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A Bayesian analysis of the unit root
in real exchange rates

Peter Schotman and Herman K . van Dijk*
Erasmus University, 3000 DR Rotterdam, The Netherlands

We propose a posterior odds analysis of the hypothesis of a unit root in real exchange rates.
From a Bayesian viewpoint the random walk hypothesis for real exchange rates is a posteriori as
probable as a stationary AR(1) process for four out of eight time series investigated . The French
franc/German mark is clearly stationary, while the Japanese yen/US dollar is most likely a
random walk . In contrast, classical tests arc unable to reject the unit root for any of these series .

1. Introduction
Nominal and real exchange rates behave almost like random walks. This

conclusion emerges from much of the recent empirical literature on exchange
rate models . In a series of papers Meese and Rogoff (1983a,b, 1988)
compared the forecasting performance of many econometric models, includ-
ing structural models, unrestricted VARs, and univariate time series models,
and found that none outperformed a simple random walk . Similar results
have been obtained in other studies . Frankel and Meese (1987) and
Dornbusch and Frankel (1987) review the evidence and its implications .
Especially the random walk results for real exchange rates have serious
consequences for economic theories of exchange rate behaviour. If the real
exchange rate follows a random walk, shocks to the real exchange rate
accumulate and a time series of real exchange rates will not show a tendency
of mean reversion . This is contrary to the notion of Purchasing Power Parity
(PPP) which posits that there is a constant equilibrium real exchange rate . In
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most monetary type exchange rate models (see Dornbusch (1976) and Frankel
(1979)] the constant PPP level functions as an anchor to which prices and
nominal exchange rates continually adjust .

The forecasting experiments are not the only empirical evidence that
suggest a random walk model for real exchange rates . Formal statistical tests
do not reject the null hypothesis of a unit root against the alternative of a
stationary autoregressive time series model . This conclusion was reached by
several authors using different test functions . Meese and Rogoff (1988) tested
against a unit root in monthly data for the US dollar vis-a-vis the German
mark, the Japanese yen, and the British pound during the floating period and
could not reject the unit root hypothesis using the standard Dickey-Fuller
test and the more robust Phillips (1987) test . Edison and Fisher (1988) reach
the same conclusion for most currencies within the EMS with the exception
of the German mark against the Dutch guilder . 1luizinga (1987) and
Kaminsky (1988) use the variance ratio developed by Cochrane (1988) to test
the random walk against more general time series models for real exchange
rates. While these authors find some tendencies of mean reversion, they
cannot formally reject the null hypothesis of a random walk . Diebold (1988)
and Mecagni and Pauly (1987) use both consumer prices as well as wholesale
prices to construct real exchange rates with the idea that wholesale prices
better reflect the prices of tradeable goods that are appropriate for tests of
long-run PPP. Again their univariate tests cannot reject the unit root hypoth-
esis, suggesting that the measurement of the macroeconomic price index is
probably not the most critical assumption .

As all these authors admit, part of the explanation for these results is the
low power of unit root tests and the relatively short sample period of floating
exchange rates, starting in 1973 . This means that we have at most about 190
monthly observations. Even in the ideal circumstance that the true model is
an AR(1), a classical statistic like the first-order autocorrelation must be less
than 0.92 in order to reject the unit root .' The observed autocorrelations in
actual real exchange rate series are `consistent' with a random walk null
hypothesis . That does of course not imply that the random walk is the most
likely description of the time series process of real exchange rates . A
stationary alternative with a first-order autocorrelation parameter of 0 .97
might explain the data equally well .

A second problem with the application of unit root tests to real exchange
rates is that the null hypothesis in these tests is that the theory is false . The
random walk model for real exchange rates implies violation of long-run PPP .
This is contrary to the methodology of testing in the sense that testing an
economically interesting hypothesis at the 5% level means that there is a 5%

'The 5% critical value of the test statistic n(p" - 1) in Fuller (1976) is approximately - 13 .9 for
the 190 observations that are available in the floating rate period .
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chance to reject the economic theory while it is true ; true here means that
the time series is stationary .' Classical hypothesis testing must have the
random walk as the null hypothesis instead of a stationary AR(1); the
random walk comprises a particular subset of the class of AR(1) models. In a
Bayesian approach the null and alternative hypothesis can be treated sym-
metrically. There is no need to look at the data from the specific viewpoint of
stationarity or nonstationarity . Given the data one can determine which of
the two is the most likely. The formal Bayesian tool for choosing between
different models is the computation of posterior odds ; see, e.g ., Learner
(1978, sec 4.3.) or Zellner (1971, pp . 297-298). By assigning a discrete
probability to the occurrence of a random walk posterior odds can be used to
test a sharp null hypothesis. In this paper we will develop a posterior odds
ratio for choosing between a random walk and a stationary AR(1) model .
The purpose of our study is to reexamine the random walk results for real
exchange rates. Is the random walk still the most favoured model if com-
pared directly to a simple plausible alternative?

Some first results from a Bayesian perspective are provided by Sims (1988)
and DeJong and Whiteman (1989) . Sims (1988) considers the AR(1) model
without a constant term. Sims' test procedure relies on computation of a
posterior odds ratio for the unit root hypothesis versus a stationary alterna-
tive. In this paper we will extend Sims' results by introducing an unknown
constant term in the model . It will be shown that with an uninformative prior
on the mean of the process the posterior odds test breaks down, since the
posterior density of the first-order autocorrelation coefficient is improper .
This result derives from the fact that the mean of a random walk does not
exist. The aim of the paper is to provide a test procedure that makes efficient
use of the information in the data . In specifying prior distributions we will
take care to avoid unreasonable formulations of the prior that dominate the
posterior odds, but are not supported by the data .

