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ON BAYESIAN ROUTES TO UNIT ROOTS 
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Department of Finance, University of Limburg, PO Box 616, 6200 MD Maastricht, The Netherlands 

AND 

HERMAN K. VAN DIJK 
Econometric Institute, Erasmus University, PO Box 1738, 3000 DR Rotterdam, The Netherlands 

SUMMARY 

This paper is a comment on P. C. B. Phillips, 'To criticise the critics: an objective Bayesian analysis of 
stochastic trends' [Phillips, (1991)]. Departing from the likelihood of an univariate autoregressive model 
different routes that lead to a posterior odds analysis of the unit root hypothesis are explored, where the 
differences in routes are due to the different choices of the prior. Improper priors like the uniform and 
the Jeffreys prior are less suited for Bayesian inference on a sharp null hypothesis as the unit root. A 
proper normal prior on the mean of the process is analysed and empirical results using extended 
Nelson-Plosser data are presented. 

1. INTRODUCTION 

Peter Phillips' paper (Phillips 1991) is a provocative criticism on some Bayesian 
contributions to the discussion of testing for unit roots. The work that Phillips reacts upon 
is itself a criticism on classical testing for the unit root hypothesis.1 We are, therefore, reacting 
on a criticism of a criticism. Although our comments are directed at Phillips' paper, in some 
cases they should not be regarded as objections to his arguments, but rather as additional 
remarks on the work he criticizes. 

Phillips' main point concerns the mechanical use of flat priors in a Bayesian analysis of time 
series models. He aptly demonstrates that flat priors are not uninformative but unwittingly 
introduce a tendency towards stationary models, and he argues that this might explain the 
different conclusions reached in Bayesian and classical analysis of the unit root hypothesis: 

when Bayesian and classical procedures lead to divergent conclusions we should seek first 
to find the answer in the prior rather than rush out to announce the failure of classical 
methods (Phillips, 1991) 

In his paper he refrains from taking sides in the debate about the superiority of Bayesian or 
classical methods in general, seeing value in both approaches. The larger part of the paper 
(Sections 3 and 4) offers an explicit and interesting Bayesian analysis of stationarity versus 
nonstationarity. This part of the paper is also the most provocative, since it contains detailed 

'Sims (1988), Sims and Uhlig (1988), DeJong and Whiteman (1989). 

0883-7252/91/040387-15$07.50 Received April 1991 
© 1991 by John Wiley & Sons, Ltd. 



P. C. SCHOTMAN AND H. K. VAN DIJK 

prescriptions how Bayesian methods should be properly applied. Our comments focus on this 
second part of his paper. 

Phillips stresses 'the fragility of Bayesian inferences to the specification of the prior' 
(Phillips, 1991). We investigate several aspects of this sensitivity within an autoregressive 
model with linear trend. Departing from the likelihood function of this model we follow 
different routes, that diverge not only in destination but also in the paths through the jungle 
of priors and model representations. 

As a preliminary we need some technical results on what seem minor changes in the 
specification of the deterministic components of the model (Section 2). Paradoxically, the 
'ignorance' prior proposed by Phillips downweights the unit root hypothesis relative to a flat 
prior in a model with trend and intercept. Further, and contrary to results of DeJong and 
Whiteman (1989), a flat prior gives probability one to the unit root in a different 
parameterization of this model (Section 3). The core of our comments concerns the hypothesis 
of interest (Section 4) and its consequences for Bayesian inference. Is the relevant null an exact 
unit root or nonstationarity in general? In our view it is the sharp unit root null that matters. 
Posterior odds is the principal Bayesian tool for this problem (Section 5). Their application 
requires an informative prior (Section 6). For the empirical parts we make use of the 
Nelson-Plosser data (see Nelson and Plosser, 1982), extended to include the additional 18 
years 1971-1988 (see the data appendix). Finally, Section 7 summarizes. 

We concentrate on the Bayesian aspects of testing for a unit root within a univariate 
autoregressive model. It is beyond the scope of these comments to explore other models (e.g. 
ARIMA, fractional integration), and the sensitivity with respect to the presence of 
heteroskedasticity and fat-tailed error distributions. Several authors even contend that the unit 
root hypothesis is untestable and may not be important at all (see Christiano and Eichenbaum, 
1990; Cochrane, 1991). Pragmatically, univariate autoregressive models remain suited as a 
preliminary step in constructing multivariate models relating variables with approximately the 
same type of trend, deterministic or stochastic. 

