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Abstract

Combined forecasts from a linear and a nonlinear model are investigated for time series with possibly nonlinear
characteristics. The forecasts are combined by a constant coefficient regression method as well as a time varying method.
The time varying method allows for a locally (non)linear modeling. The methods are applied to three data sets: Canadian
lynx and sunspot series, US annual macro-economic time series — used by Nelson and Plosser (J. Monetary Econ., 10
(1982) 139) — and US monthly unemployment rate and production indices. It is shown that the combined forecasts perform
well, especially with time varying coefficients. This result holds for out of sample performance for the sunspot series, the
Canadian lynx number series and the monthly series, but it does not uniformly hold for the Nelson and Plosser economic
time series.  2002 International Institute of Forecasters. Published by Elsevier Science B.V. All rights reserved.
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1. Introduction individual forecasts are explanatory variables,
and the weights are constrained to sum to one.

Since the influential work of Bates and Furthermore, they show that the unconstrained
Granger (1969) several schemes for combining least squares method can be applied to get a
forecasts of different models have been con- better forecasting performance.
structed. Crane and Crotty (1967), Reinmuth An important motive to combine forecasts
and Geurts (1976) and Granger and from different models is the fundamental as-
Ramanathan (1984) propose, for instance, thesumption that one cannot identify the true
use of regression methods. The latter authors process exactly, but different models may play a
point out that conventional weighting is equiva- complementary role in the approximation of the
lent to constrained ordinary least squares wheredata generating process. We follow this idea and
the observations are the dependent variables, theconsider the combination of several time series

models for analyzing data which show, pos-
sibly, nonlinear characteristics. We investigate*Corresponding author.
the properties of combining forecasts of linearE-mail addresses: terui@ecom.tohoku.ac.jp (N. Terui),

hkvdijk@few.eur.nl (H.K. van Dijk). and nonlinear models by a constant coefficient

0169-2070/02/$ – see front matter 2002 International Institute of Forecasters. Published by Elsevier Science B.V. All rights reserved.
PI I : S0169-2070( 01 )00120-0



422 N. Terui, H.K. van Dijk / International Journal of Forecasting 18 (2002) 421–438

regression method as well as time varying Then one can investigate whether the nonlinear
regression method. component or the time variation in the parame-

There are several reasons to consider the ters is more important. Note that our approach
proposed methods. Firstly, there exists empirical can be extended to other classes of nonlinear
evidence that nonlinear models perform well for models with possibly time varying parameters.
long term forecasting and that a linear model We comment on this in our conclusions.
dominates in the short run. In fact, a linear In the empirical application regarding econ-
model can be useful as a robust model for omic time series, we first test the linearity of
analyzing data which exhibit apparently non- each series. Based on the outcome of the test,
linear characteristics. We note that Tong (1990, we choose six annual macro economic series
pp. 425–429), proposes a simple combination, from the well known data set from Nelson and
where a linear and a threshold autoregressive Plosser (1982) and 2-monthly (seasonally ad-
(TAR) model are used alternatively corre- justed) economic series: the US unemployment
sponding to upward and downward phases of rate and the industrial production index.
time series. It is shown that the combined forecasts

Secondly, it is possible for a data generating perform well in most cases, especially, with
process to switch its structure over the observa- time varying coefficients. However, the com-
tion period between a linear and a nonlinear bined forecasts do not necessarily dominate for
structure. The combined forecast can be based all series; sometimes a linear model still
on a locally linear or locally nonlinear model. produces the best forecasts. Our results are in
This is important for economic time series line with those of De Gooijer and Kumar (1992)
which exhibit structural change. Terui and and Clements and Smith (1999).
Kariya (1997a,b) indicate that many economic
series show no clear features of nonlinearity.
These series appear to be standing on the2. Nonlinear models and their combinations
borderline of linear, Gaussian and nonlinear,
non-Gaussian regions. In addition to a conventional linear auto-

Thirdly, by using combined forecasts, one regressive (AR) model, we consider two classes
can evaluate the contribution of each component of nonlinear time series models; the threshold
for the whole series (constant combination) or at autoregressive (TAR) models and the exponen-
every time point (time varying combination). tial autoregressive (ExpAR) models. For

As for the class of nonlinear time series stationary time serieshY j, a two regime self-t
models to be combined with a linear model, we exciting TAR model of order (p , p ), denoted1 2
use threshold autoregressive (TAR) models and by TAR(p , p ;d, r), is defined as1 2
exponential autoregressive (ExpAR) models.

(1) (1) (1) (1)One reason for this is that these models have b 1b Y 1 ? ? ? 1b Y 1e if Y # r0 1 t21 p t2p t t2d1 1
Y 5competed with each other in their performances t (2) (2) (2) (2)H

b 1b Y 1 ? ? ? 1b Y 1e if Y . r0 1 t21 p t2p t t2d2 2on the Canadian lynx and Wolfe’s sunspot data,
(1)which are benchmarks for nonlinear models.