We will focus our analysis of unit roots on the simple case of a univariate
first-order autoregressive process, as treated in Fuller (1976) . Even for this
simple process the literature distinguishes between three different specifica-
tions : models without a constant term, with a constant term, and with
constant term and linear time trend . This distinction is useful, since one of
the difficulties with classical tests is that the distribution of the test statistic
depends on the presence of nuisance parameters like a constant and a trend
[see Evans and Savin (1984)] . Diagnostic screening of the data (see section 4)
suggests that this class of models is also rich enough for the application to
real exchange rates .

2Christiano and Eichenbaum (1989) and Campbell and Mankiw (1987) provide a different
approach to unit root tests . They start off with taking first differences of a time series and then
test whether this has led to overdifferencing . Their null hypothesis is stationarity and the
alternative is a unit root .
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The organization of the paper is as follows . First, in sections 2 and 3, we
derive some properties of posterior odds for unit root hypotheses in AR(1)
models . Second, in section 4, we apply this tool to tests of long-run PPP for
eight different real exchange rates . Section 5 concludes with some final
remarks .

2 . The AR(1) model without constant term

2.1. Definitions and model specification

In order to concentrate on the differences between the classical unit root
tests and the Bayesian procedure we start off with the simplest possible
model, a first-order autoregressive process with mean zero . Suppose that we
have a sample of T consecutive observations on a time series {y t } generated
by

Y t = Py t -t + u„

where we further assume that :

(1)

(i) y„ is a known constant,
(ii) u r are identically and independently (i.i .d.) normally distributed with

mean zero and unknown variance a, 2 ,
(iii) p e S U{ 1} ; S= {p I- 1< a <_ p< 1} .

The econometric analysis aims at discriminating between a stationary
model (here defined as a < p < 1} and the nonstationary model with p = 1,
which we will henceforth refer to as the random walk (RW) 3 . Assumption (i)
implies that we will work conditional on initial observations . The reason for
making this assumption is that treatment of the initial conditions will differ
between the stationary and the nonstationary case, so that the specification of
a simple marginal distribution for y o is a nontrivial problem; see Sims (1988,
sec. 6). The lower bound a in assumption (iii) largely determines the
specification of the prior for p .

The Principal Bayesian tool to compare a sharp null hypothesis with a
composite alternative hypothesis is the posterior odds ratio [see Zellner

3More general definitions of stationarity are given in, e .g., Spanos (1986 . ch. 8). We will
frequently use the terms stationary and nonstationarv instead of the more appropriate terminol-
ogy of 'integrated of order zero' [1(0)] and `integrated of order one' [l(1)] . Within the class of
autoregressive processes a time series is called 1(0) if its characteristic function has all roots
strictly outside the unit circle . The series is called 1(1) if one of the roots is unity . In the
autoregressive case the terms stationary for 1(0) and nonstationary for 1(1) will be used as
synonyms, although the absence of a unit root does not automatically imply stationarity of the
series, except in the AR(1) case .
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(1971, ch. 10)]. For our case the odds ratio is defined as

L(yl •) =likelihood function of the observed data y=(y	yr)',
Y

	

=(y„ y')', all observed data .

The posterior odds Kl are equal to the prior odds K,1 times the Bayes
factor. The Bayes factor is the ratio of the marginal posterior density of p
under the null hypothesis p = 1 to a weighted average of the marginal
posterior under the alternative using the prior density of p as a weight
function . The prior odds express the special weight given to the null hypothe-
sis; the point p = 1 is given the discrete prior probability fl=Ko/(1+K0).
From the posterior odds one can compute the posterior probability of the
null hypothesis as Kl/(1+K1) .

For the complete specification of the marginal prior of p and a we assume
that

Pr(p = 1) = P,

	

(3)

p(plp E S) = 1 /(1 -a),

	

(4)

P(U) a 1/a. (5)

The prior of p is uniform on S but has a discrete probability tg that p = 1 .°
The prior on a is diffuse, and corresponds to a uniform prior on In a . We
assume that p and a are independent .

4One alternative would be a Beta prior on p ; see, e .g ., Zetlner (1971, ch . 7) . The selection of
the parameters of the Beta prior is not easy. Sensible choices will, a.o ., depend on the
observation frequency of the data . Monthly data require a prior that is more concentrated to the
unit root than annual data. This will also affect the choice of the lower bound a ; see below.

f~p(a)L(ylp=1,a,yo)do,0 Pr(p=11Y)
Pr(p E Sly) , (2)

K, K°

f fmp(a)p(p)L(ylp,a,yn)dudPso

where

Ko
K,

= prior odds in favour of the hypothesis p = 1,
= posterior odds in favour of the hypothesis p = 1,

p(p)
p(a)

= prior density of p E S,
= prior density of a,



200

	

P. Schotman and H.K. van Dijk, A unit root in real exchange rates

The likelihood function for the vector of T observations y reads

1z _
L(YI P,a,Yo) = ( 2 'RQ

z
)

	

exP

	

Zvyu u~,

	

(6)

where u=(y-y_ 1 p) and y 1=(y0, . . .,yT ,)' . Combining likelihood and
prior yields the posterior distribution of the parameters .

