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Bayes Estimates of Markov Trends in Possibly 
Cointegrated Series: An Application to 

U.S. Consumption and Income 

Richard PAAP and Herman K. VAN DIJK 
Econometric Institute, Erasmus University, Rotterdam 

Stylized facts show that average growth rates of U.S. per capita consumption and income differ in reces- 
sion and expansion periods. Because a linear combination of such series does not have to be a constant 
mean process, standard cointegration analysis between the variables to examine the permanent income 

hypothesis may not be valid. To model the changing growth rates in both series, we introduce a multi- 
variate Markov trend model that accounts for different growth rates in consumption and income during 
expansions and recessions and across variables within both regimes. The deviations from the multivari- 
ate Markov trend are modeled by a vector autoregression (VAR) model. Bayes estimates of this model 
are obtained using Markov chain Monte Carlo methods. The empirical results suggest the existence of a 

cointegration relation between U.S. per capita disposable income and consumption, after correction for a 
multivariate Markov trend. This result is also obtained when per capita investment is added to the VAR. 

KEY WORDS: Cointegration; Markov chain Monte Carlo; Multivariate Markov trend; Permanent in- 
come hypothesis. 

1. INTRODUCTION 

The permanent income hypothesis implies that there exists a 

long-run relation between consumption and disposable income 
(see, e.g., Flavin 1981). This theoretical result may be trans- 
lated to time series properties. Most studies on the univariate 

properties of consumption and income series suggest that they 
are integrated processes (see the applications following Dickey 
and Fuller 1979). Hence both series must be cointegrated for the 

permanent income hypothesis to hold. As a result, recent empir- 
ical research on the permanent income hypothesis focuses on 

cointegration analysis between consumption and income (see, 
e.g., Campbell 1987; Jin 1995). 

In these studies, it is usually assumed that the logarithm of 
real income is a linear process. However, Goodwin (1993), Pot- 
ter (1995), and Peel and Speight (1998), among others, have 
argued that the logarithm of many real income series contains 
a nonlinear cycle. This nonlinear cycle is often interpreted as 
the business cycle in real income. A popular model used to de- 
scribe the business cycle in time series is the Markov switching 
model of Hamilton (1989), which allows for different average 
growth rates in income during expansion and recession peri- 
ods, where the transitions between expansions and recessions 
are modeled by an unobserved first-order Markov process. We 
refer to the trend that models this specific behavior as a Markov 
trend. Hall, Psaradakis, and Sola (1997) considered the perma- 
nent income hypothesis under the assumption that real income 
contains a Markov trend. They showed that in this case, the dif- 
ference between log consumption and log income is affected by 
changes in the mean, caused by changes in the growth rate of 
the real income series. The difference between log consump- 
tion and income series is not a constant mean process such that 
standard cointegration analysis in linear vector autoregressive 
(VAR) models may wrongly indicate the absence of cointegra- 
tion (see Nelson, Piger, and Zivot 2001; Psaradakis 2001, 2002 
for some results in univariate time series). 

Several studies have considered the effects of deterministic 
shifts on cointegration relations (see, e.g., Gregory and Hansen 

1996; Hansen and Johansen 1999; Martin 2000). In this arti- 
cle we analyze the long-run relationship between quarterly sea- 
sonally adjusted aggregate consumption and disposable income 
for the United States, where we allow for the possibility of a 
Markov trend in both the income and consumption series. Our 
work differs from previous studies in several ways. We consider 
a full system cointegration analysis in a nonlinear model. We 
test cointegration in a VAR, which models the deviation of log 
per capita consumption and income from a multivariate Markov 
trend. This differs from the approach of Hall et al. (1997), who 
considered a single equation analysis and used an ad hoc pro- 
cedure for cointegration analysis. Our model is a multivariate 
generalization of Hamilton's (1989) model and nests the the- 
oretical results of Hall et al. (1997). Furthermore, the model 
allows the growth rate of consumption to be different from the 
growth rate in income at each stage of the business cycle, as 
suggested by a simple stylized facts analysis. Hence we ana- 
lyze the presence of a cointegration relation between consump- 
tion and income series while allowing for different growth rates 
in expansion and recession periods via the multivariate Markov 
trend. We investigate the robustness of our results by including 
an investment variable in the model. 

To perform econometric inference on the presence of a stable 
long-run relation between per capita consumption and income, 
we follow a Bayesian approach. We apply Markov chain Monte 
Carlo (MCMC) methods to evaluate posterior distributions and 
construct Bayes factors (BFs) to determine the cointegration 
rank. Our Bayesian cointegration analysis is an extension of the 
techniques of Kleibergen and Paap (2002) and Kleibergen and 
van Dijk (1998) to the case of a nonlinear VAR model contain- 
ing a Markov trend. 

The outline of the article is as follows. In Section 2 we give 
a short review on the current state of the literature on the per- 
manent income hypothesis in cases where income is assumed 
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to contain a Markov trend. In Section 3 we discuss some styl- 
ized facts of U.S. per capita income and consumption series. 
In Section 4 we propose the multivariate Markov trend model 
and discuss its interpretation. Given the main application of this 
article, we limit the discussion to a bivariate model, but it can 
be easily extended to more dimensions, as shown in Section 9. 
In Section 5 we discuss prior specification, and in Section 6 
we propose a MCMC algorithm to sample from the posterior 
distribution. We deal with BFs used to determine the cointegra- 
tion rank in Section 7. In Section 8 we apply our multivariate 
Markov model to the U.S. series and relate the posterior results 
to suggestions made by economic theory and the stylized facts 
analysis. To analyze the robustness of our results, in Section 9 
we consider a Markov trend model for U.S. per capita income, 
consumption, and investment series. We conclude the article in 
Section 10. 

2. THE PERMANENT INCOME HYPOTHESIS AND 
A MARKOV TREND 

The permanent income hypothesis states that current aggre- 
gate consumption is equal to a weighted average of expected 
future real disposable incomes. More precisely, aggregate con- 
sumption, ct, can be written as 

r 1 
ct1 + r (1 + r)iE[yt+jIt], (1) 

where Yt is real disposable income at time t, r is the interest rate, 
and ??t denotes the information set that is available to economic 
agents at time t. In Flavin's (1981) formulation, yt denotes labor 
income solely, in which case one must add real wealth to (1). 
We follow Sargent's (1978) assumption that the annuity value 
of future capital income is equal to the value of real finan- 
cial wealth (see Flavin 1981 for a critique of this assumption). 
Straightforward algebra shows that (1) is the forward solution 
of the expectational difference equation 

r 1 
Ct = E[ytIn t] + E[ct+ll 2t]. (2) 

l+r l+r 
Subtracting yt from both sides of (1), we obtain 

oo 

Ct - Yt = 
r 

(1EE[yt+j -ytIlt], (3) 
"j=o 

which shows that there exists a stationary relation between cur- 
rent consumption and income if the first difference of Yt is sta- 
tionary (see, e.g., Campbell 1987). In many studies it is there- 
fore assumed that real income follows a random-walk process 
(see, e.g., Jin 1995). Several other studies, however, suggest 
that the log income series contains a nonlinear cycle that cor- 
responds to the business cycle (see, e.g., Goodwin 1993; Potter 
1995; Peel and Speight 1998). To capture this business cycle, 
one often assumes that log real income is the sum of a random- 
walk process and a Markov trend, as suggested by Hamilton 
(1989). To explain the role of the Markov trend on the perma- 
nent income hypothesis, we now briefly discuss the approach of 
Hall et al. (1997). 

