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Bayesian procedures for specification analysis or diagnostic checking of modeling assumptions for
structural equations of econometric models are developed and applied using Monte Carlo
numerical methods. Checks on the validity of identifying restrictions, exogeneity assumptions and
other specifying assumptions are performed using posterior distributions for discrepancy vectors
and functions representing departures from specifying assumptions. Several mappings or functions
of reduced form coefficients are defined and their posterior distributions are computed. A
restricted reduced form approach is used to compute posterior distributions for structural
parameters. These procedures are applied in analyses of two econometric models.

1. Introduction

There have been many studies relating to limited information estimation of
the parameters of the simultaneous equation model (SEM) from both the
Bayesian and non-Bayesian points of view - see, e.g., Zellner (1971, 1979),
Dréze (1976), Dréze and Richard (1983), Hausman (1983), Tsurumi (1985,
1987), and the references cited in these works. In non-Bayesian approaches,
there is usually reliance on asymptotic approximations in making inferences.!
Some previous Bayesian approaches also involve asymptotic approximations.

*The first and third authors received support from the National Science Foundation and from
the H.G.B. Alexander Endowment Fund, Graduate School of Business, University of Chicago.
The second author acknowledges support from Erasmus University. Comments by J. Dréze and
J.F. Richard on an earlier draft were very helpful.

A brief discussion of small sample results in non-Bayesian limited information estimation of
the SEM is given by Anderson (1984, pp. 518-519). Tsurumi (1987) reports Monte Carlo
experimental results.
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A problem in previous exact Bayesian analyses is that posterior distributions
of structural parameters are in most cases not analytically tractable? and thus
must be integrated numerically to obtain their moments, marginal distribu-
tions, etc. As regards Monte Carlo numerical integration, usual posterior
distributions of structural parameters do not have simple forms from which
draws can be made easily. As a consequence, the success of Monte Carlo
integration procedures depends importantly on an investigator’s ability to find
distribution functions that are good approximations to posterior distributions
and from which pseudo-random drawings can be made easily. Also, past
Bayesian analyses of the SEM have not devoted much attention to diagnostic
checking of models’ assumptions, that is to specification error analysis.

In the present paper, we start from the reduced form of the SEM and make
a distinction between ‘unrestricted reduced form analysis’ (URFA) and ‘re-
stricted reduced form analysis’ (RRFA). In our URFA, we define indirect least
squares, generalized indirect least squares, two-stage least squares and limited
information maximum likelihood mappings or functions of unrestricted re-
duced form coefficients which do not require that overidentifying restrictions
hold exactly and obtain complete posterior distributions of these mappings or
functions by a direct Monte Carlo simulation approach. Also discrepancy
vectors and discrepancy functions are introduced which measure the extent to
which overidentifying restrictions are in error and we indicate how to obtain
their posterior distributions by a direct simulation approach. One may also use
Bayesian realized error analysis [Zellner (1975)] to provide further diagnostic
checks of the SEM.

In the case that exact identifying restrictions are imposed, we present a
RRFA and discuss a method for computing posterior distributions of structur-
al parameters which makes use of Monte Carlo integration in a relatively
simple way, namely a direct simulation approach.

The plan of our paper is as follows. In section 2 we consider simple,
canonical models to iflustrate our approach and go on to specify a general
system. Then various mappings of the URF coefficients are introduced and we
indicate how to compute their posterior distributions, moments, etc. This is
followed by an analysis of the RRF system to obtain posterior distributions of
structural coefficients. Section 3 is devoted to further diagnostic checking
procedures. In section 4, our methods are applied in illustrative analyses of
several well known models using actual data. Section 5 provides some conclud-
ing remarks. An efficient algorithm for generating pseudo-random drawings
from a matrix Student-s distribution is presented in the appendix.

2An exception is Dréze (1976) where the posterior density is in the poly-s family. Then one can,
in some cases, compute moments of structural coefficients analytically. See also Bauwens and
Richard (1985) and Tsurumi (1985,1987).



A. Zellner et al., Bayesian specification analysis of the SEM 4]

2. Model specification, interpretation and analysis

In this section we first consider canonical models to illustrate features of our
approach. Then we specify unrestricted reduced form (URF) systems and
indicate how to compute posterior distributions for interesting functions or
mappings of URF coefficients. These functions or mappings are related to
discrepancy vectors which measure departures of the URF coefficients from
satisfying usual overidentifying restrictions. Next, we impose identifying and
normalizing restrictions, derive the posterior distribution of the parameters of
a single structural equation using diffuse and informative prior distributions
and discuss a Monte Carlo integration procedure for the computation of
posterior moments and densities. Also, various conditional posterior distribu-
tions centered at OLS, 2SLS, LIML, and MELO point estimates and diagnos-
tic checks of the validity of overidentifying restrictions are provided.

2.1. Canonical models

The first canonical model is a ‘means model’ for two endogenous variables,
namely,

Yu=mt oy, . (2.1a)
Y2, =&+ Uy, " (2.1b)

where n, and £, are means of y;; and y,,, respectively, and the zero-mean
disturbance terms, v,;, and v,;,, are assumed independently drawn from a
bivariate normal distribution with 2 X 2 positive definite symmetric (pds)
covariance matrix. For example, n, and &, can be interpreted as the ith
individual’s ‘permanent’ or ‘anticipated’ consumption and income, respec-
tively, whereas y;; and y,, are their measured counterparts. Interest may
center on various functions of the n,’s and §,’s, for example 7,/¢,, i=
1,2,..., n, the ‘permanent consumption—income’ ratios,
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higher-order moments, skewness and kurtosis measures, etc. Further, weighted
averages of the ratios 7,/¢;, e.g.,

hw=u/E= Y (n/8)E ] L&,
i=1

i=1

or

i=1 i=1 i=1

e ¥ (ni/si>s,-2/ 3 e Y / S g/t
where

"7/=("71,7123-~-777n) and £’=(€19£27-'~v£n)7
might be of interest. If we write

"1=£Y+A1» (22)

where y is a scalar parameter and A, is an n X 1 discrepancy vector, which
measures the extent to which the 7,/§, depart from a common value y, then

=§'n/8'6 is the value of y that minimizes A4, =(n —£&y)' (9 — &y),
a discrepancy function. Also, the functions 7 =(n—§¥,)’ (7 — £¥,)/n and
pi=1-—nal/n'n are of interest and have obvious regression interpretations.

Given a posterior distribution for the 2»n parameters, 7 and £, draws can be
made from it and complete posterior distributions for 7,/£,, m, £, Oge> Onn> Oy
Y. 6%, p3, etc. can be obtained by a direct Monte Carlo approach, that is by
repeated evaluation of these quantities using independent draws from the joint
distribution. If it is the case that the distribution of &} is centered far from
zero, there is little support for the assumption 4; = 0 or 7= y£. On the other
hand, if a;’s distribution is centered close to zero, this provides some support
for the assumption 4, =0 and, with this assumption, the model becomes a
form of the usual ‘errors-in-variables’ model. While we do not pursue the
matter now, it is also possible to compute posterior odds relating to the
hypotheses 4, =0 and 4, # 0.