Studies of their performance are available. The
(i )where he j, i 5 1, 2, is the innovation processother reason is that these models are suggested t

for each regime. Their variances are denoted asfor some macroeconomic data.
2 2We include in our framework a linear auto- s ands . The parametersd andr are called(1) (2)

regressive model with time varying coefficients. delay and threshold parameters, respectively.
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We note that a TAR model can be characterized t $ 1; and where Eq. (5) is the state equation
as a piece-wise linear time series model. which defines the distribution ofb for everyt

The ExpAR model with orderp, denoted by t $ 1.
ExpAR(p; d, g ) is defined as In the first step, the filtered state vector and

its covariance matrix,29 9 9Y 5 hf 1p exp(2gY )jYt 1 1 t2d t21
ˆ2 b 5E(b uY , . . . ,Y ),t ut t 1 t9 91 hf 1p exp(2gY )jY 1 ? ? ?2 2 t2d t22

ˆ2 ˆ ˆS 5E (b 2 b )(b 2 b )9f g9 91 hf 1p exp(2gY )jY 1e (2) t ut t t ut t t utp p t2d t2p t

are evaluated by applying the Kalman filter9wherehY j is a mean deleted process andhe j ist t
2 algorithm, where recursive relations regardingan innovation process with variances . This

the predictionsmodel can be interpreted as a smoothly switch-
ing model between two extreme regimes, ac-

b̂ 5E(b uY , . . . ,Y ),t ut21 t 1 t21cording to the magnitude of the amplitude
ˆ9uY u. Y 5E(Y uY , . . . ,Y )t2d t ut21 t 1 t21

Estimating the TAR and ExpAR model, that
ˆis, determining the lag length as well as estimat- ˆ ˆS 5E (b 2 b )(b 2 b )9 ,f gt ut21 t t ut21 t t ut21

ing the delay and threshold parameters, is
2 2ˆŝ 5E(Y 2Y )conducted by extensive use of the Akaike t ut21 t t ut21

Information Criterion (AIC). are essential. We refer for details to Harvey
In order to forecast with a combination of (1989) and Hamilton (1994).

models, we consider two techniques; the con- Next, suppose we haveT observations (Y ,1stant coefficient and the time varying coefficient Y , . . . , Y ) and we want to determine the2 Tmethod. Each method gives a combined model ˆoptimal inside sample estimatorb 5t uTwhich is defined as follows. E(b uY , . . . , Y ) of b , as well as its covariancet 1 T tConstant combination: ˆmatrix S . Since the recursions regarding theset uT
0 l l t t e e smoothing estimators are available, the trajec-Y 5b 1b Y 1b Y 1b Y 1 u . (3)t t t t t

ˆ ˆ ˆtories of eachb and (b 61.64s ) are?t uT ?t uT ?t uTTime varying combination: ˆdrawn in our figures, whereb means the?t uT
o l t e0 l l t t e e smoothing estimate of eachb , b , b , b andY 5b 1b Y 1b Y 1b Y 1 vt t t t t t t t t (4) the standard deviations for the marginal predic-2;X b 1 v ; v |N(0,h )t t t t ˆtors, s , are derived from the square root of?t uT

ˆdiagonal elements ofS .t uTb 5b 1 e ; e |N(0,S ) (5)t t21 t t
The model which combines a linear, a TAR

l t e and an ExpAR model is denoted as L.T.E., andwhere Y , Y and Y are the mean marginalt t t

we use the notation L.T.E.(C) and L.T.E(TV)predictors generated by a linear AR, a TAR, and
for the constant combination and the timean ExpAR model, respectively. The processhu jt

l t e varying combination model, respectively. Inis a white noise process;X 5 [1, Y , Y , Y ];t t t t
0 l t e each model, a constant term is included becauseandb 5 (b , b , b , b )9.t t t t t

multistep forecasts of nonlinear models do notThe time varying combined model — Eqs.
always produce unbiased predictors.(4) and (5) — can be interpreted as a state

Further, we compare forecasts for the case ofspace model, where Eq. (4) is the measurement
time varying weights with different constantequation which defines the distribution ofY ,t
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parameter models (L.T.E.(TV)) with forecasts 1934, by a linear autoregressive model AR(11)
of a linear autoregressive model where the process; a threshold autoregressive process
parameters are time varying. That is, we make TAR(2; 8, 3); and an exponential autoregressive
use of process ExpAR(1, 11) (see Tong & Lim, 1980;

