
Ant Colony Optimization for RDF Chain Queries for Decision Support

Alexander Hogenbooma,∗, Flavius Frasincara, Uzay Kaymakb

aErasmus University Rotterdam, P.O. Box 1738, 3000 DR, Rotterdam, The Netherlands
bEindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands

Abstract

Semantic Web technologies can be utilized in expert systems for decision support, allowing a user to ex-

plore in the decision making process numerous interconnected sources of data, commonly represented by

means of the Resource Description Framework (RDF). In order to disclose the ever-growing amount of

widely distributed RDF data to demanding users in real-time environments, fast RDF query engines are of

paramount importance. A crucial task of such engines is to optimize the order in which partial results of a

query are joined. Several soft computing techniques have already been proposed to address this problem,

i.e., two-phase optimization (2PO) and a genetic algorithm (GA). We propose an alternative approach – an

ant colony optimization (ACO) algorithm, which may be more suitable for a Semantic Web environment.

Experimental results with respect to the optimization of RDF chain queries on a large RDF data source

demonstrate that our approach outperforms both 2PO and a GA in terms of execution time and solution

quality for queries consisting of up to 15 joins. For larger queries, both ACO and a GA may be preferable

over 2PO, subject to a trade-off between execution time and solution quality. The GA yields relatively good

solutions in a comparably short time frame, whereas ACO needs more time to converge to high-quality

solutions.

Keywords: RDF Chain Query Optimization, Ant Colony Optimization, Genetic Algorithm, Iterative

Improvement, Simulated Annealing

∗Corresponding author; tel: +31 (0)10 408 2264; fax: +31 (0)10 408 9031
Email addresses: hogenboom@ese.eur.nl (Alexander Hogenboom), frasincar@ese.eur.nl (Flavius Frasincar),

u.kaymak@ieee.org (Uzay Kaymak)

Preprint submitted to Expert Systems with Applications July 25, 2012

1. Introduction

In today’s information-driven society, decision makers need to process a continuous flow of data through

various input channels, by extracting information, understanding its meaning, and acquiring knowledge by

applying reasoning to the gathered information (Hogenboom et al., 2012). Yet, an overwhelming amount

of data is available at any given time, whereas decision makers – businesses and consumers alike – need

a complete overview of their environment in order to enable effective, well-informed decision making. In

order to address this issue, Semantic Web (Berners-Lee et al., 2001) technologies can be utilized in expert

systems for decision support, as has been demonstrated in recent research on knowledge management (Joo

and Lee, 2009), annotation (Aksac et al., 2012) and recommendation of data sources (Hsu, 2009), intel-

ligent search (Batzios et al., 2008; Lupiani-Ruiz et al., 2011; Vandic et al., 2012), and personalized user

experiences in, e.g., tourism (Garcia-Crespo et al., 2011) or e-commerce (Blanco-Fernandez et al., 2010).

The rise of the Semantic Web facilitates an ever-growing amount of data to be stored in many heteroge-

nous, yet interconnected sources. This data is commonly represented by means of the Resource Description

Framework (RDF), a framework for describing and interchanging meta-data (Klyne and Carroll, 2004),

which describes the context of data and thus enables machine-interpretability. Due to the interconnectivity

of data rather than pages, the Semantic Web has the potential of addressing today’s typical users’ complex

information needs in a more effective and efficient way than the current Web can.

Semantic Web technologies allow a user to explore many different data sources in order to address very

specific information needs. A typical scenario here may be a query for features and reviews of a holiday

destination and comparable alternatives, as well as prices and details of trips to any of these locations.

Such queries can be executed on multiple RDF sources by means of the SPARQL Protocol and RDF Query

Language (SPARQL) (Prud’hommeaux and Seaborne, 2008). In order for SPARQL queries to disclose the

ever-growing amount of widely distributed RDF data to demanding users in real-time environments, fast

RDF query engines are crucial.

Recent expert systems for querying distributed environments with multiple heterogenous information

sources such as databases or repositories focus on the problem of identifying the information sources that

are most relevant with respect to queries (Jung, 2010) or on the problem of combining the query results

from multiple sources while optimizing coverage and search effectiveness (Amin and Emrouznejad, 2011;

Batzios and Mitkas, 2012). However, to the best of our knowledge, expert systems dealing with optimizing

the execution efficiency of a given query in a distributed environment have been relatively unexplored.

2

One of the problems today’s RDF query engines face is the optimization of the order in which the dis-

tinct parts of a query are executed. The total execution times of queries depend on these query paths. A

good algorithm for optimizing the execution order in a query path can thus contribute to efficient query-

ing. As the number of possible query paths grows exponentially with the query size, the optimization of

RDF query paths is far from trivial. Therefore, several soft computing techniques have been proposed to

address this problem. For instance, Stuckenschmidt et al. (2005) present a two-phase optimization (2PO)

algorithm, consisting of an iterative improvement (II) method followed by simulated annealing (SA). More

recently, a genetic algorithm (GA) has been shown to be a promising alternative when optimizing RDF

queries (Hogenboom et al., 2009).

As their design has been inspired by methods for optimization of query paths in traditional databases,

existing soft computing approaches to RDF query path optimization have essentially been designed for more

or less static environments – changes in the environment typically require the optimization to be run all over

again. However, the Semantic Web is a complex and dynamic environment. Data changes, sources come

and go, and latency between sources may be volatile. In this light, ant colony optimization (ACO) (Dorigo

et al., 1996, 2006) is a good alternative to the existing soft computing approaches in an RDF environment.

ACO is a soft computing technique inspired by the foraging behavior of ant colonies. Its nature allows the

algorithm to be run continuously and to adapt to changes in the environment in real time. Moreover, ACO

has been shown to outperform GAs in solving complex problems such as scheduling (Merkle et al., 2002)

and sequential ordering (Gambardella and Dorigo, 2000).

As its characteristics render ACO an attractive alternative to existing soft computing techniques for RDF

query optimization, we explore the applicability of ACO to query path optimization in an RDF environment.