2. NUISANCE PARAMETERS 

Phillips criticizes the flat prior used by the Bayesian unit rooters because of the apparent bias 
these priors introduce towards stationarity. He performs a simulation exercise where 
repeatedly samples of 50 observations are generated from a pure random-walk process. Then, 
in a simple AR(1), yt = pYt-i + Et, with a flat prior on p, the rejection frequency E{PF(P > 1)) 
is estimated as equal to 0 389. In a model with fitted intercept and trend the bias is even worse, 
E[PF(P > 1)) = 0.0456 (see Phillips, equations (12) and (24)). Instead of the flat prior Phillips 
proposes a Jeffreys' prior which has some desirable invariance properties and is 'objective' or 
'ignorant' in a certain sense (see Phillips, pp. 343-345). The same simulation exercise 
establishes that Jeffreys' prior attaches appreciably larger probability to nonstationarity. The 
rejection frequencies increase to E{Pj(p > 1)) =0-625 for the simple AR(1) and 
E[Pj(p > 1)) = 0-2975 for the AR(1) with trend and intercept. These outcomes show that 
Jeffreys' prior is also subject to bias, and moreover that the direction and amount of bias 
depend on nuisance parameters in the model. The downward bias in the model with intercept 
and trend occurs even though Jeffreys' prior in this model is steeply upward-sloping for p > 1 
(see Phillips, Figures l(i) to l(iv)). 

These differences warrant a closer investigation of the effect of the intercept and trend. To 
begin with, the prior densities plotted by Phillips are conditional priors of p given the nuisance 
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parameters Lt and 3 in 

yt = + t + yt- +Et, (1) 

Different values of ,l and 18 produce different curves in the figure. The only marginal prior 
density of p is the solid line in Figure l(i), which pertains to the simple AR(1) where there are 
no trend and intercept. 

In order to derive the marginal prior density of p it is convenient to write the AR(1) as 

yt = ' + bt + ut 
(2) 

Ut = put-1 + Et 

which has the format of the linear regression model with AR(1) errors. The parameters in 
equation (2) have a well-defined meaning: 6 is the mean growth rate of (YtJ; 7y denotes the 
intercept of the deterministic linear trend Dt = y + bt. If there is no trend growth (6 = 0) the 
parameter 7y is the unconditional mean of tYt). One of the attractive properties of Jeffreys 
prior is its invariance with respect to the parameterization of the model. For the Bayesian 
posterior inference on p we can start either from the reduced form representation (1) or the 
'structural' representation (2). It will shortly become apparent why equation (2) is more 
convenient. 

To derive Jeffreys prior we compute the expected value of the Hessian of the log-likelihood 
function: 

I= - -E(a2 In nL (?) 

For model (2) we have, using similar computations as Phillips (p. 1991), and letting 
= ( 6 p a:) ': 

-(X'X) o0 0 

I = 0 Ipp 0 , (3) 

0 2 2T 

where 

X = (, ..., JXT)', with xt = xt - pxt- l and xt = (1 i t)' 

= CO ^(yo _ )2 1 P2T 
Ipp= ao(p) + o 2 (1 p2 ) 

I \ 1 _ Ip / 

ao(p)=1 2 (T- p2 ) (compare Phillips (equation (14), p. 19)). 

For the moment we ignore the term due to the initial condition yo by assuming yo = -y. Using 
(3) Jeffreys' prior then becomes 

lrJ(p, y, 6, a) oc (det(I/o))1/2 oc a-3 XX 1/2ao(p)1/2 

oc a3(1 - p)2Ca(p)1/2 (4) 

The last proportionality sign can be verified by direct calculation of the determinant of the 
(2 x 2) matrix X'X. Equation (4) has the convenient property that the priors on all elements 
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of t are independent. Note that 7rJ(p, y, 6, a) does not depend on y and 6. The implied priors 
and y and 6 are flat, while the prior of p is similar but not identical to the J-prior of p in the 
simple AR(1) without trend and intercept. It differs by the additional factor (1 - p)2/a2 in 
equation (4). 

