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Abstract

In this document, I discuss in detail how to estimate Markov regime switching models with

an example based on a US stock market index. See for example Kole and Dijk (2017) for

an application.
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1 Specification

We assume that the asset return Yt follows a distribution that depends on a latent process St.

At each point in time, the process St is in one out of two regimes, which we indicate by St = 0

and St = 1. The return Yt behaves according to

Yt ∼

N(µ0, σ
2
0) if St = 0

N(µ1, σ
2
1) if St = 1.

(1)
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In both regimes, the return follows a normal distribution, though with different means and

variances. We use the function f to denote the normal pdf,

f(y;µ, σ2) =
1√
2πσ

exp

(
−(y − µ)2

2σ2

)
. (2)

Of course it is possible to have different distributions in regime 0 and 1.

The latent process St follows a first order ergodic Markov chain. This means that the

probability for regime 0 to occur at time t depends solely on the regime at time t − 1. We

denote these transition probabilities by

pij = Pr[St = i|St−1 = j]. (3)

The transition probabilities for the departure states j should add up to one, i.e., p00 + p10 = 1

and p01 + p11 = 1. So, for a binary process St, we have two free parameters, p00 and p11. We

gather the transition probabilities in a transition matrix1

P =

p00 p01

p10 p11

 =

 p00 1− p11
1− p00 p11

 . (4)

Since the whole process St is unobserved, so is the initial regime S1. We introduce a separate

parameter ζ for the probability that the first regime occurs,

ζ = Pr[S1 = 0]. (5)

Naturally, we have Pr[S1 = 1] = 1−ζ. Because no conditional information about S1 is available,

we cannot directly use the transition matrix to determine this probability, and we need the extra

parameter. This last parameter can be estimated, but also specified exogenously. We assume

in this document that the parameter is estimated.

2 Inference on St

The process St is latent, which means that we will never know for sure which regime prevailed

at a certain point in time. However, we can use the information from the current and past

1Formulating the transition matrix such that the columns sum to one is more convenient here.
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observations, combined with the distributions and transition probabilities to make an inference

on Pr[St = 0|yt, yt−1, . . . , y1]. We accomplish this by using Bayes’ rule,

Pr[A|B] =
Pr[B|A] Pr[A]

Pr[B]
,

for events A and B with Pr[B] 6= 0. For the inference of the regime at time t = 1, this means

Pr[S1 = 0|Y1 = y1] =
Pr[Y1 = y1|S1 = 0] · Pr[S1 = 0]

Pr[Y1 = y1]

=
Pr[Y1 = y1|S1 = 0] · Pr[S1 = 0]

Pr[Y1 = y1|S1 = 0] · Pr[S1 = 0] + Pr[Y1 = y1|S1 = 1] · Pr[S1 = 1]

=
f(y1;µ0, σ

2
0) · ζ

f(y1;µ0, σ2
0) · ζ + f(y1;µ1, σ2

1) · (1− ζ)
.

In the second equality, we use conditioning again, because conditional on the regime the dis-

tribution of Y1 is given. We make the distributions explicit in the third equality. In a sim-

ilar way, we find an expression for Pr[S1 = 1|Y1 = y1], but we can also compute this using

Pr[S1 = 1|Y1 = y1] = 1− Pr[S1 = 0|Y1 = y1].

After computing the inferences for the regimes at time 1, we can use them to make a forecast

for the regime distribution at time 2,

Pr[S2 = 0|Y1 = y1] = Pr[S2 = 0|S1 = 0, Y1 = y1] · Pr[S1 = 0|Y1 = y1]+

Pr[S2 = 0|S1 = 1, Y1 = y1] · Pr[S1 = 1|Y1 = y1]

= Pr[S2 = 0|S1 = 0] · Pr[S1 = 0|Y1 = y1]+

Pr[S2 = 0|S1 = 1] · Pr[S1 = 1|Y1 = y1]

= p00 Pr[S1 = 0|Y1 = y1] + p01 Pr[S1 = 1|Y1 = y1].

In the first equality we condition on the regime at time 1. In the second equality we use the

fact that St follows a first order Markov chain independent of the process Yt. Again, we can

similarly derive Pr[S2 = 1|Y1 = y1] or use Pr[S2 = 1|Y1 = y1] = 1− Pr[S2 = 0|Y1 = y1].

The steps of calculating the inference about and forecast for the states define a recursion.