Furthermore, we compare the performance of existing soft computing techniques for RDF query path opti-

mization with our novel ACO algorithm. We focus on the performance of the considered algorithms when

optimizing a special class of SPARQL queries, the so-called RDF chain queries, on a single source.

The remainder of this paper is structured as follows. First, Section 2 provides a short introduction to

RDF and chain queries. We then discuss the two existing soft computing techniques as well as our novel

ACO algorithm for RDF chain query optimization in Sections 3 and 4. In Section 5, we evaluate the

performance of our considered methods in terms of execution time and solution quality. Finally, we draw

conclusions and propose directions for future work in Section 6.

3

2. RDF and Chain Queries

In an RDF model, facts are declared as a collection of triples, each consisting of a subject, a predicate,

and an object. RDF triples can be visualized in a graph, which can be described as a node and directed-

arc diagram, in which each triple is represented as a node-arc-node link (Klyne and Carroll, 2004). The

relationship between a subject node and an object node in an RDF graph is defined using an arc which

denotes a predicate.

When querying RDF sources, RDF triples are essentially matched with a series of patterns specified

in a SPARQL query. In the specific subset of SPARQL queries we consider in our current endeavors, the

WHERE statement only contains a set of node-arc-node patterns which are chained together such that the

object of one predicate is the subject of the next predicate. Such RDF chain queries resemble chain queries

in traditional relational databases, where a query path is followed by performing joins between its subpaths

of length 1 (Stuckenschmidt et al., 2005). Randomized and genetic algorithms have proven to outperform

heuristic methods in optimizing these types of queries in relational databases (Steinbrunn et al., 1997).

A typical example of a chain query in an RDF environment is the following. Let us consider an RDF

model of the CIA World Factbook generated by using QMap (Hogenboom et al., 2008). This model contains

data about 250 countries, defined in over 100,000 triples. Suppose a financial risk analyst wants to identify

the export partners of The Netherlands that have dependent areas (i.e., areas that do not possess full political

independence or sovereignty) that are involved in an international conflict. This query can be expressed in

SPARQL as demonstrated in Figure 1.

1. PREFIX c: <http://www.daml.org/2001/09/countries/fips#>
2. PREFIX o: <http://www.daml.org/2003/09/factbook/factbook-ont#>
3. SELECT ?partner
4. WHERE { c:NL o:exportPartner ?expPartner .
5. ?expPartner o:country ?partner .
6. ?partner o:dependentArea ?area .
7. ?area o:internationalDispute ?conflict .
8. }

Figure 1: Example RDF chain query in SPARQL.

This query can be subdivided into four subqueries: a query for information on the export partners of The

Netherlands (line 4), a query for countries associated with other countries as export partners (line 5), a query

for dependent areas (line 6), and a query for international disputes (line 7). In order to resolve the complete

query, the results of the individual subqueries can be joined in any order. Here, the number of statements

resulting from a join is equal to the number of statements compliant with both operands’ constraints.

4

(a) Bushy tree. (b) Right-deep tree.

Figure 2: Examples of query trees for an RDF chain query with three joins. Light gray nodes represent matches with triple patterns,
whereas dark gray nodes with a ./ represent joins.

A sequence of joins in such a query can be visualized as a tree. The leaf nodes of an RDF query tree

typically represent inputs, whereas the internal nodes represent algebra operations, enabling one to specify

basic retrieval requests on the inputs (Frasincar et al., 2004). We consider the leaf nodes of a query tree

to be matches with the individual patterns of triples constituting an RDF chain query. The internal nodes

represent join operations.

The nodes in a query tree can be ordered in many different ways, which are referred to as query paths.

In an RDF context, bushy and right-deep query trees can be considered (Stuckenschmidt et al., 2005). In

bushy trees, base relations (containing matches with one triple pattern) as well as results of earlier joins can

be joined. Right-deep trees, which are a subset of bushy trees, require the left-hand join operands to be

base relations. Figure 2 depicts a bushy tree and a right-deep tree for our example query, where matches

with triple patterns {t1, t2, t3, t4} – corresponding with lines 4 through 7 of our example query in Figure 1,

respectively – are joined, with ./ representing a join. Irrespective of the order of these joins, the result of a

query will always be the same, ceteris paribus. However, the total execution time of a query does depend

on the order of joins. Therefore, query path optimization is crucial in today’s real-time RDF environments.

3. Soft Computing Techniques for RDF Chain Query Optimization

The order of joins of subpaths in an RDF chain query path is variable and affects the time needed for exe-

cuting the query. In this context, the join-order problem arises. The challenge is to determine the right order

in which the joins should be computed, hereby optimizing the overall response time. Typical approaches to

address this problem involve exploring a solution space in an attempt to find low-cost solutions.

5

3.1. Solution Space

In the solution space, each solution represents a query path. The size of this solution space depends on

the type of query trees. For n base relations, and hence n − 1 joins, there are n! different right-deep query

trees, whereas there are
(
2(n−1)
(n−1)

)
(n − 1)! possible bushy query trees (Steinbrunn et al., 1997). Solutions are

located in this solution space in such a way that their neighbors are similar solutions. We consider solutions

to be neighbors of a solution if they can be obtained by transforming the latter solution by applying one of

four transformation rules once to a part of the solution query tree, i.e., join commutativity, join associativity,

left join exchange, or right join exchange (Ioannidis and Kang, 1990). Figure 3 demonstrates these rules for

our example bushy query tree presented in Figure 2(a).

3.2. Solution Costs

Each solution is associated with execution costs, which are mainly realized by the costs of data trans-

mission from the source to the processor and the costs of processing this data (Stuckenschmidt et al., 2005).

