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1 Introduction

Extreme value theory, the probability theory of rare events, is usually developed for

independently and identically distributed (i.i.d.) random variables. Correspondingly, ex-

treme value analysis, i.e. statistical inference on the tail region of a distribution function,

is usually established for i.i.d. observations. Leadbetter et al. (1983), Hsing (1991) and

Drees (2000) developed extreme value theory for stationary weakly dependent time se-

ries. The latter two references also established statistical tools for that situation. For

independent but not identically distributed random variables, a basic probabilistic result

is in Mejzler (1956). In the present paper we establish statistical tools for a class of

independent, not identically distributed observations.

As in the i.i.d. case, a basic tool for establishing statistical theory is a weighted

approximation of the tail empirical process by Brownian motion (c.f. Einmahl (1997) for

the i.i.d. case). In the case of non-identically distributed observations, this approximation

is known for the entire empirical process (Shorack and Wellner (1986), Chapter 25), but

not for the tail empirical process. The first (the entire empirical process) does not imply

the latter (the tail empirical process); see Remark 2.2 below. We shall develop the tail

empirical process result that is missing.

The special feature of the non-stationarity we deal with is explained as follows. Sup-

pose independent observations X1, · · · , Xn are generated from continuous distribution

functions Fn,1, · · · , Fn,n with a common right endpoint x∗ = sup {x : Fn,i(x) < 1} for all

i = 1, 2, · · · , n. Assume that there exists a distribution function F , with the same right

endpoint x∗, such that

lim
x→x∗

1− Fn,i(x)

1− F (x)
= cn,i (1.1)

holds uniformly for all n and all 1 ≤ i ≤ n. Here x∗ can be either a finite real number

or +∞. Moreover, we assume that the constants {cn,i}n
i=1 are bounded away from zero

and infinity, i.e. there exist a and b such that 0 < a ≤ cn,i ≤ b < +∞ for all n and all

1 ≤ i ≤ n. Notice that the distribution function F and the constants {cn,i}n
i=1 are not

uniquely identified unless a normalization condition is imposed. We impose the following
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normalization condition:

1

n

n∑
i=1

cn,i = 1. (1.2)

With this normalization condition, it is clear that as x → x∗,

1− F (x) ∼ 1

n

n∑
i=1

(1− Fn,i(x)).

Hence, in the tail region, the distribution function F can be regarded as an “average”

distribution function.

The condition (1.1) is a simple model for non-stationary observations because it as-

sumes comparability of the tail parts of the underlying distribution functions only, while

no assumption on the middle parts of the distributions has been made. We consider sta-

tistical inference in this framework. Also we consider large sample sizes n, i.e. n → ∞.

We further assume that the common distribution function F does not depend on the

sample size n. Such an assumption is crucial for establishing asymptotic theory. Nev-

ertheless, since potential applications are based on a specific finite n, it can be always

regarded as a valid assumption.

The tail empirical process result will be proved first for a simple case with uniform

distribution function (Theorem 2.1). Then, generalizing the result to distributions with

comparable tails as given in (1.1) and (1.2), we obtain a general asymptotic theory on

the weighted tail empirical process based on those non-stationary observations (Theorem

2.3).

Next, we use the tail empirical process tool to study extreme value analysis based

on non-stationary observations. For that purpose, we consider observations drawn from

distributions in the domain of attraction of an extreme value distribution. With the

notation U(x) :=
(

1
1−F

)←
(x), where ← denotes the left-continuous inverse function, the

domain of attraction condition on the F can be written as follows: there exists a real

number γ, the extreme value index, and a positive function a(t) such that, for all x > 0,

lim
t→+∞

U(tx)− U(t)

a(t)
=

xγ − 1

γ
. (1.3)
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The case γ > 0 corresponds to the so-called “heavy-tailed” case, while in the case γ < 0,

U(+∞) < ∞ is the finite right endpoint x∗ of the distribution function F . By combining

the condition (1.1) with the domain of attraction condition, we show that all distribution

functions Fn,i have the same extreme value index. In other words, the extreme value index

of the “average” distribution function also indicates the shape of the tail distribution

for each individual observation. Thus, estimating γ is important in making statistical

inference on the tail properties of the data.

In the case that the observations X1, · · · , Xn are i.i.d. with a heavy-tailed distribution

function F , i.e. γ > 0, the extreme value index γ can be estimated by the Hill estimator

in Hill (1975) as follows.

γ̂H(sn) :=

∑n
i=1 (log Xi − log sn)+∑n

i=1 1Xi>sn

, (1.4)

where sn is a threshold such that sn → ∞ and n(1 − F (sn)) → ∞ as n → ∞. Instead

of taking an deterministic threshold sn, an alternative and usual procedure is to take a

stochastic threshold which is a high order statistic. Rank the observations X1, · · · , Xn

as Xn,n ≥ Xn,n−1 ≥ · · · ≥ Xn,1. Then, the (n − k)-th order statistic Xn,n−k can be a

suitable threshold provided that as n →∞, k →∞ and k/n → 0. Subsequently, the Hill

estimator turns to be

γ̂H,k :=
1

k

k∑
i=1

log Xn,n−i+1 − log Xn,n−k. (1.5)

In the i.i.d. case, the consistency of the two Hill estimators, (1.4) and (1.5) is proved

under the domain of attraction condition (1.3) with γ > 0. Under a proper second

order condition quantifying the speed of convergence in condition (1.3), the asymptotic

normality for the two Hill estimators has been established for i.i.d. observations in Goldie

and Smith (1987) and Davis and Resnick (1984) respectively. Note that the proof of the

asymptotic normality in that case can also be derived from the asymptotic behavior of

the tail empirical process, see Example 5.1.5 in de Haan and Ferreira (2006).

In the case that the observations are not i.i.d., we use the same definition of the Hill
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estimator with a deterministic threshold as in (1.4). For defining the Hill estimator with a

stochastic threshold as in (1.5), the threshold is again chosen as the k+1-th highest value

among X1, · · · , Xn, Xn,n−k. Notice that this is different from the usual definition of order

statistic: the observations are now drawn from different distributions. Nevertheless, we

show that Xn,n−k is a good estimator of U(n/k), the (1− k/n) quantile of the “average”

distribution function F (x). As our main result, we prove that the asymptotic normality

results of the Hill estimators with deterministic threshold and stochastic threshold remain

valid. As a side result, we prove that by taking sn = U(n/k), we have that

√
k

(
γ̂H

(
U

(n

k

))
− γ̂H,k

)
P→ 0,

as n →∞. Such a result seems to be new even in the i.i.d. context.

The paper is organized as follows. Section 2 studies the tail empirical process based

on non-stationary observations. Section 3 proves the asymptotic normality of the Hill

estimators based on non-stationary observations for the γ > 0 case. Section 4 concludes

and discusses further extensions. The appendix provides proofs of an auxiliary theorem.

2 Tail empirical process with non-stationary obser-

vations

In this section, we investigate the asymptotic behavior of the tail empirical process

based on non-stationary observations. Notice that throughout this section, we do not

impose any assumption on the tail of the average distribution function F . In other

words, results in this section do not require that F belongs to the domain of attraction.