The logarithm of real income is written as 

Inyt = nt + zt, (4) 

where Zt is a standard random-walk process 

Zt = Zt-1 + Et, (5) 

with Et - NID(O, or2) and where nt is a so-called univariate 
Markov trend. This Markov trend is defined as 

nt = nt-1 + Yo + Y1st, (6) 

where yo and yl are parameters and st is an unobserved binary 
random variable that models the business cycle. In the remain- 
der of this article, we assume that st = 0 corresponds to an ex- 
pansion observation and st = 1 corresponds to a recession. This 
implies that during an expansion, the slope of the Markov trend 
equals yo, whereas during a recession, the slope is given by 
yo + yl. The random variable st is assumed to follow a first- 
order, two-state Markov process with transition probabilities 

Pr[st = Olst-1 = 0] = p, Pr[st = I st-1 = 0] = 1 - p, 
(7) 

Pr[st = I st-1 = 1] = q, Pr[st = Olst-1 = 1] = 1 - q 

(see Hamilton 1989 for details). 
As Hall et al. (1997) showed, (2) and (4)-(6) with Qt? = 

{Yt, Yt-1 ..... st, st-1, ... } imply that ct = eKoyt for st = 0 and 
ct = 

eKO+Klyt for St = 1, with 

xo = n 
r + 

pe'OE? + (1 
- 

p)eKO+E1+)r ' 

(8) 
KO + K =In(r + (1 - q)eKOEo + qeKO+KlEi 

12- 1+r 

where Eo = eYO+?22 and E1 = eYO+Y1+? 2. Because st is an un- 
observed random process, we obtain the following relation be- 
tween log consumption and log income: 

In ct = KO + KSt + In yt, (9) 

where KO and K1 result from (8); that is, 

KOr(I+(1--p--q)(1 +r)-E1) 
S= In (1 + r -pEo - qE1) - (1 + r)-l(1 -p - q)EoEl ' 

xl=ln((l+r)+(1-p-q)Eo. 
(10) 

(1 + r) + (1 -p - q)EI) 

Substituting (4) in the consumption-income relation (9), we 
note that the log of consumption can be written as 

Inct = nt + Ko + KlSt + zt, (11) 

where zt and nt are defined in (5) and (6). It follows that log con- 
sumption is built up of the same Markov trend as log income, 
and hence it corresponds to the idea that growth rates of con- 
sumption and income are the same during expansions and reces- 
sions. Note that (4) and (11) with (5) and (6) imply a stochasti- 
cally singular system for Yt and ct. To describe consumption and 
income series with this model, one must add extra noise to (11). 
Equation (9) implies that the difference between log consump- 
tion and log income is different across the phases of the busi- 
ness cycle and is described by the process wt = Ko + K1St. 
This process can be written as wt = it + PWt-1 + K1Vt, where 
x = (1 - p)Ko + Kl(1 - p), p = (-1 +p + q), and vt is a 
martingale difference sequence (see Hamilton 1989). This im- 
plies that (9) can be seen as a cointegration relation between log 
consumption and income with non-Gaussian innovations. If the 
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transition probabilities p and q are near 1 (i.e., if both regimes 
are persistent), then it may be difficult to distinguish the process 
wt from a random-walk process (see also Nelson et al. 2001; 
Psaradakis 2001, 2002). In turn, this may complicate detection 
of a stationary relation between log consumption and income 
using a standard cointegration analysis approach. 

To test the presence of a stationary relation between U.S. log 
consumption and income, when the log of real income contains 
a Markov trend, we propose in Section 4 a multivariate Markov 
trend model. Because the economic theory in this section may 
be too simplistic in describing reality, we allow for a more flex- 
ible structure than the theory suggests. This flexible structure is 
based on a simple stylized facts analysis of the U.S. per capita 
income and consumption series given in the next section. 

3. STYLIZED FACTS 

Figure 1 shows a plot of the logarithm of quarterly observed 
seasonally adjusted per capita real disposable income and pri- 
vate consumption of the United States, 1959.1-1999.4. The se- 
ries were obtained from the Federal Reserve Bank of St. Louis. 
Both series are increasing over the sample period with short 
periods of decline, for example, in the middle and the end of 
the 1970s. These periods of decline are more pronounced in 
the income series than in the consumption series but seem to 
occur roughly simultaneously. The average quarterly growth 
rate of the income series is .67% per quarter. For the consump- 
tion series, the average quarterly growth rates equals .62%. The 
growth rates in both series seem roughly the same. 

To analyze the effect of the business cycle on real per capita 
income and consumption, we split the sample in two subsam- 
ples. The first subsample corresponds to quarters labeled a re- 
cession according to the National Bureau Economic of Re- 
search (NBER) peaks and troughs (see http://www.nber org/ 
cycles.html). During recessions, the average quarterly growth 
rate of per capita income is -1.03% and it is -.24% for con- 
sumption. The second subsample contains quarters correspond- 
ing to expansion observations. During expansions, the average 
quarterly growth rate in per capita income is .93%, and the av- 
erage quarterly growth rate in per capita consumption is .75%. 

-3.4 

-3.6- 

-3.8 - 

-4.0- -" 

-4.2 ,,,\ 

-4.4- 

-4.6 - 

60 65 70 75 80 85 90 95 

Figure 1. Logarithm of U.S. Per Capita Consumption (-) and In- 
come (-- - -), 1959.1-1999.4. 

Although the average quarterly growth rates based on the whole 
sample are roughly the same across the two series, the average 
growth rates seem different in both subsamples. 

The differences in the average growth rates in the consump- 
tion and income series in recessions and expansions may have 
consequences for analyzing the permanent income hypothesis. 
A simple cointegration analysis in a linear (vector) autoregres- 
sive model (e.g., Jin 1995) may lead to the wrong conclusion. 
If the growth rates in both series are different in both stages of 
the business cycle, then it is unlikely that a linear combination 
of the two series has a constant mean. To make this more clear, 
Figure 2 depicts the difference between log per capita consump- 
tion and log per capita income. The graph shows that the mean 
of this possible cointegration relation is not constant over time, 
but rather displays a more-or-less changing regime pattern. This 
switching pattern seems to coincide with the NBER-defined 
business cycle. 

Relating the stylized facts to the simple model in Section 2, 
we note that the possible changes in the mean of the differ- 
ence between log consumption and income are captured by 
the switching constant Ko + KlSt in (9). But the differences in 
growth rates of both series in each stage of the business cycle 
are not captured by the model, because relation (11) implies that 
the growth rates in both series during recessions and expansions 
must be the same. A consumption-income relation that allows 
for the former behavior is given by 

In ct = Ko + KlSt + f2 n yt. (12) 

The trend in consumption now equals 02nt, where nt is the 
Markov trend in log income defined in (6). If 02 < 1, Ko > 0, 
and KO + K1 < 0, then the growth rate is smaller in consump- 
tion than in income during expansions and larger during reces- 
sions, which corresponds to our earlier findings. We note that 
relation (12) corresponds to a nonlinear relation between con- 
sumption and income, that is, ct = eKO+KjlStyt2 

To analyze the permanent income hypothesis for the U.S. 
consumption and income series, we propose a multivariate 
Markov trend model in the next section. This multivariate 
model is an extension of Hamilton's univariate model. The 
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-0.20 - 

-0.22 
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Figure 2. Difference Between Log Per Capita Consumption and Log 
Per Capita Income, 1959.1-1999.4. 
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model contains a multivariate Markov trend that allows for dif- 
ferent growth rates in the consumption and income series dur- 
ing recessions and expansions. The deviations from the Markov 
trend are modeled by a VAR model. To analyze the presence 
of a consumption-income relation, we perform a cointegration 
analysis on the deviations from the multivariate Markov trend. 
In addition, we investigate whether the mean of the possible 
cointegration relation is affected by changes in the business cy- 
cle, as suggested by the economic theory in Section 2. 

