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Abstract

In this document, I discuss in detail how to estimate Markov regime switching models with
an example based on a US stock market index. See for example Kole and Dijk| (2017) for

an application.
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1 Specification

We assume that the asset return Y; follows a distribution that depends on a latent process S;.
At each point in time, the process S; is in one out of two regimes, which we indicate by S; = 0
and S; = 1. The return Y; behaves according to

I\I(,LL()7 0'8) if St =0

Y, ~ (1)
N(p,0%) if S; = 1.
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In both regimes, the return follows a normal distribution, though with different means and

variances. We use the function f to denote the normal PDF,

flysp,0®) = ﬂl—m exp (—%) : (2)

Of course it is possible to have different distributions in regime 0 and 1.

The latent process S; follows a first order ergodic Markov chain. This means that the
probability for regime 0 to occur at time ¢ depends solely on the regime at time ¢t — 1. We

denote these transition probabilities by
pij = Pr[Sy = i[Si—1 = j]. (3)

The transition probabilities for the departure states j should add up to one, i.e., poo + p1o = 1
and po; + p11 = 1. So, for a binary process S;, we have two free parameters, pgy and p;;. We

gather the transition probabilities in a transition matrix]

p_ Poo Por| poo 1—pn . (1)

P10 DPi1 1—poo  pua

Since the whole process S; is unobserved, so is the initial regime S;. We introduce a separate

parameter ¢ for the probability that the first regime occurs,
¢ = Pr[S, = 0]. (5)

Naturally, we have Pr[S; = 1] = 1—(. Because no conditional information about S; is available,
we cannot directly use the transition matrix to determine this probability, and we need the extra
parameter. This last parameter can be estimated, but also specified exogenously. We assume

in this document that the parameter is estimated.

2 Inference on S

The process S; is latent, which means that we will never know for sure which regime prevailed

at a certain point in time. However, we can use the information from the current and past

Formulating the transition matrix such that the columns sum to one is more convenient here.



observations, combined with the distributions and transition probabilities to make an inference
on Pr[S; = Olys, Y1, - - -, y1]. We accomplish this by using Bayes’ rule,

Pr[B|A] Pr[A]

Pr{A|B] =~

for events A and B with Pr[B] # 0. For the inference of the regime at time ¢ = 1, this means

Pr[Y; = y1|S; = 0] - Pr[S; = 0]
PrY) = yi]
Pr[Y; = 11|S1 = 0] - Pr[S; = 0]
Pr[Y; = y1|S1 = 0] - Pr[S; = 0] + Pr[Y) = y1|S1 = 1] - Pr[S) = 1]
_ f(y1; 0, 98) - €
fys o, 08) - ¢+ f(yrs pn, 07) - (1= ¢)

In the second equality, we use conditioning again, because conditional on the regime the dis-

Pr[S; = 0[Y; = 1] =

tribution of Y; is given. We make the distributions explicit in the third equality. In a sim-
ilar way, we find an expression for Pr[S; = 1Y} = ], but we can also compute this using
Pr[S; =11Y1 =y = 1 — Pr[S; = 0]Y; = ).

After computing the inferences for the regimes at time 1, we can use them to make a forecast

for the regime distribution at time 2,

Pr[Sy; = 0|Y; = 1] = Pr[S2 = 0[S, = 0,Y1 = w1 - Pr[S) = 0|1 = »1 ]+
Pr[Sy = 0[S = 1,Y1 = yi] - Pr[S1 = 1|Y1 = yi]
= Pr[Sy = 0|S; = 0] - Pr[S; = 0]Y] = y1]+
Pr[S; = 0[51 = 1] - Pr[S) = 1|Y1 = y1]
= poo Pr[S1 = 0|Y1 = y1] + po1 Pr[S1 = 1|Y1 = y1].
In the first equality we condition on the regime at time 1. In the second equality we use the
fact that S; follows a first order Markov chain independent of the process Y;. Again, we can
similarly derive Pr[Sy = 1]Y] = 3] or use Pr[Sy = 1Y = y1] = 1 — Pr[Sy = 0]Y; = 4]
The steps of calculating the inference about and forecast for the states define a recursion.
Based on the regime forecast for time 2 and the observation ys we can calculate the inference

about the regime at time 2. In turn, we use these inferences for forecasts for the regime at time

