Can Teachers and Machines Predict the Long-Run Academic Performance of Young Children?

Max Coveney Sacha Kapoor Dinand Webbink

Erasmus University Rotterdam

December 2025

Motivation

- Teachers routinely assess students' long-run potential
- These assessments shape consequential decisions:
 - Time and effort allocation
 - Grades and recommendations
 - Track placement
- **Key question:** How accurate are these assessments?
- Policy relevance: Can algorithms improve or complement teacher judgment?

This Paper

Research Questions:

- 1. How well do teachers predict students' academic tracks?
- 2. Do prediction errors vary by student characteristics (SES, gender)?
- 3. Can machine learning algorithms outperform teachers?
- 4. Are human and algorithmic predictions complementary?

Contribution:

- First large-scale comparison of teacher vs. algorithmic predictions
- Unique data: teacher predictions at multiple time horizons
- Framework for understanding human-Al complementarity in education

Context: Dutch Education System

- Students allocated to academic tracks at age 12
- Four track levels (ordered by academic intensity):
 - Track 0: Vocational (VMBO-basis)
 - Track 1: Vocational-theoretical (VMBO-kader/gemengd/theoretisch)
 - Track 2: Professional (HAVO)
 - Track 3: Academic (VWO) → University
- Track assignment based on:
 - Teacher recommendation (highly influential)
 - Standardized test scores (CITO)

Data: PRIMA Cohort Study

Source: Primary Education Cohort Study (PRIMA), 1994–2005

Key features:

- 250,000+ teacher predictions about student track placement
- Predictions made at four time horizons:
 - Age 6 (6 years before track placement)
 - Age 8 (4 years before)
 - Age 10 (2 years before)
 - Age 12 (months before)
- Linked to realized track outcomes
- Rich student covariates: test scores, SES, gender, ethnicity

Sample: 600 schools, nationally representative + low-SES oversample

Empirical Framework

Setup:

- Teacher i predicts track $t_{ij}^{(y)*}$ for student j, y years ahead
- We observe realized track $t_{ii}^{(y)}$

Assumption: Teachers minimize expected loss from misclassification

$$t_j^{(y)*}(I_i) = \arg\min_t \mathbb{E}[L(t_{ij}^{(y)}, t)]$$

Loss functions:

- Binary (0-1): $L = \mathbf{1}[t_{ij}^{(y)} \neq t_j^{(y)*}]$
- Absolute: $L = |t_{ij}^{(y)} t_j^{(y)*}|$
- Quadratic: $L = |t_{ij}^{(y)} t_j^{(y)*}|^2$

Measuring Teacher Accuracy

Step 1: Compute loss per student

$$L_{ij}^{(y)} = L(t_{ij}^{(y)}, t_j^{(y)*}(I_i))$$

Step 2: Average loss per teacher

$$\bar{L}_{i}^{(y)} = \frac{1}{S(i)} \sum_{i \in C(i)} L_{ij}^{(y)}$$

Step 3: Analyze distribution of teacher accuracy

- How does accuracy vary across teachers?
- How does accuracy improve as prediction horizon shortens?

Classification Errors

Two types of errors:

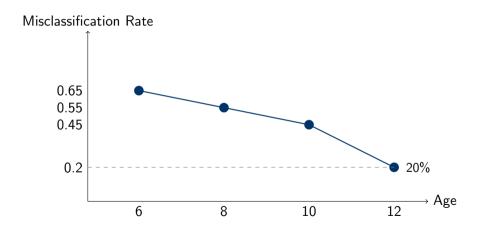
- False Positive (Type I): Teacher predicts higher track than realized
 - Overestimation of student potential
- False Negative (Type II): Teacher predicts lower track than realized
 - Underestimation of student potential

Rates:

$$FPR_i^{(y)} = \frac{FP_i^{(y)}}{TN_i^{(y)} + FP_i^{(y)}} \qquad FNR_i^{(y)} = \frac{FN_i^{(y)}}{TP_i^{(y)} + FN_i^{(y)}}$$