The tail empirical process is defined as follows. Firstly, denote the “empirical distri-

bution function” based on the non-stationary observations as follows:

F̂ (x) =
1

n

n∑
i=1

1Xi≤x, x < x∗. (2.1)

Consider the tail region x ≥ sn, where {sn}∞n=1 is a series of real numbers such that
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sn → x∗ and n(1−F (sn)) →∞ as n →∞. Notice that, with denoting k = n(1−F (sn)),

the requirement on the sn series is equivalent to sn = U
(

n
k

)
for some k := k(n) such that

k →∞ and k/n → 0 as n →∞. The tail empirical process is defined as

Fn(x) :=

√
n

1− F (sn)

(
(1− F̂ (x))− (1− F (x))

)
=
√

k

(
1

k

n∑
i=1

1Xi>x − n

k
(1− F (x))

)
,

for x > sn or x > U(n/k).1

To establish the asymptotic theory on the process Fn(x) for x > sn, we start with

a simple case by assuming that F is the standard uniform distribution and that the

asymptotic relation in (1.1) appears as an exact relation, i.e. 1 − Fn,i(x) = cn,i(1 − x)

for 1− 1/cn,i ≤ x ≤ 1. In other words, Xi is a uniformly distributed random variable on

[1− 1/cn,i, 1]. Hence ηi = cn,i(1−Xi) follows a standard uniform distribution. From the

independence among the Xi, the random variables η1, · · · , ηn are i.i.d.. Hence, with the

notation ηi and t = (1− x)n
k
, the process Fn in this simple case can be rewritten as

Sn(t) :=
√

k

(
1

k

n∑
i=1

1ηi<cn,itk/n − t

)
,

with t ∈ [0, 1].

We remark that the process Sn(t) is comparable with the usual tail empirical process

based on i.i.d standard uniform random variables ηi as follows. In the classical empirical

process theory, the processGn(t) :=
√

n
(

1
n

∑n
i=1 1ηi<t − t

)
weakly converges to a standard

Brownian bridge B(t) in the D−space equipped with norm ‖ ·/q ‖, where q is a proper

weight function, see, e.g. Shorack and Wellner (1986). The tail empirical process is

obtained from the process Gn(t) by letting t shrink to zero at a proper speed as n →∞.

More specifically, suppose that a series of positive numbers k := k(n) satisfies that

k → +∞ and k/n → 0 as n →∞. The tail empirical process is defined as

G̃n(t) :=
√

k

(
1

k

n∑
i=1

1ηi<tk/n − t

)
,

1Empirical processes are usually defined by scaling up the difference F̂ (x) − F (x). Here we choose
to compare 1− F̂ (x) with 1− F (x) because we focus on the right tail of the distribution.
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for 0 < t ≤ 1. In the i.i.d. case, the tail empirical process G̃n(t) converges weakly to a

standard Brownian motion W (t) in the D−space equipped with norm ‖ ·/q ‖, see, e.g.

Einmahl (1997). Here the conditions on the weight function q may differ from those used

for the empirical process. More specifically, the weight function q for the tail empirical

process can be chosen from the set Q defined by

Q =

{
q : [0, 2] → [0, +∞) : q continuous and increasing,

q(u)√
u

decreasing,

∫ 2

0

q(u)−2du < ∞
}

.

An example of such a q function is q(t) = t1/2−ε, with 0 < ε < 1/2. Throughout the

paper, we do use this q function, only except for the general result in Theorem 2.1.

It is clear that, when considering the i.i.d. case the process Sn(t) coincides with the

tail empirical process G̃n(t). For the non-identically distributed case, it differs from G̃n(t)

only by allowing different thresholds for different ηi.

The following theorem shows that, similar to G̃n(t), under the condition (1.2), Sn(t)

weakly converges to a standard Brownian motion in the D−space equipped with a norm

‖ ·/q ‖, for any q ∈ Q. The proof is postponed to the Appendix.

Theorem 2.1 Suppose a series of positive numbers k := k(n) satisfies that k → +∞
and k/n → 0 as n →∞. Suppose the weight function q belongs to the class Q. For each

n, there exists a standard Brownian motion Wn(t) defined on the same probability space

as (η1, · · · , ηn) such that as n →∞,

sup
0≤t≤2

1

q(t)
|Sn(t)−Wn(t)| P→ 0

Remark 2.2 In Chapter 25 of Shorack and Wellner (1986), the asymptotic theory on

empirical process with non-identically distributed observations has been established. The

theory shows weak convergence in the D−space equipped with a norm ‖ ·/q ‖ for some

weight function q. At a first glance, it seems that the result in Theorem 2.1 can be

derived from there. This is in fact not possible. The reason is similar to the situation in

the i.i.d. case: the asymptotic property on the empirical process with a weight function

is not sufficient for deriving the asymptotic property on the tail empirical process with a
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weight function. The details are as follows.

We have that the empirical process Gn(t) weakly converges to a standard Brownian

bridge Bn(t) in the D−space equipped with norm ‖ ·/q ‖, for some weight function q. For

example, q(t) = (t(1 − t))1/2−ε, for any ε < 1/2. By applying this result with replacing

t to tk/n, one can obtain that G̃n(t) weakly converges to a standard Brownian motion

Wn(t) in the sense that

sup
0≤t≤1

(
k

n

)ε
1

t1/2−ε

∣∣∣G̃n(t)−Wn(t)
∣∣∣ P→ 0,

as n →∞. This is not sufficient to get the result on the weighted tail empirical process,

because the extra “rate”
(

k
n

)ε
can not be omitted.

On the other hand, a stronger result on the empirical process with both a “weight

function” and an extra “rate” (nε) in Csörgo and Horváth (1993) Theorem 6.2.1 can help

to directly establish the result on tail empirical process with both a “weight function” and

an extra “rate” (kε), when the observations are i.i.d., see, e.g. the proof of Lemma 2.4.10

in de Haan and Ferreira (2006). Unfortunately, we do not have a parallel result for the

case with non-identically distributed random variables. That is why a detailed proof of

Theorem 2.1 is necessary.

Next, we establish the asymptotic behavior of Fn for a general distribution function

F and under the general framework given in (1.1) and (1.2). For that purpose, we need

a second order condition quantifying the speed of convergence in (1.1). Suppose there

exists a positive function A(t), such that as t → ∞, A(t) is eventually decreasing and

A(t) → 0, and as x →∞, ∣∣∣∣∣∣

1−Fn,i(x)

1−F (x)
− cn,i

A
(

1
1−F (x)

)
∣∣∣∣∣∣
= O(1) (2.2)

holds uniformly for all n and all 1 ≤ i ≤ n. The following theorem gives the asymptotic

behavior for the weighted tail empirical process under the second order condition.

Theorem 2.3 For each n, let X1, · · · , Xn be independent random variables following

distribution functions Fn,1, · · · , Fn,n. Suppose there exists a distribution function F such
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that the conditions (1.1) and (1.2) hold uniformly for all 1 ≤ i ≤ n. Moreover, the second

order condition (2.2) holds with some function A. Suppose a series of positive number

k := k(n) satisfies that k →∞, k/n → 0 and
√

kA(n/k) → 0 as n →∞, Then, for each

n there exists a standard Brownian motion Wn(x) defined on [0, 1] such that, as n →∞,

for any 0 < ε < 1/2,

sup
0≤t≤1

t−1/2+ε
∣∣∣Fn

(
U

( n

tk

))
−Wn(t)

∣∣∣ P→ 0. (2.3)

To write the theorem in the original form of Fn(x) on x ≥ sn, we use the transformation

that x = U
(

n
tk

)
, and sn = U(n/k). It is given as in the following corollary.

Corollary 2.4 With the same conditions and notations as in Theorem 2.3, for a se-

ries of real number sn such that as n → ∞, sn → x∗, n(1 − F (sn)) → +∞, and
√

n(1− F (sn))A(1/(1− F (sn))) → 0, we have that

sup
x≥sn

(
1− F (x)

1− F (sn)

)−1/2+ε ∣∣∣∣Fn(x)−Wn

(
1− F (x)

1− F (sn)

)∣∣∣∣
P→ 0.

