markov trend may result in a better descriptionof the multivariate time series, but is not likely to result in better forecasts since it leadsto larger forecast uncertainty. If one however has strong beliefs about the presence ofmore than one Markov trend, it is better to impose informative priors to identify theregimes. Prior information can also enter the model by imposing a priori more structureon the multivariate Markov trend, for instance imposing that a regime change in one serieshappens one period earlier than in the other series or limiting the number of transitionsbetween the states by restricting the transition probabilities, see also Dwyer and Potter(1996) for other suggestions.7.7 Concluding RemarksIn this chapter we have presented a multivariate version of the Markov trend model ofChapter 3. The model incorporates a multivariate Markov trend speci�cation, whichallows for di�erent stochastic Markov trends for the multivariate time series. The devia-tions from the multivariate Markov trend are modelled by a vector autoregressive model.Unit roots in this VAR speci�cation also introduce stochastic trends. To analyse thenumber of stochastic trends, we have proposed a Bayesian framework based on the ideasin Chapter 6. The practical usefulness of this framework has been shown in stochastictrend analysis of three simulated series and in the analysis of seasonally adjusted US percapita income and consumption. The latter two series seem to have one common Markovtrend plus one non-Markov common stochastic trend. The posterior results of the Markovtrend show that during recessions the negative growth rate of consumption is smaller inabsolute value than the growth rate of income. This is compensated by a larger positivegrowth rate in income than in consumption during the expansion periods. Removing thecommon Markov trend from the model suggest the presence of two stochastic trends andtherefore no cointegration relation amongst the two series.The model in this chapter can be extended to analyse seasonally unadjusted series, likein Chapter 4. Therefore, we need to extend the analysis of unit roots in vector autoregres-sive model to include the presence of possible seasonal unit roots and seasonal cointegra-tion, see Engle et al. (1993) and Lee (1992). Other extensions include Markov switching



148 Multivariate Markov Trend Modelcointegration, where the parameters modelling the cointegration relations and/or adjust-ment parameters are di�erent in the regimes like in threshold cointegration, see Balke andFomby (1997).



Chapter 8Summary and ConclusionsIn this thesis we analysed trends in quarterly observed macroeconomic times series usingMarkov trend models. The analysis has been partitioned in two parts. In the �rst part wehave focused on modelling univariate time series. The analysis of trends in multivariatetime series has been considered in the second part.The basic model in the �rst part of the thesis consists of a Markov trend where thedeviations from the Markov trend are assumed to be an autoregressive process. TheMarkov trend is a stochastic trend where the direction of the slope depends on the valueof an unobserved two-state �rst-order Markov process. Since the Markov trend allows fortwo possible slope values, the Markov trend is more 
exible than a linear deterministictrend but more restricted than a random walk plus drift speci�cation. Therefore, theMarkov trend has less forecast uncertainty than the random walk.The autoregressive deviations from the Markov trend may also results in the presenceof a stochastic trend in the model. In most studies a unit root in the autoregressivepolynomial is imposed, which implies that one assumes that the series can be describedby a Markov trend plus a random walk. Sometimes this trend speci�cation may be toovariable to describe the trend in a time series and results in too much forecasts uncer-tainty. For instance, in Chapter 3 we show that quarterly observed seasonally adjustedGerman industrial production can be better described within-sample and out-of-sampleby a Markov trend stationary model.The two slopes of the Markov trend can be linked with the stage of the business cycleto model the growth rate in recession and expansion periods. The transition probabilitiesof the Markov process determine the expected duration of recessions and expansions andinference about regimes changes can be used to determine turning points. Since theMarkov trend models the trend and the business cycle simultaneously, it is importantfor business cycle inference to have a proper speci�cation of the trend of the time seriesin the Markov trend model. Furthermore, since the idea behind the Markov trend isthat recessions are recurrent events, it is necessary for business cycle analysis that thecharacteristics of every recession are roughly the same. If this is not the case, the Markovtrend may not capture all the recession periods. For instance, the empirical example ofChapter 3 shows that for German industrial production the Markov trend model does not