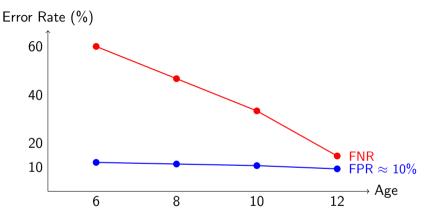
Result 1: Prediction Accuracy Improves with Age

Average Misclassification Rate (Binary Loss)



- Teachers misclassify 65% of 6-year-olds, 20% of 12-year-olds
- Largest improvement: ages 10 to 12 (recommendation already formed)

Result 2: Error Types Differ by Age



- False positives (overestimation): stable at $\approx 10\%$
- False negatives (underestimation): 60% at age $6 \rightarrow 15\%$ at age 12
- System is pessimistic about young students' potential

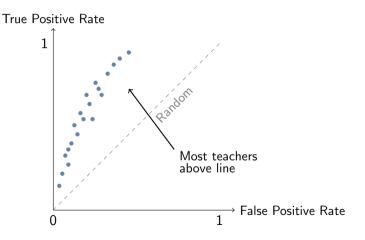
Result 3: Errors Differ by SES

SES Group	Age 6	Age 12			
False Positive Rate (Overestimation)					
High SES Natives Low SES Natives & Migrants	19% 10%	10% 5%			
False Negative Rate (Underestimation)					
High SES Natives Low SES Natives & Migrants	55% 75%	10% 20%			

- Teachers **overestimate** high-SES students (2× higher FPR)
- Teachers underestimate low-SES students (FNR gap persists at age 12)

Result 4: Variation Across Teachers

ROC Analysis: Teacher Performance vs. Random Guessing



• Most teachers perform better than random guessing

Can Machines Do Better?

Approach:

- Train ML model to predict track using student observables X_{ij}
- Multinomial logistic regression with elastic net regularization
- Cross-validation to select penalty parameters

Features (X_{ij}) :

- Test scores (language, math, reading comprehension)
- Student demographics (gender, ethnicity)
- Family background (parental education, SES)
- School characteristics

Key question: Does $t_j^{(y)*}(X_{ij})$ outperform $t_j^{(y)*}(I_i)$?

Machine vs. Teacher: Preliminary Results

	Misclassification Rate			
Predictor	Age 6	Age 8	Age 10	Age 12
Teacher	0.65	0.55	0.45	0.20
Machine (all features)	_	_	_	_
Machine (no test scores)	_	_	_	
Complementarity				
Teacher + Machine	_	_	_	_

Analysis in progress

- Comparing out-of-sample prediction accuracy
- Testing whether combining teacher and machine predictions improves accuracy

Interpretation and Implications

What we learn:

- Teachers are informative but imperfect predictors
- Systematic biases: overestimate high-SES, underestimate low-SES
- System "learns" over time but biases persist

Policy implications:

- Algorithms could reduce bias in track recommendations
- But: Should we want accurate predictions?
 - Overestimating disadvantaged students might help them
 - Accurate early prediction could become self-fulfilling
- Human-Al complementarity: algorithms flag, humans decide

Broader Relevance: Human-Al Collaboration

This paper speaks to:

- When should organizations trust human vs. algorithmic judgment?
- How do we design systems that combine both effectively?

Related applications:

- Hiring decisions (Hoffman, Kahn & Li 2018)
- Bail decisions (Kleinberg et al. 2018)
- Medical diagnosis (Mullainathan & Obermeyer 2022)
- School quality assessment (Dutch Inspectorate)

Core insight: Neither humans nor machines dominate; optimal configuration is context-dependent

Conclusion

Summary:

- 1. Teachers misclassify 65% of 6-year-olds, 20% of 12-year-olds
- 2. Systematic bias: underestimate low-SES, overestimate high-SES
- 3. Bias persists even at age 12
- 4. Machine learning offers potential for improvement

Next steps:

- Complete ML comparison (in progress)
- Test complementarity of human + machine predictions
- Explore implications for track assignment policy

Thank you

kapoor@ese.eur.nl