Based on the regime forecast for time 2 and the observation y2 we can calculate the inference

about the regime at time 2. In turn, we use these inferences for forecasts for the regime at time

3. We can write these recursions more compact by using vector-matrix notation. We use

ξt|t ≡

Pr[St = 0|yt, yt−1, . . . , y1]

Pr[St = 1|yt, yt−1, . . . , y1]

 (6)
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to denote the vector of inferences about the regimes at time t, and

ξt+1|t ≡

Pr[St+1 = 0|yt, yt−1, . . . , y1]

Pr[St+1 = 1|yt, yt−1, . . . , y1]

 (7)

for the regime forecasts at time t + 1, using information up to time t. We gather the densities

of observation yt conditional on the regimes in a vector

ft ≡

f(yt;µ0, σ
2
0)

f(yt;µ1, σ
2
1)

 . (8)

We can construct the series of inference and forecast probabilities by the recursion

ξt|t =
1

ξ′t|t−1ft
ξt|t−1 � ft (9)

ξt+1|t = Pξt|t, (10)

where � indicates element-by-element multiplication. This recursion is called the Hamilton

filter (see Hamilton, 1994). It starts with ξ1|0 = (ζ, 1− ζ)′.

It is also possible to determine the probability of the occurrence of a specific regime at time t,

using all available information, i.e., information before and after time t, which we call smoothed

inferences. These inferences

ξt|T ≡

Pr[St = 0|yT , yT−1, . . . , y1]

Pr[St = 1|yT , yT−1, . . . , y1]

 (11)

can be calculated by the recursion,

ξt|T = ξt|t �
(
P ′(ξt+1|T ÷ ξt+1|t)

)
, (12)

where we use the inferences and forecasts, and ÷ denotes element-wise division (see Kim, 1994,

§2.2, for a derivation). This recursion is sometimes called the Kim-smoother. Whereas the

Hamilton filter runs forward in time, the Kim filter runs backwards starting with ξT |T .

3 Estimation

We can estimate the parameters of the regime switching models using a maximum likelihood

approach. As with other conditional models such as ARMA- or GARCH-models, the likelihood
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function will take a conditional form, too. We gather the parameters of the model in vectors

λ ≡ (µ0, σ
2
0, µ1, σ

2
1)′, ρ ≡ (p00, p11, ζ)′ and θ ≡ (λ′,ρ′)′. To simplify notation, we write Yt ≡

{yt, yt−1, . . . , y1} for the set of observations up to t.

The likelihood function is given by

L(YT ;θ) =
T∏
t=1

Pr[Yt = yt|Yt−1], (13)

with Y0 = ∅ so Pr[Yt = y1|Y0] = Pr[Yt = y1]. Conditioning on the regime at time t, we find

Pr[Yt = yt|Yt−1] = Pr[Yt = yt|St = 0,Yt−1] · Pr[St = 0|Yt−1]+

Pr[Yt = yt|St = 1,Yt−1] · Pr[St = 1|Yt−1]

= Pr[Yt = yt|St = 0] · ξt|t−1,0 + Pr[Yt = yt|St = 1] · ξt|t−1,1

=ξ′t|t−1ft

In the second equality, we use the information that the distribution of Yt|St does not depend

on further prior realizations. The log likelihood function can thus be calculated as

`(y1, y2, . . . , yT ;θ) =
T∑
t=1

log(ξ′t|t−1ft), (14)

which follows as a byproduct of the filter recursion.

Straightforward maximum likelihood estimation implies maximizing (14) as a function of θ.

Because of the filter recursion, the log likelihood function exhibits a complicated structure with

many local optima. Optimizing this function may therefore be computationally demanding.

Therefore, we will use a special optimization algorithm, called the Expectation-Maximization

(EM) algorithm of Dempster et al. (1977).

3.1 The Expectation-Maximization Algorithm

Suppose that we could actually observe the realizations of the latent process St, and we would

have a set St ≡ {s1, s2, . . . , sT} similar to the set YT . St is often called a path. The realization

of St is either zero or one, so it corresponds with a draw from a Bernoulli distribution. We find
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the density of the combination (yt, st) conditional on past observations as

Pr[Yt = yt, St = st|Yt−1,St−1;θ] = Pr[Yt = yt|St;θ] Pr[St = st|St−1;θ]

=



f(yt;µ0, σ
2
0)p00 if st = 0, st−1 = 0

f(yt;µ0, σ
2
0)(1− p11) if st = 0, st−1 = 1

f(yt;µ1, σ
2
1)(1− p00) if st = 1, st−1 = 0

f(yt;µ1, σ
2
1)p11 if st = 1, st−1 = 1

=
(
f(yt;µ0, σ

2
0)p00

)(1−st)(1−st−1)×(
f(yt;µ0, σ

2
0)(1− p11)

)(1−st)st−1×(
f(yt;µ1, σ

2
1)(1− p00)

)st(1−st−1)×(
f(yt;µ1, σ

2
1)p11

)stst−1 .