If in addition to (2.1), we have proxies for 7, and £,, namely,

"szi,'”p (233)

§=x/m, (2.3b)

where x/ is a 1 X k vector of predetermined variables, a typical row of an
n X k matrix X, assumed of full column rank, and =, and &, are kX1
coefficient vectors, the number of location parameters is reduced from 2# £,’s
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and n,’s to 2k =’s. Using (2.3), we can express (2.1) in matrix form as follows:
v =Xm +v, (2.4a)
»=Xm+v,, (2.4b)

where y;, y,, v;, and v, are n X 1 vectors with typical elements y,,, »,,, v;
and v,,, respectively.

In (2.4), we have two URF equations. Just as with (2.1), we may be
interested in various functions or mappings of the URF coefficients, the
analogues of those for 5, and §;, with x/m and x/7, replacing 7, and §,
respectively, in their definitions. Also, we can introduce

i

X, = Xmy +4,, (2.5)

where 4, is an n X 1 discrepancy vector. Then y, = w; X' Xm /7, X' X, is the
value of y that minimizes A%,4,. Further, 7= (Xm — Xm,¥,)" (X7 —
Xm,¥,)/n and p3=1— na}/m X’ Xm, are regression-like mappings of the =’s
which are of interest. Also, if we consider

7 =my+A4,, (2.6)

where 4, is a k£ X 1 discrepancy vector, then the value of v, say ¥,, minimizing
A4A,, is just ¥y = mjm /mim, and 67 = (7, — m¥;) (M, — m¥;)/k and p3=1—
koi/m{m, are measures of the extent to which A; =0 holds.

Given a joint posterior pdf for o, and =, from which draws can be made, a
direct Monte Carlo simulation approach can be employed to obtain the
posterior distributions of ¥,, ¥;, 67, 67, p3, 3, €tc., since these quantities are
given functions or mappings of the unrestricted =’s.

If A,=0in (2.5) or A; =0 in (2.6), we have the case of exact restrictions.
Then (2.4) can be written as

»=Xmy+v, (2.7a)

¥y =Xm + v, (2.7b)
or

Y=y +u, (2.7¢)

V= Xmy +u,, (2.7d)

where u, =v, — v,y and u,=1v,. Egs. (2.7a) and (2.7b) form the restricted
reduced form (RRF) equation system which can also be expressed in structural
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form as shown in (2.7c) and (2.7d). On introducing a prior distribution for vy,
@, and the reduced form disturbance covariance matrix, we can obtain a
posterior distribution for these parameters. Note that in working with (2.7a)
and (2.7b), it is assumed that the overidentifying restrictions hold exactly, that
is 4, =101n (2.5) or 4; = 0in (2.6). The number of coefficients in (2.7) is k + 1,
usually a large reduction from the 2k coefficients in (2.4) for k> 1. When
k =1, the case of ‘just-identification’, the number of coefficients in the URF
and RRF is the same. Also, relative to the 2n location parameters in (2.1), the
reduction is much larger. This reduction, however, is dependent not only on
the identifying restrictions holding exactly but also on the appropriateness of
the proxy expressions in (2.3). Diagnostic checking procedures relating to
these assumptions will be described in a subsequent section.

We now turn to provide results for general cases including mappings of
reduced form coefficients in the unrestricted case and posterior distributions
for structural parameters in the restricted reduced form case after introducing
some needed notation. Let Y, =( y,:Y,.Y,) denote an n X m’ matrix of ob-
servations on m’ endogenous variables with URF,

(J’lfylfYo):X('”l;HﬁHo)J"(”1§V15V0)’ (2.8)

where X is an n X k matrix of observations on k predetermined variables of
rank k and the rows of the disturbance matrix have been independently drawn
from a zero-mean multivariate normal distribution with a pds covariance
matrix. A structural equation, say the first, with normalization imposed can be
written as

1
(nY)| =(X13X0)(l;1)+u1, (2.9a)
0
or
»n— Yy, =XB, +u, (2.9b)

where Y, and X are observations on endogenous and predetermined variables
excluded from the first equation and X = (X;:X,). The m; X 1 vector y, and
the k; X 1 vector B, are the structural coefficients and u; is an n X 1 vector of
structural disturbance terms.

To obtain the well-known restrictions on the reduced form coefficients, we
write (2.8) as

my Iy Iy,

(ynglgyo)=(X13XO)(,”10:H10:H00 +(0:1:1,), (2.10)
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and on multiplying both sides of (2.10) on the right by (1: — v/:0’), the result is

7y —

+v,— Vy. 2.11
70— Ihion ! t ( )

n—Ym= (lexo)(

For compatibility with (2.9b), #; = v, — Vv, and
Wll - Hllyl = ﬁl’ (2.128)
o= 107, =0, (2.12b)

which are restrictions on the reduced form coefficients with y, and B,
appearing in them, a generalization of (2.6) with 4;=0. In (2.12b) I}, is
assumed to be of full column rank.

On substituting for (ar;'m;)’ in (2.10) from (2.12), the RRF equations for
y; and Y, are '

»=XIIy, + X8, + vy, (2.13a)
Y, =XII, +V;, (2.13b)

where II{ = (II{;:II{;). It is seen that (2.13) is in the form of a multivariate
non-linear regression model, a generalization of (2.7). The system in (2.13) will
serve as the starting point for an analysis of the RRF system, whereas

(yi7) = X(m:I0L) + (0, 0) (2.14a)
will serve as the starting point for the URF analysis of the data ( y,'Y)).

2.2. Mappings of unrestricted reduced form (URF) coefficients

We shall obtain a posterior distribution for the parameters of (2.14a) and
use it to obtain posterior distributions of interesting functions or mappings of
the URF coefficients, (,:I1;). For convenience, we write Y =( y,.Y,), II =
(m:I1,) and V = (v,:V}) and thus (2.14a) becomes '

Y =X I + V. (2.14b)

nXxXm nXk kxXm nxXm

The n rows of V are assumed to be independently drawn from a multivariate
normal distribution with zero mean vector and m X m pds covariance matrix
2, 1.e.,, MVN(O, 2). If X includes lagged endogenous variables, we assume that
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initial or starting values are given. Then the likelihood function for (2.14b) is

I(II,Q1Y,, X) «|@2|""%exp{ — 4u(Y - XITI)' (Y - XII)Q" "}

o« |Q] " %exp{ - L[S+ (- 11Y
x X'X(I1- 1)1}, (2.15)
where & denotes ‘is proportional to’, and

n=(x'x)"'xy, (2.16a)

S=(Y-XII) (Y- xII). (2.16b)

It is seen that the likelihood function in (2.15) is in the same form as that for a
multivariate regression model — see, e.g., Zellner (1971, ch. 8) with Il and S
sufficient statistics.