150 Summary and Conclusionscapture the recession in the 1960s. Contrary to the other recession periods, this recessionwas followed by a period of very high growth to reach the same growth path as beforethe recession. This problem may be solved by allowing for an extra regime in the Markovtrend, but inference about the parameters modelling this extra regime will be totallybased on the information in the recession period in the 1960s.Business cycle analysis is usually based on seasonally adjusted time series. Seasonallyadjusted series are often constructed from seasonally unadjusted series via a sequence ofmoving average operations. Therefore, some observations of a seasonal adjusted seriesmay consist of a weighted average of recession and expansion observations. This mayin
uence the inference on the business cycle, especially the dating of turning points. Ad-ditionally, many studies show that the business cycle and the seasonal 
uctuations arenot independent, which suggest that seasonal variation may contain valuable informationabout the business cycle. To model the business cycle and the seasonal variation simul-taneously, we have extended the Markov trend model with a seasonal component. Theseasonal component consists of seasonal dummies and incorporates the possibility thatseasonal mean shifts may coincide with changes in the stage of the business cycle. Fur-thermore, we allow for changes in the seasonal pattern due to seasonal stochastic trends.The analysis of quarterly observed German unemployment with the (seasonal) Markovtrend model shows that there is a di�erence in the estimated duration of recession andexpansion periods and in the dating of turning points for the seasonally adjusted and un-adjusted series. After correcting for di�erent growth rates during recession and expansionperiods, the seasonal pattern in the unemployment series seems to be constant.In the second part of the thesis we have considered a multivariate version of theunivariate Markov trend model for the analysis of multivariate time series. The modelconsist of a multivariate Markov trend and the deviations from this trend follow a vectorautoregressive process. The multivariate Markov trend speci�cation consists of correlatedunivariate Markov trends. Just as in the univariate model, imposing unit roots in thevector autoregressive polynomial corresponds to the assumption of random walk typestochastic trends in the multivariate time series.Just as in the univariate case, the slopes of the Markov trend can be linked with thestages of the business cycle. It allows for di�erent business cycles in every univariate se-ries, for instance di�erent turning points and durations of recession and expansion periods.However, there may be not enough information in the data to analyse a general multi-variate Markov trend. In practice, it may happen that one of the Markov trends mimicsthe behaviour of a random walk stochastic trend, as the example in Chapter 7 shows, orthat it models one or two more or less outlying observations as a regime. Although thelatter possibility is interesting, this indicates an overspeci�cation of the Markov trend. Tolimit the number of Markov trends, we have considered common Markov trends. Com-mon Markov trends occur if a linear combination of two series, which contain a Markovtrend, does not contain a Markov trend. Additionally, we have analysed the number of(common) stochastic trends resulting from unit roots in the vector autoregressive part ofthe model. The determination of the number of Markov trend can be based on inference,



Summary and Conclusions 151but if the data do not contain enough information it may be wishful to impose a priorisome structure, like common Markov trends. As a special case we have considered thesituation of common business cycles, where the turning points and hence the expectedduration of recession and expansion periods in time series are the same. The empiricalillustration in Chapter 7 suggest that quarterly observed seasonally adjusted per capitaincome and consumption of the United States have one common Markov trend, whichcan be interpreted as a common business cycle and one common random walk trend. Theposterior results of the Markov trend show that during recessions the negative growthrate of consumption is smaller in absolute value than the growth rate of income. This iscompensated by a larger positive growth rate