The nuisance parameters y and 6 affect the shape of the marginal prior of p. Though the 
interpretation of p does not change with the variables that we include in xt, our prior beliefs 
about p change according to the particular deterministic components that we add to the model. 
The differences are most pronounced close to the unit root. From equation (4) it follows that 
Jeffreys' prior for p drops to zero when p -0 1. This follows from representation (2) of the AR 
model. In equation (2) the parameter 7y vanishes from the model (y is not identified under the 
unit root); hence the likelihood function is flat and the information matrix Io has a singularity 
at p = 1. Figure 1 shows Jeffreys prior for the sample AR(1), the AR(1) with a constant term, 

AI 
no constant I 

-. -. -.constant I 
/ i' 

.0 05 / j l 
Lu \s / - Itrend 

>1>, I 

C s I * I I I i i i /} 1 

---- trend f.li// 

a.' 

_N 
N I I I I 

0 

0.80 0.8 0. 90 0.95 .1 1.00 1.3 1.4 

p 

Figure l(a). J-priors of p in AR(1) 

no constant 

..... constant 

0 

/1 

i 0.4 0.5 0.7 o0. 0.9 1.o 1.1 1.2 1.3 1.4 
p 

Figure l(b). J-priors of p in AR(1) 
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and with constant and trend. For the latter two models Jeffreys prior gives very low 
probability to values of p close to unity. This partly explains the observed bias towards 
stationarity of PJ(p > 1) in models with a fitted intercept and trend. While Jeffreys prior is 
invariant to the parameterization of the model, it is sensitive to the exact specification of the 
model. 

3. THE PATHOLOGY OF FLAT PRIORS 

Phillips rightly warns against the mechanical use of a flat prior once we are out of the textbook 
linear regression model. His paper leaves the impression, however, that a flat prior on p 
strongly favours stationarity. But depending on the parameterization a flat prior can also have 
the opposite effect. Continuing the example of the AR(1) with trend parameterized as in 
equation (2), a flat prior takes the form 7rF(p, a, , 6) oc a-1. Since conditional on p the model 
is linear in y and 6, the standard integration steps for the linear model can be used to obtain 
the marginal posterior of p  1 (see also Zellner and Tiao, 1964 and Zellner, 1971), 

PF(p | Y) o | XX | - /2 (u ')-(T- 2)/2 (5) 

where: u = MrY, 

Mr= I - (X'X)-i1', 

(Yl, ,..., YT)', and Yt = tt - pyt-1. 

From equation (4) we know that I X'X I o (1 - p)4. The data matrices y and X depend on p, 
but the projection matrix Mx does not. Due to the specific nature of the deterministic 
regressors, the space spanned by X is the same space as spanned by the columns of X, and 
hence Mx= Mx, which does not depend on p. Since y is linear in p, the 'residual sum of 
squares' uf'uf is a quadratic function of p. Despite the singularity of (X'X) at p = 1 the 'residual 
sum of squares' is well-behaved as p -, 1. Close to p = 1 the posterior PF(P I Y) is dominated 
by the factor (1 p)-2, and hence is not integrable. A flat prior with the parameterization (2) 
assigns a posterior probability of one to the unit root. 

Jeffreys prior safeguards against pathological behaviour of the posterior. Because it is 
proportional to I X'X 11/2, it cancels the nonintegrable factor in PF(p I Y). Applying Jeffreys 
prior lrj(p, y, 6, a) in equation (4), the marginal posterior of p becomes 

pJ(p I Y) ac Uco(p)1/2(Uft)-T/2 (6) 

which is a proper density. It is equal to Phillips' equation (22) that he obtained using the 
Laplace approximation. We could derive the posterior exactly because we treated the initial 
observations differently, yo = y instead of yo = 0. The role of the initial conditions will come 
up again in section 6. 