We shall employ the following standard diffuse prior distribution for IT and
the distinct elements of Q:3

p(I1, Q) c|Q (mH1tro)/2, (2.17)

where v, > 0, that is the elements of II and { are independent, with the
former being uniformly distributed and the latter in the form of a degenerate,
inverted Wishart distribution.

On multiplying (2.15) and (2.17) and using v, =0, we obtain by Bayes’
Theorem the joint posterior density of IT and £, namely,

p(I1, QD) o | @~ ™D 2exp{ — Lur[ S + (1T - IT)’
x X'X(II-1]e1}, (2.18)

where D denotes the given sample information (Y, X) and prior information
in (2.17). On integrating (2.18) with respect to £2, we obtain the well-known
marginal posterior density for I,

n/2

p(IID) «|S+ (I —1T) x'x(IT~1T)| "7, (2.19)

*The value », =k in the exponent of (2.17) has been suggested by Dréze (1976) while Zellner
(1971) employs vy = 0.
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which is in the form of a matrix Student-r density - see, e.g., Dickey (1967),
Box and Tiao (1973), Dréze and Richard (1983), Geisser (1965), and Zellner
(1971) for properties of this distribution. As explained below, it is possible to
make independent draws from (2.19) and to use them to determine the
posterior distributions of interesting functions or mappings of the elements of
I1. Some of these mappings are given below.

We first consider the case of ‘just-identification’ in which the matrix I, in
(2.12b) is square and non-singular and the matrix (. — I1;,) 1S not of full
column rank. Then (2.12b) has a unique solution for y, — see Graybill (1969,
p. 140), and this solution can be substituted in (2.12a) to express 8, in terms
of the RF coefficients. Explicitly, we have

By =my — I I 'm, (2.20a)
Y, = 'my, (2.20b)

which we call the Indirect Least Squares (ILS) mapping since if least squares
estimates of the II’s are inserted in (2.20), the result is the ‘indirect least
squares’ estimate of non-Bayesian econometrics. In the Bayesian approach,
with the posterior distribution for IT in (2.19), the least squares quantity
1= (X’X)"1X’Y is the modal value and mean of (2.19) and the ILS estimate
is the modal value of the posterior distribution of B8, and ¥, in this case of
‘exact identification’ since (2.20) is a one-to-one transformation from the IT’s
to B, and y,. Further, as explained below, we can make independent draws
from the matrix Student-¢ posterior distribution for II in (2.19) and evaluate
B, and y, for each draw by use of (2.20) and thus obtain the complete
posterior distributions for the elements of 8, and y,. Also, various measures
associated with these distributions can be calculated, for example medians,
inter-quartile ranges, means (if they exist), etc., as will be illustrated in
computed examples below.*

In the case of overidentification, the matrix [I;, in (2.12b) has dimension
ko X m;, where k, is the number of columns of X, or the number of
predetermined variables left out of the first structural equation in (2.9b) and
my is the number of columns of Y, or the number of endogenous variables
included in (2.9b) less one. The rank condition for identification of the
structural coefficients y; and B, is that the rank of II, is m, which requires
k,> m,, the order condition in the overidentified case. In the overidentified
case, we cannot go from the URF coefficients, the elements of II in (2.14b)
and (2.19) to the elements of y, and B,. For example in (2.6) with A, =0,
m, = my and given that =, and =, are a.s. linearly independent in the URF,
we cannot solve for y in terms of the elements of the vectors of URF

‘Dréze (1976, p. 1055) discusses conditions for existence of moments of structural coefficients.
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coefficients, o, and ,. In fact, we can only find an approximate solution
[Graybill (1969, p. 103ff.)] as follows. Just as in (2.6), we shall append a
discrepancy vector 4, to (2.12b). This yields

7 — Iy =By, (2.21a)
mo— Ior, =4,. (2.21b)

We can now define discrepancy functions and obtain values of y, and B,
which minimize them. One example of a discrepancy function is 4,4, and the
value of y, which minimizes this function, denoted by y;* and the associated
value of B,, B* are

By =my ~ Iy, (2.22a)
"= (Hfonlo)—lnfowlo- (2.22b)

We shall call the mapping in (2.22) the Generalized Indirect Least Squares
(GILS) mapping since when least squares estimates of the = ’s are inserted in
(2.22), the result is the GILS estimate — see Khazzoom (1976). In our Bayesian
approach, the posterior distribution of the elements of B and y,;* can be
computed by direct Monte Carlo simulation based on draws from the matrix
Student-; posterior distribution for IT in (2.19). Also posterior distributions
for the discrepancy functions can be computed, for example

A"/zA~ o/ ko= ('”'10 = vy ) (77'10 — Iy )/ko, (2-233)
and
2 =1-A,A, /nlm,. (2.23b)

Also, the posterior distributions of the elements of A, = o — 11107, can be
computed by dlrect Monte Carlo simulation. The posterior distributions of 4,
A,/k, and p3 will provide information regarding the validity of the exact
restrlctlons in (2.12) in the frequently encountered overidentified case.
We next turn to a mapping that involves the matrix of predetermined
variables by multiplying both sides of (2.12) on the left by X = (X, X,) to
obtain

Xm, = XIy, + X,B, = Z,8,, (2.24)

where @f = (w{; w{y), II{=(II}; II{)), Z,=(XII, X,) and &{=(v{ B).
To allow for possible errors in the exact restrictions in (2.24), we introduce a
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discrepancy vector, 4,, as follows:
Xm =278, +4,. (2.25)

Then, just as in the cases considered above, we can minimize the discrepancy
function A%4, with respect to 8, to obtain

8x=(Z2:z,) ' Z; Xm, (2.26)
as the minimizing value which defines a mapping of the #’s, which resembles

that arising in 2SLS estimation.’ Thus we call (2.26) the 2SLS Mapping. Also
from (2.25) and (2.26), we can define

A, = Xm - Z,8F, (2.27a)
A A /n=(Xm — Z,8}) (X, — Z,8) /n, (2.27b)
pi=1-A4,/m/X Xn,. (2.27¢)

Posterior distributions of 8, 4,, 454,, # and other interesting functions of
the URF coeflicients can be calculated using a direct Monte Carlo simulation
approach based on draws from the matrix Student-¢ distribution in (2.19).

Last, we define a LIML mapping as follows. Write the URF system for
Y=(y, ¥})in (2.14) as

Y=XI, + X,JI, + V, (2.28)

where II’= (II]. II;.) and multiply both sides of (2.28) on the right by
¥,= (ly{)’ to obtain

Yy, =X, v,+ X, 11, v,+ Vy,= XIIy,+ Vy,. (2.29)

Note that Il y, =0 if the restrictions in (2.12) hold and thus we introduce a
‘variance ratio’ discrepancy function,

=YV VXYV VY, (2.30)
where V=Y — XII and V,=Y — X,II,. With | being the smallest root of
V/V,—1V’'V|=0, the value of y, minimizing ¢ in (2.30) is obtained by

solving the following set of equations, given II, X and Y,

(vv,—1vv)y,=0.