2.2. Computation of posterior odds

To compute the posterior odds we integrate the posterior density over the
nuisance parameter tr using the integration formula

1

	

1
fox0' `tv 1) exp(- Z~ z u'u / dQ= zF(T/2)(zu'u) T/z •

	

(7)

The right-hand side of (7) can be rewritten as the kernel of a Student-t
density. The numerator of the posterior odds ratio is simply the value of the
t-density evaluated at p = 1 . For the denominator we have to integrate over
p. We make use of the properties of the t-distribution to obtain

f (u'u) T 2
dp= f t((Y,-iy- ,)(P -P)2+(T-1)G2)

T
z dp

a

	

a

=CT((T-1)&z) T/z ( ( T-1)so) t1z

1-P

	

a-p
x F(	- ;T-11 -F(	;T-1 ,

` sN

	

/

	

1 S~

where

(8)

Y' tY
P" =		 the OLS estimator of p,

Y iY-t

';2(y' ty_ t ) 1 ,

	

the squared OLS standard error of p,
1 1

	

(Y'-tY)G' =

	

y'y

	

the estimated variance of the residuals,
T-1

	

(Y'-IY-l)

CT-
T((T -O/2) (1/2)

	

with F( . ) the Gamma function,

and F(x ; v) is the standard cumulative t-density with v degrees of freedom
evaluated at x .
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Having computed the relevant integrals the posterior odds ratio becomes

CT

	

$ as
-TZ

1-a
K,

(T-1)1/21-$(o2)

	

sp

/ 1-p
X FI

	

;T-1 -F a
- p

- ;T-1
`

	

sp

where a„ is the variance of the first difference 4y„ here defined as

1
an

	

T-I(Y-Y-,)(Y-Y-,) .

The posterior odds ratio K, consists of four factors :

(i) the prior odds $/(1 - 0),
(ii) the likelihood ratio (e2/ao)-T/2
(iii) the length of the prior interval (1 - a) in units of s, . the scale parameter

of the posterior,
(iv) the area under a truncated t-distribution .

The last three factors together form the Bayes factor. The expression for
the odds in (9) is analogous to the posterior odds ratio for comparing
hypotheses within a linear regression model . For an extensive discussion of
the interpretation of (9), and how it can (or should) be used for Bayesian
inference, we therefore refer to standard textbooks, like Zellner (1971,
eh. 10).

To convert a posterior odds analysis based on (9) into an operational test
procedure one should make sensible choices for a and ,9 . As in Sims (1988)
the prior odds K o are taken to be balanced between the random walk and
the stationary AR(1), i .e ., we take 0 = i. Our specification of the lower
bound a differs, however . In Sims (1988) a is a function of the observation
frequency of the time series . This partly reflects his concern with having a
prior that is concentrated in the range of p values for which the likelihood is
large. Our determination of a is one possible formalization of this concern . It
will be data-based ; within the context of this model we have been unable to
specify a genuine prior .

The length of the interval [a, 1) directly enters the posterior odds ratio (9) .
If a is set at a very small value there will be a large interval where the
posterior density of p will have almost no mass . Hence the `averaged'
likelihood in the denominator of the posterior odds ratio becomes small,

(9)
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since the average is taken over an interval that includes a large region where
the likelihood is close to zero . If, for example, a = 0 or even a = - 1 and the
data indicate that the posterior is concentrated near p = 1, one will almost
always reject the stationary model and accept the unit root . On the other
hand one should also avoid taking a too close to unity . In that situation the
prior excludes a region of p where the likelihood function has a nonnegligi-
ble mass.' The sensitivity of our empirical test results with respect to the
choice of a will be discussed in section 4 .

We choose a locally uniform prior on p on [a, 1) and consider an empirical
determination of the lower bound a . The constructed interval [a, 1) contains
a fraction I - a of all the probability mass of the posterior truncated
t-distribution to the left of unity . This is the interval where the likelihood is
`large' . Reasonable values of a are between 0.001 and 0.1, so that the
posterior captures between 90% and 99.9% of the total probability mass of p .
The empirical lower bound a* can then be expressed as

a* =p +s~F -t (aF(-T)), (10)

where F( •) is the cumulative t-distribution, here with T-1 degrees of
freedom, and T = (p - 1)/s, is the Dickey-Fuller test statistic. Fig. 1 depicts
the typical situation with a = 0.01. It shows two posterior densities of p with
p < 1 and sample sizes T and 2T . The lower bound a* divides the interval
(0, 1) such that a fraction a of the total area (A) under the curve is to the left
of a and a fraction 1 - a between a and unity . Thus a* is a function of the
data. Notice that the lower bound increases with sample size. The prior will
be more concentrated as T-* ac . In the posterior odds test we compare the
unit root with ever smaller alternative regions . One consequence of the
data-based choice of a* is that Lindley's or Jeffreys' paradox does not apply
to our empirical results .

After fixing numerical values for ,9 and a the posterior odds are just a
function of the data like any other test statistic . Due to the specific way that
the lower bound has been constructed, the posterior odds are directly related
to the Dickey-Fuller test. Setting the prior odds equal to one, using (10) to
substitute for a, and taking logarithms in (9) we get

T

	

f-F-'(aF(-f))
In K t =cT - 2ln(oi/e2 )+1n(	F(-f)

	

(11)

= - ln((T - 1)Cwhere CT

	

z

	

T) . For large T the constant c T approaches
- '', ln(2a), the first term becomes - z TZ, and FO tends to the cumulative

'This is a general problem in Bayesian testing of a point null hypothesis . See, e .g ., Berger and
Delampady (1987) and the references cited therein .
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Fig . 1 . Constriction of lower hound for sample sizes T and 27' .

normal distribution . The posterior odds then become a function of the
Dickey-Fuller statistic 7 :

7 F t (aF( T))
InK,=-iln(2a)- .'-iT2 +ln

	

F,(_7)	~ .

