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BIAS CORRECTION IN MULTIVARIATE EXTREMES
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Université Lyon 1∗ and Erasmus University†

The estimation of the extremal dependence structure is spoiled
by the impact of the bias, which increases with the number of ob-
servations used for the estimation. Already known in the univariate
setting, the bias correction procedure is studied in this paper under
the multivariate framework. New families of estimators of the stable
tail dependence function are obtained. They are asymptotically unbi-
ased versions of the empirical estimator introduced by Huang (1992).
Since the new estimators have a regular behaviour with respect to
the number of observations, it is possible to deduce aggregated ver-
sions so that the choice of the threshold is substantially simplified.
An extensive simulation study is provided as well as an application
on real data.

1. Introduction. Estimating extreme risks in a multivariate framework is highly con-
nected with the estimation of the extremal dependence structure. This structure can be de-
scribed via the stable tail dependence function (stdf) L, firstly introduced by Huang (1992).
For any arbitrary dimension d, consider a multivariate vector (X(1), . . . , X(d)) with continu-
ous marginal cumulative distribution functions (cdf) F1, . . . , Fd. The stdf is defined for each
positive reals x1, . . . , xd as

lim
t→∞

tP{1− F1(X(1)) ≤ t−1x1 or . . . or 1− Fd(X(d)) ≤ t−1xd} = L(x1, . . . , xd) .

Assuming that such a limit exists and is non degenerate is equivalent to the classical assump-
tion of existence of a multivariate domain of attraction for the componentwise maxima (see
e.g. de Haan and Ferreira (2006, Chapter 7)). The previous limit can be rewritten as

lim
t→∞

t [1− F{F−1
1 (1− t−1x1), . . . , F−1

d (1− t−1xd)}] = L(x1, . . . , xd) ,(1)

where F denotes the multivariate cdf of the vector (X(1), . . . , X(d)), and for j = 1, . . . , d,
F−1
j (t) = inf{z ∈ R : Fj(z) ≥ t}. Consider a sample of size n drawn from F and an intermedi-

ate sequence, that is to say a sequence k = k(n) tending to infinity as n→∞, with k/n→ 0.
Denote by x = (x1, . . . , xd) a vector of the positive quadrant Rd

+ = {(x1, . . . , xd) : xj ≥ 0, j =
1, . . . , d} and by X(j)

k,n the kth order statistics among n realisations of the margins X(j). The
empirical estimator of L(x) is obtained from (1), replacing F by its empirical version, t by
n/k, and F−1

j (1− t−1xj) for j = 1, . . . , d by its empirical counterpart X(j)
n−[nt−1xj ],n

, so that

L̂k(x) =
1
k

n∑
i=1

1{
X

(1)
i ≥X

(1)

n−[kx1]+1,n
or ... or X

(d)
i ≥X

(d)

n−[kxd]+1,n

} .(2)

MSC 2010 subject classifications: Primary 62G32, 62G05, 62G20; secondary 60F05, 60G70
Keywords and phrases: Multivariate extreme value theory, tail dependence, bias correction, threshold choice

1
imsart-aos ver. 2014/01/08 file: fougeres_dehaan_mercadier_140725.tex date: July 25, 2014

http://www.imstat.org/aos/


2 FOUGÈRES, DE HAAN AND MERCADIER

See Huang (1992) for pioneer works on this estimator. Under suitable conditions, it can be
shown (see Section 2) that the estimator L̂k(x) has the following asymptotic expansion

L̂k(x)− L(x) ≈ ZL(x)√
k

+ α(n/k)M(x) ,(3)

where ZL is a continuous centered Gaussian process, α is a function that tends to 0 at infinity,
and M is a continuous function. In particular

√
k{L̂k(x) − L(x)} can be approximated in

distribution by ZL(x), provided that
√
kα(n/k) tends to 0 as n tends to infinity. This condition

imposes a slow rate of convergence of the estimator L̂k(x), so one would be interested in
relaxing this hypothesis. As a counterpart, as soon as

√
kα(n/k) tends to a non null constant λ,

an asymptotic bias appears and is explicitely given by λM(x). The aim of this paper is to
provide a procedure that reduces the asymptotic bias. The latter will be estimated and then
subtracted from the empirical estimator. This kind of approach has been considered in the
univariate setting for the bias correction of the extreme value index with unknown sign by Cai,
de Haan and Zhou (2013). Refer also to Peng (1998), Fraga Alves, de Haan and Lin (2003),
Gomes, de Haan and Rodrigues (2008), Caeiro, Gomes and Rodrigues (2009) and Peng (2010)
for previous contributions on this problem. Note finally that the case of dependent sequences
has been recently studied by de Haan, Mercadier and Zhou (2014).

The nonparametric estimation of the extremal dependence structure has been widely stud-
ied in the bivariate case, see for instance Huang (1992), Einmahl, de Haan and Sinha (1997),
Capéraà and Fougères (2000), Abdous and Ghoudi (2005), Guillotte, Perron and Segers (2011)
and Bücher, Dette and Volgushev (2011). Bias correction problems in the bivariate context
received less attention than in the univariate setting. To the best of our knowledge, it seems
to be reduced to Beirlant, Dierckx and Guillou (2011) and Goegebeur and Guillou (2013),
which consider the estimation of bivariate joint tails, so differs slightly from our task.

As for the multivariate framework, de Haan and Resnick (1993) introduces the empirical
estimator. General approaches under parametric assumptions on the function L have been
developed e.g. by Coles and Tawn (1991), Joe, Smith and Weissman (1992), Einmahl, Krajina
and Segers (2008) and Einmahl, Krajina and Segers (2012). Apparently, no procedure cor-
recting the bias can be found in the literature for dimension greater than two. The objective
of this article is to fill this gap. Note that our method does not only consists of applying
the univariate bias procedure at several points. Indeed, the bias is not anymore a parametric
function, so that the new feature is mainly the fact that we are able to estimate and then sub-
tract a function with an unknown form. Two families of asymptotically unbiased estimators
of the stdf are proposed and their theoretical behaviours are studied. A practical advantage
of these new estimators is that they can be aggregated, reducing that way the variability.

The paper is organized as follows: Section 2 contains hypotheses and first results. The bias
reduction procedure is described in Section 3, and the main theoretical results are presented
therein. Several theoretical models are exhibited in Section 4, that satisfy the required as-
sumptions. Section 5 illustrates the performance of the new estimators on both simulated and
real data. The estimation of side components are postponed up to Section 6. The proofs are
relegated to Section 7.

2. Notation, assumptions and first results. Let X1 = (X(1)
1 , . . . , X

(d)
1 ), . . . ,Xn =

(X(1)
n , . . . , X

(d)
n ) be independent and identically distributed multivariate random vectors with

cdf F and continuous marginal cdfs Fj for j = 1, . . . , d. Suppose F is in the domain of
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attraction of an extreme value distribution with cdf G. We recall that it supposes the existence
for j = 1, . . . , d of sequences a(j)

n > 0, b(j)n of real numbers and a cdf G with nondegenerate
marginals such that

lim
n→∞

P(max{X(1)
1 , . . . , X(1)

n } ≤ a(1)
n x1 + b(1)

n , . . . ,max{X(d)
1 , . . . , X(d)

n } ≤ a(d)
n xd + b(d)n ) = G(x)

for all points x where G is continuous. Denote by Gj the jth marginal cdf of G. It is possible
to show that the domain of attraction condition can be expressed as the condition (1) along
with the convergence of the marginal distributions to the Gj ’s, and that

L(x) = − logG
(
{− logG1}−1(x1), . . . , {− logGd}−1(xd)

)
.(4)

Let µ be the measure defined by

µ{A(x)} := L(x) ,(5)

where A(x) := {u ∈ Rd
+ : there exists j such that uj > xj} for any vector x ∈ Rd

+.

Several conditions are now described. The first two have been introduced by de Haan and
Resnick (1993).