°An alternative procedure to compute 8 is presented in section 3.
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The solution is y*=(1:—v;*')’ and we can then define 8 =m; — II;;v;*
from the restrictions in (2.12). Thus &' = (y;*’ B*’) is the LIML mapping
which can be substituted in (2.30) to yield ¢* =y }'V,/Vyr/v}'V'Vy}. The
posterior distributions of 8%, ¢*, II,.v*, etc. can be calculated by direct
Monte Carlo simulation based on independent draws of II from its posterior
distribution in (2.19).

We have discussed various mappings that are useful in connection with
URF analysis which do not involve assuming that identifying restrictions hold
exactly. One may extend the GILS mapping and the 2SLS mapping to the case
of a full system of equations [see van Dijk (1985)]. We shall not pursue this
extension herein. We turn now to the derivation of posterior distributions for
structural parameters in a RRF framework.

2.3. Restricted reduced form analysis (RRFA)

We now assume that the restrictions in (2.12) and in the line above (2.12),
hold exactly and impose them to obtain the RRF system of the equations for
»; and Y, as follows. Substitute the expression v, = u;, + Vyy; in (2.13a), use
(2.13b) and (2.10), and re-express (2.13) as

oo Yl B e

Assuming that the rows of (u, V) are independently drawn from a zero-mean
normal distribution with PDS covariance matrix £*, where

= {612 wi]’ (2.137)
w,
one can write the likelihood function
(8, 11, @*|D) @@+~ exp { ~ el (y 1)’ (w, 1) 2* ']},
(2.31)

where 8{=(y{ B{), D=(Y X) and (u, V) is restricted by eq. (2.13"). A
well-known diffuse prior for the parameters of (2.31) is

P(81,H1,9*)alﬂ*‘_(ml+2+V°)/2a (2_32)

where »; (= 0) can be chosen in accordance with invariance considerations.
More informative priors are discussed below. Multiplying (2.31) and (2.32)
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gives the posterior pdf as
p(8;, T, 2%|D) @ |@*|~ =+ mi+D/2
><exp{—%tr[(u1 ) (u Vl)Q*’l]}, (2.33)

where n, = n + v,. On integrating the posterior with respect to the elements of
2*, one obtains the marginal pdf for 8, and II,, given as

’ —n,/2

p(81,H1|D)CI|(u1 Vl) ("1 Vl)‘ . (2-34)
We now make use of

’(”1 Vl)/("l Vl) | = ("fM1"1)|V1/V1|~
where

M, =I1-V,(vyV) vy,
and rewrite (2.34) as

’ —ne/2
P(sp HIID) & ‘(.V1 - Wlsl) Ml( J1— W181) ’
’ —ny/2
X|(Y = XIL)Y (Y, = XIT) | "7, (2.35)

where W, = (Y, X|). By making use of the definitions of the multivariate and

matrix variate Student-s density functions [see Zellner (1971, app. B)] one can
re-express (2.35) as

P(slaHﬂD)=P1(811H1’D)P2(H1|D)7 (2.36)
where
p (8,11, D)
1,2
WM W, &\, g5 —(n+h)/2
=c ——ST— {V1+(81—81) W1M1W1(81—81)/S12} S
1
(2.36a)
and

Pz(HllD) = sz(Hl){Ca'S1 + (Hl - IAII),X/X(HI - ﬁl)

‘)1,/2}

(2.36b)
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with f(II,) given as
, _ -1 /2
fUIL) = |WMW, l/2(512) . (2.36¢)

The normalizing constants ¢; and c, are well-known in terms of elementary
functions [see our appendix and Zellner (1971, app. B)]. The parameters of
(2.36a) are given as v, =n, — I, [, =m,; + k, and

51 = (Wl'M1W1)_1W1’M1J’1a "1312 = (.V1 - W1'§1),M1( - ngl)’
(2.37a)

with |W/M;W,|> 0, v;s > 0. The parameters of (2.36b) are
m,=(x'xX)'x'y, S=(Y,-x0,)(y,-x1,). (237b)

Note that p(8,|II;, D) in (2.36a), the conditional posterior density for §,
given I, and D, is in the form of a /;-variate Student-t pdf with », degrees of
freedom with mean §, and covariance matrix (W/M,W,) " 'v,52/(», — 2), both
of which depend on II;. On integration over the elements of 8, in (2.36a), the
marginal posterior density for II; is given in (2.36b) which is written as
¢, f(I1,) times a normalized matrix Student-¢ factor with ¢, the normalizing
constant that, to the best of our knowledge, is not known in terms of
elementary functions.

To obtain the unconditional moments of the elements of §,, we make N
draws IT{?, i=1,..., N, from the matrix Student-¢ factor in (2.36b) (see the
algorithm described in the appendix) and use well-known formulas to compute
marginal moments from conditional moments. For example, to compute the
unconditional mean of §,;, we have

E(§,|D) = fsle(HllD)dﬂl

= fSIf(Hl)pg(HnD)dHl/ [r() py(11y D) am,,

(2.38)

where

A —n./2

Pa(n1|D) = C3|51 + (Hl - ﬁl)’X,X(Hl - Hl) I



A. Zellner et al., Bayesian specification analysis of the SEM 53

To approximate the ratio of integrals in (2.38), we make N draws from
p5(I1,| D), evaluate 8, f(I1,) and f(I1,) for each draw and then compute

is(”f(ﬂi"’) ff(HY’), (2.39)
i=1 i=1

where 8(" is §, evaluated at IT, = II{". The marginal covariance matrix of 8,
is defined as the sum of the expectation of the conditional variance and the
variance of the conditional expectation, i.e.,

"

2
5i _
V(8,1D) = [ (WyMW,) ' py (11| D) A1,

vV, —

+ (8, - E(8,))(8, - E(8)) po (I D)dIT,. {240

Each integral in the formula above can also be approximated by ratios of
sums.