4. THE MULTIVARIATE MARKOV TREND MODEL 

In this section we propose the multivariate Markov trend 
model on which we base our analysis of the consumption- 
income relation. This model is a multivariate generalization of 
the model proposed by Hamilton (1989), where the slope of the 
multivariate Markov trend is different across series and across 
the regimes. The regime changes occur simultaneously in all 
series. The deviations from the Markov trend are modeled by a 
VAR model, which may contain unit roots. A similar represen- 
tation was suggested by Dwyer and Potter (1996). 

In Section 4.1 we discuss representation, and in Section 4.2 
we deal with model interpretation. In Section 4.3 we derive 
the likelihood function of the model. Although we explain the 
model for bivariate time series, the discussion can be easily ex- 
tended to more than two time series, as shown in Section 9. 

4.1 Representation 

Let { Yt}T1 denote a two-dimensional time series containing 
the log of per capita consumption and income series. Assume 
that Yt = (In ct In yt)' can be decomposed as 

Yt = Nt + Rt + Zt, (13) 

where Nt represents a trend component, Rt allows for possible 
level shifts, and Zt represents the deviations from Nt and Rt. 
The two-dimensional trend component Nt is a multivariate gen- 
eralization of the univariate Markov trend (6), that is, 

Nt = Nt-1 + Io + fist, (14) 

where Fo and FI are (2 x 1) parameter vectors and st is an 
unobserved first-order Markov process with transition proba- 
bilities given in (7). Kim and Yoo (1995) added an extra nor- 
mally distributed error term to (14), but we do not pursue this 
here, because it a priori imposes a unit root in the series Yt (see 
also Luginbuhl and de Vos 1999). We allow unit roots to en- 
ter Yt only through Zt; see also Section 4.2. The value of the 
unobserved state variable st models the stages of the business 
cycle. If st = 0 (expansion), then the slope of the Markov trend 
is Fo, whereas for st = 1 (recession), the slope equals To + FI 
(see also Hamilton 1989). The values of the slopes of the trends 
in the individual series in Yt do not have to be the same even 
though the changes in the value of the slope occur simultane- 
ously. The latter assumption can be relaxed (see, e.g., Phillips 
1991), but this extension is not necessary for the application 
in this article. The expected slope value of the Markov trend 
equals To + F 1(1 -p)/(2 -p - q) (see Hamilton 1989). Hence 

one may have different slopes values in each regime but the 
same expected slope. The backward solution of (14) equals 

t 

Nt = Jo(t - 1) + Il si +N1, (15) 
i=2 

where N1 denotes the initial value of the Markov trend, which 
is independent of t. Hence the Markov trend consists of a deter- 
ministic trend with slope Fo and a stochastic trend t2 s with S- i=2 Si with 
impact vector F1l. 

The component Rt models possible level shifts in the first 
series of Yt during recessions, 

Rt = ()st = 3st, (16) 

such that 3 = (31 0)'. This term takes care of level shifts in 
the consumption series during recessions, as suggested by the 
theory in Section 2. (See Krolzig 1997, chap. 13, for a similar 
discussion about the role of this term.) The parameter 31 turns 
out to be related to the Il parameter in (9), as discussed at the 
end of Section 4.2. 

The deviations from the Markov trend and Rt (i.e., Zt) are 
assumed to be a VAR process of order k [VAR(k)], 

k 
Zt=L iZt-i + st (17) 

i=1 

or, using the lag polynomial notation, 

SD(L)Zt = (I - IL - - - - - kLk)Zt = Et, (18) 

where et is a two-dimensional vector normally distributed 
process with mean 0 and a (2 x 2) positive-definite symmet- 
ric covariance matrix E, and where Qi, i = 1, ..., k, are (2 x 2) 
parameter matrices. 

4.2 Model Interpretation 

For our analysis of a potentially stationary relation between 
log consumption and income, it is convenient to write (17) in 
error-correction form, 

k-1 

AZt = 
IZt-1 + E DjAZt-j + 

st, (19) 
j=1 

where I 
= 

j11j - I and Di - k 9j, i = 1, . 
k - 1. The characteristic equation of the Zt process is given by 

II - lZ 
- 
..- 

- - -kzk I = 0. (20) 
We can now distinguish three cases depending on the num- 

ber of unit root solutions of the characteristic equation (20). 
The first case corresponds to the situation where the solutions 
of (20) are outside the unit circle. The process Zt is station- 
ary, and hence Yt is a stationary process around a multivariate 
Markov trend. This is in fact the multivariate extension of the 
model proposed by Lam (1990). We can write 

(AYt- Fo - l1st- SAst) 

= ( Yt-1 - Fo(t - 2) - Fi si - N1 - Sst-1 

k-1 

"+ Pi(AYtr-i - Fo - Flst-i - 8Ast-i) 
+ Et, (21) 

i=1 
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where H a full-rank matrix. The vectors To and Fo + F1 con- 
tain the slopes of the trend in Yt during expansions and reces- 
sions. The initial value of the Markov trend N1 is unknown and 
plays the role of an intercept parameter vector. The 81 parameter 
models a level shift in the intercept of the Markov trend during 
recessions for the log consumption series. If st = 0, then the 
initial value of the Markov trend equals N1, whereas for st = 1, 
this value equals NI + 8st. 

The second case concerns the situation of two unit root solu- 
tions of (20) with the remaining roots outside the unit circle. In 
that case, F- = 0, and (21) becomes 

(AYt - Io - 1ist - 8Ast) 
k-1 

= C i(AYt-i - 0o - lst-i - 8Ast-i) + -t. (22) 
i=1 

The first difference of Yt is a stationary VAR process with a 
stochastically changing mean (= Fo + Fist). Note that the ini- 
tial value of the Markov trend NI drops out of the model. If 
st = st-1, then A Yt is not affected by Rt. If, however, st # st-1, 
then the growth rate in consumption is 81 larger or smaller than 
the growth rate in income. A change in the stage of the business 
cycle leads to a one-time extra adjustment in the growth rate of 
per capita consumption. This adjustment is absent if 81 = 0, in 
which case the model simplifies to the one considered by Kim 
and Nelson (1999a), who a priori imposed that 1 = 0 (see also 
Hamilton and Perez-Quiros 1996). 