	

(12)

Fig. 2 shows the relation between 7 and In K, for several values of a . The
functions are monotonically increasing, and do not depend greatly on a . In
the sequel we will always take a = 0.01. For this value of a the 5% point of
the Dickey-Fuller test under the null hypothesis of a random walk
(7 = - 1 .95) coincides with a posterior odds ratio Kt = 0.27, or equivalently a
posterior probability Pr(RW) =0 .21 . According to the odds interpretation
the classical Dickey-Fuller test rejects the random walk, if the posterior
probability of the random walk is less than 0 .21. For the 10% point of the
Dickey-Fuller test the corresponding odds and posterior probability are 0.46
and 0.32 respectively . A posterior odds ratio of unity implies that 7 = - 1 .05,
approximately the 25% point of the Dickey-Fuller distribution under the
null. In other words, the Dickey-Fuller test strongly favours the random
walk, giving it a prior probability of 0 .79. Since the posterior odds are a
function of the Dickey-Fuller test statistic its sampling properties correspond
exactly to those of the Dickey-Fuller test . From a classical point of view the
posterior odds ratio is a test with a size of 0 .25 .
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Fig. 2 . Functional relation between posterior odds and Dickey-Fuller test .

3. The AR(1) model with a constant term

3.1. Representation

The presence of an unknown (unconditional) mean will complicate the
Bayesian test procedure . The unconditional mean only enters the model in
the stationary case . Under the unit root hypothesis it does not exist . Hence it
is not a simple nuisance parameter like o, that can easily be integrated out .
The model with an unknown mean can be written in several representations .
The most direct way is to add a constant to the specification of section 2 :

y,=x,+µ, (13a)

xt = Pxt-I +ut,

	

(13b)

where µ is the unconditional mean of the time series {y,}, and {x,} is a zero
mean AR(1) process . Eliminating x, one obtains the equivalent representa-
tion

(Yr - A)=P(Y,-t-12) +un

	

(14)

which is nonlinear in the parameters µ and p . The model can also be written
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in a form that is linear in the parameters by defining c = g(1- p), so that

y,=c+py,_t+u, . (15)

Note however that the parameters in (15) are not unrestricted ; if p = 1, then
c = 0 irrespective of g . The constant term disappears from (15) under the
unit root hypothesis . Whereas we can (and must) have an informative prior
distribution on p, we would like to specify an uninformative (flat) prior for
the constant term (c) or the unconditional mean (g).

If the priors of c and p are assumed independent and uniform, as in
De.long and Whiteman (1989), we could apply the posterior odds analysis for
linear regression models discussed in Learner (1978) . This would yield the
same simple prescriptions for unit root tests as worked out in section 2 . The
prior independence assumption for c and p is problematic, however . If p = l ,
the interpretation of the constant term changes . For p < 1, the constant
conveys information about the mean of {y,}; for p = 1, it determines the drift
of {y,} . To exclude a random walk with drift under the null, when a trend is
not present under the alternative, the parameter c should shrink to zero if
p -* 1. Such a restriction must be incorporated in the prior.' We do not know
any conjugate prior that achieves this, which means that we will need
numerical methods to compute posterior odds

We prefer to work with the nonlinear specification (14) . It has the advan-
tage that g is an interpretable parameter, so that it seems natural to specify
a prior on g . This prior can always be converted to a prior on the constant c
using the transformation c = g(1 - p) . The most natural way to proceed
would be the formulation of a uniform uninformative prior on g . As will be
shown below this will not work due to the lack of identification of g under
the unit root hypothesis; it cancels from both sides of (14) if p = 1 . With an
uniform uninformative prior on g the posterior probability of the unit root
hypothesis will go to unity independent of any data information . Further, a
uniform prior implies a discontinuity in the transition from a stationary
model to the random walk . These two facts lead us to consider a weakly
informative prior on g that smoothly blends into an uninformative prior as
p -+ 1 .

In the rest of this section we will represent the AR(1) as in (14) . The
assumptions of the initial condition y a , the stochastic process that generates
the disturbance u t , u 2 , . . ., UT, and the a priori plausible range of p are the
same as in section 2. The likelihood function of the parameters (p, g, o) is of
the same functional form as given in eq . (6) of section 2, except that u'u is

"The problem remains if a linear trend is included in the stationary case . Then the coefficient
of the linear trend must vanish under the unit root in order to exclude a quadratic trend under
the random walk . The single unit root restriction always implies two restrictions on a representa-
tion that is linear in the parameters .
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equal to

u'u=[y-µ(1-P)t-py-,] [y-P(1-P)t-Py-,],

where the T X 1 vectors y and y_, are the same as in section 2 and r is a
TX I vector of ones . The parameter a can still be interpreted as a nuisance
parameter. One can integrate the posterior under Ho and under H, with
respect to a by making use of standard results ; for details, see section 2. The
prior on p will also remain unchanged, i .e., uniform on an interval [a, 1) .

3.2. A noninformative prior on µ

As a preliminary step in the specification of the prior on µ we consider a
noninformative uniform prior for µ on a large, though finite, interval :

f(µ)=1/M,

	

-M/2<A<M/2.

	

(17)

The priors on p and a are the same as in section 2 . After integrating the
posterior over a one has

1 - ,Y

	

T12
p(jt,PIY) a M(1-a)
	 (u u)

a -(u'u)-rte .

p E S, ,a E (-M/2, M/2),

p=1, PE(-M/2,M/2) .

(18)

The constants of proportionality are the same under the random walk and
the stationary AR(i). The top panels ('A') of figs . 4a-4h show the contours of
the function p(µ,pIY)for our real exchange rate data. For p = 1, the data
do not contain information on µ, since the likelihood function does not
depend on µ. This creates the `wall' in the back of the figures . It illustrates
that .t does not enter the analysis symmetrically under the null and the
alternative, and hence is not a true nuisance parameter like a . The figures
also show the second flaw of a uniform prior on µ . The posterior density is
more concentrated along the j4-axis for smaller values of p : µ and p are not
independent. The nonidentification of µ under the unit root hypothesis leads
to pathological behaviour of the posterior odds ratio . The result is formu-
lated in the following theorem :

Theorem. Consider a time series (y,} generated by an AR(1) model with
p E S U [1} and normally distributed innovations; and consider priors on p, µ,
and In a that are uniform and independent with the assumption that the prior
on µ is defined on the finite interval (-M/2, M/2), then the posterior odds
diverge to infinity as M - x.