To compute the posterior density of an element of §,, say 8,,, we integrate
(2.36a) analytically to obtain the conditional posterior pdf for 8,,, p(8,,|I1,, D),
which is in the form of a univariate Student-# pdf with », degrees of freedom.
Then we consider

p(8:4D) = [p(8,/11,, D) p,(IL,|D) d11,, (241)

with p,(I1|D) given in (2.36b). A Monte Carlo numerical integration proce-
dure can be employed to evaluate the integral in (2.41). To approximate
p(8,,|D) at a given value of §,;, say 8;%, compute simply

N
p (8111, D) f(11P) [ ¥ ATIP).

i=1

i

1

In this way, complete marginal posterior pdfs for the elements of 8, can be
calculated. Also joint posterior pdfs for 8,, and 8§, can be calculated in a
similar manner since, from (2.36b), p(8y;, 8,,|II;, D) has a bivariate Student-
form and [p(8,,,8,,|II,, D)p,(I1;|D)dII, can be evaluated using Monte
Carlo integration procedures. Finally, we note that (2.33) can be integrated
analytically with respect to the elements of &,, w; and £, to obtain
p(o}|IT;, D) p,(I1,|D) and numerical integration procedures can be utilized to
obtain the marginal posterior pdf for o2, p(oZ|D).
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Above, we have employed ihe diffuse prior assumptions in (2.32). As an
alternative, we can use the following informative prior density:

p(al’Hl"Q*)=P1(81’H1|‘Q*)P2(9*)’ (2.42)

where p,(8;, I1,|2*) is a multivariate normal density with mean (8,,II,) and
covariance matrix £* ® C~! and p,(£*) is an inverted Wishart form. With
this prior, operations similar to those presented above in the case of a diffuse
prior are easily performed given values of §,, Hl, C and other prior parame-
ters. It is also possible to use an informative prior for §; given £* and diffuse
priors for the other parameters.

Various conditional posterior densities associated with (2.35) are now con-
sidered. If we condition on XII, =Y, - K V,, where K> 0is a given constant
and V Y, — XI1,, we have XH =(1-K)1 +KXH1 or ¥, = KV,, where
V, =Y, — XII,. Then on defining M, = I — V,(V/V,)" 'V} and §; = (¥ 81,
the conditional posterior mean value, given by 8, = (W "MW,)~ wy M1 Y, is
by direct evaluation

[

With these conditioning assumptions, §,,, the conditional posterior mean of
8., is in the form of a K-class estimate. As is well known, for K =1, §, is the
2SLS estimate, for K= A, the smallest root of a determinantal equation
encountered in maximum likelihood estimation, Sh is the LIML estimate, and
for K=1—k/(v—2), withv=n—k —m, > 2, §,, is the MELO estimate; see
Zellner (1986). Note that if K= 0, §,_ is the OLS estimate defined for K = 0.
While the above conditional results are interesting, it 1s often the case that
conditional means, etc. are not very good approximations to unconditional
means, etc. in small or even moderate sized samples. This is illustrated in
computed examples presented in section 4.

We end this section with two remarks. First, the model (2.13) or (2.13") does
not include a reduced form equation for Y, the endogenous variables ex-
cluded from the structural equation. This means that, in fact, our analysis in
this section is conditional on the hypothesis that Y, is independent of y, and
Y,. This hypothesis can be suppressed easily and the Bayesian analysis of the
RRF can be adapted to the more general case. We note that one may interpret
the model (2.13’) as an incomplete simultaneous equation model [see Richard
(1984)]. Second, we did not discuss conditions for the existence of the
marginal posterior moments of §,. Given that our approach of computing
posterior moments may be considered as an alternative to Dréze’s (1976)
approach, one may argue that Dréze’s discussion of existence conditions [see

-1 ~
Yy - KV,
X;

Y'Y, - KV/V, XY,

. (243
Y/ X, X(X, e (243)
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also Dréze and Richard (1983)] is also applicable to our case. A more explicit
discussion of conditions for existence of moments will be given in future work.

3. Some Bayesian diagnostics for the model specification

In this section we extend the computational procedures of the previous
section in order to compute posterior moments and densities of parameters (or
functions of parameters) that give diagnostic checks of the specification of the
model (2.13) or, equivalently, (2.13).

First, we discuss how to check the hypothesis of weak exogeneity [as defined
by Engle et al. (1983)] of the included endogenous variables Y in eq. (2.13°).%
In non-Bayesian econometrics this can be done by testing whether , =0 in
the expanded first equation of (2.13’), which is written as

n=Yy+ X8+ I}1771 +&, (3~1)

where V, = Y, — XII, is the n X m, matrix of ordinary least squares residuals
of the set of reduced form equations for Y;. [For details see, e.g., Hausman
(1983), Holly (1982) and Engle (1984, ch. 9.3).] In our unrestricted reduced
form (URF) approach one may proceed as follows:

) Use independent random drawings IT("V,..., IT(V,... IT{™), that are
generated from a matrix Student-¢ distribution with a density function
proportional to (2.19) and compute the sequence V", ... V(O . VM)
where V=Y, — XIT{", i=1,..., N.

(i)  Run N ordinary least squares regressions on (3.1) with V") instead of
V,. This yields the sequence #{,...,#7{",.... %" where #{ is the
well-known OLS expression.

(iii) Compute the moments and densities of the elements of the vector 4, by
standard sampling theory formulas. If the posterior density of #, is
located around zero, one has an indication that the variables Y; in eq.
(2.13) are weakly exogenous in the sense that the stochastic component
V| of the variables Y; does not contribute much to the eq. (2.13"). The
smaller the dispersion of %, around zero the greater one’s confidence in
this indication.

The sequence (§{?, B;"), i=1,..., N, that is obtained in the OLS regres-
sion described in step (ii) above is equal to the sequence {8}, i=1,..., N,
that is obtained by using the 2SLS mapping (2.26). This follows by direct
verification. As a consequence, one expects that the sample mean %, from the
sequence {f{’}, i=1,..., N, contains an approximation error with respect to
1, when the system (2.13") is strongly overidentified since 171 # V| in general.

$For earlier Bayesian results on testing for exogeneity, see Reynolds (1980, 1982).
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In order to deal with the overidentified case in an exact way, we consider
again the RRF system (2.13) and (2.13’) and reformulate this model as
follows. First, denote the ith row of (u; V) by (u; v{;) and decompose the
(1 + m;)-multivariate normal density of (u; v{,) as a conditional normal
density of u; given a value of v}, and a marginal multivariate normal density
of vy, This yields (u|v},) ~ N(v}n, 0f — 027 'w,) with , = 27w, and
vy; ~ N(0, £2,). Next, perform the transformation of random variables from
(u,|V}) to (y41Y7) and from ¥, to Y,. This yields

(»)Yy) ~N(Yyy, + X8, + (Y, — XIT)my, (0 — @(@7 ) 1), (3.2)

Y, ~N(XII,,2,91). (3.3)
Ffom (3.2) and (3.3) one can write the model

=Yy +XBi+Vmn+e,

Y,=XII,+V,, (3.4)

where (g, v},), i=1,..., n, are independent random drawings from a multi-
variate normal distribution with mean zero and covariance matrix

o2 0 _ of— w2, 0 (3.4")
0 2 0 o, '

Note that cov(g;, v;;) =0 which follows from direct verification. Therefore,
testing whether w; = 0 in the model given in (2.13’) and (2.13") is equivalent
to testing whether n; = 0 in the model given in (3.4) and (3.4’). Further, note
that if 3, = —1v,, one can substitute XII, =7, — V; in the first equation of
(3.4). As a consequence, there are only predetermined variables on the
right-hand side of eq. (3.4).