As our current research focuses on a single source, we omit the (constant) data transmission costs and only

consider data processing costs, i.e., the sum of costs associated with all joins within a solution. Join costs

are typically influenced by the cardinalities of the operands and the join method used. Several methods

can be used for implementing (two-way) joins (Elmasri and Navathe, 2004). We consider only nested-loop

joins, as we assume that no index or hash key exists a priori for sources used in a dynamic Semantic Web

environment (making single-loop and hash joins unfeasible) and that the source data is unsorted (requiring

the sort-merge join algorithm to sort the data first, which would take up precious running time). When

(a) Join commutativity. (b) Join associativity. (c) Left join exchange. (d) Right join exchange.

Figure 3: Examples of neighboring solutions of the bushy query tree presented in Figure 2(a). Light gray nodes represent matches
with triple patterns, whereas dark gray nodes with a ./ represent joins. Gray nodes with thick borders mark changes with respect
to the original bushy query tree, which result from applying the considered transformation methods.

6

performing a nested-loop join, all elements in both join operands need to be compared with one another. In

this light, when joining operands o js1 and o js2 for each join j in a solution s with n base relations, we define

the total execution costs cs as

cs =

n−1∑

j=1

∣∣∣o js1
∣∣∣ ∣∣∣o js2

∣∣∣ , (1)

with
∣∣∣o js1

∣∣∣ and
∣∣∣o js2

∣∣∣ being the cardinalities of the first and second join operands of join j for solution s,

respectively.

For base relations, cardinalities can be derived from the data, i.e., by counting the number of triples

corresponding to a predicate. Conversely, the cardinality of the result of an arbitrary join is a function of the

cardinalities of its operands. In the worst-case scenario, the result of a two-way join equals the Cartesian

product of the two operands. However, some join selectivity may take place. Therefore, we define the

cardinality
∣∣∣o js

∣∣∣ of join j for solution s as

∣∣∣o js
∣∣∣ =

∣∣∣o js1
∣∣∣ ∣∣∣o js2

∣∣∣σ js, (2)

where σ js represents the selectivity of join j for solution s. The join selectivity of partial results may

not be known in real-time without actually performing the join. Therefore, we need to approximate this

selectivity. To this end, following (Steinbrunn et al., 1997), we propose to use an established selectivity

heuristic (Selinger et al., 1979), i.e.,

σ js =
1

max
(∣∣∣o js1

∣∣∣ ,
∣∣∣o js2

∣∣∣
) , (3)

an estimation which could of course be updated over time in a real-time environment.

As not every query path is as efficient as others, the challenge in query path determination is to minimize

query execution costs. Queries on RDF sources could be translated into algebraic expressions (Hogenboom

et al., 2009), which can then be optimized by applying simple transformation rules for relational algebraic

expressions (Frasincar et al., 2004; Elmasri and Navathe, 2004). However, in complex solution spaces, these

heuristics are not sufficient; several soft computing techniques have been shown to yield better results in

traditional query execution environments (Steinbrunn et al., 1997). Inspired by these results, soft computing

techniques have been applied to query optimization in the context of the Semantic Web.

7

3.3. Two-Phase Optimization

One of the first soft computing methods for exploring the solution space of RDF query paths is the

2PO algorithm (Stuckenschmidt et al., 2005). This optimization method consists of two phases. In the first

phase, an II algorithm randomly generates a set of initial solutions, each of which is used as a starting point

for a walk in the solution space. In each walk, every step is a move towards a better neighbor. At some point

in an arbitrary walk, a solution is reached for which no better neighbor can be found in a limited number of

tries, in which case the current solution is considered to be a local optimum.

The best local optimum thus found is subsequently used as a starting point for the second phase – a SA

algorithm. Inspired by the natural process of annealing of crystals from liquid solutions, SA simulates a

continuous temperature reduction, enabling the system to cool down completely from a specified starting

temperature to a state in which the system is considered to be frozen. The probability of the algorithm

to accept moves not yielding improvement is proportional to the system’s temperature and is inversely

proportional to the difference in costs between a current solution and an arbitrary neighboring solution. The

algorithm thus searches the proximity of possibly suboptimal solutions, hereby reducing the risk for a local

optimum.

3.4. Genetic Algorithm

More recently, a GA has been proposed as a promising alternative to 2PO for RDF chain query op-

timization (Hogenboom et al., 2009). A GA is an optimization algorithm simulating biological evolution

according to the principle of survival of the fittest (Holland, 1975). A population of chromosomes – rep-

resenting solutions – is exposed to evolutionary operations, consisting of selection (where individual chro-

mosomes are chosen to be part of the next generation), crossovers (creating offspring by combining some

chromosomes), and mutations (randomly altering some chromosomes). Evolution is simulated until the

maximum number of iterations is reached or several generations have not yielded any improvement. The

fitness of a chromosome determines the probability of its survival and is inversely proportional to the asso-

ciated solution’s execution costs.

The GA tha has been proposed for RDF chain query optimization (Hogenboom et al., 2009) makes use

of an efficient ordinal number encoding scheme (Steinbrunn et al., 1997). This encoding scheme iteratively

joins two operands in an ordered list of operands, the result of which is saved in the position of the first

appearing operand. The sequence of pairs of indices of operands thus obtained is used to encode the so-

lution. Because of this, for n base relations, the first two numbers are two unique integers ranging from

8

1 to n (first pair), the third and fourth numbers are two unique integers ranging from 1 to n − 1 (second

pair), etc. This facilitates easy crossover operations, as every pair of join operands in one encoded solution

can be interchanged with another pair of join operands on the same position in another encoded solution.

Additionally, mutation operations can be implemented in a straightforward way, involving generating new

join operands that comply with the restrictions of their respective positions in the encoded solutions.

This encoding scheme can be nicely illustrated by means of the bushy query tree for our example chain

query, presented in Figure 2(a). First, consider the ordered list of matches with triple patterns {t1, t2, t3, t4}.
An initial join between the second and fourth triple pattern yields the list {t1, t2t4, t3}. A subsequent join

between the second and first operand in this new list yields {t2t4t1, t3}. A final join between the second and

first operand in the latter list results in {t3t2t4t1}. This join order would be encoded as ((2, 4) , (2, 1) , (2, 1)).