Proof. See appendix .

Intuitively, with p = 1 the data do not contain information on p., since the
likelihood does not depend on p . . On the other hand, the data will strongly
revise the prior distribution of µ for all values of p < 1, since the likelihood
function will be approximately zero for values of A far from the sample
mean. The posterior probability that p is in the stationary region is obtained
by integrating the likelihood function over the entire space of feasible .c and
p, using the prior as weight function . The `averaged' likelihood under the
stationary AR(1) will tend to zero, since all points, including the whole large
region (see figs . 4a-4h) in which the likelihood is nearly zero, are given equal
weight .

3.3. A weakly informative prior on µ

Given that p is not really a nuisance parameter we have to investigate a
reasonable class of weakly informative prior distributions . The simplest
solution to the problem of specifying a prior on µ would be to specify a finite
interval for µ . One could for instance set M in a similar way as we
constructed the lower bound a* in section 2 . But a bounded rectangular
region for (µ, p) does not correspond well with the shape of the likelihood
function in figs . 4a-4h. With a large M, integration over µ implies that the
likelihood function is integrated over a large region where it has almost no
mass (along lines where p << 1). For a small M, however, integration over p
would neglect the mass of the likelihood along lines where p is close to unity.
As shown above this latter area contributes most to the posterior odds .

The shape of the likelihood function suggests a prior on µ that is specified
on a larger region the closer p is to unity . Accepting the viewpoint that the
posterior should be largely determined by the data this implies that one can
not use a prior on A that is independent of p. The prior should state that we
can have less knowledge about the unconditional mean of the time series
process when it becomes more persistent . One class of conditional priors that
incorporates this idea is

AA P) = 0 -PTIM, p (E S,
-(1M12)d

<A<
(1M12}d .

(19)

For d=(), we have our previous prior defined on a bounded rectangular
region . For all d the conditional prior on µ is still uniform, though the range
of jt varies with p. To implement this prior one has to specify values for d
and M. The value of M can be determined empirically or as a function of the
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innovation variance o (for example M = 3a) . A reasonable choice for d is
less obvious, and we will not pursue this further here .'

Instead we will utilize the unconditional distribution of y, when {y,} is a
stationary time series to specify a weakly informative prior on µ. If the time
series {y,) is stationary, the unconditional mean and variance of the series are
given by E(y) =µ and var(y) =a 2/(1 -p 2 ) . Assuming normality, the uncon-
ditional distribution of y o will be normal with parameters µ and a2/(1 - p2 ) .
Hence, conditional on the initial condition y o and the parameters p and a, a
reasonable prior on µ is given by

P(WIp,u,y0) - Normal(yn,a2/(1-p2)) .

	

peS .

	

(20)

This prior is weakly informative. Contrary to a uniform prior on the entire
real line, the prior in (20) is centered around y o , and has a variance that is
determined by the other parameters that describe the time series process .
The prior is stronger the smaller the value of p . The prior approaches an
uninformative prior if p -> 1, since the variance of p, then goes to infinity .
This reflects the fact that a random walk does not have an unconditional
mean. The prior also fits well with the shape of the likelihood function (see
figs. 4a-4h) . The prior becomes flatter when p - 1, as does the likelihood .
Technically this normal prior has the same effect as setting d=' in (19).

The prior for p, at p = 1 can be any distribution, as it does not affect the
posterior odds. The priors on p and a are the same as before . The derivation
of the odds proceeds analogously to the computations in section 2 . The
details can be found in the appendix . Here we state the result :

d	 (4y,,,Y)-T/z
Kl =		 (21)

I

	

1 1 f
1h(P)S2(P) T12 dp

where
I

P
h(p)=I1+T I

+P )

Y - PY-t +Yo( 1 +P)/T

µ(P)

	

1-p+(1+p)/T '

S2(p) =(Y - t µ(P)(1-P)-Py-1) (Y-tµ(P)(1-P)-Py-1)

+(1 -PZ)(Yo-ll(P))2 .

'A similar prior, with d=0 .5, is suggested by Zellner (1971, ch . 7), who derives it from the
determinant of the information matrix from the unconstrained linear representation (15) .
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The expression for µ(p) is a weighted average of the usual OLS estimator
of µ (as a function of p) and the prior mean y0 . S2(p) denotes the residual
sum of squares as a function of p . Since S z(1) = d y' d y, the integrand
h(p)Sz(p)-T 2 has a continuous transition to (dy'dy)-`/Z, which appears
in the numerator of the odds . The posterior odds are no longer an exact
function of the Dickey-Fuller iµ statistic; differences are due to the treat-
ment of the first observation and the role of the normal prior .

4. Unit roots in real exchange rates

We have selected eight different real exchange rates . Most of them are
exchange rates of the US dollar against the currency of another developed
country: West Germany, Japan, United Kingdom, France, Canada, and the
Netherlands. For comparison we also included two exchange rates against
the German mark of countries that are a member of the European Monetary
System (EMS): France and the Netherlands . The raw data are monthly time
series of nominal exchange rates and consumer price indices obtained from
the IFS databank (series ae and 64) over the sample 73:01 to 88:07, except
for United Kingdom and Canada where the final value is 88 :06. All variables
are transformed to logarithms . Real exchange rates were constructed as
y=e-p+p*, where e is the log nominal exchange rate expressed as the
domestic price of one unit of foreign currency, and p and p* are the
logarithms of the consumer price index of the domestic and foreign country
respectively. Graphs of all series are shown in fig . 3 .