(15)

We see that the density of (yt, st) combines the fact that conditionally, yt follows a normal

distribution, with the fact that st follows a Bernoulli distribution, conditionally on its previous

realization st−1.

When we construct the log likelihood function of the joint observations (YT ,ST ), we need

the log of (15)

log Pr[Yt = yt, St = st|Yt−1,St−1;θ]

= log
(
f
(
yt;µ0, σ

2
0

)
p00
)
· (1− st) · (1− st−1)+

log
(
f
(
yt;µ0, σ

2
0

)
(1− p11)

)
· (1− st) · · ·t−1 +

log
(
f
(
yt;µ1, σ

2
1

)
(1− p00)

)
· st · (1− st−1)+

log
(
f
(
yt;µ1, σ

2
1

)
p11
)
· st · st−1

=(1− st) log f
(
yt;µ0, σ

2
0

)
+ st log f

(
yt;µ1, σ

2
1

)
+

(1− st)(1− st−1) log p00 + (1− st)st−1 log(1− p11)+

st(1− st−1) log(1− p00) + stst−1 log p11

A small alteration must be made for the density of Pr[Y1 = y1, S1 = s1;θ], since no history will

be available there. So, instead of the transition parameters p00 and p11 we find an expression

with the parameter ζ,

Pr[Y1 = y1, S1 = s1;θ] =
(
f(yt;µ0, σ

2
0)ζ
)(1−s1)(f(yt;µ1, σ

2
1)ζ
)s1 .
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Now, we can simply construct the log likelihood for (YT ,ST ) as

`Y,S(YT ,ST ;θ) =
T∑
t=1

(
(1− st) log f(yt;µ0, σ

2
0) + st log f(yt;µ1, σ

2
1)
)

+

T∑
t=2

(
(1− st)(1− st−1) log p00 + (1− st)st−1 log(1− p11)+

st(1− st−1) log(1− p00) + stst−1 log p11

)
+

(1− s1) log ζ + s1 log(1− ζ).

(16)

The corresponding likelihood function is given by LY,S(YT ,ST ;θ) = exp `Y,S(YT ,ST ;θ), and is

much easier to evaluate than the true likelihood function in eq. (13). LY,S(YT ,ST ;θ) applies to

a specific path St whereas the true likelihood can be seen as a sum over all possible paths,

L(YT ;θ) =
∑
ST

Pr(YT |ST ;θ) Pr[ST ;ρ], (17)

where Pr[ST ;ρ] gives the probability of a particular path. Though we prefer to optimize eq. (16),

we cannot observe St.

3.1.1 The Expectation and Maximization Steps

The EM-algorithm proposes to base the estimation on (16). Because we do not have actual

observations on St, the EM-algorithm maximizes the expectation of the log likelihood function

in (16) based on the complete data that we do observe, YT . So, instead of working with st, we

work with the expectation of St conditional on the data and the parameters,

E[St|YT ;θ] = Pr[St = 0|YT ;θ] · 0 + Pr[St = 1|YT ;θ] · 1 = Pr[St = 1|YT ;θ]. (18)

The last probability is a smoothed inference as in (12). Similarly, we find

E[StSt−1|YT ;θ] = Pr[St = St−1 = 1|YT ;θ]. (19)

This approach would almost retain the attractive structure of the log likelihood function in

(16). Almost, as the expectations of St and StSt−1 depend on θ and are calculated again via

the recursion in (12). The trick of the EM-algorithm is to treat the expectation part and the

maximization separately. So, for a given parameter vector θ, the expectations in (18) and (19)

are calculated. Then, these expectations are treated as given, and a new parameter vector θ∗ is
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calculated which maximizes the expected log likelihood function. Of course, this new parameter

vector gives rise to other expectations, which in turn lead to a new parameter vector. So, instead

of one direct maximum likelihood estimation, we conduct a series of expectation-maximization

steps, which produce a series of parameter estimates θ(k)

θ(k) = arg max
θ

E
[
`Y,S(YT ,ST ;θ)|YT ;θ(k−1)

]
. (20)

Dempster et al. (1977) and Hamilton (1990) show that this sequence of θ(k) converges and

produces a maximum of (14). As always, this maximum can be local, and may depend on

starting values θ(0).