in income than in consumption during theexpansion periods. If we remove the Markov trend from the model there is no posteriorevidence for common stochastic trends in the series anymore.For the inference in the Markov trend models we have chosen a Bayesian approach.The inference has been based on a relatively di�use prior speci�cation to let the datainformation in the likelihood dominate the inference. Informative priors can easily beincluded in the analysis. However, one has to be careful for including strong prior infor-mation, which is not in accordance with the information in the data. Since the numberof observations in the recession periods is relatively small, one may expect that posteriorresults for parameters which model the recessions are very sensitive to prior informationfor these parameters. The determination of the appropriate trend speci�cation in thetime series has been based on posterior odds ratios. For the univariate Markov trendmodels, we have build on available Bayesian methods, while for the multivariate models,we have developed a new Bayesian framework to analyse the number of stochastic trends.The practical usefulness of these posterior odds ratios has been illustrated with simulatedexamples. A topic for further research is to analyse the sensitivity of the results withrespect to several prior speci�cations.Alternative speci�cations to model business cycle characteristics are threshold au-toregressive [TAR] models, see e.g. Potter (1995) and smoothed threshold autoregressive[STAR] models, see e.g. Ter�asvirta and Anderson (1992). Instead of transition probabil-ities like in the Markov trend models, a change in regime occurs if a lagged value of thetimes series exceeds a certain threshold level. These models allow for di�erent dynamicstructure during recession and expansion periods for the �rst or fourth di�erences of theseries and permit even explosive dynamic behaviour in some regimes. A regime dependentconstant is usually added in a linear way to the autoregressive model, so that there isno explicit modelling of the trend. A nice interpretation of di�erent growth rates duringrecession and expansion periods as in the Markov trend models is therefore not possi-ble. Due to the complex structure of these models, the characteristics of the estimatedthreshold model usually have to be analysed using Monte Carlo simulations.Just as in the threshold models we may allow for di�erent dynamic structures in re-cession and expansion regimes in the Markov trend models considered in this thesis. Itremains however to be seen whether there is enough information in the relatively smallnumber of recession observations for this extensions, since this may lead to a substantial



152 Summary and Conclusionsincrease in the number of parameters modelling the recession. A more promising strategyto extend the basic Markov trend model is to consider time varying transition probabili-ties. Durland and McCurdy (1994) consider transition probabilities, which depend on thenumber of periods that the process has been in the regime. Filardo (1994) and Diebold,Lee and Weinbach (1994) consider logistic functions of explanatory variables to model thetransition probabilities. Possible explanatory variables are functions of the lagged valuesof the time series or exogenous variables, for instance leading indicators. For a multivari-ate modelling of macroeconomic time series using Markov trend models, it seems betterto develop a priori model structures than to simplify general models via a sequence oftests. Model structures, which model common business cycles as for instance in Kim andYoo (1995) or where regime switches in one variable help to forecast regime switches inother variables seem interesting, see e.g. Phillips (1991a).In this thesis we have modelled the deviations from the trend with autoregressiveprocesses with uncorrelated normal distributed errors. Extensions to moving averagemodels and to e.g. t-distributed errors are of course possible. Geweke (1993) providesBayesian techniques to include t-distributed errors in a time series model. It will howevermake the Markov trend less important since under the assumption of t-distributed errorsdeviations from a deterministic linear trend are more likely, see Hoek, Lucas and vanDijk (1995) for a similar result. Kleibergen and Hoek (1995) and Chib and Greenberg(1994) show that Bayesian analysis of univariate time series models with moving averageerrors is feasible. Extending the vector autoregressive model with moving average errorsis still a topic for further research. Furthermore, it seems interesting to examine how ina Bayesian analysis the initial observations in autoregressive moving average models haveto be treated.