Figure 2 gives an example of the empirical implications of different priors for the 
Nelson-Plosser series 'stock prices' (1871-1988). The figure shows three different marginal 
posterior densities of p for an AR(1) with trend and intercept. The flat prior used by DeJong 
and Whiteman (1989), labelled DJW, is most to the left and gives lowest probability to 
nonstationary alternatives. Jeffreys prior attaches considerable probability mass to the 
nonstationary region. The flat prior of the 'structural' model has an asymptote at p= 1. 
Marginal posteriors for the other Nelson-Plosser series reveal a similar ranking among the 
posteriors. 
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Figure 2. Stock prices 

4. THE HYPOTHESIS OF INTEREST 

In the empirical examples it appears that the evidence against stationarity stems largely from 
the fact that the 'objective' prior assigns enormous probability mass to highly explosive 
models, which often results in a bimodal posterior where one of the modes is in the explosive 
region of the parameter space. See Figures 4(i) to 4(xiv) of Phillips (1991). In his Table IV 
Phillips presents the posterior probability of p > 1, and interprets these probabilities as 
evidence of stochastic nonstationarity. 

Stochastic nonstationarity is, however, not the same thing as a unit root. In many 
applications the economic theory leads to models with a unit root null hypothesis. Phillips 
(1991) provides some of the leading examples: the efficient market hypothesis, or the 
permanent income model. Confronted with a posterior mode far above one, why should one 
interpret this as evidence in favour of a unit root? Why is a sharp mode located around some 
p > 1 more evidence of unit root behaviour than a mode located slightly below p= I? To 
illustrate the point, consider the two posteriors in Figure 3.2 The first, unimodal, posterior U 
has its mode slightly below one while the second posterior B is bimodal with the modes rather 
different from unity. The sharply peaked posterior has almost all its probability mass below 
p= 1, and leads to a high probability P(p < 1). The bimodal posterior assigns a high 
probability to the nonstationary region. Yet an exact unit root is more probable with posterior 
U than with posterior B. 

Before going into the details of appropriate priors one should first state with what purpose 
the analysis is conducted, and state the hypothesis of interest. It seems that in the literature 
two cases are not always clearly distinguished. First there is the unit root hypothesis versus the 
alternative of stationarity: 

Ho: p= 1 H.: 1p< 1.. 

'GNP deflator' and 'Industrial production'. 
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Figure 3. Unit root or nonstationarity? 

But Phillips (1991, Table IV) appears to be testing 

Ho: p)l 1 H1: p<l. 

The relevant pair of hypotheses depends on the question being asked. The economic examples 
referred to above deal with the exact unt root hypothesis, not with the question whether a root 
is larger or smaller than unity. In time-series modelling one of the first steps consists of 
transforming the data to a series that is stationary, usually by taking first differences. To find 
out whether this transformation is required was the primary motivation of Nelson and Plosser 
(1982), who attempted to determine whether a series was trend stationary (TS) or difference 
stationary (DS). Within an autoregressive representation the trend and cyclical components of 
TS and DS look completely different. We emphasize these stylized facts in Figure 4 for real 
GNP per capita in the US (1909-1988). Figure 4(a) shows the actual data and the deterministic 
linear trend, estimated with an AR(3) model in levels; Figure 4(b) shows a stochastic trend 
implied by an AR(2) in first differences. Empirically a stochastic trend, which is a random walk 
with drift, can account for almost all fluctuations in US real GNP. As a result Figure 4(c) 
suggests that there was no major business cycle in the 1930s.3 Although the current 
decomposition can be sensitive to adding MA components, and although AR models have 
some limitations, the figure dramatizes the effect of a unit root, when all its implications are 
taken seriously. 

3The estimated deterministic trendline is (standard errors in parenthesis): 

D,t = 6-98 + 0-020 t 
(0'07) (0001l) 

For the stochastic trend the Beveridge and Nelson (1981) decomposition of the ARI(2, 1) gives 

D =D D- + 0017 t + 135 e, 
(0-009) (0-25) 

Alternative trend/cycle decompositions of course exist (see Harvey, 1990). 
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Figure 4. Trend-cycle decompositions of US real GNP, 1909-1988 
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The relevant pair of hypotheses for this problem is the first one, involving the exact unit 
root. The definition of a stochastic trend is confined to DS series, and does not extend to an 
explosive model.4 First differencing a time-series with a root of 1 5 is not an effective 
transformation to induce stationarity. The unit root hypothesis is a prime example of a sharp 
null hypothesis. Phillips (1988, p. 348) offers additional forceful arguments for this statement. 
The second pair of hypotheses seems more appropriate in general misspecification tests. 
Stationarity is doubted without a clear alternative for some data series. Unlike the exact unit 
roots, explosive roots do not have the profound implications that have led to the development 
of cointegration and stochastic trends, or the coinncern with persistent versus transitory shocks 
in macroeconomics. The econometrician's response to explosive roots is respecification of the 
model: possibly nonlinear trends, maybe a log transformation is required. 