3.1.2 The Maximization Step in Detail

We now look at the maximization step in more detail. Our starting point is the likelihood

function in (16), for which we calculate the expectation conditional on the data and parameters

θ(k−1),

`EM
(
YT ;θ,θ(k−1)

)
= E

[
`Y,S(YT ,ST ;θ)|YT ;θ(k−1)

]
(21)

The updated parameters θ(k) maximize this expected log likelihood function, so they satisfy the

first order conditions

∂`EM
(
YT ;θ,θ(k−1)

)
∂θ

∣∣∣∣∣
θ=θ(k)

= 0. (22)

Taking a closer look at (16), we see that the log likelihood function can be split in terms that

exclusively relate to specific parameters. The parameters of the distribution for the first regime

µ0 and σ2
0 are only related to the first term, and the parameters of the distribution for the

second regime only to the second. The transition probability p00 is related to the third and fifth

term, and so on. So differentiation will produce relatively simply conditions. In most Markov

switching models, it is typically possible to evaluate the system of FOCs in those related to λ

and those to ρ.

We first look at differentiating (21) with respect to µ0. We will use ξ
(k−1)
t|T,0 to denote Pr[St =

0|YT ;θ(k−1)] = 1−E[St|YT ;θ(k−1)], which is the smoothed inference that we find when we apply
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the filter and smoother recursions in (9)–(12) with parameters θ(k−1). We find

∂`EM
(
YT ;θ,θ(k−1)

)
∂µ0

=

∂
T∑
t=1

ξ
(k−1)
t|T,0 log f(yt;µ0, σ

2
0)

∂µ0

=

∂

T∑
t=1

ξ
(k−1)
t|T,0

(
−1

2
log 2π − log σ0 −

1

2

(yt − µ0)
2

σ2
0

)
∂µ0

=
T∑
t=1

ξ
(k−1)
t|T,0

(yt − µ0)

σ2
0

(23)

For the optimal µ
(k)
0 this expression equals zero, which means that we find

µ
(k)
0 =

∑T
t=1 ξ

(k−1)
t|T,0 yt∑T

t=1 ξ
(k−1)
t|T,0

. (24)

This estimate for µ0 can be interpreted as a weighted average of the observations, where the

smoothed inferences for regime 0 serve as weights. It is a clear extension of the normal maximum

likelihood estimator for the mean of a normal distribution. For µ
(k)
1 we find a similar expression,

with ξ
(k−1)
t|T,1 instead of ξ

(k−1)
t|T,0 .

Next we consider the estimates for σ2
0. Differentiation yields

∂`EM
(
YT ;θ,θ(k−1)

)
∂σ0

=

∂
T∑
t=1

ξ
(k−1)
t|T,0 log f(yt;µ0, σ

2
0)

∂σ0

=

∂

T∑
t=1

ξ
(k−1)
t|T,0

(
−1

2
log 2π − log σ0 −

1

2

(yt − µ0)
2

σ2
0

)
∂σ0

=
T∑
t=1

ξ
(k−1)
t|T,0

(
(yt − µ0)

2

σ3
0

− 1

σ0

)
.

(25)

The optimal σ
(k)
0 sets this expression to zeros, so

σ
(k)
0 =

√√√√√∑T
t=1 ξ

(k−1)
t|T,0

(
yt − µ(k)

0

)2
∑T

t=1 ξ
(k−1)
t|T,0

, (26)

which is again a weighted average.
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In a similar way we can derive the estimates for p00 and p11. Before we derive these estimates,

note that

E
[
(1− St)(1− St−1)|YT ;θ

]
=1− E

[
St|YT ;θ

]
− E

[
St−1|YT ;θ

]
+ E

[
StSt−1|YT ;θ

]
=1− Pr

[
St = 1|YT ;θ

]
− Pr

[
St−1 = 1|YT ;θ

]
+ Pr

[
St = St−1 = 1|YT ;θ

]
= Pr

[
St = St−1 = 0|YT ;θ

]
and similarly E

[
St(1 − St−1)|YT ;θ

]
= Pr

[
St = 1, St−1 = 0|YT ;θ

]
and E

[
(1 − St)St−1|YT ;θ

]
=

Pr
[
St = 0, St−1 = 1|YT ;θ

]
. These probabilities can be calculated with a slight modification of

the recursion in (12),

p̃ij,t+1 ≡ Pr[St+1 = i, St = j|YT ;θ(k−1)] = ξt|t,j ·
ξt+1|T,i

ξt+1|t,i
p
(k−1)
ij (27)

The derivative for p00 is given by

∂`EM
(
YT ;θ,θ(k−1)

)
∂p00

=

∂
T∑
t=2

p̃00,t log p00 + p̃10,t log(1− p00)

∂p00

=
T∑
t=2

(
p̃00,t
p00
− p̃10,t

1− p00

)
.