Haggan & Ozaki, 1981; Tong, 1983; Priestley,Y 5g 1g Y 1 ? ? ? 1g Y 1e (6)t 0t 1t t21 pt t2p t
1988). The sunspot number series, observed for

where the time varying coefficients are assumed the period 1720–1989, with the first 221 data
to follow a random walk. This model is well- used, were described by a linear AR(9); a
known in the literature; see, for example, TAR(2; 3, 11); and an ExpAR(1, 10) (see Tong
Cooley and Prescott (1976), Kitagawa (1981) & Lim, 1980; Haggan and Ozaki, 1980; Subba
and Harvey (1989). It can be expressed in a Rao & Gabr, 1984; Tong, 1990). Henceforth,
state space form and the model is estimated the notation S1 and S2 is used to denote the
using a Kalman filter and AIC. Extension to lynx and sunspot series, respectively.
other models with time varying parameters, for

¨example, the model by Lundberg, Terasvirta 3.2. US macroeconomic series
and van Dijk (2000) is a topic of further
research. We comment on this in our conclu- We apply several tests for linearity. All tests
sions. use a linear model as a null hypothesis and set

some specific nonlinear model as alternative.
Let3. Data specification and nonlinearity tests

on individual series Y 5 h(Y , Y , . . . ,Y )1 e (7)t t21 t22 t2p t

We make use of three kinds of data sets. The be an autoregressive nonlinear time series
first set consists of the well known Canadian model, wherehe j is an i.i.d. process with meant
lynx number series and the sunspot number zero. If we assume the innovatione as Gaus-t
series in the natural sciences. These data setssian, the linearity test is equivalent to a test for
have played the role of benchmark for measur- Gaussianity. We use five well-known linearity
ing the performance of nonlinear time series tests: (i) the Ori-F test by Tsay (1986), (ii) the
models. The second data set is Nelson and Aug-F test by Luukkonenn, Saikkonen and
Plosser’s US macroeconomic time series data, ¨Terasvirta (1988), (iii) the CUSUM test by
see Nelson and Plosser (1982) and for the Petruccelli and Davis (1986), (iv) the TAR-F
extended set Schotman and van Dijk (1991). test by Tsay (1989) and (v) the New-F test by
This data set has motivated the discussion Tsay (1988). As noted before, all of these tests
regarding deterministic trends and stochastic have a linear process as a null hypothesis. Based
trends in economic time series. The third data on the Volterra expansion of (7) aroundO5 (0,
set are 2-monthly series on US unemployment 0, . . . )9, we have
and industrial production. These series have

` `

been used in the econometric literature on Y 5m 1Oc Y 1 O f Y Yt u t2u uv t2u t2vnonlinear modeling. u51 u,v51

`

3.1. Canadian lynx series and the sunspot 1 O f Y Y Y 1 ? ? ? 1 e ,uvw t2u t2v t2w t
u,v,w51series

(8)
Using individual models, the Canadian lynx

series were described, for the period 1821– where
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1970. The notation and the starting year of the
≠h
]]m 5 h(O), f 5 , sample periods are as follows: RGNP (realUu ≠Yt2u O GNP: 1909–), NGNP (nominal GNP: 1909–),

2
≠ h PCRGNP (real per capita GNP: 1909–), IP

]]]]f 5 ,Uuv ≠Y ≠Y (industrial production: 1860–), EMP (employ-t2u t2v O

3 ment: 1890–), UN (unemployment: 1890–),
≠ h

]]]]]f 5 , etc. PRGNP (GNP deflator: 1889–), CPI (consumerUuvw ≠Y ≠Y ≠Yt2u t2v t2w O prices: 1860–), WG (wages: 1900–), RWG (real
The Ori-F and Aug-F tests can be used to test wages: 1900–), M (money stock: 1889–), VEL
against nonlinearity of the second and third (velocity: 1869–), BND (bond yield: 1900–),
order polynomials, respectively. The CUSUM, SP500 (common stock prices: 1871–). All of the
TAR-F and New-F tests assume the threshold series are assumed to be stationary after taking
type nonlinear alternatives: their first difference here.

From the P-values of all linearity tests forp

( j ) ( j ) ( j ) Nelson–Plosser’s annual 14 series, we note theY 5b 1Ob Y 1 a ( j 51, 2), (9)t 0 i t2i t
i51 following results. (TheP-values of each test are

( j ) not tabulated here to save space. A morewhereha j is the innovation of mean zero andt
2 extensive version of the paper with additionalvariances . The New-F test covers the mostj

results is available as Terui and van Dijkextensive set of alternatives of nonlinearity,
(1999).)including the ExpAR model. Detailed proce-

dures and distributional properties regarding
• Several series are not significantly differentthese tests can be found in Granger and Ter-

from a linear AR process, in particular,äsvirta (1993).
RGNP hasP-values greater than 5% for allEach model is estimated based on the exten-
tests.sive use of AIC; see Tong and Lim (1980) for

• Series with strong nonlinearity are NGNP,similar results on the TAR model and see
PRGNP and CPI.Haggan and Ozaki (1981) for results on the