3. We can write these recursions more compact by using vector-matrix notation. We use

Pr[S; = Olys, ye—1, - - -, y1]
£t\t = (6)
Pr[St = 1|yt7 Yt—1,--- 7?/1]



to denote the vector of inferences about the regimes at time ¢, and

Pr[Sit1 = 0lys, Yi1, - - -, Y1
€t+1|t = ™
Pr[Sii1 = 1y, Yet, - - -, Y1

for the regime forecasts at time t 4 1, using information up to time t. We gather the densities

of observation y; conditional on the regimes in a vector

(e o, 05)
Ji= N (8)
Sy pa, 07)
We can construct the series of inference and forecast probabilities by the recursion
1
€2/€|t—1 T

&1t = P&y, (10)

&t = -1 O J (9)

where © indicates element-by-element multiplication. This recursion is called the Hamilton
filter (see Hamilton, [1994). It starts with &0 = (¢,1 — ()"

It is also possible to determine the probability of the occurrence of a specific regime at time ¢,
using all available information, i.e., information before and after time ¢, which we call smoothed

inferences. These inferences

Pr[S; = Olyr, yr—1, .., 4]
£t\T = =
Pr[S; = 1y, yr—1,- -, y1]

can be calculated by the recursion,

Eyr = Eue © (P'(Ear + Eapr)) (12)

where we use the inferences and forecasts, and + denotes element-wise division (see Kim), 1994,
§2.2, for a derivation). This recursion is sometimes called the Kim-smoother. Whereas the

Hamilton filter runs forward in time, the Kim filter runs backwards starting with &7 7.

3 Estimation

We can estimate the parameters of the regime switching models using a maximum likelihood

approach. As with other conditional models such as ARMA- or GARCH-models, the likelihood
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function will take a conditional form, too. We gather the parameters of the model in vectors

/!

A = (uo, 08, 11,03), p = (poo, p11,¢)" and @ = (XN, p'). To simplify notation, we write J; =

{Yt,Y1-1, ..., y1} for the set of observations up to t.
The likelihood function is given by

L(Yr;0) = [ [ PrlY: = vl Vi), (13)

with Yy = 0 so Pr[Y; = y1|Qb] = Pr[Y; = v1]. Conditioning on the regime at time ¢, we find

PrYy = ye|Veor] =Pr[Y; = 5[ S = 0, V1] - Pr[S; = 0|V ]+
Pr[Y; = y;|S: = 1, V1] - Pr[S; = 1|44
=Pr[Y; = y|S: = 0] - & 10 + Pr[Ys = v Se = 1] - &ye—1a
=&l fi

In the second equality, we use the information that the distribution of Y;|.S; does not depend

on further prior realizations. The log likelihood function can thus be calculated as

T
(1,2, yr; 0) = > log(&l 1 fi), (14)
t=1

which follows as a byproduct of the filter recursion.

Straightforward maximum likelihood estimation implies maximizing as a function of 6.
Because of the filter recursion, the log likelihood function exhibits a complicated structure with
many local optima. Optimizing this function may therefore be computationally demanding.
Therefore, we will use a special optimization algorithm, called the Expectation-Maximization

(EM) algorithm of Dempster et al. (1977).