Nederlandse Samenvatting(Summary in Dutch)Veel macro-economische tijdreeksen, zoals industri�ele productie en bruto nationaal pro-duct, worden gekarakteriseerd door lange perioden met positieve groei, de expansie peri-oden, en korte perioden met negatieve groei, de recessies. Wanneer de korte recessieperioden gezien worden als tijdelijke afwijkingen van de lange termijn positieve groei, danwordt de lange termijn groei in deze tijdreeksen meestal beschreven met een lineaire deter-ministische trend. Vaak blijkt deze lineaire trendspeci�catie met een constante groeivoette restrictief om de trend in de tijdreeks te beschrijven, bijvoorbeeld wanneer de tijdelijkeafwijkingen van de lange termijn groei een permanente invloed hebben op de toekomstigewaarde van de tijdreeks. Daarom wordt de deterministische lineaire trend vaak uitgebreid.Een populaire uitbreiding van de lineaire trend is het toevoegen van een kansvariablein de trendspeci�catie, zodat de richting van de trend in elke periode niet deterministischmaar stochastisch is. De bekendste speci�catie in dit verband is de stochastische wande-ling. Deze bestaat uit een som van ongecorreleerde schokken, die voortkomen uit eencontinue kansverdeling. Schokken in elke periode hebben een permanente invloed optoekomstige waarden van de tijdreeks. Er wordt bij deze trendspeci�catie echter geenonderscheid gemaakt tussen de invloed van schokken tijdens recessie en expansie peri-oden. Een alternatieve trendspeci�catie, die schokken tijdens recessies en expansies welasymmetrische behandelt, is de Markov trend. Dit is een stochastische trend, waarbijde richting van de trend bepaald wordt door een niet-waargenomen eerste orde Markovproces met twee toestanden. De overgangskansen van het Markov proces modelleren deovergangen tussen recessies en expansies. Dit impliceert dat de huidige richting van deMarkov trend afhankelijk is van de richting van de trend in de vorige periode, hetgeenniet van toepassing is voor de stochastische wandeling. Aangezien het aantal mogelijkerichtingen van de Markov trend ook nog beperkt is tot twee, is deze minder 
exibel dande stochastische wandeling, die een continu scala aan mogelijke richtingen van de trendtoelaat.Naast het modelleren van de trend in macro-economische tijdreeksen, is de Markovtrend ook geschikt voor het analyseren van conjunctuurcycli. Aangezien de twee richtingenvan de Markov trend corresponderen met de groeivoeten in recessie en expansie peri-oden, kan de analyse van regime veranderingen gebruikt worden voor het bepalen vanomslagpunten. De overgangskansen van het Markov proces bepalen de verwachte duur



154 Nederlandse Samenvattingvan recessie en expansie perioden. Voor het modelleren van de afwijkingen van de trendwordt meestal een autoregressief proces gekozen. Vaak modelleert men echter de eersteverschillen van de afwijkingen met een autoregressief proces, hetgeen komt overeen metveronderstelling van de aanwezigheid van een Markov trend plus een stochastische wande-ling in de tijdreeks. Het analyseren van de lengte en de omslagpunten van de conjunctuur-cyclus blijkt afhankelijk te zijn van de trendspeci�catie. Dit is niet verwonderlijk aangeziende trend en de conjunctuurcyclus door de Markov trend simultaan gemodelleerd worden,en het toevoegen van een extra stochastische trend de schattingsresultaten van de Markovtrend be��nvloedt. Een adequate trendspeci�catie is daarom gewenst.In dit proefschrift beschouwen we methoden voor het analyseren van trends in macro-economische tijdreeksen. We beperken ons tot de hiervoor besproken trendspeci�caties.De analyse vindt plaats vanuit een Bayesiaans perspectief. In tegenstelling tot eenklassieke benadering, wordt bij een Bayesiaanse analyse de onzekerheid in parametersmeegenomen, bijvoorbeeld bij het bepalen van omslagpunten van de conjunctuurcyclusen bij het bepalen van voorspelonzekerheid. De Bayesiaanse analyse in dit proefschriftis gebaseerd op niet-informatieve prioren en kan