• The SP500 series is not inconsistent withExpAR model. The maximum values of the
Gaussian disturbances, except for the New-Fautoregressive part of each model was set as 15,
tests.and the particular lag order and the nonlinearity

• Among the five tests, the New-F test rejectsparameters (d, r) were chosen by a conditional
the null hypothesis of linearity most stronglyleast squares method and by using the criterion
and the CUSUM test rejects the least. Weof minimum AIC. The results are summarized
have some similarity of the results betweenin Table 1.
the Ori-F and Aug-F tests.Each of the linearity tests with a different set

• The CUSUM test produces different resultsof ( p, d) brings out different results. Following
from other tests, which might be due to itsCox and Hinkley (1974, p. 104) and Stone
poor power performance reported by Tsay(1969), we use the most significant result of the
(1988, 1989). Henceforth, we leave thetest among all the combinations of (p, d).
results of the CUSUM test out of our in-
vestigation.3.3. The Nelson–Plosser annual macro-

• The null hypotheses of linearity foreconomic series
PCRGNP, IP and SP500 are rejected only by
the New-F test and this may imply that theseNelson and Plosser’s 14 series are annual
series have a bilinear or ExpAR type ofdata starting from different years and ending in
nonlinearity.
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Table 1
Estimated marginal models: macroeconomic series

Linear

Series no. Name – – p s AIC

E1 (A) NGNP – – 1 0.1015 297.6304
E2 (A) PRGNP – – 1 0.0690 2136.673
E3 (A) CPI – – 2 0.0407 2365.337
M1 (A) M-UN – – 12 0.0374 22207.8
M2 (A) M-IP – – 12 0.0121 24123.9

E4 (B) SP500 – – 5 0.1566 277.6440
E5 (B) IP – – 5 0.1048 2165.319

E6 (C) VEL – – 1 0.0729 2226.550

TAR
Series no. Name d r ( p , p ) s AIC1 2

E1 (A) NGNP 4 0.0855 (4, 10) 0.0801 235.988
E2 (A) PRGNP 3 0.0092 (10, 10) 0.0436 255.122
E3 (A) CPI 2 0.0098 (3, 2) 0.0377 2189.828
M1 (A) M-UN 1 0.0000 (15, 3) 0.0368 21225.7
M2 (A) M-IP 2 0.0042 (12, 13) 0.0118 22097.3

E4 (B) SP500 1 0.0281 (5, 4) 0.1427 230.6599
E5 (B) IP 1 20.0661 (10, 5) 0.0865 2124.392

E6 (C) VEL 3 20.0134 (3, 6) 0.0626 298.1974

ExpAR
Series no. Name d g p s AIC

E1 (A) NGNP 3 1.576 9 0.0674 288.0833
E2 (A) PRGNP 1 4.739 10 0.0454 2131.560
E3 (A) CPI 1 0.0410 10 0.0271 2387.764
M1 (A) M-UN 1 1.500 13 0.0362 22220.1
M2 (A) M-IP 1 1.541 15 0.0107 24273.8

E4 (B) SP500 1 0.00001 8 0.1223 281.3575
E5 (B) IP 1 0.00009 9 0.0893 2153.588

E6 (C) VEL 3 0.00001 6 0.0648 2213.878

• The result for VEL is significant solely for NGNP, PRGNP and CPI series as highly non-
the TAR-F test and a threshold type non- linear, because all tests reject linearity. Next, we
linearity might be appropriate for VEL. select SP500 and IP as possibly ExpAR series,

because only the New-F test rejects the lineari-
Based on the results of the Ori-F, Aug-F, TAR- ty. Finally, only VEL can be dealt with as a
F and New-F tests, we classify possible non- possible TAR series, because the New-F test
linearity into three classes: (A) highly nonlinear, does not reject the linearity but the TAR-F test
(B) possibly ExpAR, (C) possibly TAR. Results rejects it.
are reported in Table 1. Firstly, we choose the From these observations, we select the fol-
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lowing six, possibly, nonlinear series: NGNP, the lynx series and the SP500 series. We observe
PRGNP, CPI, SP500, IP, VEL. The notation E1, that the nonlinear models improve the fit over a
E2, E3, E4, E5, E6 is used for these series. linear model. In particular, for macroeconomic

series, nonlinear models capture an upswing
and/or trough. These changes may be inter-3.4. Monthly US unemployment and
preted as a structural change of the economy.production index
Figs. 3 and 4 show the movements ofhb j overt

time for the time varying combination methodNext, we apply the linearity tests to 2-month-
for the lynx and SP500 series, respectively.ly economic series: the US unemployment rate