The third case corresponds to the situation where only one 
of the roots equals unity and the other roots are outside the unit 
circle. The series in Zt are said to be cointegrated (see Johansen 
1995 for a discussion on cointegration). Under cointegration, 
the rank of 11 equals 1, and we can write 11 as ap', where a 
and P are (2 x 1) vectors. The P vector describes the cointe- 
gration relation between the elements of Zt, and hence i'Zt is 
a stationary process. The a vector contains the adjustment pa- 
rameters. Because the number of free parameters in a and P is 
larger than in 11 under rank reduction, the parameters in a or P 
must be restricted to become estimable. We choose to impose 
the restriction f = (1 - f2)'. Under cointegration, model (21) 
becomes 

(A Yt - o - ist - Ast) 

= afP' Yt-1 - Fo(t- 2) - F1 si - NI - 8st 
i=2 

k-i 

+ 3i( AYt-i- [o - [lst-i- tSAst-i) + 
•t. (23) 

i=1 

The cointegration relation is given by fi'Yt = 8'(Nt + Rt + Zr). 
For 6'Fo = f'Fi = 0, Ko = 8'N1, and Ki = fl'8, we obtain 
the consumption-income relation (12). The extra condition 
82 = 1 leads to relation (9). Finally, note that the restriction 

•'1 = 0 removes the Markov trend from the cointegration re- 
lation. Dwyer and Potter (1996) refered to this phenomenon as 
"reduced-rank Markov trend cointegration." Note that in their 
model, 81 = 0. 

4.3 The Likelihood Function 

To analyze the multivariate Markov trend model, we derive 
the likelihood function. First, we consider the likelihood func- 

tion of the least-restricted Markov trend stationary model [(21)] 
conditional on the states st. The conditional density of Yt for 
this model, given the past and current states st = {st,..., st} 
and given the past observations yt-1 = {y1,..., Yt-i), is 

f(YtlYt- s, st, [', i1, Ni, 81, E, I), ) 

= 1 •• 2 exp --et -l t , (24) 
(V7r)2 2 t 

where Et is given in (21) and 1 = {II ....k-i1}. Hence the 
likelihood function for model (21), conditional on the states sT 
and the first k initial observations yk, is 

?2(yT yk, S , 02) 
= 

pA/N'(1 -- Yp)V1qNI I (1 - q)NI,o 

T 

x H f(Yt(yt-l, St, Io,'iN I , , ,I), (25) 
t=k+l 

where 02 = {F0, lr, N1, 61, 8 , 1", 1 , p, q} and where /Vi,j de- 
notes the number of transitions from state i to state j. The un- 
conditional likelihood function L2(yT yk, g2) can be obtained 
by summing over all possible realizations of sT, 

L2(yTlyk, 02) = 
• 

... 
• 2(YTI k, ST, E2). (26) 

s1 s2 ST 

The unconditional likelihood function for the Markov trend 
model with one cointegration relation [(23)] follows directly 
from (26), 

C1(yTIyk, g1) = L2(yTlyk, g2) 1n-=a', (27) 

with 1 = {Fo,Fl, NI,81, S , a, 21, 2,p,q}. In case of no 

cointegration [(22)], the unconditional likelihood function is 
given by 

Lo(yT Iyk, 00) = L2(yT yk, 02) In=0, (28) 

with 00 = {Fo, 1'1, N1, Si, E, c,p, q}. Note that the subscript 
"r" of 0r and Lr refers to the number of cointegration relations 
in Zt. 

In the next section we discuss the prior distributions for the 
model parameters of the multivariate Markov trend model pre- 
sented in this section. 

5. PRIOR SPECIFICATION 

To perform inference on the parameters of the multivariate 
Markov trend model and on the presence of a stationary rela- 
tion between consumption and income, we opted for a Bayesian 
approach. We chose to impose prior information, which is rela- 
tively uninformative compared with the information in the like- 
lihood. The Markov trend model is nonlinear in certain para- 
meters, which leads to local nonidentification for certain pa- 
rameters in the model. In sum, we must deal with three types 
of identification issues: the initial value identification (N1), the 
regime identification (Fo and 'i) and the identification of 82 
in the reduced-rank model (23). To tackle these identification 
problems, we proceed as follows. 

It follows from (21) that the parameter N1 drops out of the 
model in case n = 0. Even in the case of rank reduction in 1 
it follows from (23) that we can identify only fN1. Specify- 
ing a diffuse prior on N1 implies that the conditional posterior 
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of N1 given 1I is constant and nonzero at the point of rank re- 
duction. The integral over this conditional posterior at the point 
of rank reduction is, therefore, infinity, favoring rank reduction 
(see Schotman and van Dijk 1991a,b for a related discussion 
of identification problems associated with the intercept term 
in univariate autoregressions). To circumvent this identification 
problem, we follow the prior specification of Zivot (1994) (see 
also Hoek 1997, chap. 2). The prior distribution for N1 condi- 
tional on both E and the first observation Y1 is normal with 
mean Yi and covariance E, 

NiIY1, E - N(Yi, E). (29) 

For E, we take a standard inverted Wishart prior with scale pa- 
rameter S and degrees of freedom v, 

I 1 (v+31 1) 
p(E) oc ISI2VEI-I2(+3)exp -E-IS). (30) 

If we do not want to impose an informative prior for E, then 
we opt for p(E) oc I E- 1, which results from (30) by letting the 
degrees of freedom approach 0 (see Geisser 1965). 

The prior distributions for the transition probabilities p and q 
are independent and uniform on the unit interval (0, 1), 

P(P) = (o,1), 
(31) 

p(q)= I(o,1), 

where I(0o,1) represents an indicator function that is 1 on the 
interval (0,1) and 0 elsewhere. Under flat priors for p and q, 
special attention must be given to the priors for 'o and 'l. It 
is easy to show that under nI = 0, the likelihood has the same 
value if we switch the role of the states and change the values of 

1o, 1l, 8, p, and q into 1o + Fl, -Fl, -8, q, and p. This com- 
plicates proper posterior analysis if we specify uninformative 
priors on Fo and [l. There are several ways of identifying the 
parameters. One could, for example, specify appropriate matrix 
normal prior distributions for Fo and 'l. But we define pri- 
ors for Fo and 'l on subspaces that identify the regimes for 
all specifications of the model. Several specifications for these 
subspaces are possible. With our present application in mind, 
we restrict the growth rates in the income series to be positive 
during expansions and negative in recessions. This results in the 
prior specification 

p(Fo) 1I1 if ro E I{Fo E 
R21I0,2 

> 0} 
10 elsewhere, 

(32) 

p(FTTo) 
a 

c( 1 
if 

Il E {(l 
E R210,2 

+ i1,2 < 0} ( o 0 elsewhere. 