3.1 The Expectation-Maximization Algorithm

Suppose that we could actually observe the realizations of the latent process S;, and we would
have a set S; = {s1, s2, ..., s7} similar to the set Yr. S; is often called a path. The realization

of S; is either zero or one, so it corresponds with a draw from a Bernoulli distribution. We find



the density of the combination (y;, s;) conditional on past observations as

Pf[Yt = Ut, Sy = St’ytflastfl; 0] :Pr[Y; = yt|5t§ 0] Pf[St = 5t|8t71; 0]

f(yt§ Ho, 0(2))2900 it s, =0,5.1=0
f(yt,uo,ao)(l _pll) it s, =0,8_1=1

fyes 1, 01) (1 —poo) sy =1,8-1=0

\f(ytSl/Jl,U%)pll its;,=1,5._1=1 (15)

1—s¢)(1—s¢—
f Yt; Mo, O pOO)( 2 o 1)X

)) (1—s¢)st—1 %

1—s¢—
_pOO)) st( t 1)><

)Stst 1

(
(
(

o)
F (s 1o, 05) (1 = pa
Yes H1,0 ) (1
)

(
(
f(
(f (vt 11, o)p1a

We see that the density of (y,s;) combines the fact that conditionally, y; follows a normal
distribution, with the fact that s; follows a Bernoulli distribution, conditionally on its previous
realization s;_y.

When we construct the log likelihood function of the joint observations (Vr,Sr), we need

the log of

log Pr[Y; =y, Si = 5¢|Vi-1,Si-1; 0]

(1 — St Ing (ytnu()ao-o) + 5t Ing (ytmulao—l) +

=log (f (y; 10, 05) poo) - (1 = 5) - (1 = s1-1)+
log (f (ye: 10, 05) (L —p11)) - (L= s¢) -1 +
log (f (y; 1, 07) (1 — poo)) = s¢ - (1 — sp-1)+
log (f (ye i1, 07) P11 ~ 8¢+ $11
)
)

(1 —=5¢)(1 = s¢—1)log poo + (1 — 5¢) 5,1 log(1 — p11)+
5¢(1 — s4-1) log(1 — poo) + s¢51—1log p11

A small alteration must be made for the density of Pr[Y; =y, 51 = s1; 0], since no history will
be available there. So, instead of the transition parameters pgo and p;; we find an expression

with the parameter (,

Pl"[Yl =y1,5 = 51;9] = (f(yt;MO,US)C)(I_Sl)(f(?JﬁMlaa%)C)SI-
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Now, we can simply construct the log likelihood for (Vr, Sr) as

T
fy,s(yT,ST; 9) = Z((l - St) log f(yt; Ko, 08) + s¢log f(yt; M1, U%))‘i‘

t=1

hE

((1 — 5¢)(1 = si-1) log poo + (1 — s¢)s¢-1 log(1 — p11 )+ (16)

-+
[|
N

s¢(1 — si-1)log(1 — poo) + SeSt—1 long)—i—
(1 = s1)log ¢ + s1log(1 — ().

The corresponding likelihood function is given by Ly s(Vr,Sr;0) = exp by s(Vr, Sr;0), and is
much easier to evaluate than the true likelihood function in eq. . Ly s(Yr,Sr;0) applies to

a specific path §; whereas the true likelihood can be seen as a sum over all possible paths,
L(YVr:0) = > Pr(Yr|Sr; 0) Pr[Sr: pl, (17)
St

where Pr[St; p] gives the probability of a particular path. Though we prefer to optimize eq. ,

we cannot observe ;.

3.1.1 The Expectation and Maximization Steps

The EM-algorithm proposes to base the estimation on . Because we do not have actual
observations on Sy, the EM-algorithm maximizes the expectation of the log likelihood function
in based on the complete data that we do observe, Yr. So, instead of working with s;, we

work with the expectation of S; conditional on the data and the parameters,

E[S{|Yr; 8] = Pr[S; = 0|Yr; 0] - 0+ Pr[S; = 1|1V7;0] - 1 = Pr[S; = 1|Vr; 0]. (18)
The last probability is a smoothed inference as in . Similarly, we find

E[S;S;—1|Yr; 0] = Pr[S; = S;—1 = 1|Yr; 6. (19)