- the first order condition consists of assuming that the limit given in (1) exists, and that
the convergence is uniform on any [0, T ]d, for T > 0.

- the second order condition consists of assuming the existence of a positive function α,
such that α(t) → 0 as t → ∞, and a non null function M such that for all x with
positive coordinates,

lim
t→∞

1
α(t)

{
t [1− F{F−1

1 (1− t−1x1), . . . , F−1
d (1− t−1xd)}]− L(x)

}
= M(x) ,(6)

uniformly on any [0, T ]d, for T > 0.
- the third order condition consists of assuming the existence of a positive function β, such

that β(t) → 0 as t → ∞, and a non null function N such that for all x with positive
coordinates,

lim
t→∞

1
β(t)

{
t [1− F{F−1

1 (1− t−1x1), . . . , F−1
d (1− t−1xd)}]− L(x)

α(t)
−M(x)

}
= N(x) ,

(7)

uniformly on any [0, T ]d, for T > 0. It implicitly requires that N is not a multiple of
the function M , see Remark 2.

Remark 1. The function L defined by (1) and that appears in (6) and (7) is homogeneous
of order 1. We refer for instance to de Haan and Ferreira (2006, pages 213 and 236). Most
of the estimators constructed in this paper use the homogeneity property. Note that pointwise
convergence in (1) entails uniform convergence on the square [0, T ]d. See for instance de Haan
and Ferreira (2006, page 237).
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Remark 2. If N = c ·M for some constant c, the relation can be reformulated as

lim
t→∞

1
β(t)

{
t [1− F{F−1

1 (1− t−1x1), . . . , F−1
d (1− t−1xd)}]− L(x)

α(t)(1 + cβ(t))
−M(x)

}
= 0 ,

which we want to exclude. We refer to de Haan and Ferreira (2006, page 385) to see that the
same complication turns up in the one-dimensional case.

Remark 3. The functions M and N involved in the second and third order conditions
satisfy some usual properties, see e.g. de Haan and Resnick (1993). More specifically, one can
show that there exists non positive reals ρ and ρ′ such that α (resp. β) is a regularly varying
function of order ρ (resp. ρ′), i.e. α(tz)/α(t)→ zρ when t→∞, for each positive z. Besides,
M is homogeneous of order 1− ρ, that is to say M(rx) = r1−ρM(x), for each positive r and
x with positive coordinates. Finally, the function N is homogeneous of order 1− ρ− ρ′.

Remark 4. An interesting situation is when the cdf F is in the domain of attraction of an
extreme value distribution G with independent components, i.e. G =

∏d
j=1Gj. Such a cdf is

said to have the property of asymptotic independence. In this case, the function M is the limit
of the joint tail of the distribution, and in dimension 2, the coefficient of tail dependence η
introduced by Ledford and Tawn (1996, 1997) equals 1/(1−ρ), where ρ is defined in Remark 3.

In this paper, we will handle two sets of assumptions. First consider

(A2) - the second order condition is satisfied, so that (6) holds;

- the coefficient of regular variation ρ of the function α defined in (6) is negative;

- the function M defined in (6) is continuous.

These hypotheses allow to get the asymptotic uniform behaviour of L̂k, the empirical estimator
of L defined by (2), as detailed in the following proposition.

Proposition 1. Let X1, . . . ,Xn be independent multivariate random vectors in Rd with
common joint cdf F and continuous marginal cdfs Fj for j = 1, . . . , d. Assume that the set of
conditions (A2) hold. Suppose further that the first order partial derivatives of L (denoted by
∂jL for j = 1, . . . , d) exist and that ∂jL is continuous on the set of points {x = (x1, . . . , xd) ∈
Rd

+ : xj > 0}. Consider L̂k the estimator of L defined by (2) where k is such that
√
kα(n/k)→

∞. Then as n tends to infinity, we get

sup
0≤x1,...,xd≤T

∣∣∣∣ 1
α(n/k)

{
L̂k(x)− L(x)

}
−M(x)

∣∣∣∣ P−→ 0 .

Under stronger assumptions, and for some choice of the intermediate sequence, the asymp-
totic distribution of the previous stochastic process can be obtained after multiplication by
the rate

√
kα(n/k). For a positive T , let D([0, T ]d) be the space of real valued functions that

are right-continuous with left-limits. Now, introduce the conditions

(A3) - the third order condition is satisfied, so that (6) and (7) hold;

- the coefficients of regular variation ρ and ρ′ of the functions α and β defined in (6)
and (7) are negative;

- the function M defined in (6) is differentiable and N defined in (7) is continuous.
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Proposition 2. Assume that the conditions of Proposition 1 are fulfilled and that the set
of conditions (A3) hold. Consider L̂k the estimator of L defined by (2) where k is such that√
kα(n/k)→∞ and

√
kα(n/k)β(n/k)→ 0. Then as n tends to infinity,

√
k

{
L̂k(x)− L(x)− α(

n

k
)M(x)

}
d−→ ZL(x) ,(8)

in D([0, T ]d) for every T > 0 where

ZL(x) := WL(x)−
d∑
j=1

WL(xjej)∂jL(x) .(9)

The process WL above is a continuous centered Gaussian process with covariance structure
E[WL(x)WL(y)] = µ{R(x) ∩ R(y)} given in terms of the measure µ defined by (5) and of
R(x) = {u ∈ Rd

+ : there exists j such that 0 ≤ uj ≤ xj}.

Remark 5. A difference between the previous result and Theorem 7.2.2 of de Haan and
Ferreira (2006) consists of the choice of the intermediate sequence that is larger here. Indeed,
we suppose |

√
kα(n/k)| → ∞ whereas they choose k(n) = o

(
n−2ρ/(1−2ρ)

)
which implies

√
kα(n/k)→ 0. Our choice requires the more informative second order condition (6). A non-

null asymptotic bias appears in our framework.

Remark 6. The conditions on k, α and β required in Proposition 2 are not too restrictive:
because of the regular variation of α and β, they are implied by the choice k(n) = nκ, with

κ ∈
(
− 2ρ

1− 2ρ
, − 2(ρ+ ρ′)

1− 2(ρ+ ρ′)

)
.

3. Bias reduction procedure. As pointed out in Remark 5, a non-null asymptotic
bias α(n/k)M(x) appears from Proposition 2. The bias reduction procedure will consist in
subtracting the estimated asymptotic bias obtained in Section 3.1. The key ingredient is the
homogeneity of the functions L and M mentioned in Remarks 1 and 3. This homogeneity will
also provide other constructions to get rid of the asymptotic bias.

3.1. Estimation of the asymptotic bias of L̂k. Equation (8) suggests a natural correction
of L̂k as soon as an estimator of α(n/k)M(x) is available. In order to take advantage of the
homogeneity of L, let us introduce a positive scale parameter a which allows to contract or
to dilate the observed points. We denote

L̂k,a(x) := a−1L̂k(ax) ,(10)

and

∆̂k,a(x) := L̂k,a(x)− L̂k(x) .(11)

From (8) one gets

√
k

{
L̂k,a(x)− L(x)− α(

n

k
)a−ρM(x)

}
d−→ a−1ZL(ax) ,(12)

imsart-aos ver. 2014/01/08 file: fougeres_dehaan_mercadier_140725.tex date: July 25, 2014



6 FOUGÈRES, DE HAAN AND MERCADIER

in D([0, T ]d) for every T > 0. Equations (11) and Proposition 1 yield as n tends to infinity,

∆̂k,a(x)
α(nk )

P−→ (a−ρ − 1)M(x) .(13)

Fixing a such that a−ρ − 1 = 1, a natural estimator of the asymptotic bias of L̂k(x) is
thus ∆̂k,2−1/ρ̂(x), where ρ̂ is an estimator of ρ. Recall that the unknown parameter ρ is
the regular variation index of the function α involved in the second order condition. Let
kρ be an intermediate sequence that represents the number of order statistics used in the
estimator ρ̂. Assume that kρ � k where k = k(n) is the sequence used in Proposition 2. A
first asymptotically unbiased estimator of L(x) can be defined as

L̊k,1,kρ(x) := L̂k(x)− ∆̂k,2−1/ρ̂(x) .(14)

The asymptotic behaviour of this estimator is provided in Theorem 3 and Remark 8. We refer
the reader to Section 6 for more details concerning the estimation of ρ.