The solution thus encoded can be subject to evolutionary operations, as demonstrated in Figure 4. In

this example, the bushy query tree presented in Figure 2(a) and the right-deep query tree presented in

Figure 2(b) are selected to serve as parent solutions in a crossover operation. For each set of two positions

in the encoded solutions, information is copied from a randomly selected parent into an offspring solution,

as shown in Figure 4(c). This procedure ensures the validity of the resulting offspring solution, as each set of

two positions in the encoded versions of both parent solutions, and thus in the encoded offspring solution,

adhere to the same constraints. Figure 4(d) demonstrates that the resulting solution can subsequently be

mutated by replacing a randomly selected set of two positions in the encoded solution by a new encoded set

of two join operands, compliant with the restrictions of the position in the encoded solution.

Inspired by the observation of GAs being aware of good solutions faster than 2PO, but spending more

time on optimizing these already good results in traditional query execution environments (Steinbrunn et al.,

1997), Hogenboom et al. (2009) attempt to find a balance between execution time and solution quality. To

this end, they propose a GA for RDF chain query optimization with a relatively small population, high

crossover rate, low mutation rate, and a low threshold for convergence. Moreover, their algorithm always

selects the best solution for proliferation in the next generation at least once (elitist selection) in order to

stimulate relatively fast convergence. Initial results demonstrate a promising performance compared to 2PO

in terms of both execution time and solution costs, especially for larger queries.

9

(a) First parent. (b) Second parent.

(c) Crossover. (d) Mutation.

Figure 4: Evolutionary operations on (encoded) solutions. Light gray nodes represent matches with triple patterns, whereas dark
gray nodes with a ./ represent joins. The encodings are depicted in boxes – white boxes for information from the first parent, and
gray boxes for information from the second parent. The mutated part of a solution is marked in the encoding with thick borders of
the associated boxes.

4. Ant Colony Optimization for RDF Chain Query Optimization

As the existing 2PO and GA approaches to RDF chain query path optimization have been inspired by

methods for optimization of query paths in traditional databases, their nature renders these approaches most

applicable to more or less static environments. When something in the environment changes during or

after optimization, existing optimization techniques typically need to be run all over again, possibly boot-

strapped with the best-so-far solution. However, the Semantic Web is a complex and dynamic environment

in which data continuously changes, data sources come and go, and transmission costs between sources

may vary over time. ACO algorithms can be run continuously and can inherently adapt to changes in the

10

environment in real time, irrespective of whether such changes occur during or after (initial) optimization.

Moreover, ACO approaches have been shown to outperform GAs in solving complex problems such as

scheduling (Merkle et al., 2002) and sequential ordering (Gambardella and Dorigo, 2000). Therefore, we

propose a method of optimizing RDF Chain Queries using Ant Colony Optimization (RCQ-ACO).

4.1. Ant Colony Optimization

ACO is a soft computing technique inspired by the foraging behavior of ant colonies (Dorigo et al.,

1996, 2006). In such colonies, ants walking between their nest and a food source mark their paths with

pheromone traces. Foraging ants make use of these traces, as they tend to follow paths where the pheromone

concentration is highest. Over time, shorter paths attract more and more pheromones as they are traversed

with increasing frequency because of their length as well as the pheromone traces on these paths. The

colony thus converges to using a short path.

ACO is essentially a populated meta-heuristic where each encountered solution is represented by a path

of an ant in a solution space. Prototypical applications for ACO are problems of which the solution space

can be represented as a graph, with artificial ants finding their way through the graph. Typically, each

iteration of the algorithm consists of two steps. First, every ant in the colony constructs a path from a start

vertex to an end vertex in the graph. Second, when all ants have reached the end vertex, the edges of each

path are marked with a pheromone quantity proportional to the path’s quality.

In the classic Ant System (Dorigo et al., 1996), an ant k constructs a path by iteratively moving from

its most recently visited vertex x to another, not yet visited vertex y. The probability pk
xy (i) for an ant k to

move from vertex x to vertex y at iteration i of the algorithm is defined as

pk
xy (i) =



ταxy(i−1)ηβxy∑
z∈Vk (x) τ

α
xz(i−1)ηβxz

, z ∈ Vk (x) ,

0, z < Vk (x) ,
(4)

where τxy (i − 1) represents the global pheromone quantity on the edge joining vertices x and y at iteration

i − 1, ηxy is a local heuristic measure capturing the inverse of the (estimated) distance between vertices x

and y, and Vk (x) represents the unvisited vertices of ant k after visiting vertex x. The α and β parameters

control the relative importance of the information conveyed by global pheromone traces and local heuristics,

respectively. Using the newly deposited pheromone traces of all m ants, the pheromone quantity τxy (i)

11

associated with an edge joining vertices x and y is updated at iteration i as

τxy (i) = (1 − ρ) τxy (i − 1) +

m∑

k=1

∆τk
xy (i) , (5)

with ρ being an evaporation rate helping the colony not to converge to a local optimum and ∆τk
xy (i) being the

pheromone quantity deposited at iteration i by ant k on an edge wxy joining vertices x and y. This quantity

is defined as a function of a constant Q and the length Lk of path Tk (i), i.e.,

∆τk
xy (i) =


Q
Lk
, wxy ∈ Tk (i) ,

0, wxy < Tk (i) .
(6)

4.2. Problem Representation

Because this classic design enables ants to find their way around changes in the graph, the application

of ACO to RDF chain query optimization could be an attractive alternative to existing soft computing

approaches. Therefore, we propose an ACO-based algorithm that utilizes a graph representation of an

ordinal number encoding scheme (Steinbrunn et al., 1997), enabling ants to explore the solution space by

iteratively constructing solutions, partly guided by global pheromone traces signaling good solutions and

partly guided by their own local cost estimations of every next join.