gezien worden als uitgebreide analysevan de informatie in de aannemelijkheidsfunctie. De onzekerheid in de uitkomsten wordtgedomineerd door de variatie in de tijdreeksen zonder grote invloed van priorspeci�catie.Informatieve prioren kunnen echter op eenvoudige wijze worden ingebracht in de analyse.Het proefschrift is opgebouwd uit twee delen. In het eerste deel beschouwen we hetmodelleren van de trend in univariate tijdreeksen. Het tweede deel behandelt trendsin multivariate tijdreeksen, waarbij we ons concentreren op het analyseren van gemeen-schappelijke trends. De inleiding en motivatie voor het proefschrift worden gegeven inHoofdstuk 1. Bovendien bevat dit hoofdstuk een kort literatuuroverzicht van het gebruikvan Markov processen bij het modelleren van macro-economische en �nanci�ele tijdreeksen.Hoofdstuk 2 geeft een korte inleiding in het modelleren van de trend in univariatemacro-economische tijdreeksen. We beschrijven verschillende veel gebruikte trendspe-ci�caties, waaronder de lineaire deterministische trend, de stochastische wandeling ende Markov trend. Voor de genoemde trendspeci�caties wordt de nauwkeurigheid vanhet beschrijven van de trend binnen de steekproef vergeleken met voorspelonzekerheid.We laten zien dat een trendspeci�catie, die in elke periode een groot aantal mogelijkerichtingen van de trend toelaat, resulteert in een grotere voorspelonzekerheid dan eenspeci�catie met slechts een beperkt aantal mogelijke richtingen. Daarom zal onder-speci�catie van de trend in een tijdreeks ten onrechte leiden tot een kleine voorspel-onzekerheid en een te 
exibele beschrijving van de trend binnen de steekproef tot eente grote voorspelonzekerheid. Tot slot besteden we aandacht aan het modelleren van deafwijkingen van de trend door middel van autoregressieve modellen. We laten zien dateen eenheidswortel in de autoregressieve structuur de aanwezigheid van een stochastischetrend, te weten een stochastische wandeling, in de tijdreeks impliceert.In Hoofdstuk 3 beschouwen we het univariate Markov trend model. Dit model bestaatuit een univariate Markov trend, waarbij de afwijkingen van de trend worden gemodelleerddoor een autoregressief model. We bespreken de aanwezigheid van stochastische trends en



Summary in Dutch 155de invloed van exogene schokken op het niveau en de eerste verschillen van de reeks onderverschillende trendspeci�caties in het model. Voor het analyseren van de trendcomponentin het model stellen we een Bayesiaanse strategie voor. We beschouwen priorspeci�catie,een simulatiemethode voor het verkrijgen van posterior resultaten en voorspelverdelingen,en posterior kansen voor de aanwezigheid van stochastische trends. Meestal wordt bij hetmodelleren van macro-economische tijdreeksen met behulp van een Markov trend modelveronderstelt dat de reeks een Markov trend plus een stochastische wandeling bevat.Dit komt tot uitdrukking in het analyseren van de eerste verschillen van de reeks. Hetanalyseren van per kwartaal waargenomen seizoensgecorrigeerde industri�ele productie vanDuitsland toont aan dat deze reeks beter beschreven kan worden door een stationairautoregressief model rond een Markov trend. Deze trendspeci�catie resulteert in beterevoorspellingen en minder voorspelonzekerheid dan de hiervoor genoemde veel gebruiktespeci�catie. Bovendien leert de analyse van Duitse tijdreeks ons dat het modelleren vanrecessies met een Markov trend vereist dat de karakteristieken van alle recessies ongeveerhetzelfde zijn. Voor Duitse industri�ele productie blijkt de Markov trend niet in staat omde recessie in de jaren zestig te traceren. In tegenstelling tot de andere recessies wordtdeze recessies gevolgd door een periode van zeer snelle groei, waardoor de reeks weerterugkeert naar het oude groeipad van voor de recessie.Het analyseren van de conjunctuurcyclus vindt meestal plaats met behulp van seizoens-gecorrigeerde tijdreeksen, aangezien men verwacht dat het sterk dominerende seizoens-patroon het dateren van