3.2. Estimation of the asymptotic bias of L̂k,a. The previous construction can be easily
generalized by correcting the estimator L̂k,a instead of L̂k. Indeed, from (12) one can see that
the asymptotic bias of L̂k,a(x) is α(nk )a−ρM(x). Recall that when n tends to infinity, one has
for any positive real b,

∆̂k,b(x)
α(nk )

P−→ (b−ρ − 1)M(x) .

Thus, fixing b such that b−ρ − 1 = a−ρ will help for canceling the asymptotic bias. It yields
the following asymptotically unbiased estimator of L

L̊k,a,kρ(x) := L̂k,a(x)− ∆̂k,(a−ρ̂+1)−1/ρ̂(x) .(15)

Theorem 3. Assume that the conditions of Proposition 2 are fulfilled and consider the
estimator of L defined by (15). Let kρ be an intermediate sequence such that

√
kρα(n/kρ)(ρ̂−ρ)

converges in distribution. Suppose also that k is such that k = o(kρ),
√
kα(n/k) → ∞ and√

kα(n/k)β(n/k) → 0. Under these assumptions, as n tends to infinity,

√
k
{
L̊k,a,kρ(x)− L(x)

}
d−→ Y̊a(x) ,(16)

in D([0, T ]d) for every T > 0, where Y̊a is a continuous centered Gaussian process defined by

Y̊a(x) := ZL(x)− b−1ZL(bx) + a−1ZL(ax)

with covariance E[Y̊a(x)Y̊a(y)] = E[ZL(x)ZL(y)]
(
1− b−1/2 + a−1/2

)2
and b = (a−ρ + 1)−1/ρ.

Remark 7. The assumption that
√
kρα(n/kρ)(ρ̂ − ρ) converges in distribution will be

reconsidered in Section 6.

Remark 8. Theorem 3 remains true when a = 1 and thus characterizes the asymptotic
behaviour of the estimator given in (14). For this particular choice of a, the covariance reduces
to E[ZL(x)ZL(y)](2− 21/2ρ)2.
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3.3. An alternative estimation of the asymptotic bias of L̂k,a. The procedure of bias re-
duction introduced in the previous section requires the estimation of the second order param-
eter ρ. It is actually possible to avoid it, making use of combinations of estimators of L. The
asymptotic bias of L̂k,a(x) is α(nk )a−ρM(x), as already noted from (12). Making use of (13)
and homogeneity of M , one gets as n tends to infinity

∆̂kρ,a(ax)

∆̂kρ,a(ax)− a∆̂kρ,a(x)
P−→ a−ρ

a−ρ − 1
,

for any intermediate sequence kρ that satisfies
√
kρα(n/kρ)→∞. The expression

∆̂k,a(x)
∆̂kρ,a(ax)

∆̂kρ,a(ax)− a∆̂kρ,a(x)

can thus be used as an estimator of the asymptotic bias of L̂k,a(x). After simplifications,
this leads to a new family of asymptotically unbiased estimators of L(x) by substracting the
estimated bias from L̂k,a(x), namely

L̃k,a,kρ(x) =
L̂k(x)∆̂kρ,a(ax)− L̂k(ax)∆̂kρ,a(x)

∆̂kρ,a(ax)− a∆̂kρ,a(x)
,(17)

which is well defined for any real number a such that 0 < a < 1.

Theorem 4. Assume that the conditions of Proposition 2 are fulfilled and consider the
estimator of L defined by (17). Let kρ be an intermediate sequence such that

√
kρα(n/kρ)(ρ̂−ρ)

converges in distribution. Suppose also that k is such that k = o(kρ),
√
kα(n/k) → ∞,√

k = O(
√
kρα(n/kρ)) and

√
kα(n/k)β(n/k) → 0. Then, as n tends to infinity,

√
k
{
L̃k,a,kρ(x)− L(x)

}
d−→ Ỹa(x) ,(18)

in D([0, T ]d) for every T > 0, where Ỹa is a continuous centered Gaussian process with
covariance E[Ỹa(x)Ỹa(y)] given by E[ZL(x)ZL(y)](a−ρ − 1)−2(a−ρ − a−1/2)2.

Remark 9. The covariance function specified above is decreasing with respect to the pa-
rameter a for any fixed value of ρ. This suggests at first glance to choose a close to 1 in order
to reduce the asymptotic variance of Ỹa, but this would give a degenerate form of (17). See
Section 5 for practical considerations for the choice of a.

4. Theoretical examples. The aim of this section is to furnish several multivariate
distributions that satisfy the third order condition (7). For the sake of simplicity, expressions
are displayed in the bivariate setting. We start by focusing on heavy tailed margins. In this
case, a first possible step to get the pointwise convergence is to obtain, for well chosen positive
reals p and q, an expansion (for t tending to infinity) of the form

tP(X > tpx orY > tqy) = T1(x, y) + α(t)T2(x, y) + α(t)β(t)T3(x, y) + o(α(t)β(t)) ,

with T1(1, 1) > 0. One can then identify each term involved in (7) as follows

L(x, y) = T1(a(x), b(y)), M(x, y) = T2(a(x), b(y)), and N(x, y) = T3(a(x), b(y)),
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where
a(x) = x−p{T1(1,+∞)}p, b(x) = x−q{T1(+∞, 1)}q .

Applying Resnick (1986, Corollary 5.18), one can check that in such a framework a form of
the bivariate extreme value distribution G is given by

G(x, y) = exp
(
−T1(x, y)
T1(1, 1)

)
.

4.1. Powered norm densities. Following the idea of Resnick (1986, page 276 and 286),
consider first a norm ‖ · ‖, and a cone D of R2, that is to say a set such that if (x, y) ∈ D,
then (tx, ty) ∈ D for every positive t. Without loss of generality, suppose that (1, 1) ∈ D. Let
(X,Y ) be a bivariate random vector with probability density function given by

f(x, y) :=
c1D(x, y)

(1 + ‖(x, y)T ‖α)β
,

where c is a normalizing positive constant and where α and β are some positive real numbers
such that αβ > 2. Set AD(x, y) := {(u, v) ∈ D : u > x or v > y} and define p := (αβ − 2)−1.
One can check that, for j = 1, 2, 3,

Tj(x, y) =
∫∫

AD(x,y)

c cj dudv

‖(u, v)T ‖α(β+j−1)
,

where c1 = 1, c2 = −β and c3 = β(β + 1)/2. The functions M and N are homogeneous with
order given through ρ = ρ′ = −αp.

Let us discuss some particular choices of the norm:

- For the L1-norm and α = 1, the model coincides with the bivariate Pareto of type II
distribution, denoted by BPII(β) in this paper, and referred to as MP(2)(II)(0, 1, β−2)
in (Kotz, Balakrishnan and Johnson, 2000, p. 604). In this case, p = q = (β − 2)−1,
and L(x, y) = x+ y− (x−p + y−p)−1/p. The latter stdf is known as the negative logistic
model, introduced by Joe (1990), see also (Beirlant et al., 2004, p. 307).