As Figure 5 shows for the bushy chain query path example presented in Section 2, the ants find their way

through a directed graph from a start vertex, representing a situation in which no matches with triple patterns

have been joined, to an end vertex, representing a situation in which all joins have been made. An ant’s path

represents a join sequence, where each step represents a join. For an arbitrary join, the vertices in the graph

represent all valid combinations of indices of join operands, in accordance with the ordinal encoding scheme

presented in Section 3.4. An ant’s observed distance associated with an edge connecting a vertex from one

join with a vertex from the next join depends on the path taken up until the former join and represents

the estimated additional costs of performing the next join – i.e., as detailed in (1), the product of the join

operands’ cardinalities, which are in turn estimated by applying (2) and (3). In accordance with (4), these

observed distances associated with edges, as well as the pheromone traces on these respective edges guide

the ants’ decisions. Each iteration, ants deposit new pheromone traces which are inversely proportional

to their paths’ associated total execution costs, in accordance with (5) and (6). When the ants have not

encountered a better path in a number of iterations, the algorithm is considered to have been converged.

12

Figure 5: Graph representation of the join ordering problem, as used in our proposed ant colony optimization approach to RDF
chain query optimization. A colony of artificial ants iteratively traverses this graph from a starting vertex to an end vertex, both
marked light gray. At each step, an ant selects one join from all possible alternatives, represented as columns of dark gray vertices,
in accordance with the ordinal number encoding scheme presented in Section 3.4. The width of an edge reflects the pheromone
quantities on this edge. This graph is a representation for an RDF chain query with 3 joins. The path representing the bushy query
tree example presented in Figure 2(a) is marked by means of black edges.

The benefit of this design is that it allows for an easy representation of bushy query trees as well as for

an easy distinction between using intermediate results as left or right join operands. However, the size of

the graph grows exponentially with the number of base relations. For n base relations, this representation

requires 2 +
∑n−1

j=1 (j (j + 1)) vertices, i.e., a start and an end vertex, as well as n (n − 1) vertices for the first

join, (n − 1) (n − 2) vertices for the second join, etc. These vertices are connected by means of n (n − 1)+2+

∑n−2
j=1 (j (j + 1)) ((j + 1) (j + 2)) edges, i.e., n (n − 1) edges connecting the start vertex to the vertices for the

13

first join, 2 edges connecting the vertices of the last join to the end vertex, n (n − 1) ((n − 1) (n − 2)) edges

connecting the vertices for the first join to those for the second join, etc. For, e.g., 21 base relations (20

joins), the graph would thus consist of 3,082 vertices and 720,218 edges. Graphs of such sizes can however

be easily handled by today’s typical desktop computers.

We envisage our approach to be a promising way of guiding the optimization process by means of

iteratively constructing solutions, partly guided by previously encountered low-cost solutions and partly

guided by local heuristics. One of the strengths of our approach is in that – when run continuously –

the ants can compensate for changes in the configuration of the graph as well as for changes in the costs

associated with making an arbitrary join, possibly caused by updated data sources (yielding changes in

cardinalities) or latency differences (affecting transmission costs in a distributed setting). Moreover, our

approach has an attractive advantage over GAs in that it retains the memory of the entire colony over time.

Depending on the evaporation rate, our algorithm remembers all traversed paths, whereas GAs only retain

the memory of the last generation, in which typically only the best (partial) solutions have left their traces.

5. Evaluation

Because of its characteristics, our proposed ACO algorithm appears to be an attractive alternative to

existing soft computing techniques for RDF chain query optimization. In order to assess its potential,

we evaluate our approach and compare its performance to the performance of existing soft computing

techniques in a Semantic Web environment.

5.1. Experimental Setup

The performance of our considered approaches is assessed on a 32-bit 2.66 GHz Intel Core 2 Duo

desktop computer with 2 GB physical memory. On this machine, we evaluate the performance of RDF chain

query optimization by means of 2PO (RCQ-2PO), a GA (RCQ-GA), and our novel ACO (RCQ-ACO) on

a single source, i.e., an RDF version of the CIA World Factbook, generated by using QMap (Hogenboom

et al., 2008). We use this source to evaluate our considered approaches on RDF chain queries varying

in length from 3 to 21 predicates, thus covering problem sizes of 2 to 20 joins. For each query length,

we evaluate each method’s execution times until convergence and costs of found solutions over 100 chain

queries on our RDF data. In our experiments, we consider the complete solution space with bushy query

trees. We assess statistical significance of observed differences by means of a paired, two-sided Wilcoxon

14

signed-rank test, evaluating the hypothesis that these differences are symmetrically distributed around a

median of 0.

The considered algorithms need to be configured for our current purposes. For RCQ-2PO, we adopt the

settings proposed in Steinbrunn et al. (1997). As such, we start the II phase of the process with 10 random

starting points for random walks in the solution space. Each step in this walk is a step from a solution to one

of its better neighbors. The number of times the algorithm tries to find a better neighbor for a solution during

such a walk is limited to that solution’s number of neighbors. The best local optimum thus obtained is taken

as starting point for another random walk in the SA phase, where the system’s temperature is initialized at

10% of the starting solution’s associated costs. For each solution on the path traversed through the solution

space by means of SA, the algorithm tries to move to neighboring solutions for a limited number of times,

which equals 16 times the number of joins in the query. After 16 tries, the system’s temperature is reduced

with 5%. The system is considered to be frozen when the temperature drops below 1 or when the best

solution so far has not been improved in four consecutive temperature reductions.

The RCQ-GA algorithm is configured in accordance with the settings suggested in Hogenboom et al.

(2009). A set of 64 chromosomes is exposed to a process of simulated evolution with a crossover rate of 0.65

and a mutation rate of 0.05. Fitness-based selection is applied and in each generation, the best chromosome

is always selected for proliferation in the next generation. The GA is considered to have been converged

after 30 consecutive generations without any improvement in terms of fitness of the best solution.