omslagpunten bemoeilijkt. Bij populaire seizoenscorrectiemetho-den wordt de huidige waarde van de tijdreeks vervangen door een gewogen gemiddelde vantoekomstige waarnemingen en waarnemingen uit het verleden. Dus ook waarnemingendie corresponderen met omslagpunten worden vervangen door een gewogen gemiddeldevan waarnemingen die corresponderen met expansie en recessie perioden. Dit kan leidentot een incorrecte datering van omslagpunten op basis van seizoensgecorrigeerde reek-sen. In Hoofdstuk 4 onderzoeken we de invloed van seizoenscorrectie op het daterenvan omslagpunten in de conjunctuurcyclus. Hiervoor wordt het univariate Markov trendmodel uit Hoofdstuk 3 uitgebreid met een seizoenscomponent bestaande uit seizoens-dummies. Voor het modelleren van mogelijke veranderingen in het seizoenspatroon overde tijd, maken we gebruik van stochastische seizoenstrends, die ontstaan door de aan-wezigheid van seizoenseenheidswortels in het autoregressieve deel van het Markov trendmodel. Aangezien veranderingen in het seizoenspatroon kunnen samenvallen met deomslagpunten in de conjunctuurcyclus bevat het model ook verschillende seizoensgemid-delden tijdens recessie en expansie perioden. Het uitgebreide Markov trend model biedt demogelijkheid voor een simultane modellering van het seizoenspatroon en de conjunctuur-cyclus. Om veranderingen in het seizoenspatroon en regime veranderingen goed uit elkaarte houden, is voor het analyseren van de conjunctuurcyclus naast een goede trendbeschrij-ving ook een adequate beschrijving van het seizoenspatroon nodig. De Bayesiaanse metho-den uit Hoofdstuk 3 worden uitgebreid voor het analyseren van de aanwezigheid vanstochastische seizoenstrends. De analyse van per kwartaal waargenomen Duitse werk-loosheid toont verschillen in de datering van omslagpunten en in de verwachte lengte van



156 Nederlandse Samenvattingde conjunctuurcyclus voor de seizoensgecorrigeerde en de ongecorrigeerde tijdreeks. Voorde ongecorrigeerde reeks geldt bovendien dat na correctie voor verschillende groeivoetentijdens recessie en expansie perioden er geen signi�cante verandering in het seizoens-patroon te ontdekken valt.In het tweede deel van het proefschrift beschouwen we het modelleren van trendsin multivariate tijdreeksen. Hoofdstuk 5 geeft een korte inleiding in multivariate trend-speci�caties. Deze trendspeci�caties zijn multivariate generalisaties van de univariatetrendspeci�caties uit Hoofdstuk 2, waaronder een multivariate stochastische wandeling eneen multivariate Markov trend. Speciale aandacht wordt besteed aan voorwaarden voorgemeenschappelijke trends tussen univariate tijdreeksen. We spreken van een gemeen-schappelijke trend in twee of meer tijdreeksen als een lineaire combinatie van deze tijd-reeksen, die ieder univariaat een bepaalde trend bevatten, deze trend niet meer bevat. Netzoals in de inleiding van het univariate gedeelte sluiten we af met het modelleren van deafwijkingen van de multivariate trendspeci�catie met behulp van vector autoregressievemodellen. Eenheidswortels in de autoregressieve structuur impliceren de aanwezigheidvan stochastische trends (multivariate stochastische wandelingen) in de multivariate tijd-reeksen. Wanneer het aantal eenheidswortels in het multivariate model kleiner is dan hettotaal aantal eenheidswortels in de univariate tijdreeksen, dan is er sprake van gemeen-schappelijke stochastische trends. Dit verschijnsel staat bekend onder de term cointe-gratie.In tegenstelling tot univariate analyse van stochastische trends veroorzaakt door een-heidswortels in de autoregressieve structuur, bestaat er nog geen makkelijk toepasbareBayesiaanse benadering voor het analyseren van stochastische trends in vector auto-regressieve modellen. Daarom stellen we in Hoofdstuk 6 een Bayesiaanse methode voorcointegratie-analyse in multivariate modellen voor. Deze methode is gebaseerd op eennieuwe decompositie van de parametermatrix die de foutencorrectie modelleert. We be-handelen