- When the Euclidean norm is chosen, one recovers the bivariate Cauchy distribution for
α = 2, β = 3/2 and p = 1. On the positive quadrant, that means for D = R2

+, we have
c = 2/π, T1(u, v) = c(u−2 + v−2)1/2 and a(x) = b(x) = c/x. On the whole plane, which
means that D = R2, we get c = 1/(2π), T1(u, v) = c

{
u−1 + v−1 + (u−2 + v−2)1/2

}
and

a(x) = b(x) = 2c/x. This can also be seen as a particular case of the following item.
- The Student distributions with Pearson correlation coefficient θ arise choosing the norm
‖(x, y)T ‖ = ν−1/2(x2−2θxy+ y2)1/2, for a positive real number ν, α = 2, β = (ν+ 2)/2
and p = ν−1. In this case, the integral form of the function T1 can not be totally
simplified, and one classically writes the stdf as

L(x, y) = (x+ y)
[

y

x+ y
Fν+1

{
(y/x)1/ν − θ√

1− θ2
√
ν + 1

}
+

x

x+ y
Fν+1

{
(x/y)1/ν − θ√

1− θ2
√
ν + 1

}]
,

where Fν+1 is the cdf of the univariate Student distribution with ν + 1 degrees of
freedom. This dependence structure is also obtained for some elliptical models, see e.g.
(Krajina, 2012, p. 1813) and next subsection.

- Other choices for the norm would lead to other distributions. Note that one can also
relax the symmetry condition, considering for instance the Mahalanobis pseudo-norm
defined by ‖(x, y)T ‖2 = (x/σ)2 − 2ρ(x/σ)(y/τ) + (y/τ)2 for a real number ρ such that
|ρ| < 1 and some positive real numbers σ and τ .
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4.2. Elliptical distributions. Consider the usual representation of the centered elliptical
distribution (X,Y )T = RAU, in terms of a positive random variable R, a 2 × 2 matrix A
such that Σ = AAT is of full rank, and a bivariate random vector U independent of R,
uniformly distributed on the unit circle of the plane. Assume that R has a probability density
function denoted by gR. One can then express the probability density function of (X,Y ) as

f(x, y) :=
1

|detA|
gR
{

(x, y)Σ−1(x, y)T
}
.

A sufficient condition to satisfy (7) is to assume that the distribution of R belongs to the Hall
and Welsch class (Hall and Welsh (1985)), viz.

P(R > r) = cr−1/γ
{

1 +D1r
ρ/γ +D2r

(ρ+ρ1)/γ + o(r(ρ+ρ1)/γ)
}
,

with positive real c, non null reals D1 and D2, and negative reals ρ and ρ1.
One can check that, for j = 1, 2, 3,

Tj(x, y) =
c

2πγ|detA|

∫∫
{(u,v):u>x or v>y}

dudv

{(u, v)Σ−1(u, v)T }1+1/(2γ)+pj
,

where p1 = 0, p2 = −ρ/(2γ) and p3 = −(ρ+ ρ1)/(2γ).

Assuming for simplicity that Σ =

(
1 θ
θ 1

)
, the stdf can be written as

L(x, y) = (x+ y)
[

y

x+ y
F1/γ+1

{
(y/x)γ − θ√

1− θ2
√

1/γ + 1
}

+
x

x+ y
F1/γ+1

{
(x/y)γ − θ√

1− θ2
√

1/γ + 1
}]

,

which is the form already obtained for the Student distribution in Subsection 4.1 for ν = 1/γ.
See Demarta and McNeil (2005) for more details. Note finally that for a general matrix Σ
and the special case gR(r) = c(1 + rα)−β, one recovers the Mahalanobis pseudo-norm already
mentioned in the previous subsection.

When dealing with margins that are not heavy tailed, the calculus are done directly
from (6). The last two examples of bivariate distributions have short and light tailed margins
respectively.

4.3. Archimax distributions. Consider the bivariate cdf defined for each 0 ≤ u, v ≤ 1 by

(19) F (u, v) =
{

1 + L(u−1 − 1, v−1 − 1)
}−1

,

given in terms of a stdf L. This distribution has standard uniform univariate margins and cor-
responds to a particular case of Archimax bivariate copulas introduced in Capéraà, Fougères
and Genest (2000), in which the function φ(t) = t−1−1 is the Clayton Archimedean generator
with index 1. Expanding the left-hand side term of (6) leads to, as t tends to infinity,

t
{

1− F
(
1− t−1x, 1− t−1y

)}
= L(x, y) + t−1M(x, y) + t−2N(x, y) + o

(
t−2
)
,

where

M(x, y) := x2∂1L(x, y) + y2∂2L(x, y)− L2(x, y)

N(x, y) := x4/2∂2
11L(x, y) + x2y2∂2

12L(x, y) + y4/2∂2
22L(x, y)

− L(x, y)
(
2x2∂1L(x, y) + 2y2∂2L(x, y)− L2(x, y)

)
.

This allows to identify ρ = ρ′ = −1. Above, the notation ∂ijL stands for ∂2L/(∂xi∂xj).
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10 FOUGÈRES, DE HAAN AND MERCADIER

4.4. Multivariate Symmetric logistic distributions. Consider the cdf defined by

(20) F (x, y) = exp
{
−
(
e−x/r + e−y/r

)r}
,

for each x, y ∈ R, which corresponds to the bivariate extreme value distribution with Gumbel
univariate margins F1(x) = F2(x) = exp{−e−x} and symmetric logistic stdf L(x, y) = (x1/r+
y1/r)r, where 0 < r ≤ 1. This distribution has been introduced in Tawn (1988), see e.g.
(Beirlant et al., 2004, p. 304). Expanding t

[
1− F

{
F−1

1 (1− t−1x), F−1
2 (1− t−1y)

}]
leads to

L(x, y) + t−1M(x, y) + t−2N(x, y) + o
(
t−2
)
,

where

M(x, y) :=
1
2

(xx1/r + yy1/r){L(x, y)}1−1/r − 1
2
{L(x, y)}2

N(x, y) :=
1
3

(x2x1/r + y2y1/r){L(x, y)}1−1/r +
1− r

8r
(xy)1/r(x− y)2{L(x, y)}1−2/r

+
1
3!
{L(x, y)}3 − 1

2
(xx1/r + yy1/r){L(x, y)}2−1/r .

This allows to identify ρ = ρ′ = −1. The identification of second and third order terms has
previously be derived by Ledford and Tawn (1997).

5. Finite sample performances. The purpose of this section is to evaluate the per-
formance of the estimators of L introduced in Section 3. For simplicity, we will focus on
dimension 2, and simulate samples from the distributions presented in Section 4. Thanks to
the homogeneity property, one can focus on the estimation of t 7→ L(1 − t, t) for 0 ≤ t ≤ 1,
which coincides with the Pickands dependence function A (see e.g. Beirlant et al. (2004),
p. 267). Considering first the estimation at t = 1/2 leads to define aggregated versions of
our estimators. These new estimators will be both compared in terms of L1-errors for L or
associated level curves.

5.1. Estimators in practice. Let us start with the estimation of L(1/2, 1/2) for the bi-
variate Student distribution with 2 degrees of freedom. This model is a particular case of
Sections 4.1 and 4.2. For one sample of size 1000, Figure 1 gives, as functions of k, the esti-
mation of L at point (1/2, 1/2) by L̂k, L̊k and L̃k respectively defined by (2), (15) and (17).
For the last two estimators, the parameters have been tuned as follows: a = 0.4, kρ = 990
and ρ estimated using (22) with a = r = 0.4. These values have been empirically selected
based on intensive simulation, and will be kept throughout the paper. One can check from
Figure 1 that the empirical estimator L̂k behaves fairly well in terms of bias for small values
of k. Besides, the bias is efficiently corrected by the two estimators L̊k and L̃k. Since the bias
almost vanishes along the range of k, one can think about reducing the variance through an
aggregation in k (via mean or median) of L̊k or L̃k. This leads to consider the two following
estimators

L̊agg := Median(L̊k, k = 1, · · · , κn) ,

L̃agg := Median(L̃k, k = 1, · · · , κn) ,

where n is the sample size and κn is an appropriate fraction of n. Their performances will be
compared to those of the family {L̂k, k = 1, . . . , n−1}. Simplified notation {L̂k, k} will be used
instead of {L̂k, k = 1, . . . , n− 1}. Because any stdf L satisfies max(t, 1− t) ≤ L(1− t, t) ≤ 1,
the competitors have been corrected so that they satisfy the same inequalities.
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Fig 1: Estimation of L(1/2, 1/2) for the bivariate Student(2) law based on a sample of size 1000.