This approach would almost retain the attractive structure of the log likelihood function in
. Almost, as the expectations of S; and S5;5; 1 depend on 6 and are calculated again via
the recursion in . The trick of the EM-algorithm is to treat the expectation part and the
maximization separately. So, for a given parameter vector 8, the expectations in and

are calculated. Then, these expectations are treated as given, and a new parameter vector 6* is
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calculated which maximizes the expected log likelihood function. Of course, this new parameter
vector gives rise to other expectations, which in turn lead to a new parameter vector. So, instead
of one direct maximum likelihood estimation, we conduct a series of expectation-maximization

steps, which produce a series of parameter estimates %)
O(k) = arg HlGaXE [fy’g(yT, ST; H)D)T, 0(’“*1)} . (20)

Dempster et al.| (1977) and Hamilton (1990) show that this sequence of 8%) converges and
produces a maximum of . As always, this maximum can be local, and may depend on

starting values ().

3.1.2 The Maximization Step in Detail

We now look at the maximization step in more detail. Our starting point is the likelihood

function in , for which we calculate the expectation conditional on the data and parameters

o1,

lent (Vr;0,0%°D) = E [by,5(Vr, St 0)| Vr; 0% V] (21)

The updated parameters %) maximize this expected log likelihood function, so they satisfy the
first order conditions

Olpm (Vr; 0,0%7)
00

~0. (22)
6=0(k)

Taking a closer look at , we see that the log likelihood function can be split in terms that
exclusively relate to specific parameters. The parameters of the distribution for the first regime
po and o2 are only related to the first term, and the parameters of the distribution for the
second regime only to the second. The transition probability pgg is related to the third and fifth
term, and so on. So differentiation will produce relatively simply conditions. In most Markov
switching models, it is typically possible to evaluate the system of FOCs in those related to A
and those to p.

We first look at differentiating with respect to pg. We will use & t((;,_ol ) to denote Pr[S, =
0|Vr; 851] = 1 —E[S;|Yr; 8%~V], which is the smoothed inference that we find when we apply



the filter and smoother recursions in @f with parameters 8%~ We find

Eitro 108 f (yii 1o, 0
agEM(yT’070(k71)) B Z t|T0 t 0 0)

g Ot
1 1 _ 9
0 thITO (_5 log 2m — log og — 5%) (23)

o)

Aty
(k o)
= Z gt\T 01)

For the optimal ,u(()k) this expression equals zero, which means that we find

(k—1)
u® > 1£t|T0 Y
0 (k—1) -~
>t ft\T,o

This estimate for py can be interpreted as a weighted average of the observations, where the

(24)

smoothed inferences for regime 0 serve as weights. It is a clear extension of the normal maximum

likelihood estimator for the mean of a normal distribution. For ,ugk) we find a similar expression,

with & f(}_ll) instead of & t(‘];ﬂ_ol ),

Next we consider the estimates for o3. Differentiation yields

5’€EM(J)T'0 H(k—l)) Z§t|To log f (y; 1o, )
do, - Jor

1 (1 — po)?
GZSHTO ( —log 21 — log o¢ —§M) (25)

09

T
(k1) —po)? 1
Z t\TO o3 _0_0 :
(k)

The optimal o, sets this expression to zeros, so

(k)
" > 1ft|T0 (t_:“O )

%0 1)
Zt:l ft\T,o

: (26)

which is again a weighted average.



In a similar way we can derive the estimates for pgy and p;;. Before we derive these estimates,

note that
E[(1—-8)(1—=81)|Vr; 6]

=1—E[S|Yr; 0] — E[S;_1|Yr; 0] + E[S:S:-1|Yr; 0]

=1—Pr[S, = 1|¥r; 0] — Pr[Si_1 = 1|Yr; 0] + Pr[S; = S;_1 = 1| V73 6]

=Pr[S, = Si-1 = 0|Vr; 6]
and similarly E[St(l — Si1)|Vr; 0}: Pr[St =1,5 = 0|Yr; 9} and E[(l — S)Si1|Vr; 0} =
Pr [St =0,5_1=1|Vr; 0}. These probabilities can be calculated with a slight modification of
the recursion in ,