(28)

Setting this expression to zero implies

p
(k)
00 =

∑T
t=2 p̃00,t∑T

t=2 (p̃00,t + p̃10,t)
=

∑T
t=2 p̃00,t∑T

t=2 ξt−1|T,0
. (29)

This can be generalized to

p
(k)
ij =

∑T
t=2 p̃ij,t∑T

t=2 ξt−1|T,j
, (30)

which corresponds with (3.45) in Franses and van Dijk (2000).

Finally, we consider the estimate for the ζ parameter, which is easy to derive. The derivative

of interest is

∂`EM
(
YT ;θ,θ(k−1)

)
∂ζ

=
∂
(
ξ1|T,0 log ζ + ξ1|T,1 log(1− ζ)

)
∂ζ

=
ξ1|T,0
ζ
−
ξ1|T,1
1− ζ

.

(31)

Setting this expression to zero we find

ζ(k) = ξ
(k−1)
t|T,0 . (32)
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3.1.3 Remarks

1. The EM-algorithm needs starting values θ(0). In principle, these starting values can be

picked at random, as long as they are feasible, i.e., positive variance and probabilities

between zero and one. It is advisable to make sure that the distribution parameters for

regime 0 differ substantially from those for regime 1. For example, take the volatility for

regime 1 three or four times that for regime 0. Regimes tend to be persistent, so set the

transition probabilities at a high value of 0.9, say

2. The EM-algorithm converges and maximizes the likelihood. You can prove that each

maximization step in the EM-algorithm yields an improvement (see Hamilton, 1990). In

other words, for each new set of parameters θ(k), the log likelihood function in (14) must

increase. In implementing the algorithm, an important control mechanism is whether

`
(
YT ;θ(k)

)
> `
(
YT ;θ(k−1)

)
. If not, the EM-algorithm is not implemented correctly.2

3. Each step in the EM-algorithm yields an improvement in the likelihood function, though

not necessarily monotonically. You have to specify a stopping criterion, which is best

formulated for the increase in likelihood falling below a threshold.

3.2 Specification testing

Next to the estimates themselves, we are also interested in their precision. We can use the

variance-covariance matrix of the estimates and the resulting standard errors in specification

testing. Because the EM-algorithm maximizes the likelihood function, the standard properties

of maximum likelihood (ML) estimators apply, given that the necessary regularity conditions are

satisfied.3 One crucial assumption is that the true parameter vector θ0 is not on the boundary

of its domain. This can be an issue for the probability parameter for the initial state ζ, which is

therefor best excluded from the calculation of standard errors. If p00 or p11 are estimated close

to zero or one, it is best to use their logit transformation.4

Assuming the regularity conditions are satisfied, the ML estimator θ̂ converges in distribution

2Numerical issues can cause small increases, typically when (smoothed) inferences are close to zero.
3See Krolzig (2013, Ch. 6.6.1) for a discussion.
4The logit transformation of 0 < p < 1 is given by log p− log(1− p).
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to a normal distribution,

√
T (θ̂ − θ0)

d−→ N(0, I−10 ). (33)

Here I0 ≡ limT→∞ I(θ0) denotes the asymptotic information matrix evaluated at the true

parameter vector θ0, where I(θ0) gives the information matrix

I(θ0) ≡ −E

[
1

T

∂2`(YT ;θ0)

∂θ∂θ′

]
= E

[
∂`(YT ;θ0)

∂θ

∂`(YT ;θ0)

∂θ′

]
. (34)

The second equality holds when the model is correctly specified.