Note that because we have identified the two regimes by the 
prior on Fo and 'l, we may use an improper prior for S1, 

p(S1) oc 1. (33) 

For the autoregressive parameters apart from E, we also use flat 
priors, 

p(4i) oc l, i= 1 ..., k- 1. (34) 

The three model specifications are different with respect to 
the rank of H. Under cointegration, the rank of 1 equals 1, 
and we can write 1I = a8'. It is easy to see that if a = 0, then 

02 is not identified (see Kleibergen and van Dijk 1994 for a 
general discussion). To solve this identification problem, we 
follow the approach of Kleibergen and Paap (2002) (see also 
Kleibergen and van Dijk 1998 for a similar approach in simul- 
taneous equation models). A convenient byproduct of this ap- 
proach is a Bayesian posterior odds analysis for the rank of 17; 
see also Section 7. The analysis is based on the following de- 
composition of the matrix 11: 

H = a ' + aL'X01, (35) 

where al and i are specified such that aot' = 0 with aot'o = 
1 and '[fl = 0 with 0',flI = 1. It is easy to see that cointe- 
gration (i.e., rank reduction in H) occurs if X = 0, and hence 
the parameter X can be used to test for cointegration. The ma- 
trix (a LXO'_l ) models the deviation from cointegration. The row 
and column spaces of this matrix are spanned by the orthogo- 
nal complements of the vector of adjustment parameters a and 
the cointegrating vector 0. The decomposition in (35) is not 
unique, however. To identify a and 8, we impose the condition 
that f = (1 - 82)', as is often done in cointegration analysis. 
To identify X , al, and 81 in awot_,, we relate X to the small- 
est singular value of H. Note that singular values determine the 
rank of 11 in an unambiguous way. 

The singular value decomposition of 11 is given by 

1 = USV', (36) 

where U and V are (2 x 2) orthonormal matrices and S is an 
(2 x 2) diagonal matrix containing the positive singular val- 
ues of 11 (in decreasing order) (see Golub and van Loan 1989, 
p. 70). If we write 

U (ll u12 S_ (Sl 0 and 
U21 U22 S 0 S22 

and 

(37) 

V V1ii V12 

v21 v22 

with uij, sij, V, i = 1, 2, j= 1, 2, scalars and use that 

(a0a1 ) 0 1 (3'0#') = USV', (38) 

then we obtain the following expressions for a and 82: 

S- (UllSllvll) a 
u21S11Vll 

(39) 
2 = -v21/v11. 

Identification of X follows from the fact that we must express 
al and fi in terms of ul, u21, sil, vli and v21 to obtain a one- 
to-one relation with the singular value decomposition. Kleiber- 
gen and Paap (2002) showed that if we take 

atL =J22 1 22) and 81 = • ( 1 v ' 

(40) 
then X is identified by 

u22s22v22 
S= = sign(u22v22)s22, (41) 

2 2~ 
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where "sign(.)" denotes the sign of the argument. Hence the 
absolute value of X is equal to the smallest singular value of 1l 
that corresponds to s22. Note that X can be positive and neg- 
ative, in contrast with the singular value s22, which is always 
positive. Golub and van Loan (1989) showed that the number 
of nonzero eigenvalues of a matrix completely determine the 
rank of a matrix. Restricting the scalar X to equal 0 is, therefore, 
an unambiguous way of restricting the rank of El and imposing 
cointegration. 

To construct priors for the a and 02 parameters that take into 
account the identification problem, we take as starting point the 
prior for 11 given E, denoted by p(I I E). Because the matrix 11 
can be decomposed using (35), p(IIIE) implies the following 
joint prior for a, X, and 02 given E: 

p(0a, 1, ,21 ) OC p(Hl E)ln=,=ac'+xixI IJ(a(, 1, ,2)1, (42) 

where IJ(a, 1, 932)1 is the Jacobian of the transformation from 

E1 to (a, X, f02). The derivation and expression of this Jacobian 
are given in Appendix A. Because restricting X to equal 0 is 
an unambiguous way of restricting the rank of E1 and impos- 
ing cointegration, we construct the joint prior for a and 82 by 
restricting (42) in X = 0, 

p(a, P21 E) oc p(a,, ,1 E)Ix=0O 

c p( 1IE)In=aP, IJ(a, X, 82) I=O. (43) 

The posterior resulting from this prior leads to proper posterior 
distributions for a and 02 (see Kleibergen and Paap 2002). The 
posteriors are also unique in the sense that they do not depend 
on the ordering of the variables in the system and the normal- 
ization to identify a and / [in our case, / = (1 - /2)']. The 
proposed strategy for prior construction for at and /2 can be 
carried out for a proper or an improper prior specification on I1 
given E. In this article we opt for a normal prior on I1 given E 
with mean P and covariance matrix (E 0 A-l), 

p(I E) oc JE JAIexp 1 tr (E -I( I- P)'A( 
I-P))) 

(44) 
Hence the prior for a and 02 is given by 

p(ac, 021E) 

oc IE1-11 A1 exp- tr (E-1 (ota ' 
- 

P)A(ot' 
- P)) 

x IJ(a, , /32) Ix=0. (45) 

If one prefers a noninformative prior, then one may consider 

p(fIIE) oc 1 in combination with p(E) oc IEI-1. In that case, 
the resulting prior for a and 82, given X, is p(a, 82 IE) oc 
IJ(a, X, /2) Ix=0. 

The joint priors for the Markov trend models with differ- 
ent numbers of unit roots follow from the marginal priors in 
this section. The joint prior for the Markov trend stationary 
model [(21)], p2(02), is given by the product of (29)-(34) 
and (44). The prior for the Markov trend model with one coin- 
tegration relation [(23)], p1(G1), is the product of (29)-(34) 
and (45), whereas the prior for the model without cointegra- 
tion [(22)], po(e0), is simply the product of (29)-(34). 

6. POSTERIOR DISTRIBUTIONS 

The posterior distributions for the model parameters of the 
multivariate Markov trend models is proportional to the prod- 
uct of the priors, pr(Er), and the unconditional likelihood func- 
tions, Ir(YT yk, Gr), r = 0, 1, 2. These posterior distributions 
are too complicated to enable the analytical derivation of pos- 
terior results. As Albert and Chib (1993), McCulloch and Tsay 
(1994), Chib (1996), and Kim and Nelson (1999b) have demon- 
strated, the Gibbs sampling algorithm of Geman and Geman 
(1984) is a very useful tool for the computation of posterior 
results for models with unobserved states. The state variables 

{stT=l can be treated as unknown parameters and simulated 
alongside the model parameters. This technique is known as 
data augmentation (see Tanner and Wong 1987). 

The Gibbs sampler is an iterative algorithm in which one con- 
secutively samples from the full conditional posterior distribu- 
tions of the model parameters. This produces a Markov chain 
that converges under mild conditions. The resulting draws can 
be considered as a sample from the posterior distribution. (For 
details on the Gibbs sampling algorithm, see Smith and Roberts 
1993; Tierney 1994.) In Appendix B we derive the full condi- 
tional posterior distributions associated with the most general 
Markov trend stationary model [(21)]. The full conditional pos- 
terior distributions associated with the other models can be de- 
rived in a similar way. Unfortunately, the full conditional distri- 
butions of the a and the 82 parameters are not of a known type. 
To sample these parameters we need to build a Metropolis- 
Hastings step into the Gibbs sampler (see Chib and Greenberg 
1995 for a discussion). 