Remark 10. If κn satisfies the condition imposed on kn in Theorem 3 and 4, then the
aggregated estimators L̊agg and L̃agg would inherit the asymptotic properties of L̊k and L̃k.
Indeed, all the estimators jointly converge, since they are based on a single process.

Remark 11. In the following simulation study, κn is arbitrarily fixed to n − 1. Such a
choice is open to criticism since it does not satisfy the theoretical assumptions mentioned
in the previous remark. But it is motivated here by the fact that the bias happened to be
efficiently corrected even for very large values of k, as already illustrated on Figure 1. Note
however that such a choice would not be systematically the right one. In presence of more
complex models such as mixtures, κn should not exceed the size of the subpopulation with
heaviest tail. To illustrate this point, take e.g. the bivariate cdf F = pG+ (1− p)H, where G
is the cdf of the bivariate BPII(3) model and H is the uniform cdf on [0, 1]2. Then the stdf
is L(x, y) = x+ y − (1/x+ 1/y)−1, and only p% of the data belong to the targeted domain of
attraction, so κn should not exceed pn.

Classical criteria of quality of an estimator θ̂ of θ are the absolute bias (ABias) and the
mean square error (MSE) defined by

ABias =
1
N

N∑
i=1

|θ̂(i) − θ| ,

MSE =
1
N

N∑
i=1

(θ̂(i) − θ)2 ,

where N is the number of replicates of the experiment and θ̂(i) is the estimate from the ith
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12 FOUGÈRES, DE HAAN AND MERCADIER

sample. Note that what we call here Abias is also referred as MAE (for Mean Absolute Error)
in the literature. Figure 2 plots these criteria in the estimation of L(1/2, 1/2) for the bivariate
Student(2) model when n = 1000 and N = 200. Figure 2 exhibits the strong dependence of the
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Fig 2: (a) ABias (b) MSE for the estimation of L(1/2, 1/2) in the bivariate Student(2) model when
n = 1000 as a function of k.

behaviour of L̂k in terms of k, as well as the efficiency of the bias correction procedures. The
estimator L̊k given by (15) outperforms the estimator L̃k defined by (17), no matter the value
of k. Moreover, the ABias and MSE curves associated to L̊k almost reach the minimum of
those of L̂k. Finally, the aggregated version L̊agg answers surprisingly well to the estimation
problem of the stdf L. First, its performances are similar to the best reachable from the
original estimator L̂k. Second, it gets rid of the delicate choice of a threshold k (or would at
least simplify this choice, see Remark 11). These comparisons have also been done for five
other models obtained from Section 4. The results are very similar to the ones obtained for
the bivariate Student(2) distribution and are therefore not presented.

5.2. Comparisons in terms of L1-error for L. The comparisons are now handled not only
at a single point but for the whole function using an L1-error defined as follows

1
T + 1

T∑
t=1

∣∣∣∣L̂(1− t

T
,
t

T

)
− L

(
1− t

T
,
t

T

)∣∣∣∣(21)

where T is the size of the subdivision of [0, 1]. Figure 3 gives the boxplots based on N = 100
realisations of L̊agg, L̃agg and {L̂k, k} for T = 30 in the case of six bivariate models:

• First row: Cauchy and Student(2) models;
• Second row: BPII(3) model and Symmetric logistic model with r = 1/3;
• Third row: Archimax model with logistic generator L(x, y) = (x2 + y2)1/2 and mixed

generator L(x, y) = (x2 + y2 + xy)/(x+ y).

imsart-aos ver. 2014/01/08 file: fougeres_dehaan_mercadier_140725.tex date: July 25, 2014



BIAS CORRECTION IN MULTIVARIATE EXTREMES 13

L°agg L
~

agg 1 100 200 300 400 500 600 700 800 900

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

L1−error of L for the Cauchy model when n=1000

L̂k

L°agg L
~

agg 1 100 200 300 400 500 600 700 800 900

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

L1−error of L for the Student(2) model when n=1000

L̂k

L°agg L
~

agg 1 100 200 300 400 500 600 700 800 900

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

L1−error of L for the BPII(3) model when n=1000

L̂k

L°agg L
~

agg 1 100 200 300 400 500 600 700 800 900

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

L1−error of L for the Symmetric logistic model when n=1000

L̂k

L°agg L
~

agg 1 100 200 300 400 500 600 700 800 900

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

L1−error of L for the Logistic(2)−Archimax model when n=1000

L̂k

L°agg L
~

agg 1 100 200 300 400 500 600 700 800 900

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

L1−error of L for the Mixed(1)−Archimax model when n=1000

L̂k

Fig 3: Boxplot of the L1-error of function L for the estimators L̊agg, L̃agg and {L̂k, k}.
First row: bivariate Cauchy model (left) and bivariate Student(2) model (right).
Second row: bivariate BPII(3) model (left) and bivariate Symmetric logistic model (right).
Third row: bivariate Archimax model with logistic (left) and mixed generator (right).

imsart-aos ver. 2014/01/08 file: fougeres_dehaan_mercadier_140725.tex date: July 25, 2014



14 FOUGÈRES, DE HAAN AND MERCADIER

As already observed in Figure 2, the estimator L̊agg is again very competitive compared to
the best element of {L̂k, k} no matter the choice of model. Recall that the value of k leading
to the best L̂k depends crucially on the model, and is consequently unknown in practice,
which invites any users to apply this new procedure.

The estimator L̃agg is definitely less competitive compared to L̊agg. Given these results we
will not pursue with the L̃agg estimator in the rest of this paper, and will focus our attention
on the behaviour of L̊agg.

5.3. Comparisons between L̊agg, a convex version of L̊agg, and Peng’s estimator. A natural
step is now to compare the performance of our best estimator L̊agg with an existing competitor,
recently introduced by Peng (2010). In his work, Peng provides a data-driven method which
chooses the threshold via estimating a stdf. Another interesting task is to compare L̊agg with a
convexified version of itself, since any stdf is a convex function (see e.g. (Beirlant et al., 2004,
Section 8.2.2) or de Haan and Ferreira (2006, Section 6.1.5)). In the sequel these two estimates
will be denoted by L̂P , representing Peng’s candidate and by L̊aggc for the convexified version
of our best estimate.

In order to take maximal advantage from this simulation study, the three different models
implemented have been considered in two versions for each: the first model is the Gaussian
one, simulated with Pearson’s correlation coefficient ±0.5. The Gaussian model is a particular
case of elliptical distributions (see Section 4.2) which illustrates the asymptotic independent
situation (cf. Remark 4). The second model is the bivariate Symmetric logistic one, introduced
in Section 4.4, with two different strengths of dependence (close to independence on the
left column, stronger dependence on the right column). The third model is the bivariate
Student family, introduced in Sections 4.1 and 4.2 as a particular case. Two strengths of
dependence have also been chosen, close to asymptotic independence on the left column,
stronger dependence on the right column.

Our results, summarized in Figure 4, will thus exhibit in particular how the performance in
the estimation of the stdf depends on the distance to the asymptotic independence case. The
y-axis scale has been fixed for all the six cases so that one can measure that the estimation of
the stdf is a more ambitious problem under asymptotic independence. However, our estimator
L̊agg has still nice properties when comparing it to the empirical estimator L̂k.
The convex version L̊aggc performs quite equivalently as L̊agg. A reason for this is that by
construction our estimator is actually not far from a convex function. So balancing the cost
of convexifying with the benefit in the performance motivates the simple use of L̊agg.
Finally, regarding Peng’s estimator L̂P , one observes that this estimator is an interesting
alternative to the original family {L̂k, k}, which however never outperforms our proposal.
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Fig 4: Boxplot of the L1-error of function L for the estimators L̊agg, L̊aggc, L̂P and {L̂k, k}.
First row: bivariate Normal model with correlation τ : τ = 0.5 (left) and τ = −0.5 (right).
Second row: bivariate Symmetric logistic(r) model: r = 1.2 (left) and r = 3 (right).
Third row: bivariate Student(ν) model: ν = 20 (left) and ν = 2 (right).
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16 FOUGÈRES, DE HAAN AND MERCADIER

5.4. Estimating a failure probability. Let us illustrate in this subsection the question of
estimating an arbitrarily chosen failure probability P (X > 104 orY > 2 · 104), where (X,Y )
comes from the BPII(3) model. This probability is estimated via an intensive simulation study
from 200 repetitions of samples of size n = 107, and using the empirical estimator

1
n

n∑
i=1

1{Xi>104 orYi>2·104}.