In line with its definition, there are two ways of estimating the information matrix that are

asymptotically equivalent, but may give different results in finite samples. The first is to use

the Hessian matrix of the log likelihood function in eq. (14),

ÎH(θ̂) ≡ − 1

T

∂2`(YT ; θ̂0)

∂θ∂θ′
. (35)

The second way is to use the gradient, and construct the matrix as

ÎG(θ̂) ≡ 1

T

T∑
t=1

gt(θ̂)gt(θ̂)′, (36)

where

gt(θ) ≡ ∂`t(yt|Yt−1;θ)

∂θ
(37)

gives the conditional score, that is, the gradient of the conditional log likelihood `t(yt|Yt−1;θ) ≡

log Pr[Yt = yt|Yt−1;θ]. By construction, `(YT ;θ) =
∑T

t=1 `t(yt|Yt−1;θ). The second estima-

tor is often called the outer product of the gradient. Though both methods work, the same

path-dependence that complicated the direct optimization of eq. (14) is a hindrance here, too.

However, Hamilton (1993) shows that we can calculate the OPG in an easier way, circumventing

long sequences of derivatives.

We start our derivation by using the relation between ` and `t to write

gt(θ) =
∂`(Yt;θ)

∂θ
− ∂`(Yt−1;θ)

∂θ
, (38)

so the difference in the scores of the full log likelihood function evaluated up to t and t− 1. As

in eq. (17), we can write

`(Yt;θ) = log Pr[Yt|θ] = log
∑
St

Pr[Yt|St,λ] Pr[St|ρ], (39)
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where we use that conditional on the path St, the likelihood of Yt only depends on the param-

eter vector λ, and the likelihood of the path itself only depends on the parameter vector ρ.

Differentiation with respect to λ yields

∂`(Yt;λ)

∂λ
=

1

Pr[Yt|θ]

∑
St

∂ Pr[Yt|St,λ]

∂λ
Pr[St|ρ]

=
∑
St

∂ log Pr[Yt|St,λ]

∂λ

Pr[Yt|St,λ] Pr[St|ρ]

Pr[Yt|θ]

=
∑
St

∂ log Pr[Yt|St,λ]

∂λ
Pr[St|Yt,θ]

=
∑
St

t∑
τ=1

∂ log Pr[yτ |sτ ,λ]

∂λ
Pr[St|Yt,θ]

=
t∑

τ=1

1∑
sτ=0

∂ log Pr[yτ |sτ ,λ]

∂λ
Pr[sτ |Yt,θ]

=
t∑

τ=1

∂ log f ′τ
∂λ

ξτ |t. (40)

In the second equality, we use that for a differentiable function g(x) > 0, ∂xg(x) = g(x)∂x log g(x).

In the third equality, we apply Bayes’ rule. In the fourth equality we use that the partial deriva-

tive for a given path reduces to a summation over the observations. In the fifth equality, we

gather the probability mass that corresponds with the derivative of yτ for a particular state sτ .

Because the derivative depends only on sτ , the mass of the part of the path before and after sτ

sums to 1, and only Pr[sτ |Yt,θ] remains. In the final equality, we write the summation over the

different states as a multiplication of the transpose of the Jacobian matrix of the (elementwise)

log of fτ with the vector of smoothed inferences ξτ |t. The series of smoothed inferences {ξτ |t}tτ=1

can be constructed with the Kim filter starting with ξt|t. The derivatives of the log of fτ are

typically easy to construct. Combining these derivations yields

∂`t(yt|Yt−1;θ)

∂λ
=
∂`(Yt;θ)

∂λ
− ∂`(Yt−1;θ)

∂λ
=
∂ log f ′t
∂λ

ξt|t +
t−1∑
τ=1

∂ log f ′τ
∂λ

(ξτ |t − ξτ |t−1). (41)

This expression consists of two terms, the first related to the direct effect of observation t on

the likelihood, and the second related to how the inference about the path changes because of

it.
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For the partial derivatives with respect to ρ we use a similar approach, starting with

Pr[St;ρ] =
t∏

τ=1

Pr[sτ |sτ−1,ρ], (42)

with Pr[s1|s0;ρ] = Pr[s1;ρ] to ease notation. Now we find

∂`(Yt;λ)

∂ρ
=

1

Pr[Yt|θ]

∑
St

Pr[Yt|St,λ]
∂ Pr[St;ρ]

∂ρ

=
∑
St

∂ log Pr[St;ρ]

∂ρ

Pr[Yt|St,λ] Pr[St;ρ]

Pr[Yt|θ]

=
∑
St

∂ log Pr[St;ρ]

∂ρ
Pr[St|Yt,θ]

=
1∑

s1=0

∂ log Pr[s1;ρ]

∂ρ
Pr[s1|Yt,θ]+

t∑
τ=2

1∑
sτ=0

1∑
sτ−1=0

∂ log Pr[sτ |sτ−1,ρ]