7. DETERMINING THE COINTEGRATION RANK 

To determine the cointegration rank, we begin by assigning 
prior probabilities to every possible rank of 11 

Pr[rank = r], r = 0, 1, 2. (46) 

This is equivalent to assigning prior probabilities to the different 
possible number of cointegration relations, r. The prior proba- 
bilities imply the following prior odds ratios (PRORs): 

Pr[rank = r] 
PROR(rj2) = r = 0, 1,2. (47) 

Pr[rank = 2]' 
The Bayes factor (BF) for comparing rank r with rank 2 equals 

f r(YTI yk, 
y 

r)Pr(Gr)dGr 
BF(rl2) = 2((yT - 2)p2(e2)d2, r = 0, 1, (48) 

where r(YTI Yk, Gr) denotes the unconditional likelihood 
function and pr(Or) denotes the joint prior of the model with 
rank r. The posterior odds ratio (POR) for comparing rank r 
with rank 2 equals the PROR times the BF, POR(rl2)= 
PROR(rl2) x BF(rJ2), and the posterior probabilities for each 
rank are simply 

rk T POR(rln) 
Pr[rank = r- Y- ] = or = 0, 1, 2. (49) 

y2i=0 POR(iJ2) 

The BFs in (48) are in fact BFs for 1 = 0 and = 0. They 
can be computed using the Savage-Dickey density ratio of 
Dickey (1971), which states that the BF for H = 0 (or . = 0) 
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equals the ratio of the marginal posterior density and the mar- 

ginal prior density of Il (X), both evaluated in [l = 0 (1X = 0), 

p(FlYT)ln=0 BF(012) = 
p(fI)ln=o 

(50) 
p(XlylTIx=o BF(112) = 

p(X) Ix=o 
This means that we need the marginal posterior densities of 

FI and A to compute these Savage-Dickey density ratios. The 

marginal posterior density of I1 can be computed directly from 
the Gibbs output by averaging the full conditional posterior dis- 
tribution of I1 in the point 0 over the sampled model parame- 
ters (see Gelfand and Smith 1990). This approach cannot be 
used for X, because the full conditional distribution of 1 is of 
an unknown type. To compute the height of the marginal pos- 
terior of 1, we may use a kernel estimator on simulated A val- 
ues (see, e.g., Silverman 1986). Another possibility is to use an 

approximation of the full conditional posterior of 1 in combi- 
nation with importance weights (see Chen 1994). Kleibergen 
and Paap (2002) argued that the density function g(lk 1l, yT) 
defined in (B.13) is a good approximation. This results in the 

following expression to compute the marginal posterior height 
at -= 0: 

1 N IJ(oi, 1,8)2x-=0oI 
p(jYT)jI=o N 

jJ(a', X, -21 g(Xl I, YT)10=o, 
i=1 YT)X=0, 

(51) 
where N denotes the number of simulations. Note that we can 
avoid the importance weights by using numerical integration to 
determine the integrating constant of the full posterior condi- 
tional distribution of 1 in every Gibbs step. 

Because we have a closed form for the prior density of FI, 
we can compute the prior height of Fl at nI = 0 directly. To 

compute the prior height of 1, we follow a similar procedure 
as for the posterior height. First, we sample from the prior of 
E and I1, given E. Next, we perform a singular value decom- 

position on the sampled I' (37), resulting in ' a' and P6. To 

compute the marginal prior height of X at 1 = 0, we may use a 
kernel estimator on the sampled 1'. Again, it is possible to use 
an approximation of the full conditional prior of 1 in combi- 
nation with importance weights. The prior height can be com- 
puted as 

1 N IJ(a1i, 1.,8•)1Ix=0 
p(1. =0 N -= IJ(-- , ", 1- i- h(kL Oi)lx=0, (52) 

i=1 

where h(AI?1) is an approximation of the full conditional prior 
distribution of 1. An appropriate candidate for h turns out to be 

h(X1 1l)= (2r)- 2 
lacIE-la' •afAI 1 

with 1 = (' Af) ' A(P- -? 

Finally, if we specifies an improper prior for Fl and 1, then 
the height of the marginal prior at Fl = 0 and . = 0 is not de- 
fined. Therefore, the BFs in (50) are not properly defined in 
cases of diffuse priors. Kleibergen and Paap (2002) argued that 

a Bayesian cointegration analysis under a diffuse prior specifi- 
cation on 1I is possible if one replaces the prior height by the 

factor (27)- (2-r)2. This leads to a BF that corresponds to the 
posterior information criterion (PIC) of Phillips and Ploberger 
(1994). We opt for the same solution in this article. 

8. U.S. CONSUMPTION AND INCOME 

In this section we analyze the presence of a long-run rela- 
tion between the U.S. per capita consumption and income se- 
ries considered in Section 3. We first start in Section 8.1 with 
a simple analysis of cointegration between the two series in a 
VAR with a linear deterministic trend to illustrate the effects 
of neglecting the presence of a possible Markov trend in the 
series. In Section 8.2 we analyze the presence of a long-run re- 
lation between consumption and income using the multivariate 
Markov trend model proposed in Section 4. 

8.1 A Vector Autoregressive Model Without 
Markov Trend 

If we restrict Fi and 31 in the Markov trend model (21) to 0, 
then we end up with a VAR for Yt with only a linear determinis- 
tic trend. In this section we analyze the presence of a cointegra- 
tion relation between U.S. per capita consumption and income 
in this VAR for Yt = 100 x (Inct, Inyt)'. The priors for N1 and 
E are given by (29) and (30), with S = I and v = 3. For 11, 
given E, we opt for a g-type prior (see Zellner 1986). This prior 
is given in (44) with P = 0 and A = r/T •ET=i Y'Yt for differ- 
ent values of r, where Yt denotes the demeaned and detrended 
value of Yr. Because we are dealing with nonstationary time se- 
ries, we divide by the number of observations, T (see Kleiber- 

gen and Paap 2002 for a similar approach). A smaller value of 
r implies less precision in the prior information on 111E. For 
To and 4i we take flat priors p(Fo) oc 1 and p(4Qi) o 1. 

Before beginning our analysis, we must choose the lag order 
k of the VAR model. To determine the lag order, we sequen- 
tially test for the significance of an extra lag using PIC-based 
Bayes factors starting with k = 1. Given this strategy we find 
that k = 2. We note that the same lag order is found using the 

Bayes information criterion (BIC) of Schwarz (1978) to deter- 
mine k. For the cointegration analysis, we assign equal prior 
probabilities to the possible cointegration ranks (46), that is, 
Pr[rank = r] = 1 for r = 0, 1, 2. The prior for a and 82 for the 

cointegration specification (rank=1) is given by (45). 
Columns 2-7 in the first panel of Table 1 shows log BFs and 

posterior probabilities for the cointegration rank r for different 
values of t. The results show that a model with a rank of I 
of 0 or 1 is preferred over a model with full rank for FI. The 
log BFs computed for the model with rank 0 versus the model 
with rank 1 are 4.20 (6.69-2.49), 7.64, and 11.09 for r equal to 
1, .1, and .01. Hence the model with no cointegration relation 
is preferred over the model with 1 cointegration relation. The 
BFs lead to the assignment of 98% posterior probability to the 
model with no cointegration relation if r = 1 and 100% for the 
other values of t. In sum, there is no evidence for a long-run 
equilibrium between U.S. per capita consumption and income 
in a VAR model with only a linear deterministic trend. [The 
standard trace tests for rank reduction (Johansen 1995) also do 
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Table 1. Log BFs and Posterior Probabilities for the Cointegration Rank in a Linear VAR Model (k = 2) 
and the Multivariate Markov Trend Model (k = 1) 

= 1 r=.1 r =.01 PIC 
r In BF(rj2) Pr [rl YT] In BF(rl2) Pr[rl YT] In BF(rl2) Pr[rlYT] In BF(rj2) Pr [rl YT] 

Linear VAR model 
0 6.69 .98 11.28 1.00 15.88 1.00 11.66 1.00 
1 2.49 .02 3.64 0 4.79 0 4.55 0 
2 0 0 0 0 0 0 0 0 

Multivariate Markov trend model 
0 < -5 0 < -5 0 < -5 1.00 < -5 0 
1 1.82 .86 2.98 .95 4.27 .99 3.96 .98 
2 0 .14 0 .05 0 .01 0 .02 

NOTE: A log BF, In BF(rl2) > 0, denotes that a cointegration model with r cointegration relations is more likely than a model with two cointegration relations. The posterior 
probability of the cointegration rank, Pr [rl YT], is defined in (49) and based on equal prior probabilities (46) for every rank r. Posterior results are based on 400,000 iterations 
with the Gibbs sampler, neglecting the first 100,000 draws. 

not indicate the presence of a cointegration relation between the 
two series.] Unreported results show that this finding is robust 
with respect to the chosen lag order. The log BFs for models 
with order 2 < k < 5 are very similar to those reported in Ta- 
ble 1. 