Now, let us consider samples of size n = 1000. Empirical estimation will be useless for eval-
uating the probability of exceeding such extreme values for X or Y , and an extrapolation
based on Extreme Value Theory is thus needed.
First assume that it is known that the margins are standard Pareto. This probability can be
approximated by

P (X > 104 orY > 2 · 104) '
(
10−4 + 5 · 10−5

)
L(2/3, 1/3)

that naturally comes from (1), the projection on the simplex and the homogeneity of L.
Estimating the unknown parameter L(2/3, 1/3) with our candidate L̊agg and the original
family {L̂k, k} gives several boxplots (based on 500 replicates) that are presented in Figure 5.
The comparison of these estimates is again favourable to L̊agg.
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Fig 5: Boxplot (based on 500 replicates) for the estimation of P (X > 104 orY > 2 ·104) when (X,Y ) is
drawn from the BPII(3) model with sample size n = 1000 and assuming margins to be known.

Second, when the margins are not assumed to be known, the estimation of p1 = 1− F1(104)
and p2 = 1 − F2(2 · 104) can be reached by the POT method (see e.g. (Beirlant et al., 2004,
Section 7.4)) for several values of a threshold. After the study of Mean Residual Life Plots
and Quantile Plots, the thresholds have been fixed to be Xn−k,n and Yn−k,n for k = 200. The
POT estimates deduced with these thresholds are respectively denoted by p̂1 and p̂2. The
probability P (X > 104 orY > 2 · 104) is then approximated by

P (X > 104 orY > 2 · 104) ' (p̂1 + p̂2)L
(

p̂1

p̂1 + p̂2
,

p̂2

p̂1 + p̂2

)
.
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Estimating on each repetition the unknown parameter L
(

p̂1
p̂1+p̂2

, p̂2
p̂1+p̂2

)
with our candidate

L̊agg and the original family {L̂k, k} gives several boxplots (based on 500 replicates) presented
in Figure 6. It seems clear that the uncertainty on the margins F1 and F2 is much more influent
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Fig 6: Boxplot (based on 500 replicates) of the estimation of P (X > 104 orY > 2 · 104) when (X,Y )
is drawn from the BPII(3) model with sample size n = 1000 and estimating margins by POT
method.

than that of the stdf L. Such findings corroborate previous studies, see e.g. Bruun and Tawn
(1998) and de Haan and Sinha (1999).

5.5. Q-curves. Another nice representation of a function of several variables is through
its level sets. In the case of the function L, it consists of looking (for any positive real c) at
sets of the form {(x, y) ∈ R2

+, L(x, y) ≤ c}. From homogeneity property, it is characterized by

Q := {(x, y) ∈ R2
+, L(x, y) ≤ 1} .

Following de Haan and Ferreira (2006, page 245), the boundary of this set can be written as

∂Q =
{(
b(θ) cos θ, b(θ) sin θ

)
: b(θ) =

1
L(cos θ, sin θ)

, θ ∈ [0, π/2]
}
.

The estimation of ∂Q is naturally obtained by replacing L by any estimator, and this is done
here for the estimators L̊agg and {L̂k, k}. Figure 8 (left) exhibits the bias phenomenon (as k
increases) induced by L̂k in the estimation of the Q-curve. The bias factor on L̂k is illustrated
with k = 50, k = 100 and k = 800. The correction of the bias with L̊agg is effective. As done
in the previous section, the comparison of the different estimators is provided in terms of a
global criterium based on the L1-norm, given by

π

2(T + 1)

T∑
t=0

∣∣∣∣b̂( πt2T

)
− b

(
πt

2T

)∣∣∣∣ {cos
(
πt

2T

)
+ sin

(
πt

2T

)}
.

Figure 7 displays the boxplots of this measure, based on N = 100 realisations and for T = 30
under the six bivariate models given in the previous section.
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Fig 7: Boxplot of the L1-error of Q-curve for the estimators L̊agg and {L̂k, k}.
First row: bivariate Cauchy model (left) and bivariate Student(2) model (right).
Second row: bivariate BPII(3) model (left) and bivariate Symmetric logistic model (right).
Third row: bivariate Archimax model with logistic (left) and mixed generator (right).

imsart-aos ver. 2014/01/08 file: fougeres_dehaan_mercadier_140725.tex date: July 25, 2014



BIAS CORRECTION IN MULTIVARIATE EXTREMES 19

The estimation of the Q-curve based on the original estimator L̂k is strongly sensitive to
the choice of k: the bias (resp. the variability) is an increasing (resp. decreasing) function
of k. The performances of L̊agg is similar to that of the best L̂k, which is unknown in practice.
These features corroborate the conclusions drawn in Section 5.2.

To close this section, let us illustrate the Q-curve estimation on the data set of de Haan
and Ferreira (2006, page 207). As explained therein, wave height (HmO) and still water level
(SWL) have been recorded during 828 storm events on the Dutch coast. The analogous of
Figure 7.2 from de Haan and Ferreira (2006) is reported in Figure 8 (right). Even if the two
curves are not so close, the conclusion remains the same: the estimated boundary is concave,
which indicates that the high values of the two variables are dependent.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Estimation of the Q−curve for the Student(2) model when n=1000

True

L̂k

L°agg

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

HmO

S
W
L

Q-curve for Neptune data

L̂42
L°agg

Fig 8: Left: Estimation of the Q-curve for the bivariate Student(2) law based on a sample of size 1000.
Right: Estimated Q-curve for Neptune data set.

6. Estimation of second order components ρ and M . In this section, we focus on
the estimation of the function M coming from the second order condition (6) and on the
estimation of its homogeneity parameter 1− ρ.

6.1. Second order parameter ρ. A possible way to estimate ρ is to use on each margin one
of the techniques developed in the univariate setting, see e.g. Gomes, de Haan and Peng (2002)
or Ciuperca and Mercadier (2010). Other methods make use of the multivariate structure of
the data, see e.g. Peng (2010) and also Goegebeur and Guillou (2013) in a slightly different
framework. The construction described here takes likewise advantage of the multivariate in-
formation of the sample. On this purpose, the following proposition shows that a variable of
interest is the ratio of two terms ∆̂k,a, defined by (11).

Proposition 5. Assume that the conditions of Proposition 1 are fulfilled and fix positive
real numbers r and a ∈ (0, 1). Assume moreover that the function M never vanishes except
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on the axes. Then, as n tends to infinity,

sup
0≤x1,...,xd≤T

∣∣∣∣∣∆̂k,a(rx)
∆̂k,a(x)

− r1−ρ
∣∣∣∣∣ P−→ 0 .

Remark 12. In case the requirement that the function M is either positive or negative in
the positive quadrant does not hold, one could consider the integral of (∆̂k,a(x))2 over the set
{x = (x1, . . . , xd) s.t. x2

1 + . . .+ x2
d = 1} and prove a result like Lemma 7 for this statistic.

Then the integral of M2 appears in the denominator in Proposition 5 instead of M itself and
the sign of M does not matter. This will be part of a future work.

A family of consistent estimators of the parameter ρ can be derived from Proposition 5.