- . ) _ §1T,i -
Pijess = Pr[Sips = 0,8, = j|Vr; 8%V = & - §+ | py (27)
t+1t,i

The derivative for pgy is given by

T

0 ) Pootlogpoo + Proslog(l —p
Olnt (Vr; 0, 0% ) ; 00,¢ 00 + Pro,¢ log( 00)

IPoo B oo (28)

T . -
_ <p00,t __Piog )
—~ \Poo 1= poo

Setting this expression to zero implies

) = 23:2 Poo,t _ Zfzg Poo,¢ (20)
00 = - — = .
Zthz (Poo.t + Drost) Zthg S—ro

This can be generalized to

T ~
(k) _ Zt:Z pijvt 30
by == . ( )
which corresponds with (3.45) in [Franses and van Dijk| (2000).

Finally, we consider the estimate for the ( parameter, which is easy to derive. The derivative

of interest is

Olen (V13 0,0%71) 0 (Eyrolog ¢ + &y log(1 — ()
¢ B ¢

31
_ &ro  &ma (31
¢ 1-¢
Setting this expression to zero we find
¢W =gy (32)
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3.1.3 Remarks

1. The EM-algorithm needs starting values 8. In principle, these starting values can be
picked at random, as long as they are feasible, i.e., positive variance and probabilities
between zero and one. It is advisable to make sure that the distribution parameters for
regime 0 differ substantially from those for regime 1. For example, take the volatility for
regime 1 three or four times that for regime 0. Regimes tend to be persistent, so set the

transition probabilities at a high value of 0.9, say

2. The EM-algorithm converges and maximizes the likelihood. You can prove that each
maximization step in the EM-algorithm yields an improvement (see Hamilton, |1990)). In
other words, for each new set of parameters 8%*), the log likelihood function in (T4) must
increase. In implementing the algorithm, an important control mechanism is whether

e(yT; O(k:)) > f()}T; 0(’“_1)). If not, the EM-algorithm is not implemented correctly

3. Each step in the EM-algorithm yields an improvement in the likelihood function, though
not necessarily monotonically. You have to specify a stopping criterion, which is best

formulated for the increase in likelihood falling below a threshold.

3.2 Specification testing

Next to the estimates themselves, we are also interested in their precision. We can use the
variance-covariance matrix of the estimates and the resulting standard errors in specification
testing. Because the EM-algorithm maximizes the likelihood function, the standard properties
of maximum likelihood (ML) estimators apply, given that the necessary regularity conditions are
satisﬁedﬂ One crucial assumption is that the true parameter vector 6, is not on the boundary
of its domain. This can be an issue for the probability parameter for the initial state {, which is
therefor best excluded from the calculation of standard errors. If pyy or p1; are estimated close
to zero or one, it is best to use their logit transformation [f]

Assuming the regularity conditions are satisfied, the ML estimator 6 converges in distribution

2Numerical issues can cause small increases, typically when (smoothed) inferences are close to zero.
3See [Krolzig (2013, Ch. 6.6.1) for a discussion.
4The logit transformation of 0 < p < 1 is given by logp — log(1 — p).
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to a normal distribution,
VT(0 — 6) % N(0,Z; ). (33)

Here Zy = limy_,o, Z(0y) denotes the asymptotic information matrix evaluated at the true

parameter vector 6y, where Z(6,) gives the information matrix

_ 10*(Vr;600)] . [00(Vr; 00) OL(Vr; 60)
I(BO):_E{T 9600’ }_E{ 00 00’

(34)

The second equality holds when the model is correctly specified.
In line with its definition, there are two ways of estimating the information matrix that are
asymptotically equivalent, but may give different results in finite samples. The first is to use

the Hessian matrix of the log likelihood function in eq. ,
1 *(Vr; éo)

2n(0) = =7 5000 (35)
The second way is to use the gradient, and construct the matrix as

PR E A

1(0) = T th(e)gt(e)’, (36)

t=1
where
ol _1;0
9:(8) = t(Ye| Vi-1:0) (37)

00
gives the conditional score, that is, the gradient of the conditional log likelihood ¢;(y;|V;—1;0) =
logPr]Y; = y¢|Vi—1;60]. By construction, ¢(Yr;0) = Zthlét(tht_l;O). The second estima-
tor is often called the outer product of the gradient. Though both methods work, the same
path-dependence that complicated the direct optimization of eq. is a hindrance here, too.
However, Hamilton| (1993)) shows that we can calculate the OPG in an easier way, circumventing
long sequences of derivatives.