The results in Table 1 show that if we increase the prior vari- 
ance of lI by decreasing r, then the evidence for rank reduc- 
tion, and hence the presence of unit roots, increases. This is due 
to the fact that our prior is centered at Il = 0. When we in- 
crease the prior variance, the prior height at HI = 0 decreases. 
The posterior height at En = 0 remains almost the same, be- 
cause the value of r is so small that the prior has only a mini- 
mal effect on the posterior. From Section 7, we have seen that 
the BF for 1- = 0 equals the ratio of the posterior and prior 
heights at EI = 0, and hence that too small a value of r leads 
to rank reduction being favored, no matter what the nature of 
the sample evidence. This phenomenon is known as the Lind- 
ley paradox (see Zellner 1971). In the second-to-last column of 
the first panel of Table 1, we report the log BFs for improper 
priors on 1I and E, that is, p(1, E) ocX I 1-. Under this prior 
specification, BFs are not defined properly. Instead, we report a 
PIC-based BF, where we replace the prior heights in (50) by the 

penalty function (2r)- (2-r)2. These BFs again indicate that 
rank reduction is preferred to the full-rank case and lead to the 
assignment of 100% posterior probability to the model with no 
cointegration relation. 

With no cointegration imposed, the estimated VAR model is 

Yt = it + tl 

481.70 .63 
(.69) (.06) N 469.61 + .68 

(1.03) (.07) 

1.11 .08 -.09 -.11 
(.10) (.06) + (.10) (.06) Zt .59 .94 Z +-.47 -.07 Zt-2 (54) 
(.16) (.10) (.16) (.10) 

+ ?t, with 

.48 .45 
(.06) (.07) 
.45 1.14 ' 

(.07) (.13)) 

where the point estimates are posterior means based on the im- 
proper prior specification discussed earlier and posterior stan- 
dard deviations are given in parentheses. Note that this model 
is equal to (13)-(17) with F1 = 0, 31 = 0, and k = 1. The poste- 
rior means of the slopes of the deterministic trends in the con- 
sumption and income series are .63% and .68%. They differ by 
about .01% from the average quarterly growth rates reported in 
Section 3. Note that this difference is small compared with the 
posterior standard deviations of the slopes. 

8.2 A Bivariate Markov Trend Model 

The VAR model with a deterministic trend assumes that the 
quarterly growth rates of consumption and income are constant 
over time. However, the stylized facts suggest that the long- 
run average quarterly growth rates are roughly the same, but 
there may be different growth rates in both series during ex- 
pansions and recessions. To allow for the possibility of differ- 
ent growth rates in consumption and income during recessions 
and expansions, we consider the Markov trend model (21). The 
prior for the model parameters is given by (29)-(34) with S = I 
and v = 3. For 11 given E, we again use the same g-type prior 
as for the non-Markov model. The prior is given in (44) with 
P = 0 and A = -r/T 1 YYt, where Pt denotes the demeaned 
and detrended value of Yt. 

Again, we perform a cointegration analysis, but now we an- 
alyze, the presence of a cointegration relation in the deviations 
from a Markov trend instead of a deterministic trend. To deter- 
mine the lag order of the VAR part of the model, we use the 
same strategy as for the non-Markov model. It turns out that 
one lag is sufficient, and hence we impose k = 1. We assign 
equal probabilities to the possible cointegration ranks, that is, 
Pr[rank = r] = 1 for r = 0, 1, 2. The prior for a and f2 for the 
cointegration specification (r = 1) is given by (45). Columns 
2-7 of the second panel of Table 1 report the log BFs and pos- 
terior probabilities for the rank of 11 for different values of r. 
Comparing the corresponding results in the first panel, where 
we show the results for the model without Markov trend, we 
see that all log BFs are smaller. Not surprisingly, there is more 
posterior evidence for rank reduction if we allow for a Markov 
trend instead of a deterministic trend. For all values of r, the 
model with two unit roots (r = 0) is clearly rejected against 
both the cointegration (r = 1) and the Markov trend stationary 
(r = 2) specifications. The posterior probabilities assign more 
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than 86% posterior probability to the cointegration specifica- 
tion. For r = .01, we find the least evidence for cointegration, 
although the evidence is certainly not weak. As discussed ear- 
lier, under this prior specification we a priori favor the presence 
of two unit roots and no cointegration, because the prior height 
at Il = 0 in the second BF in (50) is relatively small. The fi- 
nal two columns of the second panel of Table 1 refer to the 
case where we impose an improper prior on Il and E. We re- 
port again a PIC-based log BF, where replace the prior heights 
in (50) by the penalty function (27r)-1(2-r)2 The log BFs im- 
ply an assignment of 98% posterior probability to the cointe- 
gration specification. 

Overall, the BF analysis suggests that the multivariate 
Markov trend model with one cointegration relation [(23)] is 
suitable for modeling the logarithm of U.S. per capita consump- 
tion and income. The estimated model is given by 

Yt =Nt + Rt + Zt, 

481.89 .83 .60 
(.63) (.13) (.21) t N 469.85 1.16 1.33 sig 
(.81) (.17) (.20) i=2 

Rt = (.22) st, (55) 
0 

.24 

(.08) AZ = i.55 (1 -.81)Zt-1 +E t, with 
(.19) 

.40 .26 
(.06) (.07) 
.26 .66 ' 

(.07) (. 11) 
where the point estimates are posterior means and posterior 
standard deviations appear in parentheses. Because the poste- 
rior distribution of 02 may have Cauchy-type tails, we report 
the posterior mode. (This is also done for other posterior quan- 
tities involving 82.) The posterior means of the transition prob- 
abilities equal 

= .86 (.05) and = .76 (.10). 

The posterior results are based on the prior specification (29), 
(31)-(34), p(s) oc IK1-1, and p(a, 821z) oC IJ(a,,, 82)Ix=0 
and are obtained by including a Metropolis-Hastings step in 
the Gibbs sampler to sample a and 82; see Appendix B. The 
candidate draw for a and r2 was accepted in about 70% of 
the iterations. Note that a noninformative prior does not lead 
to problems if one just wants to estimate the model parameters 
without testing the rank. 