Remark 2.5 Corollary 2.4 shows that F̂ (x) is a valid estimator of F (x) with proper

asymptotic normality. An immediate consequence is that the consistency of such an es-

timator holds. Here it is meaningless to discuss the consistency in the usual form as

F̂ (x)
P→ F (x) because x ≥ sn guarantees that both F̂ (x) and F (x) converges to 1 as

n → ∞. We consider a stronger form of consistency as 1−F̂ (x)
1−F (x)

P→ 1 as n → ∞. It can

be shown that under the conditions in Theorem 2.3, such a consistency result holds for

sn ≤ x ≤ tn, with tn = U

(√
n

1−F (sn)

)
. In fact, the conditions can be relaxed in the

following direction: the second order condition (2.2) and the corresponding condition that
√

n(1− F (sn))A(1/(1 − F (sn))) → 0 as n → ∞ can be omitted. The consistency result

can be established only under the “first order conditions”.

Nevertheless, the upper bound tn is necessary for the consistency result. Because

we choose to establish a stronger “consistency” result, such a consistency result can be

obtained only if 1 − F (x) is not too low, or equivalently, x is not too close to the end

point x∗. This yields the upper bound of the tail region for which the stronger consistency
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result holds. On the contrary, when studying the asymptotic behavior of the tail empirical

process, essentially, we consider the difference between 1− F̂ (x) and 1−F (x) with scaling

up by a factor
√

n
1−F (sn)

. Thus an upper bound is not necessary and the relation holds

for the entire tail region x ≥ sn.

Proof of Theorem 2.3 Denote ηi = 1−Fn,i(Xi) for 1 ≤ i ≤ n. Then η1, · · · , ηn are i.i.d.

random variables from the uniform distribution as those used in defining the process Sn.

Then, we have that

Fn

(
U

( n

tk

))
=
√

k

(
1

k

n∑
i=1

1Xi>U( n
tk)
− t

)

=
√

k

(
1

k

n∑
i=1

1ηi<1−Fn,i(U( n
tk))

− t

)

For the right hand side, with replacing 1−Fn,i by its approximation, cn,i(1−F ), we obtain

the process Sn. Hence the general idea of the proof is to approximate Fn

(
U

(
n
tk

))
by Sn(t)

and to use the asymptotic behavior of Sn(t) established in Theorem 2.1. To follow such

an idea, we need to first evaluate how accurate the approximation is. For that purpose,

we establish inequalities stemming from the second order condition to bound the term

Fn

(
U

(
n
tk

))
.

The condition (2.2) implies that there exists real numbers x0 < x∗ and Q > 0 such

that for all x > x0, ∣∣∣∣∣∣

1−Fn,i(x)

1−F (x)
− cn,i

A
(

1
1−F (x)

)
∣∣∣∣∣∣
< Q

holds uniformly for all 1 ≤ i ≤ n. Notice that all cn,i are bounded away from zero by

cn,i ≥ a > 0. Hence, for x > x0

cn,i

(
1− Q

a
A

(
1

1− F (x)

))
<

1− Fn,i(x)

1− F (x)
< cn,i

(
1 +

Q

a
A

(
1

1− F (x)

))
.

Thus, we get that

(1− δn(t))cn,i
tk

n
< 1− Fn,i

(
U

( n

tk

))
< (1 + δn(t))cn,i

tk

n
,

10



where δn(t) := Q
a
A

(
n
tk

)
> 0. Hence, we get that

Fn

(
U

( n

tk

))
=
√

k

(
1

k

n∑
i=1

1ηi<1−Fn,i(U( n
tk))

− t

)

≤
√

k

(
1

k

n∑
i=1

1
ηi<cn,i

t(1+δn(t))k
n

− t

)

= Sn (t(1 + δn(t))) +
√

ktδn(t).

A similar lower bound can be established as

Fn

(
U

( n

tk

))
≥ Sn (t(1− δn(t)))−

√
kδn(t).

Notice that δn(t) → 0 as n → ∞ uniformly for all t ∈ [0, 1]. Hence for sufficiently

large n, t(1± δn(t)) ∈ [0, 2]. Thus, we can apply Theorem 2.1 with q(t) = t1/2−ε and then

replace t with t(1± δn(t)). We obtain that, as n →∞,

sup
0≤t≤1

t−1/2+ε |Sn(t(1± δn(t)))−Wn(t(1± δn(t)))| P→ 0. (2.4)

Here we use again the fact that δn(t) → 0 as n → ∞ uniformly for t ∈ [0, 1]. Hence,

comparing (2.4) with the upper and lower boundaries of the Fn

(
U

(
n
tk

))
process, for

proving the theorem, it suffices to verify the following statements: as n →∞,

sup
0≤t≤1

t−1/2+ε
√

ktδn(t) → 0, (2.5)

sup
0≤t≤1

t−1/2+ε |Wn (t(1± δn(t)))−Wn (t)| P→ 0. (2.6)

Notice that t−1/2+ε
√

ktδn(t) = tε Q
a

√
ktA(n/(kt)). As n → ∞, it is eventually an in-

creasing function with respect to t for 0 ≤ t ≤ 1. Hence, sup0≤t≤1 t−1/2+ε
√

ktδn(t) =
√

kA(n/k) → 0 as n →∞. The relation (2.5) is thus verified.

To prove the relation (2.6), we use the Lévy’s modulus of continuity theorem: for a
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standard Brownian motion W (t), the following relation holds almost surely,

lim sup
η→0+

sup
0≤s≤t≤1,t−s≤η

|W (t)−W (s)|√
2η log(1/η)

= 1.

Moreover, given ε > 0, for sufficiently small η > 0, we have that
√

2η log(1/η) < η1/2−ε.

Therefore, given ε > 0, for sufficiently large n and all t ≤ 1, we have almost surely that

|Wn (t(1± δn(t)))−Wn (t)| ≤ (tδn(t))1/2−ε .

which implies that,

sup
0≤t≤1

t−1/2+ε |Wn (t(1± δn(t)))−Wn (t)| ≤ sup
0≤t≤1

t−1/2+ε

(
t
Q

a
A

( n

kt

))1/2−ε

=

(
Q

a
A

(n

k

))1/2−ε

.

Since A(n/k) → 0 as n → ∞, relation (2.6) is proved. The theorem follows from

combining (2.4)-(2.6) with the upper and lower bounds of Fn(x).¤

3 The Hill estimators with non-stationary observa-

tions

The results in Section 2 show that when having non-stationary observations drawn

from distributions with comparable tails, the tail empirical process has similar asymptotic

behavior as that for the i.i.d. case. In this section, we apply this result in extreme value

analysis. The main result is Theorem 3.4 on the asymptotic normality of Hill estimators

in two forms.

Let X1, · · · , Xn be independent random variables following distribution functions

Fn,1, · · · , Fn,n. Suppose there exists a distribution function F such that the conditions

(1.1) and (1.2) hold uniformly for all 1 ≤ i ≤ n. To make statistical inference on the tail

region of the distribution function F , we further assume that F belongs to the domain of

attraction. In other words, with denoting U(x) =
(

1
1−F

)←
(x), the condition (1.3) holds

for some positive function a(t) and an extreme value index γ ∈ R. The following propo-
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sition shows that the distribution function Fn,i belongs to the same domain of attraction,

for all 1 ≤ i ≤ n.