5. TESTING A SHARP NULL WITH AN IMPROPER PRIOR 

Bayesian methods are particularly suited for the decision problem encountered in unit root 
econometrics. The unit root hypothesis is often an auxiliary hypothesis about the formulation 
of a dynamic model: TS or DS. There is not always an economic reason to prefer one over 
the other. The unit root issue is important for correct statistical inference (see, e.g. Phillips, 
1987; Durlauf and Phillips, 1988), and affects the economic interpretation of shocks (see 
Campbell and Mankiw, 1987 or Blanchard and Quah, 1990), but it is a choice problem rather 
than a testing problem. The loss involved with type I and type II errors might be equal, unlike 
the preoccupation with the type I error in classical hypothesis testing. Second, the unit root 
test in autoregressive models compares a point hypothesis (p = 1) with a composite alternative 
(p < 1). Such a test can only be formulated in a classical framework if the point hypothesis 
is taken as the null. A Bayesian analysis allows a symmetric treatment of the null and the 
alternative. 

The principal Bayesian tool for comparing hypotheses is the posterior odds ratio 
K1 = P(Ho | data)/P(Hi I data). For the second pair of hypotheses the posterior odds ratio is 
equivalent to computing P(p > 1), since P(p < 1)= 1 - P(p > 1). In order to apply the 
posterior odds to a test of the sharp null of an exact unit root against the alternative of 
stationarity, I p < 1, we must assign a discrete probability to the event p = 1. Leamer (1978, 
Section 4.3) and Zellner (1971, pp. 297-299) provide the details of the computations. Treating 
Ho and H1 symmetrically, i.e putting P(Ho)= P(Hi), the posterior odds are equal to 

, 72(t) -L(y | 0,p = l) dt9 

K1= (7) 
7r I(p |I )r 2(0)- L(YI 0,p) d dp 

where 7r2(t) is the marginal prior of the auxiliary parameters 0 E Q in the model; 1U1 (p \I ) is 
the conditional prior of p; and L(YI 9, p) is the likelihood function. 

We now apply the posterior odds formula to the AR(1) with trend and intercept. The 
marginal Jeffreys prior of the auxiliary parameters 72Q(a, 7, 6) oc a-3 is improper (see equation 
(4)). Since the conditional likelihood function for p = 1 does not depend on 7y (because y is not 
identified as p = 1), the integral in the numerator of (7) diverges. The integral in the 

4See, however, Sims (1989) for an operational definition of a trend in models with an explosive AR root. 
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denominator of the posterior odds is well defined, since 

(i) the prior 7rl(p I 0)= (1 - p)2ao(p)/SL (1 - p)2o(p) dp is proper and independent of 9; 

(ii) Tri(p) iJ 7r2(9)' L(Yj , p) dt9 is proportional to the marginal posterior pj(pI Y) in 

equation (6). 

The fact that 7y is locally unidentified at p = 1 leads to the anomalous result that the posterior 
odds diverge to infinity and thus imply probability one for the unit root. Schotman and Van 
Dijk (1991a) encountered the same pathology for the flat prior on p and Y. Any proper prior 
on p defined on the stationary interval p E (- 1, 1) combined with an improper prior on - will 
yield this result. Thus Jeffreys prior is ill-suited for a Bayesian test of the unit root hypothesis. 
The intuition is that Jeffreys prior is improper on nuisance parameters that enter the model 
in an asymmetric way: not identified under the null, but identified under the alternative. For 
more discussion on the use of improper priors we refer to Zellner and Siow (1980) and the 
discussion of that paper by Jaynes (1980). 