Our proposed RCQ-ACO algorithm has its roots in the classic Ant System (Dorigo et al., 1996), which

has a prototypical application in constructing a solution to the Traveling Salesman Problem (TSP). In a

TSP, the goal is to find the shortest closed tour between a set of cities, such that each city is visited exactly

once. The number of ants in the classic Ant System typically equals the number of cities in the TSP to be

solved. The α parameter representing the importance of the information conveyed by global pheromone

traces equals 1, whereas the importance of local heuristics β equals 5. The evaporation rate ρ equals 0.5

and the constant Q is set to 100. In our application, we have to deal with relatively large graphs. Therefore,

we propose to use four times as many ants as the number of joins. Additionally, we propose to stimulate

quicker convergence to relatively good solutions by relying more on the information conveyed by global

pheromone traces than the classic Ant System does. In this light, we propose to increase α to 2 as well as

to reduce ρ to 0.25. Finally, we consider the colony to have been converged after five consecutive iterations

without any improvement in solution quality.

15

0 200 400 600 800 1000
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

6

Execution time in milliseconds

S
ol

ut
io

n
co

st
s

of
 o

pt
im

al
 s

ol
ut

io
n

fo
un

d

RCQ−2PO
RCQ−GA
RCQ−ACO

Figure 6: Performance over time when optimizing a typical 20-join RDF chain query.

5.2. Experimental Results

Each of the considered soft computing techniques for RDF chain query optimization has its own typical

way of moving through the solution space. As Figure 6 demonstrates for the optimization of an arbitrary

20-join RDF chain query on our data set, RCQ-2PO tends to steadily move through the search space until a

local optimum is reached. RCQ-GA on the other hand quickly moves to more fruitful parts of the solution

space. Guided by the perceived quality of encountered solutions, the algorithm does this by means of a

more randomized walk through the solution space, facilitated by genetic operations such as mutations and

crossovers. RCQ-ACO exhibits a swift move to a fruitful part of the solution space as well. The artificial

ants use their local heuristics to collectively construct a rather good initial solution and then predominantly

search the proximity of this solution in a randomized way, while being increasingly more attracted to the

collective solution thus emerging. By doing so, the ants collectively find a comparably good local optimum

in a small amount of time, but spend most of their time optimizing this result until convergence.

16

Table 1: Relative performance differences in terms of mean costs of optimal solutions found (columns 2 to 4) and mean execution
times of the optimization process (columns 5 to 7) for RDF chain queries of various lengths (column 1). Columns 2 and 5 repre-
sent performance differences between RCQ-ACO and RCQ-GA in terms of RCQ-GA’s performance, columns 3 and 6 represent
performance differences between RCQ-ACO and RCQ-2PO relative to the performance of RCQ-2PO, and columns 4 and 7 ex-
press the differences between RCQ-GA and RCQ-2PO in terms of RCQ-2PO’s performance, where ∗, ∗∗, and ∗∗∗ denote respective
significance levels of 0.01, 0.001, and 0.0001.

Differences in solution costs Differences in execution times
Joins ACO/GA ACO/2PO GA/2PO ACO/GA ACO/2PO GA/2PO

2 0.0% 0.0% 0.0% -80.5%∗∗∗ -63.7%∗∗∗ 86.1%∗∗∗

3 0.0% 0.0% 0.0% -77.5%∗∗∗ -74.6%∗∗∗ 12.8%∗∗∗

4 0.0% -2.1% -2.1%∗∗ -71.9%∗∗∗ -77.6%∗∗∗ -20.4%∗∗∗

5 0.0% -4.6%∗∗∗ -4.6%∗∗∗ -64.4%∗∗∗ -78.7%∗∗∗ -40.1%∗∗∗

6 -0.4% -7.9%∗∗∗ -7.6%∗∗∗ -57.5%∗∗∗ -79.3%∗∗∗ -51.2%∗∗∗

7 -0.6%∗∗ -17.6%∗∗∗ -17.1%∗∗∗ -53.5%∗∗∗ -78.0%∗∗∗ -52.8%∗∗∗

8 -1.3%∗∗∗ -20.2%∗∗∗ -19.2%∗∗∗ -50.7%∗∗∗ -78.5%∗∗∗ -56.4%∗∗∗

9 -1.8%∗∗∗ -27.0%∗∗∗ -25.7%∗∗∗ -46.3%∗∗∗ -76.1%∗∗∗ -55.5%∗∗∗

10 -5.8%∗∗∗ -30.4%∗∗∗ -26.2%∗∗∗ -44.1%∗∗∗ -75.1%∗∗∗ -55.4%∗∗∗

11 -7.5%∗∗∗ -36.8%∗∗∗ -31.6%∗∗∗ -37.7%∗∗∗ -73.2%∗∗∗ -57.0%∗∗∗

12 -9.1%∗∗∗ -37.2%∗∗∗ -30.9%∗∗∗ -29.0%∗∗∗ -70.2%∗∗∗ -58.0%∗∗∗

13 -12.3%∗∗∗ -39.1%∗∗∗ -30.5%∗∗∗ -16.4%∗ -66.5%∗∗∗ -60.0%∗∗∗

14 -16.3%∗∗∗ -43.3%∗∗∗ -32.3%∗∗∗ -19.4%∗ -63.3%∗∗∗ -54.5%∗∗∗

15 -19.7%∗∗∗ -46.0%∗∗∗ -32.7%∗∗∗ 9.4%∗ -58.8%∗∗∗ -62.4%∗∗∗

16 -22.6%∗∗∗ -46.3%∗∗∗ -30.6%∗∗∗ 16.8%∗∗ -54.6%∗∗∗ -61.1%∗∗∗

17 -27.8%∗∗∗ -47.1%∗∗∗ -26.7%∗∗∗ 50.7%∗∗∗ -50.6%∗∗∗ -67.2%∗∗∗

18 -30.5%∗∗∗ -49.8%∗∗∗ -27.7%∗∗∗ 50.0%∗∗∗ -45.3%∗∗∗ -63.6%∗∗∗

19 -32.2%∗∗∗ -51.3%∗∗∗ -28.1%∗∗∗ 66.8%∗∗∗ -45.5%∗∗∗ -67.4%∗∗∗

20 -34.9%∗∗∗ -53.4%∗∗∗ -28.5%∗∗∗ 90.1%∗∗∗ -34.2%∗∗∗ -65.4%∗∗∗

Their nature renders some of the considered soft computing techniques more suitable for RDF chain

query optimization than others. Supported by Table 1, Figures 7 and 8 clearly demonstrate that on aver-

age, RCQ-2PO is typically the slowest algorithm, yielding the worst results on our data set for nearly all

considered query lengths. However, for RDF chain queries consisting of two or three joins, all considered

algorithms yield solutions of comparable quality.