ρ̂k,a,r(x) :=

(
1− 1

log r
log

{
∆̂k,a(rx)
∆̂k,a(x)

})
∧ 0 .(22)

The following property can be obtained from the asymptotic expansion given in Proposition 2.

Proposition 6. Assume that the conditions of Proposition 2 are fulfilled and fix positive
real numbers r and a ∈ (0, 1). Consider the estimator of ρ defined by (22). Assume moreover
that the function M never vanishes except on the axes. Then, as n tends to infinity,

√
kα(

n

k
){ρ̂k,a,r(x)− ρ} d−→ Ẑρ,a,r(x) ,

in D([0, T ]d) for every T > 0, with

Ẑρ,a,r(x) :=
a−1ZL (ax)− ZL(x)
(a−ρ − 1)M(x) log r

− a−1ZL (rax)− ZL(rx)
(a−ρ − 1)M(x)r1−ρ log r

.

Figure 9 illustrates the finite sample behaviour of this estimator of ρ for a collection of
bivariate models introduced in Section 4, for which the true value of ρ is equal to -1. These
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Estimation of  ρ for n=1000

Fig 9: Boxplot of 500 estimations of ρ given by (22) using samples of size 1000 drawn from six models:
(a) Student(2); (b) BPII(3); (c) Symmetric Logistic with r = 1/3; (d) Archimax model with
logistic generator with r = 1/2; (e) Archimax model with mixed generator. Red line indicates
the true value of ρ = −1.

boxplots show that the estimator performs reasonably well, no matter the choice of model.
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6.2. Second order function M . Recall that from (12) the asymptotic bias of L̂k,a(x)
is given by α(nk )a−ρM(x). In order to circumvent an estimation of the term α(n/k), a
renormalisation is needed, focusing for instance on the estimation of M(x)/M(1/2) where
1/2 = (1/2, . . . , 1/2). Thanks to (13), this ratio can be consistently estimated by

∆̂k,a(x)
∆̂k,a(1/2)

as soon as k is a well chosen intermediate sequence. The asymptotic normality can also be
derived from analogous arguments to those used in the proof of Proposition 6. Details are not
presented here for the sake of simplicity.

Figure 10 summarizes the behaviour of the estimator of the curve t 7→M(t, 1−t)/M(1/2, 1/2)
through boxplots of the L1-error, defined as in (21). We observe from this figure that the best
estimation is reached for large values of k. This feature does not depend on the degree of
asymptotic dependence in the Symmetric logistic model, nor on the strength of the bias of
the original estimator L̂k detected on Figure 3. These graphs confirm that the asymptotic
bias is remarkably well estimated for large values of k. This helps to understand why the bias
subtraction is accurate for large or very large choices of k, as also commented in Section 5.1.

Concluding comments. This paper deals with the estimation of the extremal depen-
dence structure in a multivariate context. Focusing on the stdf, the empirical counterpart
is the non parametric reference. A common feature when modelling extreme events is the
delicate choice of the number of observations used in the estimation, and it spoils the good
performance of this estimator. The aim of this paper has been to correct the asymptotic bias
of the empirical estimator, so that the choice of the threshold becomes less sensitive. Two
asymptotically unbiased estimators have been proposed and studied, both theoretically and
numerically. The estimator defined in Section 3.2 proves to outperform the original estimator,
whatever the model considered. Its aggregated version defined in Section 5.1 appears as a
worthy candidate to estimate the stdf.

7. Proofs.

Proof of Proposition 1. Denote by U
(j)
i the uniform random variables U (j)

i = 1 −
Fj(X

(j)
i ) for j = 1, . . . , d. Introducing

Vk(x) =
1
k

n∑
i=1

1{
U

(1)
i ≤kx1/n or ... or U

(d)
i ≤kxd/n

}
allows to rewrite L̂k as the following

L̂k(x) = Vk

(
n

k
U

(1)
[kx1],n, . . . ,

n

k
U

(d)
[kxd],n

)
.

Write

L̂k(x)−L(x) = Vk

(
n

k
U

(1)
[kx1],n, . . . ,

n

k
U

(d)
[kxd],n

)
−n
k

[1−F{F−1
1 (1−U (1)

[kx1],n), . . . , F−1
d (1−U (d)

[kxd],n
)}]

+
n

k
[1− F{F−1

1 (1− U (1)
[kx1],n), . . . , F−1

d (1− U (d)
[kxd],n

)}]− L
(
n

k
U

(1)
[kx1],n, . . . ,

n

k
U

(d)
[kxd],n

)
+ L

(
n

k
U

(1)
[kx1],n, . . . ,

n

k
U

(d)
[kxd],n

)
− L(x) ,
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Fig 10: Boxplot of the L1-error of M(·)/M(1/2, 1/2)-curve.
First row: Bivariate logistic model with r = 0.1 (left) and with r = 0.5 (right).
Second row: Bivariate logistic model with r = 0.9 (left) and bivariate Archimax with mixed
generator (right).

and denote A1,k(x) (resp. A2,k(x) and A3,k(x)) the first line (resp. second and third lines) of
the right-hand side.
Applying de Haan and Ferreira (2006, Proposition 7.2.3) leads to

√
kA1,k(x) d−→WL(x) ,

in D([0, T ]d) for every T > 0 and for any intermediate sequence, where WL is a continuous
centered Gaussian process with covariance structure specified in Proposition 2. Due to the
Skorohod construction we can write

sup
0≤x1,...,xd≤T

∣∣∣√kA1,k(x)−WL(x)
∣∣∣→ 0 a.s. ,(23)
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which implies, since
√
kα(n/k)→∞,

sup
0≤x1,...,xd≤T

∣∣∣∣∣A1,k(x)
α
(
n
k

) ∣∣∣∣∣ = OP

(
1√

kα
(
n
k

)) .

Again for any intermediate sequence, the proof of de Haan and Ferreira (2006, Theorem 7.2.2)
ensures the convergence for j = 1, . . . , d

sup
x∈[0,T ]

|
√
k

(
n

k
U

(j)
[kx],n − x

)
+WL(xej)| → 0 a.s. ,(24)

and finally

sup
0≤x1,...,xd≤T

∣∣∣∣∣∣
√
kA3,k(x) +

d∑
j=1

WL(xjej)∂jL(x)

∣∣∣∣∣∣→ 0 a.s. .(25)

As previously, this yields

sup
0≤x1,...,xd≤T

∣∣∣∣∣A3,k(x)
α
(
n
k

) ∣∣∣∣∣ = O

(
1√

kα
(
n
k

)) .

Since the intermediate sequence satisfies
√
kα
(
n
k

)
→∞, it thus remains to prove that

sup
0≤x1,...,xd≤T

∣∣∣∣∣A2,k(x)
α(nk )

−M(x)

∣∣∣∣∣→ 0 a.s. .

The second order condition that holds uniformly on [0, T ]d in (6) yields

sup
0≤x1,...,xd≤T

∣∣∣∣∣A2,k(x)
α(nk )

−M
(
n

k
U

(1)
[kx1],n, . . . ,

n

k
U

(d)
[kxd],n

)∣∣∣∣∣→ 0 a.s. .

Then the result follows from

sup
0≤x1,...,xd≤T

∣∣∣∣M(x)−M
(
n

k
U

(1)
[kx1],n, . . . ,

n

k
U

(d)
[kxd],n

)∣∣∣∣→ 0 a.s. ,

that is obtained combining (24) and the continuity of the function M .

Proof of Proposition 2. We use the notation introduced in the proof of Proposition 1.
Thanks to the Skorohod construction, we can start from (23). Combined with (25), it is
sufficient to prove the convergence

sup
0≤x1,...,xd≤T

∣∣∣∣√k{A2,k(x)− α(
n

k
)M(x)

}∣∣∣∣→ 0 a.s. .