Proposition 3.1 Suppose F belongs to the domain of attraction of an extreme value

distribution with an extreme value index γ ∈ R. Then each Fn,i also belongs to the

domain of attraction with the same extreme value index γ.

Proof of Proposition 3.1 The domain of attraction condition (1.3) is equivalent to the

following condition: there exists a positive function f(t) such that, for all x such that

1 + γx > 0,

lim
t→x∗

1− F (t + xf(t))

1− F (t)
= (1 + γx)−1/γ.

Together with (1.1), we get that

lim
t→x∗

1− Fn,i(t + xf(t))

1− Fn,i(t)
= (1 + γx)−1/γ.

The proposition is thus proved. ¤

Proposition 3.1 shows that the extreme value index of the “average” distribution func-

tion F also characterizes the tail shape of the distribution functions for each observation.

Therefore, estimating the extreme value index of F is an important step for making

further statistical inference on the underlying dataset.

In the rest of this section, we consider the case that the extreme value index γ is pos-

itive. We show that when applying the Hill estimators with non-stationary observations,

they are still valid estimates of the extreme value index of the average distribution which

possess asymptotic normality.

To establish the asymptotic normality, we need a second order condition on the average

distribution function F , see Theorem 3.2.5 in de Haan and Ferreira (2006). Suppose that

there exists a function A(t) and a negative real number ρ such that A(t) has either positive

or negative sign as t →∞, A(t) → 0 as t →∞ and for any x > 0,

lim
t→∞

U(tx)
U(t)

− xγ

A(t)
= xγ xρ − 1

ρ
, (3.1)
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where U = (1/(1− F ))← is the quantile function. Here we use the same scaling function

A(t) as in (2.2). We first demonstrate that it is a reasonable assumption by the following

example.

Consider i.i.d. random variables Z1, Z2 · · · , Zn following the distribution F which

satisfies the second order condition (3.1). Define Xi = cγ
n,iZi for 1 ≤ i ≤ n. Then as

x →∞, we have that Fn,i, the distribution function of Xi, satisfies

lim
x→x∗

1− Fn,i(x)

1− F (x)
= lim

x→x∗

1− F (xc−γ
n,i )

1− F (x)
= cn,i.

Hence this is an example of non-stationary observations under the condition (1.1) and

(1.2). Moreover, from the second order condition on the U function, we get that

lim
x→x∗

1−F (tx)
1−F (x)

− x−1/γ

A
(

1
1−F (x)

) = x−1/γ xρ/γ − 1

γρ
,

which implies that uniformly

lim
x→x∗

1−Fn,i(x)

1−F (x)
− cn,i

A
(

1
1−F (x)

) = lim
x→x∗

1−F (xc−γ
n,i )

1−F (x)
− cn,i

A
(

1
1−F (x)

) = cn,i

c−ρ
n,i − 1

γρ
.

Since cn,i are bounded between a and b, we get that the second order condition (2.2)

holds with the same scaling function A as that in (3.1). Therefore, it is a reasonable

assumption to consider the same A function in the two second order conditions (2.2) and

(3.1).

Since F is heavy-tailed, its tail can be approximated by a Pareto distribution. That

leads to a specific expression of Theorem 2.3, which is given as in the following proposition.

Proposition 3.2 Assume that the conditions in Theorem 2.3 hold. Suppose that the

second order conditions (2.2) and (3.1) hold for the same function A(t). Then, as n →∞,

sup
u≥1

u1/(2γ)−ε
∣∣∣
√

k
(n

k

(
1− F̂

(
uU

(n

k

)))
− u−1/γ

)
−Wn

(
u−1/γ

)∣∣∣ P→ 0. (3.2)

Proof of Proposition 3.2 For any u ≥ 1, denote vn(u) = n
k

(
1− F

(
uU

(
n
k

)))
. We first

14



show that vn(u) is approximately u−1/γ. Notice that the second order condition (3.1)

implies that ∣∣∣∣∣
1−F (uU(n/k))
1−F (U(n/k))

· u1/γ − 1

A(n/k)

∣∣∣∣∣ = O(1)

holds uniformly for all u ≥ 1; see, e.g. inequality (B.3.25) in de Haan and Ferreira (2006).

Hence, uniformly for u ≥ 1,

∣∣∣∣
vn(u) · u1/γ − 1

A(n/k)

∣∣∣∣ = O(1). (3.3)

Next, the relation (2.3) in Theorem 2.3 can be explicitly written as

sup
0≤t≤1

t−1/2+ε
∣∣∣
√

k
(n

k

(
1− F̂

(
U

( n

kt

)))
− t

)
−Wn(t)

∣∣∣ P→ 0, (3.4)

as n → ∞. Since (3.3) implies that vn(u) is bounded uniformly for all u ≥ 1, we may

and do replace t in (3.4) by vn(u) and obtain that

sup
u≥1

(vn(u))−1/2+ε
∣∣∣
√

k
(n

k

(
1− F̂

(
uU

(n

k

)))
− vn(u)

)
−Wn(vn(u))

∣∣∣ P→ 0,

as n →∞. Since vn(u) ∼ u−1/γ holds uniformly for u ≥ 1, we get that

sup
u≥1

u1/(2γ)−ε
∣∣∣
√

k
(n

k

(
1− F̂

(
uU

(n

k

)))
− vn(u)

)
−Wn(vn(u))

∣∣∣ P→ 0, (3.5)

as n →∞. Comparing (3.5) with (3.2), to prove the lemma, it is only necessary to verify

that, as n →∞,

sup
u≥1

u1/(2γ)−ε
√

k
∣∣vn(u)− u−1/γ

∣∣ → 0,

sup
u≥1

u1/(2γ)−ε
∣∣Wn

(
u−1/γ

)−Wn (vn(u))
∣∣ P→ 0.

The first relation follows from (3.3) and the limit relation limn→∞
√

kA(n/k) = 0. The

second relation can be proved by applying the Lévy’s modulus of continuity theorem in

a similar way as in the proof of Theorem 2.1, but simpler. ¤
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Remark 3.3 Although here the relation (3.2) is established only for γ > 0, one may

obtain, following a similar proof, a corresponding result for general γ ∈ R. The expression

is the same as that in Theorem 5.1.2 in de Haan and Ferreira (2006). However, the result

obtained here is based on non-stationary observations.

Applying Proposition 3.2, we obtain the following theorem which gives the asymptotic

normality of the Hill estimators with non-stationary observations under the second order

conditions.

Theorem 3.4 Let X1, · · · , Xn be independent random variables following distribution

functions Fn,1, · · · , Fn,n. Suppose there exists a distribution function F such that the

conditions (1.1) and (1.2) hold uniformly for all 1 ≤ i ≤ n. Denote U(x) =
(

1
1−F

)←
(x).

Suppose that the second order conditions (2.2) and (3.1) hold for the same function A(t).

With a series of real number {sn}∞n=1 such that as n →∞, sn → +∞, n(1−F (sn)) → +∞
and

√
n(1− F (sn))A(1/(1− F (sn))) → 0, define the Hill estimator with a deterministic

threshold sn, γ̂H(sn), as in (1.4). Moreover, with a series of integers k := k(n) such that

k → +∞, k/n → 0 and
√

kA(n/k) → 0 as n → ∞, define the Hill estimator with a

stochastic threshold, γ̂H,k, as in (1.5). We have that, as n →∞,

√
n(1− F (sn)) (γ̂H(sn)− γ)

d→ N and
√

k (γ̂H,k − γ)
d→ N,

where N is a normally distributed random variable with mean zero and variance γ2.