For our considered RDF chain queries consisting of up to about 15 joins, RCQ-ACO is typically the

fastest performing algorithm, yielding the best solutions. Compared to both RCQ-2PO and RCQ-GA, our

novel ACO approach needs up to approximately 80% less time to converge. As the query size increases, the

differences in mean execution times tend to decrease. For queries consisting of 15 joins, RCQ-ACO needs

about 60% less time to converge than RCQ-2PO, whereas the advantage of RCQ-ACO over RCQ-GA in

terms of execution time is even nullified for queries consisting of 15 joins or more. Besides being faster than

RCQ-2PO and RCQ-GA, our novel ACO outperforms these existing soft computing techniques for RDF

17

2 4 6 8 10 12 14 16 18 20
−2

0

2

4

6

8

10
x 10

6

Number of joins

S
ol

ut
io

n
co

st
s

RCQ−2PO
RCQ−GA
RCQ−ACO

Figure 7: Mean and standard deviations of costs of optimal solutions found for queries of various lengths.

2 4 6 8 10 12 14 16 18 20
0

500

1000

1500

Number of joins

E
xe

cu
tio

n
tim

e
in

 m
ill

is
ec

on
ds

RCQ−2PO
RCQ−GA
RCQ−ACO

Figure 8: Mean and standard deviations of execution times until convergence for queries of various lengths.

18

chain query optimization in terms of solution quality as well. The improvement of the quality of the best

solution found by RCQ-ACO over the quality RCQ-2PO’s solutions increases from approximately 5% for

queries of length 5 to 45% for queries of length 15. The extent to which RCQ-ACO outperforms RCQ-GA

in terms of solution quality increases from about 5% for queries of length 10 to 20% for queries consisting

of 15 joins.

Yet, for larger RDF chain queries, our results indicate that one may want to use either RCQ-GA or RCQ-

ACO rather than RCQ-2PO for RDF chain query optimization, subject to a trade-off between execution

time and solution quality. As the query size increases, using RCQ-ACO can typically lead to increasingly

large solution cost reductions up to over 50% compared to RCQ-2PO, and increasingly large solution cost

reductions up to over 30% compared to RCQ-GA. However, these improvements come at a cost of less

favorable execution times. For larger queries, RCQ-ACO tends to be increasingly slower than RCQ-GA,

while still being approximately 55% to 35% faster than RCQ-2PO for queries consisting of 16 to 20 joins,

respectively. RCQ-GA on the other hand yields solutions with costs that are consistently about 30% lower

than those associated with solutions suggested by RCQ-2PO. In addition, RCQ-GA consistently needs 65%

less execution time than RCQ-2PO in order to reach convergence.

These results suggest that our novel RCQ-ACO algorithm is a promising alternative to both RCQ-2PO

and RCQ-GA, as it typically outperforms both approaches in terms of execution time and solution quality

for RDF chain queries consisting of up to about 15 joins. For larger queries, RCQ-GA has the attractive

advantage of delivering relatively good solutions in relatively little time, whereas RCQ-ACO needs more

time than RCQ-GA, but less time than RCQ-2PO, in order to deliver the best solutions.

6. Conclusions and Future Work

In this paper, we have demonstrated how ACO can facilitate effective and efficient chain querying in

expert systems for decision support in a Semantic Web environment, by having artificial ants iteratively con-

struct RDF chain query paths, partly guided by the perceived quality of previously encountered solutions

and partly guided by local heuristics. On a large, single RDF source, our experimental results demonstrate

the potential of our novel ACO approach to RDF chain query optimization in comparison to previously pro-

posed soft computing techniques, i.e., 2PO and a GA. When exploring the large solution spaces associated

with the join ordering problem arising when optimizing RDF chain queries, our ACO approach significantly

outperforms the existing 2PO and GA approaches in terms of solution quality and execution time for RDF

19

chain queries consisting of up to 15 joins. For larger queries, consisting of up to 20 joins, the existing GA

delivers relatively good solutions in a comparably short time frame. However, our novel ACO approach

delivers by far the best solutions in a shorter time frame than 2PO, albeit while needing more time than the

recently proposed GA in order to reach convergence.

As its design allows our proposed ACO for RDF chain query optimization to adapt to dynamic en-

vironments, our next step will be assessing the performance of our novel algorithm in a dynamic RDF

environment with multiple sources. In such an environment, we can explore how our algorithm can best

adapt to changes in the environment, caused by, e.g., latency differences or updated data sources. In this

light, we also consider real-time updating of our join selectivity estimation, which in our current set-up has

a fixed value, as it depends on the cardinalities of a join’s operands. Another direction for future work lies in

optimizing the parameters of our ACO algorithm. Finally, we also aim to investigate how to devise a more

scalable graph representation of the join ordering problem in RDF chain query optimization, as we envisage

a more scalable graph representation to improve the performance of our ACO approach even further.

References

Aksac, A., Ozturk, O., Dogdu, E., 2012. A Novel Semantic Web Browser for User Centric Information Retrieval: PERSON. Expert

Systems with Applications 39 (15), 12001–12013.

Amin, G., Emrouznejad, A., 2011. Optimizing Search Engines Results Using Linear Programming. Expert Systems with Applica-

tions 38 (9), 11534–11537.