The likelihood function of the parameters 8] = (v{, B{), 1;, 02 and £, is
obtained from (3.4) and (3.4’) as

1(81,m, 02, 2uID) & (02) ™" exp( ~e'e/207 } |22

Xexp{-%tr[(Vl’Vl)“l.(Z{l]}, (3.5)

where & and V| are given by equations in (3.4). As a next step we have to
transform the prior density on (8,, I}, o, @, 2,) [see (2.32)] to a prior
density on the parameter set (8, II}, 02, n,, 2,). The relevant part is the
transformation from (o, w,, 2,) to (62, n,, £2,) which gives as Jacobian |2,].
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As a consequence the prior information specified in (2.32) is given in terms
of (8;, I}, 82,1y, 2,) as

p(al’ Hl’ 052’ M, 91) o« (02)*(mx+vo+2)/2191l—(m1+v0)/2‘ (36)

€

The posterior density of the p-vector 8’ =(8{,7}), with p=1/ +m,, and
II,,6%, 82, is given by

p(6.10,.02,2,D) « (7)™ exp{ ~e'e/207)

X |2y Zexp = Ju(Vyv) 2]

(3.7)

Integrating (3.7) with respect to ¢ and £, yields the marginal posterior
p(a’ HIID)9

p(8,IID) a (e'e) """ ™Ay yy e, (3.8)

where ¢ and V] are given in (3.4). The density (3.8) may be compared with the
pdf given in (2.34) and (2.35). In a similar way as done below (2.35) in
subsection 2.3, we can rewrite (3.8) as

p(ﬂ,HdD)=p1(0|H1,D)p2(H1|D), (3.9)
where
ww\/?
P1(91H1’D)=C1( 2 )
51
Y 3 21 ~(nm+p)/2
x{v +(6-9)W'W(0-8)/s} . (3.9a)
and
N A |~ (112
Pz(H1|D)°‘02h(H1)C3'S1+ (HI_HI) X X(HI_HI)I ,
(3.9b)
and

h(IL) = |W'w|"V2(s2) "2, (3.9¢)
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From the definition of W= (W, V)) it follows that |W'W|= |W/M,W,| |V, V),
where M, is as given below (2.34). Therefore

h(Hl) =f(H1)|V1’V1|*1/27 (3-10)

with f(II,) given in (2.36¢). It follows that the posterior density of I, given
in (2.36b) is equivalent to the posterior density given in (3.9b). The parameters
of the conditional multivariate Student-r density of the p-vector 8 are given as
», =n, — 1, and

G=(ww) ‘W, vsi=(y-wl)(y-wWi). (3.11)

The conditional density p,(8|I1,, D) in (3.9a) is in the form of a p-variate
conditional Student-¢ pdf of 8 given II, and D with », degrees of freedom,
with mean § and covariance matrix (W'W) tu;s2/(v, — 2), both of which
depend on II,. Similar remarks that were made with respect to (2.36a) apply
to (3.9a) and are not repeated. We mention here only that if the marginal pdf
of 7, is centered around zero, then one has an indication that Y, is weakly
exogenous in the sense discussed before.

We note that one may use diffuse or informative priors other than (3.6). For
instance an alternative type of diffuse prior is given by

p(8.10,, 62, 2) & (02) " w2, 02 (302)

This prior is equal to (3.6) times |W’'W|!/2, which is the root of the determi-
nant of the information matrix of # given II,. As a result the factor
|[W'W| /2 will not appear in (3.9c). Further, we note that conditional
moments associated with (3.9) can be formulated in a similar way as was done
in subsection 2.3. In particular, if we condition p,(8/II,, D) on II, = II, and
integrate out §,, the posterior density pl(nllﬁl, D) is an m,-variate Student
pdf with mean 4,, the OLS estimate of %, in (3.1). The non-Bayesian test
procedure for the weak exogeneity of Y, using (3.1) is to reject the null
hypothesis if a (1 — «)% confidence region centered at #; = 0 does not contain
the point 4}, = 0. The Bayesian decision is to reject the null if a (1 —a)%
posterior probability region centered at 7, does not contain the point 7, = 0.
An exact Bayesian decision procedure relies on the marginal posterior density
p1(n,)D) rather than on the conditional density P1("11|ﬁ 1 D). Some illustra-
tive results on exogeneity testing are presented in subsection 4.1.

Next, we discuss how we can check whether the overidentifying restrictions
in (2.12a) and (2.12b) seem acceptable. It follows from the discussion, given in
subsection 2.2 [between eqs. (2.20) and (2.21)), that the degree of overidentifi-
cation is equal to the number k, of omitted predetermined variables in eq.



A. Zellner et al., Bayesian specification analysis of the SEM 59

(2.9b) minus the number m; of included endogenous variables on the right-
hand side of (2.9b). Thus, we may include some predetermined variables in
(2.9b) that were, at first, excluded from this equation. If we add k,— m,
predetermined variables to the right-hand side of (2.9b), then we have an
exactly identified equation instead of an overidentified equation. As a conse-
quence, one can make use of the URF approach and compute highest
posterior density (HPD) regions around zero for the parameters of the k, — m,
included variables. This yields a check on the value of the overidentifying
restrictions. If we add fewer than k,— m, predetermined variables to (2.9b),
then this equation is still overidentified and the RRF approach can be used to
analyze the HPD regions around zero of the parameters of the included
variables.

Several other diagnostic checks may be constructed, i.e., restricted reduced
form moments may be compared with unrestricted reduced form moments.
Diagnostic checks on autocorrelation and outliers may be constructed from
posterior distributions of realized error terms {see van Dijk (1987)]. Further,
one may compute posterior odds relating to exogeneity hypotheses. There are
thus ample opportunities for much applied work using the methods discussed
above.

4. Applications of methods

In this section we illustrate the methods of sections 2 and 3 for the case of
an exactly identified simultaneous equation model and for the case of an
overidentified model. As an example of an exactly identified model we
consider the Belgian beef market model [see Dréze and Richard (1983, sect.
2.4)] which is given as

Qt=011+,81Pt+‘Yer+u“, (4~1)

Qz=a2+BZPt+Y2Sz+u2t~ (42)

where @, is the quantity of beef consumed per capita in period #; P, is the
price index; Y, is real national income per capita; and S, is the cattle stock per
capita (measured as the number of heads at the beginning of each period). The
variables @, and P, are endogenous, and the variables Y,, S, and the constant
term are assumed exogenous. The data are annual observations for the period
1950-1965. Given our uniform prior with », =0 and given that the model is
exactly identified, posterior first- and higher-order moments do not exist. In
fig. 1 we present the marginal posterior density of 8; and give the computed
quartiles of the posterior distribution. The density is concentrated around the
mode but has a long tail to the left. We note that the mode and the median are
almost equal; however, the first and fourth quartiles indicate that the density is
skewed to the left. Further, we find evidence that the exogeneity of the price
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UNIVARIATE POSTERIOR OF BETA1 (BBM)

T — T T —

T —— T
-2.0 -1.8 -1.6 -1.4 -1.2 -1.0 ~0.8 -0.6 -0.4 -0.2
BETA1

Fig. 1. Marginal posterior density of 8, in the Belgian beef market model [eq. (4.1)].

variable is rejected. The results reported are based on N = 100,000 drawings in
order to obtain an accurate figure. We emphasize, however, that the figure is-
already rather accurate with N = 10,000 or N = 20,000.