Remark 3.5 The conditions on the deterministic threshold sn and the intermediate se-

quence k(n) are related to the same second order scale function A which appears in both

(2.2) and (3.1). In fact, the two second order conditions can be allowed to have different

scale functions A1 and A2. The theorem then holds with A := A1 + A2.

Remark 3.6 The consistency of the two Hill estimators is a direct consequence of The-

orem 3.4. Nevertheless, similar to the discussion regarding the consistency of the tail

empirical distribution function, the consistency is valid even without the second order con-

ditions. This is consistent with the usual asymptotic results in extreme value statistics:
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for estimators of extreme value index, first order conditions imply consistency, second

order conditions imply asymptotic normality.

Proof of Theorem 3.4 For the Hill estimator with deterministic threshold γ̂H(sn),

denote k = n(1 − F (sn)), or equivalently sn = U(n/k). It is not difficult to verify that

k satisfies all the requirements on the k(n) sequence used in the Hill estimator with

stochastic threshold. The only difference is that k defined as n(1 − F (sn)) may not be

an integer as that used for the other estimator. However, the non-integer issue does not

play a role the proof. Thus, without loss of generality, we use the same notation k for

both estimators.

We start with writing the two Hill estimators as integrals of the empirical distribu-

tion function in the tail region. The Hill estimator with deterministic threshold can be

rewritten as

γ̂H(sn) =

∫ +∞
sn

1−F̂ (x)
x

dx

1− F̂ (sn)
=

∫ +∞
1

1− F̂
(
uU

(
n
k

))
du
u

1− F̂
(
U

(
n
k

)) ,

while the Hill estimator with stochastic threshold can be rewritten as

γ̂H,k =
n

k

∫ +∞

Xn,n−k

1− F̂ (x)

x
dx =

n

k

∫ +∞

Xn,n−k/U(n/k)

1− F̂
(
uU

(n

k

)) du

u
.

For the Hill estimator with deterministic threshold, by applying Proposition 3.2, we

get that as n →∞,

√
k

(
n

k

∫ +∞

1

1− F̂
(
uU

(n

k

)) du

u
−

∫ +∞

1

u−1/γ du

u

)
=

∫ +∞

1

Wn

(
u−1/γ

) du

u
+ op(1).

Here, for the op(1) term, we have used the fact that for ε < 1/(2γ),

limn→∞
∫ +∞

1
u−1/(2γ)+ε du

u
= 1

1/(2γ)−ε
< +∞. With further simplification, we can write

that as n →∞,

√
k

(
n

k

∫ +∞

1

1− F̂
(
uU

(n

k

)) du

u
− γ

)
= γ

∫ 1

0

Wn (t)
dt

t
+ op(1). (3.6)
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Moreover, by taking u = 1 in (3.2), we get that, as n →∞,

√
k

(n

k

(
1− F̂

(
U

(n

k

)))
− 1

)
= Wn(1) + op(1).

This, together with (3.6), yields that, as n →∞,

√
k(γ̂H(sn)− γ) =

√
k




n
k

∫ +∞
1

1− F̂
(
uU

(
n
k

))
du
u

n
k

(
1− F̂

(
U

(
n
k

))) − γ




=
√

k

(
γ + 1√

k
γ

∫ 1

0
Wn (t) dt

t
+ op(1/

√
k)

1 + 1√
k
Wn(1) + op(1/

√
k)

− γ

)

= γ

(∫ 1

0

Wn (t)
dt

t
−Wn(1)

)
+ op(1).

Denote N
d
= γ

∫ 1

0
Wn (t) dt

t
− γWn(1). It is straightforward to verify that N follows a

normal distribution with mean zero and variance γ2.

Next we deal with the Hill estimator with stochastic threshold. By considering a finite

range u ∈ [1, T ] for some T > 1 in the relation (3.2), we obtain the limit relation without

a weight function as

sup
1≤u≤T

∣∣∣
√

k
(n

k

(
1− F̂

(
uU

(n

k

)))
− u−1/γ

)
−Wn

(
u−1/γ

)∣∣∣ P→ 0,

as n →∞. With applying Vervaat’s Lemma to the above relation, we get that as n →∞,

sup
δ≤u≤1

∣∣∣∣
√

k

(
Xn,n−bkuc
U(n/k)

− u−γ

)
− γu−γ−1Wn(u)

∣∣∣∣
P→ 0, (3.7)

where δ = T−1/γ > 0 is a constant. Taking u = 1 in (3.7) yields that

√
k

(
Xn,n−k

U(n/k)
− 1

)
− γWn(1)

P→ 0.

By combining this relation with (3.6), the rest of the proof follows the same lines as

in Example 5.1.5 in de Haan and Ferreira (2006). The asymptotic limit has the same
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representation as that for the Hill estimator with deterministic threshold, i.e. as n →∞,

√
k (γ̂H,k − γ) = γ

(∫ 1

0

Wn (t)
dt

t
−Wn(1)

)
+ op(1).

Hence the theorem is proved for the Hill estimator with stochastic threshold as well. ¤

Corollary 3.7 Under the same conditions as in Theorem 3.4, by taking sn = U(n/k),

we have
√

k(γ̂H(U(n/k))− γ̂H,k)
P→ 0.

as n →∞.

Corollary 3.7 implies that with a suitable choice of the thresholds, not only the limit dis-

tributions of the two types of Hill estimators are identical, but also the difference between

them converges to zero in probability. A special case is the case of i.i.d. observations.

Although seems intuitive, to our best knowledge, such a result is novel even for the i.i.d

case.

Remark 3.8 The asymptotic relation (3.2) is comparable with the weighted tail empirical

process result for heavy-tailed F in the i.i.d. case; see, e.g. Theorem 5.1.4 in de Haan

and Ferreira (2006). A result for the quantile process is given in (3.7). However, the

relation is established on a region where u is bounded away from zero. To have a result

for the full region 0 ≤ u ≤ 1, a proper weight function is necessary. This is left for future

research.

4 Conclusion and further extension

In this paper, we establish statistical tools for analyzing the tail region of distribution

functions based on non-stationary observations. The non-stationarity refers to the case

that observations are drawn from non-identical distributions. We show that by assuming

comparable tail distributions, the weighted tail empirical process based on non-stationary

observations has similar asymptotic behavior as that in the i.i.d case. This provides the
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fundamental tool for performing further extreme value analysis based on those obser-

vations. Assuming that the distribution functions belong to the domain of attraction

with a positive tail index, we prove that Hill-type estimators are still valid estimators

for the extreme value index of the underlying distribution functions and their asymptotic

properties are the same as those for i.i.d. observations.

The two Hill estimators investigated in this paper are asymptotically unbiased due

to the fact that
√

kA(n/k) → 0 as n → ∞. With a faster increasing k, i.e. as n → ∞
√

kA(n/k) → λ, finite, the estimators are asymptotically biased as in the i.i.d. case. The

asymptotic bias stems from two sources: the approximation of the tail of F by a Pareto

distribution and the approximation of 1−Fn,i(x) by cn,i(1−F (x)). The asymptotic bias

stemming from the former is the same as that in the i.i.d. case, while that from the latter

is due to the non-stationarity of the observations. The calculation of the exact form of

the asymptotic bias requires a detailed specification of the second order condition (3.1),

and is left for future research.

We remark that although we only show the asymptotic normality of the Hill-type

estimators, similar results on other estimators of the extreme value index for more general

range of γ can be established following the asymptotic behavior on the weighted tail

empirical process. In principle, the proof for the Hill estimators is based on expressing

the estimators as a functional transformation of the tail empirical process. Following the

same logic, any estimator that can be written as a proper functional of the tail empirical

process will preserve their asymptotic behaviors when the observations are non-stationary.