priorspeci�catie, simulatie-algoritme voor het verkrijgen van posterior resul-taten en posterior kansen voor het aantal (gemeenschappelijke) stochastische trends intijdreeksen. Bovendien stellen we een Bayesiaanse versie van een Lagrange Multipliertoetsgrootheid voor. Ter illustratie analyseren we twee bekende vector autoregressievemodellen, die de Deense en Engelse geldvraag modelleren.De in Hoofdstuk 6 ontwikkelde methode voor de analyse van stochastische trends blijktredelijk eenvoudig uit te breiden naar complexere modellen. In Hoofdstuk 7 passen wede methode toe op een multivariate generalisatie van het Markov trend model uit Hoofd-stuk 3. Dit model is vector autoregressief rond een multivariate Markov trendspeci�catie.We behandelen de invloed van exogene schokken onder verschillende speci�caties vanhet multivariate Markov model. De informatie in tijdreeksen kan te beperkt zijn om eenalgemeen multivariaat Markov trend te analyseren. Overspeci�catie van de Markov trend-component kan leiden tot het modelleren van een of meer uitschieters in de tijdreeksen inplaats van een zinnig regime, of de Markov trend kan zelfs het gedrag van een stochastischewandeling imiteren. Het lijkt daarom wenselijk om a priori zinnige modelstructuren tespeci�ci�eren. Speciale aandacht wordt besteed aan gemeenschappelijke Markov trends,



Summary in Dutch 157cointegratie en Markov trend cointegratie. Voor het analyseren van deze gemeenschap-pelijke trends worden de Bayesiaanse technieken en methoden uit de Hoofdstukken 3 en 6aangepast en uitgebreid. Net zoals in het univariate model kan de multivariate Markovtrend worden gekoppeld aan de conjunctuurcyclus. Een gemeenschappelijke Markov trendkan worden ge��nterpreteerd als een gemeenschappelijke conjunctuurcyclus in tijdreeksen.We concluderen op basis van posterior resultaten van het multivariateMarkov trend modeldat er tussen per capita inkomen en consumptie van de Verenigde Staten een gemeen-schappelijke Markov trend en een cointegratierelatie bestaat. De posterior resultatenvan de gemeenschappelijke Markov trend laten zien dat tijdens recessies de negatievegroeivoet van het inkomen in absolute waarde kleiner is dan de groeivoet van consumptie.Dit wordt gecompenseerd door een grotere positieve groeivoet in het inkomen dan in con-sumptie tijdens expansie perioden. Het belang van de Markov trend blijkt uit het feit dater na verwijdering van de Markov trendspeci�catie uit het model geen gemeenschappelijketrend in beide tijdreeksen wordt gevonden.Hoofdstuk 8 geeft een overzicht van de belangrijkste conclusies die uit het proefschriftvolgen. Het Markov trend model blijkt een bruikbaar model voor het modelleren vantrends in macro-economische tijdreeksen. Bovendien kan het model ook gebruikt wordenvoor het analyseren van conjunctuurcycli. Voor het opsporen van recessies is het echtervan belang dat de karakteristieken van recessies ongeveer gelijk zijn. Seizoenscorrectiebe��nvloedt het dateren van omslagpunten en het analyseren van de verwachte lengte vanrecessie en expansie perioden met Markov trend modellen. Multivariate Markov trendmodellen kunnen worden gebruikt voor het modelleren van verschillen in groeivoeten vanvariabelen tijdens recessie en expansie perioden en voor het analyseren van gemeenschap-pelijke conjunctuurcycli. Dankzij moderne simulatietechnieken blijkt een Bayesiaanseanalyse van macroeconomische tijdreeksen met behulp van Markov trend modellen zeergeschikt. Tot slot bespreken we in het laatste hoofdstuk de gevoeligheid van de uitkomstenmet betrekking tot priorspeci�catie, alternatieve modelstructuren zoals drempelwaardemodellen en besteden aandacht aan mogelijke richtingen voor toekomstig onderzoek enmodelextensies, waaronder het afhankelijk maken van de overgangskansen van het Markovproces van bijvoorbeeld exogene variabelen, vertraagde endogene variabelen of het aantalperioden dat men al in een recessie of expansie zit.
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