We start our derivation by using the relation between ¢ and ¢; to write

ol(YVy; 0 ol(V;_1;0
gt(e) _ (;); )_ (3201 )’

(38)
so the difference in the scores of the full log likelihood function evaluated up to ¢ and ¢t — 1. As

in eq. (17)), we can write

((V1:0) = log Pr[),|6] = log > PrY|S;, A] Pr[S| o], (39)

St
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where we use that conditional on the path S;, the likelihood of )} only depends on the param-
eter vector A, and the likelihood of the path itself only depends on the parameter vector p.
Differentiation with respect to A yields

X _’anue}Ez ox Lisile
_ Z 0 log Pr[Vi[ Sy, Al Pr[yt|8t’ Al Pr(S:|p]
S, oA Pr[),|0]
_ Z 810@; Plé[i}tlst, )\} Pr[8t|yt7 0]
St
_ ZZ 810gPr yT|3T, Al PLS, V), 6]
St =1
B Z Z 810gPr yT|57, Al Prls. |V, 0]
7=1 s+=0
0l !
Z %le (40)

In the second equality, we use that for a differentiable function g(x) > 0, d,g(z) = g(x)0, log g(x).
In the third equality, we apply Bayes’ rule. In the fourth equality we use that the partial deriva-
tive for a given path reduces to a summation over the observations. In the fifth equality, we
gather the probability mass that corresponds with the derivative of y, for a particular state s,.
Because the derivative depends only on s, the mass of the part of the path before and after s,
sums to 1, and only Pr[s,|);, €] remains. In the final equality, we write the summation over the
different states as a multiplication of the transpose of the Jacobian matrix of the (elementwise)
log of f, with the vector of smoothed inferences &, ;. The series of smoothed inferences {&-+}_;
can be constructed with the Kim filter starting with &,;. The derivatives of the log of f, are

typically easy to construct. Combining these derivations yields

810g f!

(Y| Ye-1;0) 0V 0)  0U(Vi-1:0) _ alogft

OX OX OX & +

T(&rpt — &rpe—1). (41)

This expression consists of two terms, the first related to the direct effect of observation ¢ on
the likelihood, and the second related to how the inference about the path changes because of

it.
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For the partial derivatives with respect to p we use a similar approach, starting with

Pr[S;; p HPr Sr|sr—1, pl, (42)

with Pr[s;|so; p] = Pr[sl; p| to ease notation. Now we find
ol(Vi; A) 1 0 Pr[Sy; pl
- P A0 A
ap PI' yt|0 Z r[ytlsta ] ap
_ Z dlog Pr[Sm Pl Pr[yt|3t7 Al Pr(S;; p]
" op PrI0]

= 0log Pr(Sy; p
_ 5

Pr[St\yt,H}

Si

1
0log Prsy;
— E g08 1151, Pl [51: ) Pr[s1|V:, 0]+
$1=0 ap

1
ZZ Z 810gPr ST|S’T lap] Pr[37-7$7' 1|yta ] (43)

7=2 5:=058,_1=0

The derivatives for log Pr[s,|s,_1, p| are easy to find, and the recursion in eq. can be used

to construct the smoothed inferences Prls;, s, 1|}, @]. Finally, we combine these derivations to

Oly(ye) V15 0) _ o(V; 0) _ 0l(Vi-1;0)
op  Op op

1 1
OdlogP 1,
:Z Z s r5;|5t : p] Pr[5t78t71|yt70]+

s¢=0s¢4_1=0
1 1

ZZ Z alogpr ST|ST 1’p]<Pr[ST’ST 1|yt7 ] Pr[37787—1|yt—1a0])+

7=2 5;=05s,-1=0

Z ak’%ﬁ%p}(m[slm,e} — Pr[s1|Yi1,6]). (44)

4 An example

In the example we look at weekly excess returns on the MSCI US Stock Market Index. For each
week, I have calculated the log return on the index, from which I have subtracted the 1-week
risk free rate. The first return is for January 2, 1980 and the last for July 1, 2009. In total we
have 1540 observations. The data is available in the file MSExample MSCIUS.x1s on my Websiteﬂ

and on Mendeleyf] The returns are given in %.