Examples are the probability weighted moment estimator for γ < 1/2 (Hosking and Wallis

(1987)) and the maximum likelihood estimator for γ > −1/2 (Smith (1985)).
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Appendix

Proof of Theorem 2.1 We start with a few notations. Recall that

Sn(t) =
1√
k

(
n∑

i=1

1ηi<cn,itk/n − tk

)
.

Denote S̃n(t) = Sn(t)/q(t) and W̃ (t) = W (t)/q(t), where W (t) is a standard Brownian

motion on [0, 2].

The theorem states that the process S̃n(t) converges to a Gaussian process W̃ (t)

weakly in the (D[0, 2],D, ‖ · ‖) space, where ‖ · ‖ denotes the supremum norm. The

proof follows similar lines as in Shorack (1979), but emphasizes on the tail region of the

empirical process. Since the proof is rather long, we split it into the following lemmas.

Lemma A.1 For any d ≥ 1 and 0 ≤ t1 < · · · < td ≤ 2, the finite dimensional marginal

(Sn(t1), · · · ,Sn(td)) converges to (W (t1), · · · ,W (td)) in distribution.

Denote S̄n(t) = Sn([kt]/k). Then S̄n(t) is a process in the D−space which has the two

following properties.

Lemma A.2 For any q ∈ Q, define ˜̄Sn(t) := S̄n(t)/q(t). Then
{

˜̄Sn(t) : n ≥ 1
}

is tight.

Lemma A.3 For any q ∈ Q, as n →∞,

‖ S̃n(t)− ˜̄Sn(t) ‖ P→ 0.

For the notations, we remark that the sign ·̄ gives a step version of the underlying process,

while the sign ·̃ gives a weighted version weighing by the q function. For example, the

process ˜̄Sn is thus the weighted version of the process S̄n that is a step version of the

original Sn process.

Theorem 2.1 follows from the above three lemmas with the following logic. By con-

sidering a bounded q function, Lemma A.3 implies that as n →∞, ‖ Sn(t)− S̄n(t) ‖ P→ 0.

Together with Lemma A.1, we get that the process S̄n(t) converges to W (t) in terms of
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any finite dimensional marginal distribution, which also implies the convergence of the

process ˜̄Sn(t) to W̃ (t) in terms of finite dimensional marginal distribution. Combining

with the tightness of the process ˜̄Sn(t) guaranteed by Lemma A.2, we get the weak con-

vergence of the process ˜̄Sn(t) to W̃ (t) in the (D[0, 2],D, ‖ · ‖) space. Using Lemma A.3

again, we get that the process S̃n(t) weakly converges to W̃ (t) in the D−space equipped

with the supremum norm. Theorem 2.1 is thus proved. ¤

The remaining part of the appendix is devoted to prove Lemma A.1–A.3.

Proof of Lemma A.1 For any 0 ≤ t1 < · · · < td ≤ 2 and real number y1, · · · , yd, we

check that as n →∞,

Sn(y1, · · · , yd; t1, · · · td) :=
d∑

j=1

yjSn(tj)
d→

d∑
j=1

yjW (tj).

Note that

Sn(y1, · · · , yd; t1, · · · td) =
n∑

i=1

(Yn,i − EYn,i),

where Yn,i = 1√
k

∑d
j=1 yj1ηi<cn,iktj/n. We calculate V (Yn,i) as

V (Yn,i) =
1

k

d∑
j=1

d∑

l=1

yjyl(cn,itj ∧ tl − (cn,i)
2tjtlk/n).

Hence

v2
n := V (Sn(y1, · · · , yd; t1, · · · td)) =

d∑
j=1

d∑

l=1

yjyltj ∧ tl − k

n2

n∑
i=1

(cn,i)
2

d∑
j=1

d∑

l=1

yjyltjtl

Since k/n → 0 as n →∞ and 1
n

∑n
i=1 c2

n,i ≤ b2 where b is the upper bound of all cn,i, we

get that

lim
n→∞

v2
n =

d∑
j=1

d∑

l=1

yjyltj ∧ tl = V (
d∑

j=1

yjW (tj)).

We check the Lyapunov condition that

lim
n→∞

1

v3
n

n∑
i=1

E |Yn,i − EYn,i|3 = 0.
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Since

n∑
i=1

E |Yn,i − EYn,i|3 ≤
n∑

i=1

E(|Yn,i|+ |EYn,i|)3

≤ 8
n∑

i=1

E |Yn,i|3 + (|EYn,i|)3

=: 8(I1 + I2),

with verifying that limn→∞ I1 = limn→∞ I2 = 0, the Lyapunov condition holds. Firstly,

from EYn,i =
√

k
n

cn,i

∑d
j=1 yjtj, we get that

0 ≤ lim
n→∞

I2 = lim
n→∞

n∑
i=1

(√
k

n
cn,i

d∑
j=1

yjtj

)3

≤ lim
n→∞

n

(√
k

n
b

)3 (
d∑

j=1

yjtj

)3

= 0.

Secondly, from Hölder inequality, we get that

EY 3
n,i =

(√
1

k

)3

E

(
d∑

j=1

yj1ηi<cn,itjk/n

)3

≤
(√

1

k

)3

E

(
d∑

j=1

y
3/2
j

)2 d∑
j=1

1ηi<cn,itjk/n

=
cn,i

n

1√
k

(
d∑

j=1

y
3/2
j

)2 d∑
j=1

tj,

which implies that

0 ≤ lim
n→∞

I1 ≤ lim
n→∞

1√
k

(
d∑

j=1

y
3/2
j

)2 d∑
j=1

tj = 0.

With checking the Lyapunov condition, we can apply the Lyapunov Central Limit The-

orem to obtain that Sn(y1,··· ,yd;t1,···td)
vn

d→ N(0, 1) as n → ∞, which is equivalent to

Sn(y1, · · · , yd; t1, · · · td) d→ ∑d
j=1 yjW (tj). Hence, we conclude that any finite dimensional

marginal distribution of Sn(t) converges to that of W (t) on t ∈ [0, 2], as n →∞. ¤

Proof of Lemma A.2 From Theorem 15.6 in Billingsley (1968), the tightness follows
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from the following inequality. There exists a series of measures {µn : n ≥ 1} a finite

measure µ all defined on [0, 2], such that for any 0 ≤ t1 ≤ t ≤ t2 ≤ 2,

E
(
˜̄Sn(t)− ˜̄Sn(t1)

)2 (
˜̄Sn(t2)− ˜̄Sn(t)

)2

≤ µn(t1, t]µn(t, t2], (A.1)

and µn(0, t] → µ(0, t] as n →∞ for all 0 ≤ t ≤ 2. To construct proper measures for the

inequality (A.1), we first need some properties of the q function implied by the fact that

q ∈ Q. They are given in (1.15), (3.1) and (3.2) in Shorack (1979). For any 0 ≤ s < t ≤ 2,

s

(
1

q(s)
− 1

q(t)

)2

≤ t− s

q2(t)
≤

∫ t

s

1

q2(u)
du. (A.2)

Moreover, as t → 0

(log t)
t

q2(t)
→ 0. (A.3)

Secondly, we need the following Lemma on the Sn(t) process.