We summarize in Table 3 the results of in-(January, 1948–January, 2000) and the US
sample performance according to three proper-industrial production index (January, 1940–
ties, that is, (i) the standard error of the models,January, 2000). Both series are seasonally ad-
(ii) the role of marginal models in the constantjusted. The series are denoted as M-UN and
combined model, and (iii) the role of marginalM-IP, respectively. TheP-values of linearity
models in the time varying combined model.tests show that these series can be characterized

as highly nonlinear. Henceforth, these monthly
series are denoted as M1 and M2, respectively. 4.1. Property 1 (standard errors of the

models)

4. In sample performance According to the order of estimated standard
errors of each model, the examined 10 series

We have six models for each series, that is, (S1, S2, E1, E2, E3, E4, E5, E6, M1, and M2)
four marginal models and two combined can be classified into the following two groups:
models. Table 2 shows the estimated standard
errors of three marginal models as well as the (a) L.T.E(TV),L.T.E.(C),TAR,

two combined models. Figs. 1 and 2 show ExpAR,Linear
observations and estimates for the marginal (b) L.T.E(TV),L.T.E.(C),ExpAR,
models and for the two combined models for TAR,Linear

Table 2
Estimated standard errors for marginal and composite models

Series no. Name Linear TAR ExpAR L.T.E.(C) L.T.E.(TV)

S1 Lynx(1) 0.2870 0.1911 0.1978 0.1748 0.0566
Lynx(2) 0.1918 0.1827 0.1603 0.1521 0.0761

S2 Sunspot 14.392 12.436 13.561 11.982 10.502

E1 (A) NGNP 0.1015 0.0801 0.0674 0.0604 0.0526
E2 (A) PRGNP 0.0690 0.0436 0.0454 0.0344 0.0307
E3 (A) CPI 0.0407 0.0377 0.0271 0.0259 0.0235
M1 (A) M-UN 0.0374 0.0368 0.0362 0.0355 0.0345
M2 (A) M-IP 0.0122 0.0118 0.0107 0.0106 0.0104

E4 (B) SP500 0.1566 0.1427 0.1223 0.1156 0.1070
E5 (B) IP 0.1048 0.0865 0.0893 0.0854 0.0748

E6 (C) VEL 0.0729 0.0626 0.0648 0.0603 0.0450
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Fig. 1. In-sample performance: Canadian lynx data.
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Fig. 2. In-sample performances: SP500.
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Fig. 3. Contribution of marginal models: Canadian lynx data.
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Fig. 4. Contribution of marginal models: SP500.
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Table 3
In sample performance

Property 1: standard error (S.E.)

Order of S.E. of models Series no.

(a) L.T.V.(TV),L.T.E.(C),TAR,ExpAR,Linear S1, S2, E2, E5, E6
(b) L.T.V.(TV),L.T.E.(C),ExpAR,TAR,Linear E1, E3, M1, M4, E4

Property 2: L.T.E.(C)
Significance of marginal models Series no.

(a) Only level not significant S1, S2, M1, M2
(b) TAR and ExpAR significant E1, E2, E4, E6
(c) Only TAR significant E5
(d) All significant E3

Property 3: L.T.E.(TV)
Level (const.) Series no.

(a) Significant at all data points S1, M2
(b) Significant at some data points S2, E3, E4, E6
(c) Never significant during all data points E1, E2, M1, E5

Linear Series no.

(a) Significant at all data points S1
(b) Significant at some data points S2, E2, E6
(c) Never significant during all data points E1, E3, M1, M2, E4, E5

TAR Series no.

(a) Significant at all data points S2, E1, E2, E3, E6
(b) Significant at some data points S1, M1, M2, E4, E5
(c) Never significant during all data points –

ExpAR Series no.

(a) Significant at all data points S1, E1, E2, E3, E4
(b) Significant at some data points S2, M1, M2, E5, E6
(c) Never significant during all data points –

In all cases, the S.E. of L.T.E(TV) is the cant; (b) TAR and ExpAR predictors are signifi-
smallest and that of Linear is the largest and the cant; (c) only the TAR predictor is significant;
order between TAR and ExpAR models (d) all predictors are significant.
changes across the series. It is observed that the significances of the

level and marginal predictors vary across the
series as we can expect.4.2. Property 2 (L.T.E.(C): constant combined

model)
4.3. Property 3 (L.T.E.(TV): time varying

According to the significance of marginal combined model)
predictors as well as the level in the constant
combined model, 10 series are grouped into four The significance of marginal predictors can
categories: (a) only the level term is not signifi- change over time for a combined model with
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(i ) 2time varying weights. Corresponding to the ˆh |N(0,s ) for the regime (1)h(1) (1)(i )significance of the level and of each marginal h 5h (i ) 25 ˆh |N(0,s ) for the regime (2)h(2) (2)predictor in the time varying combined model,
10 series are grouped to three categories. (a)

(12)The term is significant throughout all data
points; (b) the term is significant at some data
points; (c) the term is never significant during and for an ExpAR model,
all data points.