As an example of an overidentified simultaneous equation model we take
Klein’s Model 1 [see Klein (1950)], which is given as

C=a;P+a,P_+a;W+a,+u, (4.3)
I=BP+B,P_ +BK_{+ By+u,, (4.4)
W=y, X+v,X_|+v3t+ v, + us, (4.5)
X=C+I+G, (4.6)
P=X-W,-T, (4.7)
K=K_,+1, (4.8)
W=W,+W,. (4.9)

Consumption expenditure (C) is structurally dependent on profits (P), on
profits lagged one year (P_,) and on total wages (). Net investment
expenditure (/) depends on profits, lagged profits and on the capital stock at
the beginning of the year (K_,). Finally, private wage income (W) depends
on net private product at market prices ( X), the same variable lagged (X _))
and a trend term (7). The model is closed by four identities, which provide
links with three exogenous variables: the government wage bill (W,), govern-
ment non-wage expenditure, including the net foreign balance, (G) and
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UNIVARIATE POSTERIOR OF BETAL (KLEIN 1)

P
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251LS mapping
conditional pdf
marginal pdf
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BETAL

UNIVARIATE POSTERIOR OF ETAL (KLEIN |)

* 2SLS mapping
o conditional pdf
+ marginal pdf

ETAl

Fig. 2. Univariate marginal posterior densities of 8, and 7, in the investment equation of
Klein’s Model I.

business taxes (7). The model has seven jointly dependent variables
(C,I,W,, X, P, W) and eight predetermined variables (1,P_,, X_;, K_,,
G, T, W,,t). All variables (except 1 and ¢) are measured in constant dollars.
Posterior moments for Klein’s Model I are reported in tables 1-3 and
univariate and bivariate marginal posterior densities of a structural parameter
and an exogeneity parameter in the investment equation are given in figs. 2
and 3. It is seen from the results on the investment equation in table 1 that the
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URF approach, in particular the GILS mapping, yields gross approximation
errors for several parameters. The posterior means and standard deviations of
the parameter of the included endogenous variable, of the constant term, and
of the exogeneity parameter differ substantially from the results of the
restricted reduced form approach. The results of the latter approach are based
on N =120,000 drawings. We note that the marginal results differ also from the
conditional results in the RRF approach but less than from the results given
by the URF approach. The sensitivity with respect to the particular choices of
vy =0 and », =k is as expected. A larger value of », implies smaller variances
due to lighter tails. It is of interest that the exogeneity of profits appears to be
rejected while some preliminary results on overidentifying restrictions (not
reported) suggest that these restrictions are not to be rejected. More details
will be reported in future work. It is also of interest that conditional standard
deviations are always smaller than the asymptotic TSLS standard deviations.
The reason is that in the conditional approach the values of s? is smaller than
in the non-Bayesian approach. The results for the wage income equation given
in table 2 produced by different methods are similar. The hypothesis that net
private product is exogenous is not rejected while, for preliminary results, it
appears that the overidentifying restrictions are rejected. The consumption
function was the most complex case to analyze. The posterior means differ
substantially for the different approaches. The posterior standard deviations
for the exogeneity parameters for profits and wage income show a surprising
result. The marginal standard deviations are smaller than the conditional ones.
It appears that the effect of the weight function f(H,) (see subsection 2.3) is
very non-linear. This is a topic of current research. Exogeneity and pre-
liminary results on over identification, not reported here, suggest that both
hypotheses are rejected. Figs. 2 and 3 show the skewness of the marginal pdf’s
and differences between the results of the URF, the conditional RRF and the
marginal RRF approaches.

5. Concluding remarks

In this paper, we have shown how Monte Carlo numerical methods can be
employed to compute exact posterior densities of the parameters of a structur-
al equation using diffuse or informative prior distributions. In addition,
operational procedures for Bayesian diagnostic checking or specification anal-
ysis were described. For example, discrepancy parameter vectors were intro-
duced to represent departures from exact identifying restrictions and it was
shown how to compute posterior densities for them and interesting functions
of their elements which we refer to as discrepancy functions. In addition, a
Bayesian procedure for evaluating exogeneity hypotheses was described. That
diagnostic checking or specification analysis be performed is quite important
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and the fact that operational Bayesian procedures for diagnostic checking or
specification analysis can be carried through without much difficulty is for-
tunate.

Applications of our methods were presented and yielded useful results. In
particular, it was found in several instances that certain specifying assump-
tions, exogeneity hypotheses and identifying restrictions, were of doubtful
validity. Also, it was found that exact marginal posterior densities differed
considerably from conditional posterior densities based on conditioning as-
sumptions which are often employed in non-Bayesian procedures, for example
in the 2SLS approach or other K-class estimation approaches. Thus we
consider it very important to use appropriate marginal posterior densities for
structural parameters rather than approximate conditional posterior densities.
That the former can be computed using Monte Carlo techniques without much
difficulty is indeed fortunate.

In future research, we plan to extend our consideration of diagnostic
checking procedures to consider checks for autocorrelation of error terms,
outliers and possible left out variables. Also, the single-equation analysis in
this paper will be extended to provide results for sets of structural equations
and complete structural equation systems.

Appendix: The generation of pseudo-random drawings from a matrix
Student distribution

Because the matrix Student (Mt) distribution is related to the matrix
Normal (MN) and to the inverted Wishart (iW) distributions, we define these
three families of distributions through their density functions and state a few
properties that are useful to build an algorithm for generating a pseudo-
random drawing from an Mt distribution.