6. CHOICE OF PRIOR 

The need for an informative prior greatly complicates a Bayesian procedure, if no natural 
reasonable informative prior is available. The analysis in the previous section suggests that for 
a proper posterior odds test we need to break the prior independence between 7 and p inherent 
in Jeffreys and in the flat prior. If a time-series is stationary, there exists a linear deterministic 
trend with intercept y. The more precise we can locate y, the more convinced we can be that 
the trendline is stable and does not wander stochastically, as it does in the presence of a 
stochastic trend (p = 1). On the other hand, if the position of the trendline (') is not well 
determined, this is an indication it may shift over time, which suggests unit root behaviour. 
An alternative formulation of the unit root hypothesis is the question: 'How much can we 
learn about the level of a series?' The only parameter that conveys information about the level 
of the series is y. The parameters y and p are tightly connected, 7 not really being a nuisance 
parameter. 

A technical solution of the problem of specifying a prior on y that leads to properly behaved 
posterior odds is to exploit the information in the initial condition of the time-series. So far 
all the results used the conditional likelihood function, given the initial observation yo. 
Schotman and Van Dijk (1991a,b) suggest a normal prior on y, centred around yo, and with 
a variance conditional on p and a. 

p( I p, , o)- normal 1 Y 2) (8) 

1 p(p= 1 Y) 
K, i P(p I1 (9) 

1- J c p(p\Y)dp 

5 Technically, we use the so-called exact likelihood instead of the conditional likelihood. 

396 



TESTING FOR UNIT ROOTS 

where p(p I Y) is the marginal posterior for p for p E [a, 1), and 

p(p = 1 Y)= lim p(p Y). 
p-*l 

The procedure amounts to comparing the value of the posterior in p = 1 to the average value 
of the posterior under the alternative p E [a, 1). 

Application of the posterior odds ratio has serious effects for the empirical results. In Table I 
we compare the probability of nonstationarity PJ(p > 1), obtained with Jeffreys prior, with 
the probability of an exact unit root Pr(p = 1), using the normal prior on 7y and setting a equal 
to 0 8. For further reference we also report the classical augmented Dickey-Fuller test. These 
three different quantities are computed with two data sets: the original Nelson-Plosser data, 
and the extended data set. 

The posterior odds ratios reveal that the data for most series are not very informative about 
the unit root hypothesis. The posterior probability of a unit root is between 0 25 and 0 75 for 
nine of the 14 series in the '1970' sample. 'Unemployment' is the only clear stationary series, 
in close agreement with the classical test. The integrated series are 'Consumer prices', 
'Velocity', 'Interest rate' and 'Stock prices'. The latter results are qualitatively the same as 
those of Phillips (1991). These four series have a high probability of nonstationarity, relative 
to the general tendency toward stationarity in the first column of Table I. The additional data 
for the 1970s and 1980s provide a surprising amount of extra information on the unit root 
hypothesis. For the '1988' sample we have eight series that appear 1(1), and two series I(0), 
the second being the much-debated variable 'Real GNP per capita'. For the two stationary 
series we find again a close correspondence with the classical test: the ADF rejects a unit root 
in 'Real GNP per capita', at the 5 per cent level. As a general pattern the posterior probability 
Pr(p = 1) indicates that the real variables are I(0) while the nominal and price series are in most 
cases I(1). This is in contrast to the results of the Dickey-Fuller test for the '1970' sample 

Table I. Posterior probabilities of stochastic nonstationarity 

1970 sample 1988 sample 

Series PJ(p > 1) ADF Pr(p = 1) PJ(p > 1) ADF Pr(p = 1) 

Real GNP 0-012 -2-99 0-365 0-005 - 346 0-309 
Nominal GNP 0-074 -2-32 0-567 0-131 -2 02 0-752 
Real GNP per capita 0-010 -3 05 0-347 0-004 -3-52 0-223 
Industrial production 0-188 -2-53 0-283 0-263 -2-66 0-286 
Employment 0-040 -2-66 0-510 0-034 -2.87 0-614 
Unemployment 0-086 -3 55 0-169 0-063 -3692 0-110 
GNP deflator 0-020 -2-52 0.613 0-134 -1-59 0-884 
Consumer prices 0-176 -1-97 0-883 0-449 -1-20 0-952 
Wages 0-045 -2-23 0-588 0-060 -2-12 0-751 
Real wages 0-014 -3 05 0-517 0-555 -1-68 0-756 
Money stock 0-008 -3.08 0-407 0-021 -2-86 0-567 
Velocity 0-537 -1-66 0.754 0-364 -1-60 0.861 
Interest rate 0-996 0-39 0-854 0-650 -0-54 0-849 
Stock prices 0-215 -2-12 0-935 0-313 - 192 0-968 

The first column is adapted from Phillips (1991). ADF is the augmented Dickey-Fuller test fr, see Dickey and Fuller 
(1979, 1981) and Fuller (1976); the second column is from Nelson and Plosser (1982). Alternative region in exact unit 
root test is [0-8, 1). All results are based on AR(3) model, except for 'unemployment' which is AR(4). 
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where I(1) cannot be rejected except for Unemployment. The extra data in the '1988' sample 
are informative in the sense that now I(1) is rejected for three series. 