(i ) 2ˆh |N(0,s ), (13)We note that the roles of nonlinear predictors h

(TAR and ExpAR) are important throughout the
2ˆ ˆwheres and s mean the estimated standard(i )sample for all series, and that the level and

errors of TAR and ExpAR models, respectively.linear predictor do not contribute much at some
Then averaging these forecasts across thei 5periods.

1, 2, . . . , M iterations of the Monte Carlo
method produces the predictor

M5. Out of sample performance 1 (i )ˆ]Y 5 OY . (14)T1h T1hM i51In this section, we compare the out of sample
performance of each predictor generated by the After the generation of the marginal predic-

l t efour marginal and two combined models. The tors, Y , Y , Y , by a recursive way forT1h T1h T1h
optimal predictor in the sense of minimizing the the linear predictors and by the MC method for
mean squared error criterion is the conditional the TAR and ExpAR predictors, these predictors
expectation are the regressor matrixX . Then the compo-T1h

site forecast with constant coefficients is gener-
Ỹ 5EhY uY ,Y , . . . j. (10) ated byt1h t1h t21 t22

0 l t el t eˆ ˆ ˆ ˆ ˆThis predictor is, in general, hard to evaluate for Y 5b 1b Y 1b Y 1b YT1h T1h T1h T1h

nonlinear time series models. Several methods ˆ5X b (15)T1hhave been proposed in this context. Recently,
Clements and Smith (1997) used extensive ˆwhereb is the estimated coefficient vector. As
simulation in order to compare several multistep for the composite forecast with time varying
forecasting methods. They recommend to use coefficients, we observe (Y , . . . , Y ) and we1 T
the Monte Carlo (MC) method. The multistep predictb and Y , for h $1. That is,T1h T1h
forecasts by the MC method for the TAR and

ˆthe ExpAR models are computed through the b 5E(b uY , . . . ,Y ),T1h uT T1h 1 T

following algorithm (see also Franses & van
Ŷ 5E(Y uY , . . . ,Y )T1h uT T1h 1 TDijk, 2000).

Define the forecasts ofh step ahead as as well as their variances,
(i ) (i ) (i ) (i ) (i ) ˆ ˆ ˆˆ ˆ ˆ ˆ S 5E (b 2 b )(b 2 b )9 ,Y 5 h(Y , Y , . . . ,Y )1h f gT1h uT T1h T1h uT T1h T1h uTT1h T1h21 T1h22 T1h2p h

2 2ˆi 5 1,2, . . . ,M (11) ŝ 5E(Y 2Y ) .T1h uT T1h T1h uT

(i )where h is a pseudo-random number such These quantities are also evaluated by applyingh

that, for a TAR model, the Kalman filter, and the final forms are
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ˆ ˆY 5X b , • Linear AR(11); AIC5216.418,s50.19181.T1h uT T1h T1h uT

• TAR(12, 3; 3, 3.328); AIC5223.087,ˆ ˆb 5 b for h $ 1. (16)T1h uT T1h21uT s50.183.
• ExpAR(12; 3, 3.8); AIC5221.167,

As a measure of predictive performance, we s50.160.
use the root mean squared error (RMSE) of the

The estimates of the coefficients for the constanth step ahead prediction, which is defined, see
combination method exhibit no great differenceFranses and van Dijk (2000), as
with estimates using the whole sample. Similar-

]]]]]]]]m ly, we did not find any great differences in the1 2ˆ]RMSE(h)5 O(Y 2 Y ) . (17)t1j ut1j2h t1j movements of time varying coefficients.m j51œ
For the sunspot series, S1, the linear model is

the best for the first step; however, it is theFor all series, we setM 5 2000 for the MC
worst after that. The combined models out-method. For each sample period, the models are
perform the other models, particularly, as there-estimated. Table 4 summarizes the results of
prediction step proceeds. The combined modelcomparing 10 step ahead predictions. Since the
with constant coefficients is producing the bestcombination method with time varying coeffi-
predictors after 10 periods. Note that the fore-cients has the minimum RMSE in many cases,
casts of TV-L are in most cases better than thethe RMSE(h) of each method is divided by the
forecasts of the marginal models. However, theyRMSE of the time varying combination method.
are worse than the forecasts from the combinedThe comparison with the time varying AR
methods.model, noted as TV-L, is reported in the last