Note that the third order condition, the uniformity on [0, T ]d of the convergence in (7) and
the continuity of N yield

A2,k(x) = α(
n

k
)M

(
n

k
U

(1)
[kx1],n, . . . ,

n

k
U

(d)
[kxd],n

)
+OP

(
α(
n

k
)β(

n

k
)
)
.
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Thanks to (24) and to the existence of the first-order partial derivatives ∂jM (j = 1, . . . , d)
of the function M , we have that

sup
0≤x1,...,xd≤T

∣∣∣∣∣∣
√
k

{
M

(
n

k
U

(1)
[kx1],n, . . . ,

n

k
U

(d)
[kxd],n

)
−M(x)

}
+

d∑
j=1

WL(xjej)∂jM(x)

∣∣∣∣∣∣
converges to 0 in probability, as n tends to infinity. This implies that

sup
0≤x1,...,xd≤T

∣∣∣∣√k{A2,k(x)− α(
n

k
)M(x)

}∣∣∣∣ = OP

(
|
√
kα(

n

k
)β(

n

k
) + α(

n

k
)|
)
,

that completes the proof thanks to the choice of the intermediate sequence.

Proof of Theorem 3. Recall that b = (a−ρ+1)−1/ρ and denote b̂ = (a−ρ̂+1)−1/ρ̂. Write

(26) L̊k,a,kρ − L = {L̂k,a − L}+ {L̂k − L} − {L̂k,b̂ − L} ,

which equals, thanks to (12) and under Skorohod’s construction,

α

(
n

k

)
(a−ρ + 1)M(x) +

1√
k

(
a−1ZL(ax) + ZL(x)

)
− α

(
n

k

)
b̂−ρM(x)− b−1

√
k
ZL(bx) + o

(
1√
k

)
= α

(
n

k

) (
(a−ρ + 1)− b−ρ

)
M(x) +

1√
k
Y̊a(x) + α

(
n

k

)(
b−ρ − b̂−ρ

)
M(x) + o

(
1√
k

)
= α

(
n

k

) (
(a−ρ + 1)− b−ρ

)
M(x) +

1√
k
Y̊a(x) + α

(
n

k

)
OP

(
1√

kρα(n/kρ)

)
+ o

(
1√
k

)
.

The first term is zero. Since both k = o(kρ) and α is regularly varying with negative index,
the one but last term can be put into the term o

(
1√
k

)
. Finally, the covariance function follows

from the equality in law as processes between ZL(ax) and
√
aZL(x).

The proofs of Theorem 4 and Proposition 6 are based on the following auxiliary result.

Lemma 7. Assume that the conditions of Proposition 2 are fulfilled. Then for any positive
real r, one has as n tends to infinity,

√
kα(

n

k
)

{
∆̂k,a(rx)
α(nk )

− (a−ρ − 1)r1−ρM(x)

}
d−→ a−1ZL (rax)− ZL(rx) ,

in D([0, T ]d) for every T > 0.

Proof of Lemma 7. Making use of the homogeneity of the function L, write

∆̂k,a(rx) = {L̂k,a(rx)− L(rx)} − {L̂k(rx)− L(rx)} .

Using the Skorohod construction, it follows from equations (8) and (12) that

sup
0≤x1,...,xd≤T/r

∣∣∣∣∣√kα(
n

k
)

{
∆̂k,a(rx)
α(nk )

− (a−ρ − 1)r1−ρM(x)

}
− a−1ZL (rax) + ZL(rx)

∣∣∣∣∣
tends to 0 almost surely, as n tends to infinity.
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Proof of Theorem 4. Note that

L̂k(x)
∆̂kρ,a(ax)
α(n/kρ)

− L̂k(ax)
∆̂kρ,a(x)
α(n/kρ)

= L̂k(x)

(
∆̂kρ,a(ax)
α(n/kρ)

− a
∆̂kρ,a(x)
α(n/kρ)

)
− a

∆̂kρ,a(x)∆̂k,a(x)
α(n/kρ)

.

Under a Skorohod construction, Lemma 7 allows to write the expansions of the terms ∆̂k,a(x),
∆̂kρ,a(x) and ∆̂kρ,a(ax), which implies on the one hand

∆̂kρ,a(ax)
α(n/kρ)

− a
∆̂kρ,a(x)
α(n/kρ)

= a(a−ρ − 1)2M(x)

+
1√

kρα(n/kρ)

{
a−1ZL(a2x)− 2ZL(ax) + aZL(x)

}
+ o

(
1√

kρα(n/kρ)

)
,(27)

and

∆̂kρ,a(x)∆̂k,a(x)
α(n/kρ)

= α(n/k)(a−ρ − 1)2M2(x) + (a−ρ − 1)M(x)
a−1ZL(ax)− ZL(x)√

k

+OP

(
α(n/k)√
kρα(n/kρ)

+
1√

k
√
kρα(n/kρ)

)
+ o

(
1√
k

)
.(28)

on the other hand, both uniformly for x ∈ [0, T ]d. Combining (27) and (28) with equation (8),
one gets

L̂k(x)
∆̂kρ,a(ax)
α(n/kρ)

− L̂k(ax)
∆̂kρ,a(x)
α(n/kρ)

= a(a−ρ − 1)2M(x)L(x) +
1√
k
M(x)(a−ρ − 1)

(
a1−ρZL(x)− ZL(ax)

)
+

1√
kρα(n/kρ)

L(x)
{
a−1ZL(a2x)− 2ZL(ax) + aZL(x)

}
+ o

(
1√
k

)
+ o

(
1√

kρα(n/kρ)

)
.

Since the last expression and equation (27) are respectively the numerator and denominator
of L̃k,kρ,a(x), one obtains after simplifications

√
k(L̃k,kρ,a(x)− L(x)) =

a−ρZL(x)− a−1ZL(ax)
a−ρ − 1

+ o

( √
k√

kρα(n/kρ)

)
+ o(1) .

The choice of the sequences k and kρ allows to conclude since
√
k = O

(√
kρα(n/kρ)

)
.

Proof of Proposition 5. Applying Lemma 7, we have

sup
0≤x1,...,xd≤T

∣∣∣∣∣∆̂k,a(x)
α
(
n
k

) − (a−ρ − 1)M(x)

∣∣∣∣∣ P−→ 0 .(29)

As a consequence,

sup
0≤x1,...,xd≤T

∣∣∣∣∣∆̂k,a(rx)
∆̂k,a(x)

− r1−ρ
∣∣∣∣∣ = sup

0≤x1,...,xd≤T

∣∣∣∣∣∆̂k,a(rx)/α(n/k)
∆̂k,a(x)/α(n/k)

− r1−ρ
∣∣∣∣∣

= OP

(
sup

0≤x1,...,xd≤T

∣∣∣∣∣∆̂k,a(rx)
α(n/k)

− r1−ρ ∆̂k,a(x)
α(n/k)

∣∣∣∣∣
)
,
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since (a−ρ − 1)M(x) 6= 0 by assumption. Writing∣∣∣∣∣∆̂k,a(rx)
α(n/k)

− r1−ρ ∆̂k,a(x)
α(n/k)

∣∣∣∣∣ ≤
∣∣∣∣∣∆̂k,a(rx)
α(n/k)

− r1−ρ(a−ρ − 1)M(x)

∣∣∣∣∣
+

∣∣∣∣∣r1−ρ(a−ρ − 1)M(x)− r1−ρ ∆̂k,a(x)
α(n/k)

∣∣∣∣∣
and using twice equation (29) leads to the conclusion.

Proof of Proposition 6. Let denote by Qk,a,r the quotient

Qk,a,r(x) :=
∆̂k,a(rx)
∆̂k,a(x)

.

Lemma 7 used twice allows to write
√
kα(

n

k
)(Qk,a,r(x)− r1−ρ) d−→ −r1−ρ log rẐρ,a,r(x) ,(30)

where Ẑρ,a,r(x) is defined in the Proposition 6. Since ρ̂k,a,r(x) = 1− log(Qk,a,r(x))/ log r, the
result follows straightforwardly from (30) and the Delta method.
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