The notion of Purchasing Power Parity (PPP) is fundamental in the linkage
of international price levels. It maintains that one dollar can buy approxi-
mately the same amount of goods all over the world . The ratio of the US
price level to the foreign price level, converted to dollars by the nominal
exchange rate, should be equal to one in equilibrium . As prices are measured
as indices with respect to some base year, the observed ratio must be equal to
some constant .

As a long-run equilibrium condition PPP does not pose restrictions on the
time series process of real exchange rates other than a constant uncondi-
tional mean. The existence of a unit root, and in particular a random walk
model, would contradict this . In investigating the PPP hypothesis we compare
the random walk model, which has often been found as a good description of
the data, to the alternative of a stationary AR(1) . In a preliminary screening
of the data we found no evidence of a linear trend except in certain
subsamples that stopped in 1985, the peak of the five-year real appreciation
of the dollar against most currencies (see the plotted data series) . Also
higher-order dynamics do not appear to be present . Some appearance of
twelfth-order autocorrelation points to a seasonal pattern in some of the
price indices. This seasonal effect is very small, though, compared to the
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'Country codes: US = United States, UK = United Kingdom, WG=West Germany, FR=
France, NL= Netherlands, JP- Japan, CA = Canada .

variation in exchange rates . These results induced us to analyze unit roots
within the class of AR(1) models.

Test results on the unit root hypothesis are reported in table 1 . The first
two columns contain classical unit root tests : the Dickey-Fuller test 8, [see
Fuller (1976)] and Bhargava's (1986) R I test. The null hypothesis of a unit
root can not be rejected for any of the currencies at the 5% or 10% level with
these tests. These results confirm the random walk results in the literature .
The surprising result is that one cannot even reject unit root for the
currencies that are in the EMS (NL/WG and FR/WG) . Although the series
of the German mark against the US dollar and the French franc against the
dollar are very similar, the cross-rate obtained by subtracting the two series is
still not distinguishable from a random walk .

One caveat with these results is the possible presence of ARCH and
nonnormality in the residuals. Diagnostic tests' revealed that for two series,
NL/US and NL/WG, the residuals from the AR(1) regression show signifi-
cant ARCH type heteroskedasticity . Normality was rejected for all series
except FR/US and NL/US . We therefore computed unit root test statistics
using the Perron (1988) correction of the Dickey-Fuller 'c statistic . The
corrected t-values of p did not differ much from those in the table and did
not affect conclusions. A detailed analysis of the robustness of our test results
with respect to these misspecifications is outside the scope of this paper. We
conjecture [with Sims (1988)] that they will not affect the results greatly .

Column 3 presents posterior odds ratios ; column 4 the corresponding
posterior probability that the series is generated by a random walk.' They
have been computed as described in section 3 for the model with a constant

s The diagnostics are not reported, but are available on request .
'The odds differ from the results in a preliminary version of the paper due to a numerical

inaccuracy in the computation of the cumulative marginal posterior of p. The integration routine
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Probability
p = 1

Table 1
Unit root tests of real exchange rates .a

Dickey-Fuller
8µ

Bhargava
R,

Posterior odds
with constant

FR/US -1.34 0 .036 1 .16 0 .54
WG/US -1.33 0.036 1 .16 0 .54
JP/US -1.25 0 .037 281 0 .74
CA/US -1 .38 0 .027 1 .55 0 .61
UK/US -1.62 0.054 1 .05 0 .51
NL/US -1.41 0.036 1 .21 0 .55
FR/WG -2.17 0 .101 0.39 0 .28
NL/WG -2.40 0.089 0 .75 0 .43
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term using the normal prior . The most marked difference with the classical
tests occurs for the French franc/German mark (FR/WG) real exchange
rates. Though the random walk is not rejected at the 5% or 10% level by the
two classical tests, the posterior odds are well below one . Only one series
comes out as a random walk : JP/US. For the other currencies (FR/US,
WG/US, CA/US, UK/US, NL/US, NL/WG) the posterior probabilities
are close to one half, implying that the random walk and a stationary AR(1)
are about equally likely. The only two posterior odds ratios below one are
obtained for NL/WG and FR/WG, the two EMS exchange rates in our
dataset .

The effect of the normal prior on µ can be seen by comparing panels A
and B in figs . 4 . Panel A (the top figure) in these figures shows the bivariate
posterior of s and p with a flat prior; panel B (at the bottom) shows the
posterior with the normal prior, conditional on p e S . The relatively large
amount of probability mass close to the unit root in panels A reflects the
nonintcgrability which causes the odds to become infinite, as explained in
section 3. The posteriors in panel B are much more concentrated due to the
informative prior. The nonlinear dependence between µ and p is present
with both priors ; the conditional distributions of .s given p have wider tails
the closer p moves to the unit root .

The marginal posterior of p obtains after integrating the bivariate poste-
rior over µ . The probability density of the bivariate posterior is high and
spread out close to p = 1 . Hence integration over A yields a relatively high
univariate density for large values of p . This is visualized in fig . 5, which
shows the marginal posteriors of p for all eight exchange rate series . The
vertical line labeled ML in these figures indicates the location of the mode of
p in the bivariate posterior . Since the bivariate posterior has the functional
form of the exact likelihood of an AR(1) model, this mode is equal to the
exact ML estimate of p. The mode of the marginal density is always to the
right of the ML estimate. This illustrates the difference between concentra-
tion and marginalization with the skewed distributions that one encounters
for the real exchange rate time series, A complete set of the parameter
estimates is reported in table 2 .