For the lynx series, S2, one observes that thecolumn. In Table 4, a number less than one
time varying combination model shows the bestmeans that the predictors up toh steps ahead
performances during the forecasting periods andhave smaller RMSE than those of the time
the linear model is the worst. Compared amongvarying combination method.
marginal nonlinear models, the TAR model is a
little better than the ExpAR model, which is5.1. Sunspot and lynx series (S1 and S2)
consistent with the values of AIC. For specific
marginal models, similar results are observed asThe first and subsequent 221 data points are
for the case of sunspot data. The results forused to generate multistep ahead prediction for
TV-L for the lynx numbers are almost the samethe sunspot series. For the lynx series, the whole
as for the sunspot data.data set (1821–1934) has been used. In order to

keep data for a predictive performance, we re-
estimate each model by leaving the latter 10 5.2. Macroeconomic series (E1, E2, E3, E4,
observations and we evaluate the succeeding 10E5, E6, M1 and M2)
predictions. The identification of each marginal
model was conducted by the use of AIC. We set With respect to macroeconomic series, we
the maximum of the autoregressive order,p, p , observe that the combined models, in particular1

and p as 15 and we move the delay parameter models with varying weights, dominate in many2

d from 1 to 5. cases over the marginal models. The marginal
The identified AR(p), TAR( p , p ; d, r) and models show, however, in some cases the best1 2

ExpAR(p; d, g ) models, using the first 100 forecasting performance. The ExpAR model for
samples, are: VEL has the best forecasts, and linear forecasts
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Table 4
Root mean squared error comparison for predictors

Step Linear TAR ExpAR L.T.E.(C) TV-L Linear TAR ExpAR L.T.E.(C) TV-L

S1: sunspot number S2: Canadian lynx
1 0.285 3.368 2.574 2.698 0.984 1.587 1.457 1.620 0.982 1.026
2 2.452 1.487 1.124 1.006 2.109 1.459 1.423 1.433 0.985 1.023
3 2.214 1.536 1.142 0.922 1.879 1.682 1.432 1.756 0.995 1.145
4 1.534 1.257 1.531 0.932 0.924 1.985 1.654 1.824 1.154 1.348
5 2.859 1.632 1.624 1.241 1.234 1.965 1.968 1.128 1.279 1.259
6 1.384 1.172 1.241 0.986 1.298 2.019 1.697 1.687 1.098 1.572
7 1.597 0.935 1.356 0.978 1.142 1.874 1.653 1.758 1.106 1.236
8 1.496 0.965 1.410 0.910 1.250 1.695 1.576 1.713 1.204 1.456
9 2.652 1.608 1.742 1.135 1.193 1.689 1.756 1.698 1.145 1.369
10 2.542 1.302 1.334 0.952 1.734 1.723 1.856 1.875 1.142 1.765

E1: (A) NGNP E2: (A) PRGNP
1 1.120 0.875 1.795 1.198 1.002 0.985 3.698 0.876 1.652 0.982
2 1.215 1.254 1.652 1.202 1.012 0.805 2.254 1.574 1.302 0.812
3 0.985 1.195 1.598 1.198 1.009 1.635 2.445 2.245 1.258 1.112
4 0.652 0.991 1.605 1.168 0.986 1.547 2.694 1.996 1.249 1.256
5 1.025 1.251 1.601 1.142 1.985 1.520 1.823 1.653 1.187 1.220
6 1.634 1.223 1.547 1.165 1.236 0.985 1.687 1.569 1.028 1.309
7 1.632 1.172 1.612 1.174 1.325 0.852 1.652 1.578 0.986 0.937
8 1.578 1.289 1.589 1.169 1.281 0.985 1.679 1.652 1.068 1.095
9 1.352 1.236 1.546 1.201 1.347 1.547 1.502 1.624 0.969 1.235
10 1.652 1.307 1.459 1.168 1.198 1.369 1.129 1.631 0.968 1.195

E3: (A) CPI M1: (A) M-IP
1 0.836 0.698 1.574 0.520 1.198 1.503 1.895 1.255 0.968 1.187
2 0.896 3.658 3.521 1.178 1.115 0.997 1.652 1.002 0.954 1.010
3 1.158 2.214 2.024 1.168 1.876 1.256 1.247 1.147 1.133 1.192
4 1.169 2.354 2.875 1.236 1.154 1.255 1.698 1.369 1.658 1.276
5 0.854 1.965 2.254 1.247 0.989 1.347 1.547 1.854 1.741 1.023
6 0.857 1.875 1.965 1.157 0.982 1.209 1.214 1.654 1.256 1.235
7 0.965 2.031 2.247 1.100 1.176 1.258 1.105 1.278 1.020 1.113
8 0.147 1.658 2.360 0.984 0.965 1.157 1.209 1.964 1.470 1.454
9 1.320 1.758 1.877 1.002 1.287 1.196 1.188 1.240 0.987 1.234
10 1.210 1.345 1.965 0.958 1.653 0.974 1.014 1.169 0.965 1.109