Batzios, A., Dimou, C., Symeonidis, A., Mitkas, P., 2008. BioCrawler: An Intelligent Crawler for the Semantic Web. Expert

Systems with Applications 35 (1), 524–530.

Batzios, A., Mitkas, P., 2012. WebOWL: A Semantic Web Search Engine Development Experiment. Expert Systems with Appli-

cations 39 (5), 5052–5060.

Berners-Lee, T., Hendler, J., Lassila, O., 2001. The Semantic Web. Scientific American 284 (5), 34–43.

Blanco-Fernandez, Y., Pazos-Arias, J., Lopez-Nores, M., Gil-Solla, A., Ramos-Cabrer, M., Garcia-Duque, J., Fernandez-Vilas, A.,

Diaz-Redondo, R., 2010. Incentivized Provision of Metadata, Semantic Reasoning and Time-Driven Filtering: Making a Puzzle

of Personalized E-Commerce. Expert Systems with Applications 37 (1), 61–69.

Dorigo, M., Birattari, M., Stutzle, T., 2006. Ant Colony Optimization – Artificial Ants as a Computational Intelligence Technique.

IEEE Computational Intelligence Magazine 1 (4), 28–39.

Dorigo, M., Maniezzo, V., Colorni, A., 1996. Ant System: Optimization by a Colony of Cooperating Agents. IEEE Transactions

on Systems, Man, and Cybernetics – Part B 26 (1), 29–41.

Elmasri, R., Navathe, S., 2004. Fundamentals of Database Systems, 4th Edition. Addison-Wesley.

Frasincar, F., Houben, G., Vdovjak, R., Barna, P., 2004. RAL: An Algebra for Querying RDF. World Wide Web Journal 7 (1),

83–109.

20

Gambardella, L., Dorigo, M., 2000. Ant Colony System Hybridized with a New Local Search for the Sequential Ordering Problem.

INFORMS Journal on Computing 12 (3), 237–255.

Garcia-Crespo, A., Lopez-Cuadrado, J., Colomo-Palacios, R., Gonzalez-Carrasco, I., Ruiz-Mezcua, B., 2011. Sem-Fit: A Semantic

Based Expert System to Provide Recommendations in the Tourism Domain. Expert Systems with Applications 38 (10), 13310–

13319.

Hogenboom, A., Hogenboom, F., Frasincar, F., Schouten, K., van der Meer, O., 2012. Semantics-Based Information Extraction for

Detecting Economic Events. Multimedia Tools and Applications, Online First (DOI: 10.1007/s11042-012-1122-0).

Hogenboom, A., Milea, V., Frasincar, F., Kaymak, U., 2009. RCQ-GA: RDF Chain Query Optimization Using Genetic Algorithms.

In: Di Noia, T., Buccafurri, F. (Eds.), Tenth International Conference on Electronic Commerce and Web Technologies (EC-Web

2009). Vol. 5692 of Lecture Notes in Computer Science. Springer, pp. 181–192.

Hogenboom, F., Hogenboom, A., van Gelder, R., Milea, V., Frasincar, F., Kaymak, U., 2008. QMap: An RDF-Based Queryable

World Map. In: Naaranoja, M. (Ed.), Third International Conference on Knowledge Management in Organizations (KMO

2008). Vaasan Yliopiston Julkaisuja, pp. 99–110.

Holland, J., 1975. Adaptation in Natural and Artificial Systems. University of Michigan Press.

Hsu, I., 2009. SXRS: An XLink-Based Recommender System using Semantic Web Technologies. Expert Systems with Applica-

tions 36 (2), 3795–3804.

Ioannidis, Y., Kang, Y., 1990. Randomized Algorithms for Optimizing Large Join Queries. In: 1990 ACM SIGMOD International

Conference on Management of Data (SIGMOD 1990). ACM, pp. 312–321.

Joo, J., Lee, S., 2009. Adoption of the Semantic Web for Overcoming Technical Limitations of Knowledge Management Systems.

Expert Systems with Applications 36 (3), 7318–7327.

Jung, J., 2010. An Evolutionary Approach to Query-Sampling for Heterogeneous Systems. Expert Systems with Applications

37 (1), 226–232.

Klyne, G., Carroll, J., 2004. Resource Description Framework (RDF): Concepts and Abstract Syntax – W3C Recommendation 10

February 2004.

Lupiani-Ruiz, E., Garcia-Manotas, I., Valencia-Garcia, R., Garcia-Sanchez, F., Castellanos-Nieves, D., Fernandez-Breis, J.,

Camon-Herrero, J., 2011. Financial News Semantic Search Engine. Expert Systems with Applications 38 (12), 15565–15572.

Merkle, D., Middendorf, M., Schmeck, H., 2002. Ant Colony Optimization for Resource-Constrained Project Scheduling. IEEE

Transactions on Evolutionary Computation 6 (4), 333–346.

Prud’hommeaux, E., Seaborne, A., 2008. SPARQL Query Language for RDF – W3C Recommendation 15 January 2008.

Selinger, P., Astrahan, M., Chamberli, D., Lorie, R., Price, T., 1979. Access Path Selection in a Relational Database Management

System. In: 1979 ACM SIGMOD International Conference on Management of Data (SIGMOD 1979). ACM, pp. 23–34.

Steinbrunn, M., Moerkotte, G., Kemper, A., 1997. Heuristic and Randomized Optimization for the Join Ordering Problem. The

VLDB Journal 6 (3), 191–208.

Stuckenschmidt, H., Vdovjak, R., Broekstra, J., Houben, G., 2005. Towards Distributed Processing of RDF Path Queries. Interna-

tional Journal of Web Engineering and Technology 2 (2-3), 207–230.

Vandic, D., van Dam, J., Frasincar, F., 2012. Faceted Product Search Powered by the Semantic Web. Decision Support Systems

53 (3), 425–437.

21