From the analysis in section 3 we know that for 4 = 0.5 the posterior is
continuous in p . So the posterior odds are the values of the posterior on the
p = 1 axis in the figures divided by the average area under the posterior
density (with a cutoff point when 99% of the area is covered ; see section 2 for
the construction of a*) . In the case of the French franc/German mark
(FR/WG in fig . 5) the posterior is relatively small at p = 1, compared to the
other currencies . Almost the mass of the posterior is to the left of p = 1 .
Hence the posterior odds in table I are very small . This contrasts enormously

used too few function evaluations . This also affects the graphs of the univariate marginal
densities which were plotted using these evaluations. All programs are written in GAUSS 2.0.
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------------------------aE(p) denotes the posterior expectation of p conditional on p < 1 ; PML is the exact maximum
likelihood estimate of p ; PoLS is the least squares estimate of p . The length of the interval of the
posterior used in the computation of the posterior odds is (1-a*) . Standard deviations are in
parentheses .

with the posterior of the yen/dollar real exchange rate (JP/US in fig . 5),
which still hasn't reached its mode when it hits the p = I axis . The maximum
value of the posterior in the interval [0,1] is at p = 1. Hence the averaged
posterior over any subinterval [a, 1] will always be smaller than the posterior
in p = l, and thus the odds will favour the random walk . The other figures
are intermediate cases . The posterior mode is attained for p < 1 . It then
depends on how far away from unity the mode is located, and on how steep
the posterior falls toward the p = 1 axis, to determine the posterior odds .
The flatter the posterior, the more likely the odds will favour the random
walk .

The sensitivity of the odds with respect to the length of the prior interval
of p is shown in fig . 6. This set of figures show the posterior odds as a
function of the lower bound a . The empirical lower bound is labelled a* in
these figures. They are just a transformation of the marginal posterior
densities shown in fig . 5 . For all series, except JP/US there exists a lower
bound for which the posterior odds favour stationarity . For JP/US the odds
are always larger than one, due to the fact that the posterior attains its mode
at the boundary p = 1 . The figures show that one must have a tight prior on p
in the stationary region in order to reject the random walk . Someone who has
a prior that is spread out over the full range [0, 1) would be very embarrassed

228 P. Schotman and H.K van 1)0k, A unit root in real exchange rates

Table 2
Parameter estimates of AR(l) model .a

E(p) PML POLS 1-a*

FR/US 0.982 0.978 0.981 0.050
(0 .012) (0.013) (0 .014)

WG/US 0.982 0.978 0 .982 0.049
(0.011) (0 .012) (0 .014)

JP/US 0.990 0 .990 0 .982 0.035
(0 .008) (0.010) (0 .014)

CA/US 0.987 0.985 0 .983 0.038
(0.009) (0.010) (0 .012)

UK/US 0.977 0 .971 0 .973 0.062
(0.014) (0 .016) (0.013)

NL/US 0.983 0 .979 0 .981 0.047
(0 .011) (0 .012) (0 .014)

FR/WG 0.954 0.950 0.950 0.100
(0.022) (0 .022) (0 .023)

NL/WG 0.965 0.958 0.948 0.085
(0 .020) (0.020) (0 .021)
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to find that the posterior is actually very concentrated near high values of p,
leading him to revise his prior quite strongly and rejecting stationarity .
The prior regions that lead to stationarity are not unreasonable given

previous research. Based on very long time series Frankel and Meese (1987)
argue that the adjustment speed of real exchange rates is approximately 20%
a year. This implies that the first-order autocorrelation with annual data is
expected to be about 1/1 .2 = 0.83, and on monthly data 0 .83 1 / 12 =0.985 .
With the prior mean set to 0 .985 the lower bound will be 0 .97. For this value
of a the odds are slightly in favour of stationarity, except for JP/US and
CA/US .

5. Concluding remarks

We have performed a posterior odds analysis in order to compare a
first-order autoregressive model containing a unit root (a so-called random
walk model) with a first-order stationary autoregressive model . The effect of
the presence of a constant term in the model, which leads to an identification
problem under the random walk hypothesis and to a nonlinear estimation
problem under the stationary alternative, has been studied . We have given
special attention to the specification of reasonable prior distributions that are
not in conflict with the data . Empirical results on time series of real exchange
rates indicate that a Bayesian analysis can lead to different conclusions
concerning the random walk behaviour of real exchange rates .

The results of the posterior odds lead to a different interpretation of the
classical tests . Most outcomes neither strongly favour the unit root, nor the
stationary AR(1) model. But adopting a classical testing procedure one would
never have rejected the random walk. The classical test procedure, taking the
random walk as the null hypothesis, only emphasizes that the random walk
might be an appropriate model for real exchange rates . It fails to recognize,
however, that there is a good alternative . A stationary AR(l) can describe the
data about equally well .
The test procedures discussed in the paper can easily be extended

to higher order autoregressive dynamics as considered in DeJong and
Whiteman (1989). In our setup the additional parameters appear symmetri-
cally under the unit root hypothesis and under the stationary alternative .
They can therefore be treated as nuisance parameters . This means that we
can specify uninformative priors for these parameters without running into
the complications that arise from the treatment of the constant term . Like-
wise the extension to models with a nonzero growth rate will also not greatly
complicate the analysis .

Diagnostic testing indicated that some of the assumptions, such as normal-
ity, are clearly violated. However, with Sims (1988) we conjecture that our
results are not very sensitive to the normality assumption . In fact, we note
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that the nonnormality is mainly due to some outliers. In general we suspect
that these phenomena are unavoidable in a mechanical time series modelling
approach where the effects of policy interventions, like an EMS realignment,
are not specified . Modelling properly anticipated policies is difficult, and
clearly beyond the scope of this paper .