°See http://personal.eur.nl/kole.
6See https://data.mendeley.com/datasets/8yvEgdwnbr/1.
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4.1 Inferences

First, we look at the inferences that we make for a given set of parameters. As values for the

parameters we take

1o = 0.04 oo = 1 P11 = 0.80 ¢ =0.50

M1 = —0.04 o1 = 4 P22 = 0.80

The means and volatilities are based on the overall sample mean, which was close to zero, and
the overall sample variance which was around two.

In Table [l we see the first ten forecast, inference and smoothed inferences. The first forecast
probabilities are given by ¢ and 1 — (. Based on the first return of -1.01923, the inferences
are calculated. This return is relatively close to zero, and fits better with the first regime (low
volatility) than the second regime (high volatility). Therefore the inference probability for state
0 is higher than for state 1. Because of the persistence of the regimes (p;; and pys are high),
the forecast probability for state 0 at time 2, is higher than the 0.5 at time 1. Returns at time
2, 3 and 4 match better with the high volatility regime (inferences for regime 2 exceed 0.5).
Consequently, when we smooth the series of inferences, the probability for regime 0 at time 1

goes down, from 0.70167 to 0.51467.

4.2 Estimation

We can use the parameters we picked in the previous subsection to start the EM-algorithm
to estimate the model parameters. We set the stopping criterion at an increase in the log
likelihood function in below 1078, In Table [2 we show how the EM algorithm proceeds.
We see that the likelihood increases with every iteration. The EM-algorithm needs 48 steps in
0.719 seconds to converge to the optimal solution in this case. We also calculate the standard
errors for the estimates, using a numerical approximation to the Hessian and the outer product
of the gradient. Because ¢ = 1, which is on the boundary of the support, we do not calculate a
standard error for it. The standard errors of both methods are close for the mean and transition
parameters, but not for the volatility parameters, which may point at misspecification.

In Table |3| we report the forecast, inference and smoothed inferences for the first ten returns,

based on the parameters estimates produced by the EM-algorithm. Compared to Table [T we
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Table 1:

Inferences for the first ten returns.

forecast

probabilities

inference

probabilities

smoothed inf.

probabilities

observation return S; =0 Sy =1 S =0 Sy =1 S; =0 Sy =1

—1.01923
2.64830
1.54639
2.02344

1 0.50000
2

3

4

5 0.96257

6

7

8

9

0.62100
0.32894
0.44329
0.40236
0.58691
0.71024
0.61659
0.34898
0.20023

0.50000
0.37900
0.67106
0.55671
0.59764
0.41309
0.28976
0.38341
0.65102
0.79977

0.70167
0.21490
0.40549
0.33727
0.64486
0.85040
0.69432
0.24830
0.00038
0.19599

0.29833
0.78510
0.59451
0.66273
0.35514
0.14960
0.30568
0.75170
0.99962
0.80401

0.51467
0.27057
0.45034
0.51982
0.72967
0.73656
0.40332
0.07637
0.00018
0.05800

0.48533
0.72943
0.54966
0.48018
0.27033
0.26344
0.59668
0.92363
0.99982
0.94201

0.04977
1.81177
—2.47153
—4.24477
—1.69100

10

This tables shows the first ten returns with their forecast probabilities, inferences and smoothed inferences. The
inferences are based on the two-state regime switching model specified in Sec. [ The parameters values are

Mo = 004, g = ].7 M1 = —0.04 o1 = 4, P11 = 080, P22 = 0.80 and C = 0.50.