In many cases the differences between the results of Phillips (1991) and our results are not 
due to the different priors that are being used, but more to the hypothesis that is tested. Figures 
5 and 6 illustrate this point. The figures compare the posteriors implied by Jeffreys prior 
(pJ(p I Y)) with the posterior implied by the normal prior on y (pN(p I Y)). Comparing figures 
5A and 5B, we see that increasing the sample size for 'Real GNP per capita' has the same effect 
on the marginal posterior of p for both priors: a tendency towards stationarity. Figures 6A and 
6B show the analogous pattern for 'Consumer prices': here a strong tendency towards p = 1. 

Finally, our flat prior on p over a small and fixed range might not be the best choice of prior 
for p. A sensitivity analysis along the lines of Schotman and Van Dijk (1991a) can yield insights 
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Figure 5(a). Real GNP per capita (J-prior) 
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into whether this has serious consequences for the posterior odds test. Some preliminary 
exercises indicate that the qualitative conclusions on the relative probabilities of 1(0) and I(1) 
are not much affected, though the actual computed probabilities are different. 

7. CONCLUDING REMARKS 

Jeffreys prior has an advantage in the analysis of autoregressive time-series models that it is 
invariant with respect to the parameterization. But we do pay a price for the invariance. The 
J-prior depends on the sample size, the data, and the complete structure of the model. As 
shown in Section 2, especially our prior beliefs about p change according to the specification 
of the deterministic components in the model. Further, as argued in Section 4, the whole point 
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of the Bayesian exercise is in discriminating between two well-defined hypotheses. This 
problem requires an informative proper prior, if only because of the special importance of the 
point p = 1. 'Objective' Bayesian methods for testing a sharp null hypothesis do not exist (see 
Berger and Delampady, 1987). 

Finally, the preposition 'on' in the title has several interpretations. We have used the 
interpretation: 'about' or 'concerning' and attempted to explain the implications of the choice 
of different priors for inference on unit roots. We made extensive use of graphical, analytical 
and some numerical techniques. Another more literal interpretation of the preposition 'on' is 
'to march on'. Peter Phillips' paper is also attractive, since studying it may induce other 
researchers to explore Bayesian routes in more detail. 

APPENDIX: EXTENSION OF NELSON-PLOSSER DATASET 

The original time-series of Nelson and Plosser (1982) are annual observations ending in 1970. 
We extended all 14 series to 1988. Series are defined as: 

Real GNP 
Nominal GNP 
Real GNP per capita 

Industrial production 
Employment 
Unemployment rate 
GNP deflator 
Consumer prices 
Wages 
Real wages 
Money stock 
Velocity 
Interest rate 
Stock prices 

(A), Appendix II. 
(A), Appendix II. 
= real GNP/population, 
(B), Population: total. 
(A), Indexes, total. 
(A), Civilian labour force + Resident armed forces. 
(A), Total unemployment rate civilian workers. 
(A), Implicit price deflator, Appendix II. 
(A), All items, urban consumers. 
(A), Average weekly earnings of production workers. 
= Wages/consumer prices. 
(C), M2, definition of 1980. 
= Nominal GNP/(Currency plus demand deposits) (C). 
(C), yield offered on a recently offered A-rated utility bond. 
(A), Standard and Poor 500 composite stock index. 

Primary data sources are: 
(A) Business Statistics 61-88, US Department of Commerce, Bureau of Economic Analysis. 
(B) Statistical Abstract, Bureau of the Census. 
(C) Banking and Monetary Statistics, Federal Reserve Bulletin. 

Data are spliced to the original series. The conversion factor is the average ratio of the old 
series over the new series for the period 1965-1970. 
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