Appendix: Posterior odds for AR(1) with constant term

Proof of the theorem in section 3 .2

Let f(µ, p)=(u'u)-T/2, with u'u as defined in (16), be the kernel of the
marginal posterior of tt and p .10 To compute the posterior odds we need the
integral f-M~2f(µ,1)dµ and the double integral f ty z f'f(µ,p)dpdµ,
and then divide them by M and M(1 - a), respectively . Clearly the function
(u'u)-T/2 has an upper bound, since the quadratic form u'u can not become
zero for any µ and p, and it has the lower bound zero. As a consequence the
posterior is integrable on a bounded region, where -M/2 < µ < M/2 for
any finite M > 0 . Whether it is integrable when M -. oo remains to be
investigated . In particular, we will study the behaviour of the posterior odds
when M -, x .
Since f(µ,1) does not depend on µ, the first integral is simply

M(dy'dy)-T/2 . To evaluate the double integral we first integrate over p,
using the properties of the Student-t . The result is

f(A)= f'f(,u,p)dpa

cz S2(µ) -T/2 Sp(M)

where

1-AO

	

~-
	 ; T - 1

	

F Ia-P(W); T- 111(A .1)
8V(W)

	

S$(A)

P(W)=
	 (y-'A) (Y-1-tµ)

(Y-1-tu)' (Y-1 -t A)

S2(A) _ ((Y-tFt) -P(Ii)(Y-1 -tft))

X ((Y-tµ) -P(li)(Y-1 - t!t)),

S

	

=S2(A)((y-l-'IL) (y-1-tA)) 1 .

10For convenience we omit the conditioning argument on the data Y .
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The proportionality sign is used to suppress integrating constants that do not
depend on µ . If µthen p(µ)-.1, S2(A) -9(dy'dy-(y r -y Q ) c/T),
and sA ') -r 0 . Further, (1 - p(µ))/s,(µ, converges to some finite constant
depending only on the data . Hence the term between brackets involving the
truncated t-distribution converges to some positive constant . The function
f(µ) is therefore bounded by ks, for µ > µ > 0 and some finite k > 0.
Since s,(, ) is of the order 1/µ, the integral fAM/zf(µ)dµ will be of the order
In M or less . Finally, for the posterior odds we need the averaged likelihood
under the null and the alternative, which involves dividing the numerator by
M, and the denominator by M(1 -a). Recalling that the numerator
j M12 f(µ,1)dµ was of the order M, the net result is that the odds are of
the order M/In M. The conclusion is that the odds will go to infinity if
M - M,

Computation of posterior odds with normal prior on µ
The complete specification of the prior has been discussed in sections 2

and 3 in the text. Combining prior and likelihood we obtain the posterior

P(ll,P,aIY)

1
a $(21r) -T/2 a

	

exp( -Zaz dY'dy)g(P)

where u'u=(y-eµ(1-p)-py t)'(y-tµ(1-p)-py_,) is the residual
sum of squares as a function of µ and p. The constants of proportionality in
(A.2) are the same for p = 1 as for p C- S. To compute posterior odds we first
marginalize the posterior over o and µ .

In the case p = 1 we have, after integrating over a, that

Pr(p=11Y)awr(T/2)(ay ' ay ) T12 .

	

(A .3)

Note that g(µ), the prior on µ, is irrelevant, since µ does not appear in the
likelihood when p = 1 .
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In the stationary case we also first integrate over o, obtaining

(1-,Y )

	

I T+1 1
P(W~P~I') a (I _a)	 a-'/ 2r1 2 I (1 -P2)'/'

1)1

	

111

X(u'u+(1-p2)(µ-Yo) 2) (r,-1)/2

	

(A.4)

To integrate over p we rewrite the quadratic forms in the last factor in
(A.4) as

u'u + (1 - P 2 )(Ft - Yo)
2

(T(1- p)2+ 1-P 2)(µ -µ(p))2 +S 2 (p)

z1 (1A - 4(p) d=S2(p) 1+-	
T

	

Sµ(P)

where

t'Y - Pt'Y t+(1+P)Yo
4(p) =

	

T(1 -p) +1+p

S 2 (p) = e'e + (1 -p2)(Yn-4(p))2,

e =y - tµ(P)( 1 - P) - PY-v

SR(P)=S2
(p)

(T(1-p)2+1-P2) t .

(A.5)

S2(p) is a residual sum of squares . From (A .5) it follows that p has a
t-distribution conditional on p. Hence we can analytically integrate (A.4) over
µ, using the integration formula

rI/

	

1 III µ -µ(P)
2 (T+0/2

	

r(1/2)r(T/2) V.X11 + T I

	

SW(P)

	

dµ =S4(P) r((T + 1)/2)
L

(A .6)
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Hence the marginal posterior of p becomes

p(plY)a
(i

_ a)r(T/2)O-p 2 )'/2

X (T( 1 -p)2 + 1 - p2 ) 1/2 S2(p)
-1/2

	

(A.7)

Since µ(p) is a nonlinear function of p, SZ(p) cannot be written as a
quadratic form in p . Hence the marginal posterior density is not of the
Student-t type . The marginal posterior also contains the factor

h(p) = (1 - P2) t 2 (T( 1 - P) 2 + 1 - P 2 ) 1/2

/

	

7 - p
=I1+T 1+

	

,

	

(A.8)
P

which is of the order I/t/7 for p * 1, and equals one for p = 1 . Since both
S(p) and h(p) are bounded functions of p, the marginal posterior is inte-
grable. The integral has to be evaluated numerically, though . The posterior
odds are obtained as the ratio of (A.3) to the average of (A.7) :

d

	

(dy'dy)
-T/

K, =
1

	 1		(A.9)
1 _QI h(p)S(p) -T/2 dp
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