Table 2: Steps of the EM-algorithm

starting iteration optimal standard errors
values 1 2 3 solution Hessian OPG
1o 0.0400 0.1426 0.1980 0.2240 0.1573  0.0526  0.0531
o) 1.0000 1.1445 1.2182 1.2645 1.5594  0.0526 0.0171
1 —0.0400 —0.1262 —0.1887 —0.2324 —0.2988  0.1725 0.1746
o1 4.0000 3.1417 3.0916 3.1030 3.4068  0.1639 0.0235
P11 0.8000 0.8222 0.8345 0.8532 0.9770  0.0069 0.0066
D22 0.8000 0.7899 0.8072 0.8195 0.9484  0.0175 0.0147
¢ 0.5000 0.5147 0.5585 0.6501 1.0000 - -
L(Yr;0) —3423.5840 —3352.8306 —3343.2509 —3337.7226 | —3310.2279

This table shows the steps of the EM-algorithm, applied to the full sample. Starting values for the parameters
are (o = 0.04, o9 = 1, p3 = —0.04 o1 = 4, p11 = 0.80, p22 = 0.80 and ¢ = 0.50. The algorithm stops when
the improvement in the log likelihood function falls below 1078. We show the parameters after the first three
iterations, and the optimal values. For each parameter set we calculate the value of the log likelihood function
in . Standard errors are calculated using the numerical approximation of the Hessian and the outer product

of the gradient (OPG).
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Table 3: Inferences for the first ten returns, based on estimated parameters.

forecast inference smoothed inf.
probabilities probabilities probabilities
observation return S;=0 S =1 Si=0 S =1 Si=0 S5 =1

—1.01923 | 1.00000 0.00000 | 1.00000 0.00000 | 1.00000 0.00000
2.64830 | 0.97697 0.02303 | 0.97411 0.02589 | 0.97756 0.02244
1.54639 | 0.95301 0.04699 | 0.97184 0.02816 | 0.95963 0.04037
2.02344 | 0.95091 0.04909 | 0.96308 0.03692 | 0.92842 0.07158
0.96257 | 0.94281 0.05719 | 0.97123 0.02877 | 0.88600 0.11400
0.04977 | 0.95035 0.04965 | 0.97671 0.02329 | 0.79482 0.20518
1.81177 | 0.95542 0.04458 | 0.96998 0.03002 | 0.58738 0.41262

—2.47153 | 0.94919 0.05081 | 0.92354 0.07646 | 0.26443 0.73557

—4.24477 | 0.90622 0.09378 | 0.43437 0.56563 | 0.04898 0.95103

—1.69100 | 0.45357 0.54643 | 0.49407 0.50593 | 0.03344 0.96657

© 00 N O Ot = W N =

—
o

This tables shows the first ten returns with their forecast probabilities, inferences and smoothed inferences. The
inferences are based on the two-state regime switching model specified in Sec. [l The parameters are estimated

with the EM-algorithm and reported in Table

see the regimes are better defined now: the probabilities are either close to zero or to one. The
inferences signal a possible switch for the return after 9 weeks, where the probability for regime
2 increases above 0.5. It is still close to 0.5, so based on the 9 weeks of information the regime
switching models does not produce certain inferences about the switch. Using all information,
the inference is more certain for regime 2, and dates the switch already in week 8.

In Figure [T} we see the smoothed inferences for regime 0 over time. This low volatility regime
prevails during prolonged periods of time, but we also see clear periods identified as exhibiting
high volatility, notably around the crash of October 1987, the Asian crisis (1997), the Ruble
crisis (1998), the burst of the IT-bubble after 2001 and the credit crisis in 2007-2008.
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Figure 1: Smoothed Inference Probability for Regime 0
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This figure shows the smoothed inferences for regime 0 over time for the US stock market. The

are constructed using the filter recursion in and and the smoother recursion of Kim)| (1994)
parameters are estimated with the EM-algorithm and reported in Table

probabilities

in . The
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