A.l. Definitions

Let IT € R*™ be a k X m random matrix.
(1) II has an MN distribution if its density function is

p(I) =3 (I, Qe M™)
= [@m) ek M| 7
Xexp — dtr[QY(IT - IT) M(IT - TT)], (A1)

where IT€ R*” is a k X m constant matrix, £ is an m X m PDS constant
matrix and M 1s a k X k PDS constant matrix.
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From here on, let £ be a random PDS matrix.
(ii) £ has an iW distribution if its density function is

P(Q) =fx&(QlW’ V)

mo (y+1—i\|!
— 2vm/2 m(m—1)/4 T
i 1 ( 2 )]

X|W /2| @)~ D 2exp — Ltr @7IW, (A2)

where W is an m X m constant matrix and the constant » > m — 1.
(iii) IT has an Mt distribution if its density function is

p(ID) = £ (I|IL W, M. »)

:[ﬂkm/zizlr_"llr(y+;—i)/r(u+k:1—i)]-l

—(v+k)/2

X|WP2 M|\ W+ (IT - T1) M(IT - 1T) | , (A3)

where IT, W, M and » are defined as in (i) and (ii).

A.2. Some properties of these distributions

W) If p(I1|2) = f{"(T | IT, @ @ M™") and p(2) = /5, (W, »), then p(IT)
is given by formula (A.3). This property states that an Mt distribution is a
marginal distribution from an MN-iW one.

(2) Let II have the density (A.1).

(i) If 4 is an » X k matrix of rank r <k, and B is an m X s matrix of rank
s < m, then

p(AIIB) = fix( ATIB|ATIB, B’QB ® AM™'4"). (A.4)

(i) In particular, if B’QB=1, and AM~A’=1,, Z==A(IT~II)B is a
matrix of independent standard normal variables.

(3) Let £ have the density (A.2).

(i) If C is an m X s matrix of rank s < m, then

p(C'QC) =f3(C'QC\C'WC,v —m+s5s). (A.5)

(i1) Partition  into Q,;(m; X m, PDS), £,,(m, X m,,PDS), 2,,(m, X m,),
2,,= 84 and let ,,,, = 25, — 2,127*2,,. Then £ and (2,,, 21,'Qy5, 255 ,1)
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are in one-to-one correspondence and

P(Qu, 521‘11912, ‘QZZXI) =P(‘Qll)p(91_11912|922x1)p(922><1)a (A.6)

with
p(£y) =R (2uWh, v — my), (A7)
P(20'2:,) = ™ (20 2uIWa Wiy, 8oy 0 ® W), (A8)
P(82,1) =f5 (Lnx1lWrax1 7). (A.9)

where W, W,, and W,,,, are defined from W as £,,, £,, and £,,,, are
defined from §2.

(iii) In particular, if C’'WC=1, in (A.5), ¥:=C’QC is in one-to-one
correspondence with j;m(m + 1) independent random variables: Jm(m — 1)
standard normal variables, plus m variables A,, each of them having an
inverted-gamma density defined as

LA, v—i+1) for i=1,2,....,m.

This follows from the property 3(ii) applied to ¥ m times: one starts, e.g.,
with m,=1 and m; =m ~1 and notices that 3(ii) can be applied again to
p(¥,,) which is an iW dens1ty with parameters /,, and v — 1.

Other properties from these distributions can be found in Zellner (1971,
app. B.4, B.5), Dréze and Richard (1983, app. A) and Bauwens (1984, app.
A1, Al who gives separate algorithms for the generation of random num-
bers from MN and iW distribution). These algorithms can be combined to
draw from an Mt distribution, with density given by (A.3), by drawing firstly
an iW @ matrix with density (A.2), and by drawing subsequently an MN
matrix with density (A.1) where £ is the iW matrix obtained at the iW step.

A.3. Mt algorithm
To obtain a drawing II from the Mt distribution defined by (A.3):

(1) Compute the lower triangular (LT) matrices @/ and P such that
W=Q’Q and M= PP’

(2) iW step:

(i) Generate ;m(m — 1) standard normal drawings and m inverted gamma
drawings A, with p(X,)) =fa (A1, v —i+ 1)

(ii) Compute the m X m LT matrix @ such that §@’ =: 2 is a drawing from
the iW distribution of £ defined by (A.2) (but one does not need to compute
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Od’). Let @ =(9,,): then ¢;;=0 for i <j. The lower triangle of @ can be

filled by the following steps:

1) i< 0;1« im(m+1)+1;let ¢ be avector of / — 1 elements that will finally
contain the column expansion of the LT of ®,i.e., ¢ = (¢85, -, $,192293,
IR ] m—lm—1¢mm41¢mm)'

2) i< i+1;if i>m, stop.

3) I 1—i¢(/)=A; [\, obtained at step 2(i)].

4) If i =1, go to 2); or else go to 5).

5) Pick i — 1 standard normal drawings obtained at step 2(i) and assign them
in a vector u. Compute y= Wéi,l,u where y is a vector of i—1
elements and @,_, denotes the LT matrix whose column expansion of the
lower triangle is stored in the last i(i — 1) /2 elements of the vector ¢ (but
®, is the scalar ¢,,, = yA;). Finally, (1 + k)< y(k), k=1,2,...,i—1,
and go to 2).

(3) MN step:

(1) Generate km standard normal drawings z;; (i=1,2,...,k and j=
1,2,...,m). Let Z=(z,)).

(i) Compute II =II + PZ®’Q’ where ¢ is the LT matrix obtained at step
2(in).

To draw standard normal variables, one can use the polar algorithm - see,
e.g., Knuth (1971). To draw inverted gamma variables, one can use the GRUB
algorithm of Kinderman and Monahan (1980) that is efficient since the
computer time required to obtain one inverted gamma drawing is almost
perfectly independent of the value of » (as is nor the case if one generates
gamma drawings as sums of » independent squared normal drawings). To get
one drawing II, one needs im(m—1)+ mk univariate standard normal
drawings, plus the m inverted gamma drawings; all these drawings must be
independent.

The proposed Mt algorithm has the advantage that the marginal cost of a
drawing (steps 2 and 3) is not affected by the value of the degrees of freedom
parameter ». For a similar type of algorithm, where use is made of the Wishart
instead of the inverted Wishart distribution, we refer to Geweke (1988).

Provided » is an integer, one could replace the implementation of the iW
step by (i) drawing a Wishart matrix 27! as ' 1Z,Z] where the m X1
independent vectors Z; have a multivariate normal density with zero expected
value and covariance matrix given by W, (ii) inverting £~ and (iii) computing
the LT matrix @ such that £ =@¢@®’. This implementation requires vm
standard normal drawings at the iW step, instead of $m(m — 1) of these plus
the m inverted gamma drawings. So for very small values of » and m, this
implementation may be more efficient. Notice however that a Cholesky
decomposition of {2, giving @, has to be performed, whereas @ is obtained
directly in the implementation we use.
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Another method to generate from the Mt distribution (A.3) that is expected
to be less efficient, is to use the property that

p(II) =p(IL|IT,I1,- "Hm)P(H2|H3' I, ---p(I1,,), (A.10)

where II, (i=1,2,..., m) is the ith column of II, and each of the densities on
the right of (A.10) is a multivariate Student density [see Zellner (1971, p. 397)
or Dréze and Richard (1983, p. 589)]. Formula (A.10) suggests a sequential
drawing procedure.
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