∂ρ
Pr[sτ , sτ−1|Yt,θ]. (43)

The derivatives for log Pr[sτ |sτ−1,ρ] are easy to find, and the recursion in eq. (27) can be used

to construct the smoothed inferences Pr[sτ , sτ−1|Yt,θ]. Finally, we combine these derivations to

∂`t(yt|Yt−1;θ)

∂ρ
=
∂`(Yt;θ)

∂ρ
− ∂`(Yt−1;θ)

∂ρ

=
1∑

st=0

1∑
st−1=0

∂ log Pr[st|st−1,ρ]

∂ρ
Pr[st, st−1|Yt,θ]+

t−1∑
τ=2

1∑
sτ=0

1∑
sτ−1=0

∂ log Pr[sτ |sτ−1,ρ]

∂ρ
(Pr[sτ , sτ−1|Yt,θ]− Pr[sτ , sτ−1|Yt−1,θ])+

1∑
s1=0

∂ log Pr[s1;ρ]

∂ρ

(
Pr[s1|Yt,θ]− Pr[s1|Yt−1,θ]

)
. (44)

4 An example

In the example we look at weekly excess returns on the MSCI US Stock Market Index. For each

week, I have calculated the log return on the index, from which I have subtracted the 1-week

risk free rate. The first return is for January 2, 1980 and the last for July 1, 2009. In total we

have 1540 observations. The data is available in the file MSExample MSCIUS.xls on my website5

and on Mendeley6. The returns are given in %.

5See http://personal.eur.nl/kole.
6See https://data.mendeley.com/datasets/8yvfgdwnbr/1.
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4.1 Inferences

First, we look at the inferences that we make for a given set of parameters. As values for the

parameters we take

µ0 = 0.04 σ0 = 1 p11 = 0.80 ζ = 0.50

µ1 = −0.04 σ1 = 4 p22 = 0.80

The means and volatilities are based on the overall sample mean, which was close to zero, and

the overall sample variance which was around two.

In Table 1 we see the first ten forecast, inference and smoothed inferences. The first forecast

probabilities are given by ζ and 1 − ζ. Based on the first return of -1.01923, the inferences

are calculated. This return is relatively close to zero, and fits better with the first regime (low

volatility) than the second regime (high volatility). Therefore the inference probability for state

0 is higher than for state 1. Because of the persistence of the regimes (p11 and p22 are high),

the forecast probability for state 0 at time 2, is higher than the 0.5 at time 1. Returns at time

2, 3 and 4 match better with the high volatility regime (inferences for regime 2 exceed 0.5).

Consequently, when we smooth the series of inferences, the probability for regime 0 at time 1

goes down, from 0.70167 to 0.51467.

4.2 Estimation

We can use the parameters we picked in the previous subsection to start the EM-algorithm

to estimate the model parameters. We set the stopping criterion at an increase in the log

likelihood function in (14) below 10−8. In Table 2 we show how the EM algorithm proceeds.

We see that the likelihood increases with every iteration. The EM-algorithm needs 48 steps in

0.719 seconds to converge to the optimal solution in this case. We also calculate the standard

errors for the estimates, using a numerical approximation to the Hessian and the outer product

of the gradient. Because ζ̂ = 1, which is on the boundary of the support, we do not calculate a

standard error for it. The standard errors of both methods are close for the mean and transition

parameters, but not for the volatility parameters, which may point at misspecification.

In Table 3 we report the forecast, inference and smoothed inferences for the first ten returns,

based on the parameters estimates produced by the EM-algorithm. Compared to Table 1, we
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Table 1: Inferences for the first ten returns.

forecast inference smoothed inf.

probabilities probabilities probabilities

observation return St = 0 St = 1 St = 0 St = 1 St = 0 St = 1

1 −1.01923 0.50000 0.50000 0.70167 0.29833 0.51467 0.48533

2 2.64830 0.62100 0.37900 0.21490 0.78510 0.27057 0.72943

3 1.54639 0.32894 0.67106 0.40549 0.59451 0.45034 0.54966

4 2.02344 0.44329 0.55671 0.33727 0.66273 0.51982 0.48018

5 0.96257 0.40236 0.59764 0.64486 0.35514 0.72967 0.27033

6 0.04977 0.58691 0.41309 0.85040 0.14960 0.73656 0.26344

7 1.81177 0.71024 0.28976 0.69432 0.30568 0.40332 0.59668

8 −2.47153 0.61659 0.38341 0.24830 0.75170 0.07637 0.92363

9 −4.24477 0.34898 0.65102 0.00038 0.99962 0.00018 0.99982

10 −1.69100 0.20023 0.79977 0.19599 0.80401 0.05800 0.94201

This tables shows the first ten returns with their forecast probabilities, inferences and smoothed inferences. The

inferences are based on the two-state regime switching model specified in Sec. 1. The parameters values are

µ0 = 0.04, σ0 = 1, µ1 = −0.04 σ1 = 4, p11 = 0.80, p22 = 0.80 and ζ = 0.50.