Lemma A.4 The process Sn(t) satisfies the following inequalities. For any 0 ≤ t1 < t <

t2 ≤ 2,

E(Sn(t)− Sn(t1))
2(Sn(t2)− Sn(t))2 ≤ 3(t− t1)(t2 − t). (A.4)

E(Sn(t2)− Sn(t1))
4 ≤ t2 − t1

k
+ 3(t2 − t1)

2 (A.5)

Proof of Lemma A.4 Write

Sn(t)− Sn(t1) =
n∑

i=1

ξi(t1, t),

where ξi(t1, t) :=
1

ηi∈
cn,ik

n [t1,t)
−E1

ηi∈
cn,ik

n [t1,t)√
k

. From the independence among ηi,

(ξi(t1, t), ξi(t, t2)) are independent random variables. Moreover Eξi(t1, t) = Eξi(t, t2) = 0.
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Hence, we have that

E(Sn(t)− Sn(t1))
2(Sn(t2)− Sn(t))2

=E

(
n∑

i=1

ξi(t1, t)

)2 (
n∑

i=1

ξi(t, t2)

)2

=
n∑

i=1

Eξi(t1, t)
2ξi(t, t2)

2 +
∑

i6=j

E(ξi(t, t1)ξj(t2, t))
2 + 2

∑

i6=j

E(ξi(t, t1)ξi(t2, t))(ξj(t, t1)ξj(t2, t))

=:J1 + J2 + J3.

We deal with the three parts separately. Denote

pi,1 := E1
ηi∈

cn,ik

n
[t1,t)

= (t− t1)cn,i
k

n

pi,2 := E1
ηi∈

cn,ik

n
[t,t2)

= (t2 − t)cn,i
k

n

pi,3 := 1− pi,1 − pi,2

First, with J1, we have that

J1 =
n∑

i=1

E(ξi(t, t1)ξi(t2, t))
2

=
1

k2

(
n∑

i=1

pi,1(1− pi,1)
2p2

i,2 + pi,2p
2
i,1(1− pi,2)

2 + pi,3p
2
i,1p

2
i,2

)

≤ 1

k2
3

n∑
i=1

pi,1pi,2

=
3(t− t1)(t2 − t)

n2

n∑
i=1

c2
n,i.

25



Second, with J2, we have that

J2 =
∑

i6=j

E(ξi(t, t1))
2E(ξj(t2, t))

2

=
1

k2

∑

i6=j

pi,1(1− pi,1)pj,2(1− pj,2)

≤ 1

k2

∑

i6=j

pi,1pj,2

=
(t− t1)(t2 − t)

n2

∑

i 6=j

cn,icn,j.

Lastly, with J3, we have that

J3 = 2
∑

i6=j

E(ξi(t, t1)ξi(t2, t))E(ξj(t, t1)ξj(t2, t))

=
2

k2

∑

i6=j

pi,1pi,2pj,1pj,2

≤ 2(t− t1)(t2 − t)

k2

∑

i6=j

pi,1pj,2

=
2(t− t1)(t2 − t)

n2

∑

i6=j

cn,icn,j.

By aggregating J1, J2, J3, we get that

E(Sn(t)− Sn(t1))
2(Sn(t2)− Sn(t))2

≤3(t− t1)(t2 − t)

n2

n∑
i=1

c2
n,i +

3(t− t1)(t2 − t)

n2

∑

i 6=j

cn,icn,j

=
3(t− t1)(t2 − t)

n2

n∑
i=1

cn,i

n∑
j=1

cn,j

=3(t− t1)(t2 − t).

Hence the inequality (A.4) is proved. The proof for the inequality (A.5) follows similar
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steps and is given as follows.

E(Sn(t2)− Sn(t1))
4

=E

(
n∑

i=1

ξi(t1, t2)

)4

=
n∑

i=1

Eξi(t1, t2)
4 + 3

∑

i6=j

Eξi(t1, t2)
2Eξj(t1, t2)

2

≤ 1

k2

(
n∑

i=1

(pi,1 + pi,2) + 3
∑

i6=j

(pi,1 + pi,2)(pj,1 + pj,2)

)

=
t2 − t1

k
+ 3(t2 − t1)

2

∑
i6=j cn,icn,j

n2

≤t2 − t1
k

+ 3(t2 − t1)
2. ¤

Now we turn to prove the inequality (A.1). Notice that

(
S̄n(t)

q(t)
− S̄n(t1)

q(t1)

)2

=

(
S̄n(t)− S̄n(t1)

q(t)
+ S̄n(t1)

(
1

q(t)
− 1

q(t1)

))2

≤ 2

(
(S̄n(t)− S̄n(t1))

2

q2(t)
+ (S̄n(t1))

2

(
1

q(t)
− 1

q(t1)

)2
)

:= 2(I1 + I2).

Similarly we have that (
S̄n(t2)

q(t2)
− S̄n(t)

q(t)

)2

≤ 2(I3 + I4),

with I3 := (S̄n(t2)−S̄n(t))2

q2(t2)
and I4 := (S̄n(t))2

(
1

q(t2)
− 1

q(t)

)2

. Thus,

E
(
˜̄Sn(t)− ˜̄Sn(t1)

)2 (
˜̄Sn(t2)− ˜̄Sn(t)

)2

= E

(
S̄n(t)

q(t)
− S̄n(t1)

q(t1)

)2 (
S̄n(t2)

q(t2)
− S̄n(t)

q(t)

)2

≤ 4(EI1I3 + EI1I4 + EI2I3 + EI2I4).

It is clear that if t < 1/k, I1 = I2 = 0, hence all four terms are zero. Thus, we only

establish the inequalities for the four terms for t ≥ 1/k. They hold automatically for the

case t < 1/k.
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Firstly, we look at EI1I3 which is given as

EI1I3 =
1

q2(t)q2(t2)
E(Sn([kt]/k)− Sn([kt1]/k))2(Sn([kt2]/k)− Sn([kt]/k))2.

From Lemma A.4 and (A.2), we get that,

EI1I3 ≤ 3
t− t1 + 1/k

q2(t)

t2 − t + 1/k

q2(t2)

≤ 3

(∫ t

t1

1

q2(u)
du +

1

k

1

q2(t)

) (∫ t2

t

1

q2(u)
du +

1

k

1

q2(t2)

)

≤ 3

(∫ t

t1

1

q2(u)
du +

1

k

1

q2(1/k)

)(∫ t2

t

1

q2(u)
du +

1

k

1

q2(1/k)

)
.

The last step comes from t ≥ 1/k.

Secondly, we deal with EI1I4. We have that

EI1I4 =
1

q2(t)

(
1

q(t2)
− 1

q(t)

)2

E(S̄n(t)− S̄n(t1))
2(S̄n(t))2

≤ 1

q2(t)

(
1

q(t2)
− 1

q(t)

)2

E(S̄n(t)− S̄n(t1))
2 · 2 (

(S̄n(t1))
2 + (S̄n(t)− S̄n(t1))

2
)

≤ 2

q2(t)

(
1

q(t2)
− 1

q(t)

)2 (
E(S̄n(t)− S̄n(t1))

2(S̄n(t1))
2 + E(S̄n(t)− S̄n(t1))

4
)

≤ 2

q2(t)

(
1

q(t2)
− 1

q(t)

)2 (
3(t− t1 + 1/k)(t1 + 1/k) +

1

k
(t− t1 + 1/k) + 3(t− t1 + 1/k)2

)

≤ 2

q2(t)

(
1

q(t2)
− 1

q(t)

)2 (
6(t− t1 + 1/k)(t + 1/k) +

1

k
(t− t1 + 1/k)

)

= 12
t− t1 + 1/k

q2(t)
·
(

t +
7

6k

)(
1

q(t2)
− 1

q(t)

)2

≤ 12

(∫ t

t1

1

q2(u)
du +

1

k

1

q2(1/k)

)(∫ t2

t

1

q2(u)
du +

7

6k

1

q2(1/k)

)
.