M2: (A) M-UN E4: (B) SP500
1 1.003 1.073 1.024 0.907 0.989 0.965 0.987 0.987 1.001 0.964
2 1.368 1.020 0.899 1.041 1.212 0.954 1.024 0.871 0.941 0.998
3 0.965 1.214 1.021 1.180 1.165 1.047 1.068 0.957 1.023 0.981
4 1.084 1.854 1.124 1.109 1.176 1.195 1.203 1.024 1.001 1.001
5 0.828 1.025 1.365 1.116 1.098 1.241 1.264 1.147 1.041 0.765
6 1.352 1.254 1.357 1.150 1.221 1.118 1.136 1.144 1.056 0.965
7 1.325 1.068 1.467 1.164 1.343 1.116 1.147 1.179 1.128 1.122
8 1.365 1.294 1.654 1.281 1.236 1.174 1.189 1.196 1.247 1.132
9 1.573 1.328 1.234 1.361 1.348 1.157 1.182 1.281 1.354 0.991
10 1.529 1.285 1.913 1.161 1.453 1.241 1.588 0.954 1.024 1.176
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Table 4. Continued

Step Linear TAR ExpAR L.T.E.(C) TV-L Linear TAR ExpAR L.T.E.(C) TV-L

E5: (B) IP E6: (C) VEL
1 1.987 2.354 2.125 1.455 1.086 0.954 1.245 1.742 0.954 0.944
2 1.861 1.454 2.201 1.124 1.073 1.472 0.924 1.125 0.824 0.992
3 1.724 1.214 2.962 1.121 1.281 1.652 0.636 0.654 0.845 0.974
4 1.087 0.987 1.987 0.958 0.916 1.247 0.947 0.687 0.865 1.017
5 0.987 0.857 1.657 0.998 0.901 1.457 0.902 0.554 0.802 0.912
6 1.012 0.903 1.874 0.963 0.964 1.487 0.854 0.502 0.721 0.989
7 1.014 0.812 1.759 0.974 0.876 1.465 0.802 0.403 0.658 0.793
8 0.998 0.874 1.800 0.965 0.962 1.404 0.798 0.398 0.654 0.851
9 0.967 0.789 1.763 0.921 0.915 1.585 0.765 0.357 0.630 1.021
10 1.032 0.863 1.642 0.963 0.921 1.402 0.784 0.364 0.701 0.992

The number means each RMSE divided by corresponding RMSE of L.T.E.(TV). TV-L means time varying linear model.

are useful during some forecasting steps for servations are consistent with our results. That
several series. These observations are expected is, for highly nonlinear series, composite fore-
since the economic series exhibit structural casts perform better than marginal forecasts. On
changes of the economy. Therefore, although the other hand, for possibly TAR series and
uniform dominance of the combination methods possibly ExpAR series, the marginal forecasts
does not hold for the economic time series, we show a relatively better performance than
have many situations where the combination composite forecasts. There are cases where the
methods produce better forecasts. above statements do not hold, but we interpret

From Table 4, we have the following par- these cases as exhibiting nonlinearity caused by
ticular observations. Firstly, for the highly non- outliers or as exhibiting other types of non-
linear series (NGNP, CPI, PRGNP, M-IP, M- linearity, which do not persist into the future.
UN), the composite forecasts perform generally The comparison with TV-L shows that the
better than the marginal model forecasts. On the combined models behave mostly better than
other hand, for possibly ExpAR(SP500, IP) and TV-L for the data (A), however, it does not
for possibly TAR(VEL) series, the composite always hold for the data (B) and (C).
forecasts do not produce better forecasts than Summarizing our results for all 10 series, we
the marginal forecasts. Note that the SP500 conclude that the composite forecasts perform
series might belong to the highly nonlinear well for highly nonlinear series.
series because theP-value of TAR-F test is
0.05048, which is significant at a little more
than 5%. 6. Conclusion

Clements and Smith (1999) investigated the
multistep forecast performances of a number of In this paper, we investigated combinations of
empirical TAR models that have been proposed forecasts generated by linear and some non-
in the literature, and they concluded that the linear models using a constant coefficient re-
TAR models produce better forecasts, unless the gression method as well as time varying meth-
TAR forecast model is capturing nonlinearities od. The time varying method makes it possible
(outlier, non TAR type nonlinearities) which to provide a locally linear (or nonlinear) model.
cannot be exploited for forecasting. Their ob- It is shown that the combined forecasts
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perform well, especially, the method with time models for forecasting. Secondly, a more deci-
varying coefficients dominates marginal fore- sion theoretic analysis of the proposed method
casts for inside sample performance. This re- may be investigated, in particular, a Bayesian
sults holds also for out-of-sample performance approach; see Geweke and Terui (1991, 1993).
for the sunspot and the Canadian lynx number Thirdly, an extensive simulation study and the
series, but does not uniformly hold for econ- use of other forecasting measures, like forecast
omic series. Forecast comparison with the case encompassing tests, may be investigated.
of a linear autoregressive marginal model with
time varying coefficients indicates that combin-
ing models is in many cases a better strategy. Acknowledgements
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