Table 2: Steps of the EM-algorithm

starting iteration optimal standard errors

values 1 2 3 solution Hessian OPG

µ0 0.0400 0.1426 0.1980 0.2240 0.1573 0.0526 0.0531

σ0 1.0000 1.1445 1.2182 1.2645 1.5594 0.0526 0.0171

µ1 −0.0400 −0.1262 −0.1887 −0.2324 −0.2988 0.1725 0.1746

σ1 4.0000 3.1417 3.0916 3.1030 3.4068 0.1639 0.0235

p11 0.8000 0.8222 0.8345 0.8532 0.9770 0.0069 0.0066

p22 0.8000 0.7899 0.8072 0.8195 0.9484 0.0175 0.0147

ζ 0.5000 0.5147 0.5585 0.6501 1.0000 - -

`(YT ;θ) −3423.5840 −3352.8306 −3343.2509 −3337.7226 −3310.2279

This table shows the steps of the EM-algorithm, applied to the full sample. Starting values for the parameters

are µ0 = 0.04, σ0 = 1, µ1 = −0.04 σ1 = 4, p11 = 0.80, p22 = 0.80 and ζ = 0.50. The algorithm stops when

the improvement in the log likelihood function falls below 10−8. We show the parameters after the first three

iterations, and the optimal values. For each parameter set we calculate the value of the log likelihood function

in (14). Standard errors are calculated using the numerical approximation of the Hessian and the outer product

of the gradient (OPG).
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Table 3: Inferences for the first ten returns, based on estimated parameters.

forecast inference smoothed inf.

probabilities probabilities probabilities

observation return St = 0 St = 1 St = 0 St = 1 St = 0 St = 1

1 −1.01923 1.00000 0.00000 1.00000 0.00000 1.00000 0.00000

2 2.64830 0.97697 0.02303 0.97411 0.02589 0.97756 0.02244

3 1.54639 0.95301 0.04699 0.97184 0.02816 0.95963 0.04037

4 2.02344 0.95091 0.04909 0.96308 0.03692 0.92842 0.07158

5 0.96257 0.94281 0.05719 0.97123 0.02877 0.88600 0.11400

6 0.04977 0.95035 0.04965 0.97671 0.02329 0.79482 0.20518

7 1.81177 0.95542 0.04458 0.96998 0.03002 0.58738 0.41262

8 −2.47153 0.94919 0.05081 0.92354 0.07646 0.26443 0.73557

9 −4.24477 0.90622 0.09378 0.43437 0.56563 0.04898 0.95103

10 −1.69100 0.45357 0.54643 0.49407 0.50593 0.03344 0.96657

This tables shows the first ten returns with their forecast probabilities, inferences and smoothed inferences. The

inferences are based on the two-state regime switching model specified in Sec. 1. The parameters are estimated

with the EM-algorithm and reported in Table 2.

see the regimes are better defined now: the probabilities are either close to zero or to one. The

inferences signal a possible switch for the return after 9 weeks, where the probability for regime

2 increases above 0.5. It is still close to 0.5, so based on the 9 weeks of information the regime

switching models does not produce certain inferences about the switch. Using all information,

the inference is more certain for regime 2, and dates the switch already in week 8.

In Figure 1, we see the smoothed inferences for regime 0 over time. This low volatility regime

prevails during prolonged periods of time, but we also see clear periods identified as exhibiting

high volatility, notably around the crash of October 1987, the Asian crisis (1997), the Ruble

crisis (1998), the burst of the IT-bubble after 2001 and the credit crisis in 2007-2008.
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Figure 1: Smoothed Inference Probability for Regime 0

This figure shows the smoothed inferences for regime 0 over time for the US stock market. The probabilities

are constructed using the filter recursion in (9) and (10) and the smoother recursion of Kim (1994) in (12). The

parameters are estimated with the EM-algorithm and reported in Table 2.
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