Thirdly, the way we handle EI2I3 is similar to that for EI1I3, but simpler:

EI2I3 ≤ 3(t1 + 1/k)

(
1

q(t)
− 1

q(t1)

)2
t2 − t + 1/k

q2(t2)

≤ 3

(∫ t

t1

1

q2(u)
du +

1

k

1

q2(1/k)

)(∫ t2

t

1

q2(u)
du +

1

k

1

q2(1/k)

)
.
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Lastly, we deal with EI2I4, which is essentially the same as the way we handle EI1I4.

EI2I4 =

(
1

q(t)
− 1

q(t1)

)2 (
1

q(t2)
− 1

q(t)

)2

E(S̄n(t1))
2(S̄n(t))2

≤
(

1

q(t)
− 1

q(t1)

)2 (
1

q(t2)
− 1

q(t)

)2

· 2 (
E(S̄n(t1))

2(S̄n(t1)− S̄n(t))2 + E(S̄n(t1))
4
)

≤
(

1

q(t)
− 1

q(t1)

)2 (
1

q(t2)
− 1

q(t)

)2

· 2
(

3(t1 + 1/k)(t− t1 + 1/k) +
t1
k

+ 3(t1 + 1/k)2

)

≤
(

1

q(t)
− 1

q(t1)

)2 (
1

q(t2)
− 1

q(t)

)2

· 2
(

6(t1 + 1/k)t +
t1 + 1/k

k

)

= 12(t1 + 1/k)

(
1

q(t)
− 1

q(t1)

)2

·
(

t +
7

6k

)(
1

q(t2)
− 1

q(t)

)2

≤ 12

(∫ t

t1

1

q2(u)
du +

1

k

1

q2(1/k)

)(∫ t2

t

1

q2(u)
du +

7

6k

1

q2(1/k)

)
.

Combining the four terms, we get that

E
(
˜̄Sn(t)− ˜̄Sn(t1)

)2 (
˜̄Sn(t2)− ˜̄Sn(t)

)2

≤4(EI1I3 + EI1I4 + EI2I3 + EI2I4)

≤120

(∫ t

t1

1

q2(u)
du +

1

k

1

q2(1/k)

)(∫ t2

t

1

q2(u)
du +

7

6k

1

q2(1/k)

)

≤
(

11

(∫ t

t1

1

q2(u)
du +

7

6k

1

q2(1/k)

))(
11

(∫ t2

t

1

q2(u)
du +

7

6k

1

q2(1/k)

))
.

By denoting µn(s, t] = 11
(∫ t

s
1

q2(u)
du + 7

6k
1

q2(1/k)

)
, we get that the inequality (A.1) holds.

We only have to verify further that µn(0, t] → µ(0, t] for a finite measure µ. In fact,

as n → ∞, k =→ +∞, which implies that 7
6k

1
q2(1/k)

→ 0 because of the relation (A.3).

Therefore, µn(0, t] → µ(0, t] =
∫ t

0
1

q(u)
du as n →∞. The lemma is thus proved. ¤

Proof of Lemma A.3 The proof follows similar lines as in Shorack (1979). Write

sup
t∈[0,2]

∣∣∣S̃n(t)− ˜̄Sn(t)
∣∣∣ ≤ max

1≤l≤(k−1)
sup

t∈[l/k,(l+1)/k]

|Sn(t)− Sn(l/k)|
q(l/k)

+ sup
0≤t≤1/k

|Sn(t)|
q(t)

=: max
1≤l≤(k−1)

Zn,l + Zn,0.
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We first deal with Zn,l for 1 ≤ l ≤ (k − 1). We have that

Zn,l =
1√
k

sup
t∈[l/k,(l+1)/k]

∣∣∣∣
∑n

i=1 1 ηi
cn,i

n
k
∈[l/k,t) − (t− l/k)k

∣∣∣∣
q(l/k)

≤ 1√
k

sup
t∈[l/k,(l+1)/k]

∑n
i=1 1 ηi

cn,i

n
k
∈[l/k,t) + 1

q(l/k)

≤ 1√
k

∑n
i=1 1 ηi

cn,i

n
k
∈[l/k,(l+1)/k) + 1

q(l/k)

≤ 1√
k

∣∣∣∣
∑n

i=1 1 ηi
cn,i

∈[l/n,(l+1)/n) − 1

∣∣∣∣ + 2

q(l/k)

=:
1√
k

Yn,l + 2

q(l/k)
.

The relation (A.3) implies that
√

kq(l/k) ≥
√

kq(1/k) → +∞ as k →∞. Hence for any

ε > 0, there exists a Nε such that for all n > Nε,
√

kq(1/k) > max( 1
ε3 ,

4
ε
). Thus, we get

that for n > Nε,

P (Zn,l ≥ ε) ≤ P
(
Yn,l ≥

√
kq(l/k)ε− 2

)

≤ P

(
Yn,l ≥

√
kq(l/k)ε

2

)

= P

(
|Sn((l + 1)/k)− Sn(l/k)| ≥ q(l/k)ε

2

)

≤ 16
E(Sn((l + 1)/k)− Sn(l/k))4

(q(l/k)ε)4

≤ 16
1
k2 + 3 1

k2

(q(l/k)ε)4

=
64

ε4

(
1

kq2(l/k)

)2

≤ 64

ε4

(
1

kq2(l/k)

)
(ε3)2

≤ 64ε2

kq2(l/k)

In the above derivation, we use the inequality (A.5). Thus, we can derive the tail proba-
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bility on the maximum of all Zn,l as

P

(
max

1≤l≤(k−1)
Zn,l ≥ ε

)
≤

k−1∑

l=1

P (Zn,l ≥ ε) ≤ 64ε2

k−1∑

l=1

1

kq2(l/k)
≤ 64ε2

∫ 1

0

1

q2(u)
du,

which implies that

max
1≤l≤(k−1)

Zn,l
P→ 0, as n →∞.

Lastly, we show that Zn,0
P→ 0 as n → ∞. Denote m = k log k. Then m/k → ∞ as

n →∞. Moreover, from the relation (A.3), we get that as n →∞,

kq2(1/m) =
k log m

k log k
· mq2(1/m)

log m
→∞.

Write

Zn,0 = sup
0≤t≤1/m

|Sn(t)|
q(t)

+ sup
1/m≤t≤1/k

|Sn(t)|
q(t)

=: Z
(1)
n,0 + Z

(2)
n,0.

Following similar lines as in the derivation on Zn,l, by using the fact that kq2(1/m) →∞,

it can be proved that as n →∞, Z
(2)
n,0

P→ 0.

Finally, the following two facts ensure that as n → ∞, Z
(1)
n,0

P→ 0. Firstly, on the set

An :=
{

ηi

bk/n
> 1

m
for all 1 ≤ i ≤ n

}
, where b is the upper bound of all cn,i, we have that

Z
(1)
n,0 ≤

1√
k

sup
0≤t≤1/m

tk

q(t)
≤
√

k√
m

sup
0≤t≤1/m

√
t

q(t)
≤
√

k

m

1

q(1/m)
≤ 1√

mq(1/m)
→ 0,

as n →∞, in which we use the fact that
√

t
q(t)

is an increasing function on [0, 2]. Secondly,

the probability of the An set is calculated by

P (An) =
n∏

i=1

(
1− bk/n

m

)
≤ exp

(
−

n∑
i=1

bk/n

m

)
= exp

(
−bk

m

)
→ 1,

as n →∞. Thus the lemma is proved. ¤
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