Figure 3 shows the posterior density of f2. The posterior 
mode of the cointegration relation parameter is -.81. The 95% 
highest posterior density (HPD) region for /2 is (-1.05, -.65), 
and hence -1 is included just in this region. There is only 
weak evidence for the consumption-income relation (9). The 
adjustment parameters .24 and .55 are both positive, which in- 
dicates that there is no adjustment toward equilibrium for the 
consumption equation. Note that this does not imply that the 
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Figure 3. Posterior Density of f2. 

series move away from the equilibrium, because the adjustment 
of income toward equilibrium is larger than the nonadjustment 
in consumption (see also Johansen 1995, pp. 39-42). 

The posterior mean of the 81 parameter equals .15. The 95% 
HPD region for this parameter is (-.31, .59), and hence it is 
very likely that 81 equals 0. The posterior means of the quar- 
terly growth rates of the income series are 1.16% during an 
expansion regime and -.17% (1.16-1.33) during a contraction 
regime. For the consumption series, we get .83% and .23% 
(.83-.60). Hence during recessions, the growth rate in con- 
sumption is larger than the negative growth rate in income. To 
correct for this difference in the growth rates, the growth rate 
in income has to be larger than the growth rate in consumption 
during expansions. 

Reduced-rank Markov trend cointegration (TIF1 = 0) is not 
likely, because the posterior mode of 'rF1 equals .44 and its 
95% HPD region is (.20, .89). The 95% HPD region of f'ro 
is (-.39, .37) with a posterior mode of -.08. Hence the exis- 
tence of a consumption-income relation (9) requiring that both 

f'rF1 and f'ro equal 0 is not likely. On the other hand, the re- 
sults suggest that during recession periods, the growth rate in 

consumption is larger than in income, which is compensated 
for in the expansion periods, where income grows faster than 
consumption. 

The expected slope of the Markov trend equals Fo + F1 (1 - 

p)/(2 - p - q) (see Hamilton 1989). The posterior mean of the 
expected slope of the Markov trend is .65% for the income se- 
ries and .60% for the consumption series. These values differ 
by only .02 from the average quarterly growth rates reported in 
Section 3. The 95% HPD region of the expected slope of the 
Markov trend in the cointegration relation is (-.10, .46), and 
the posterior mode equals .08. During recessions the posterior 
mode of the growth of the cointegration relation t'(Fo + [1) 
is .34 (.21, .62), whereas during expansions it equals -.08 
(-.39, .37) as reported before. 

Finally, we analyze how the estimated Markov trend relates 
to the NBER turning points. The posterior mean of the proba- 
bility of staying in the expansion regime is .86, which is larger 
than the posterior mean of the probability of staying in a re- 
cession, .76. The posterior probability that p is larger than q 
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Figure 4. Posterior Expectations of the State Variables E[stl yT]. 

is .88, which indicates the existence of an asymmetric cycle. 
Figure 4 shows the posterior expectations of the states variables, 
E[st I yT]. Values of these expectation close to 1 correspond to 
recessionary periods. Figure 5 shows the difference between the 
logarithm of U.S. income and consumption. The shaded areas 
correspond to the recessionary periods, where the growth rate 
in consumption is larger than the growth rate in income. 

Table 2 indicates the estimated peaks and troughs based on 
the posterior expectation of the states variables together with 
the official NBER peaks and troughs. We define a recession by 
two consecutive quarters for which E[st I yT] > .5. A peak is 
defined by the last expansion observation before a recession; a 
trough, by the last observation in a recession. We see that the 
estimated turning points correspond very well with the official 
NBER peaks and troughs. However, we detect two extra reces- 
sionary periods that do not correspond with official reported 
recessions. Remember that the consumption income analysis 
in this article is based on per capita disposable income. Look- 
ing at the government purchases on goods and services used 
to create the disposable income series, we see that government 
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Figure 5. Difference Between Log U.S. Per Capita Consumption and 
Income. The shaded areas correspond to recessionary periods. 

Table 2. Peaks and Troughs Based on the 
Posterior Expectations of the Unobserved 

State Variables 

U.S. NBER 
Peak Trough Peak Trough 

1960.1 1960.4 1960.2 1961.1 
1966.1 1967.4 
1968.2 1970.4 1969.4 1970.4 
1973.2 1975.1 1973.4 1975.1 
1979.3 1980.2 1980.1 1980.3 
1981.3 1982.4 1981.3 1982.4 
1984.4 1987.3 
1989.2 1991.1 1990.3 1991.1 

NOTE: A recession is defined by two consecutive quarters 
for which E[stl yT] > .5. A peak corresponds with the last 
expansion observation before a recession, a trough, with the 
last observation in a recession. 

expenses increase during recessions, resulting in an extra de- 
crease in disposable income. However, there was also a large 
increase in government expenses during the two periods incor- 
rectly reported as recessions. This resulted in a small decline or 
a smaller growth in disposable income during these two peri- 
ods, which explains the detection of the two extra recessions in 
our data. 

In summary, the multivariate Markov trend model provides a 
good description for the U.S. per capita income and consump- 
tion series. The multivariate Markov trend captures the differ- 
ent growth rates in both series during recession and expansion 
periods. After detrending with the Markov trend, we detect a 
stationary linear combination between log per capita income 
and consumption. This cointegration relation is not found if we 
use a regular deterministic trend instead of a Markov trend for 
detrending. 

9. U.S. CONSUMPTION, INCOME, 
AND INVESTMENT 

In the previous section we showed the existence of a cointe- 
gration relation between log per capita income and consump- 
tion only if a Markov trend is allowed for. We may investigate 
whether the inclusion of a third variable with a more pro- 
nounced cyclical pattern can help improve the model. There- 
fore, in this section we consider a multivariate Markov trend 
model for per capita real disposable income, private consump- 
tion, and private investment in the U.S., 1959.1-1999.4. The 
consumption and income series are the same as in the previous 
section. The investment series was also obtained from the Fed- 
eral Reserve Bank of St. Louis. Figure 6 shows a plot of the log 
of the three series. The investment series clearly demonstrates 
a more pronounced cyclical pattern than the other two series. 

To describe the three series, in Section 9.1 we consider a 
VAR model without a Markov trend. In Section 9.2 we intro- 
duce the multivariate Markov trend in the model, where we al- 
low the growth rates in the three series to be different across the 
series and across the stages of the business cycle. 

9.1 A Vector Autoregressive Model Without 
Markov Trend 

In this section we analyze the presence of a cointegration 
relations in a VAR model without Markov trend [FI = 0 and 



558 Journal of Business & Economic Statistics, October 2003 

-3.5 

-4.0 - ... 

-4.5- 

-5.0- 

-5.5 - " 

/ 

-6.0- ' - , 

-6.5 - ,,f" 

-7.0 
60 65 70 75 80 85 90 95 

Figure 6. Logarithm of U.S. Per Capita Consumption (--), In- 
come ( - - ), and Investment (-- - -), 1959.1-1999.4. 

S1 = 0 in (21)] for Yt = 100 x (In ct, Inyt, Init)', where it de- 
notes per capita investment series. The priors for model para- 
meters are the same as in the previous example. The priors for 

N1 and E are given by (29) and (30), with S = I and v = 4. 
The g-type prior for H given E is given in (44) with P = 0 and 
A = r/T T1 Y•t for different values of r, where Yt denotes 
the demeaned and detrended value of Yt. For Fo and (i we take 
flat priors p(ro) oc 1 and p(ci) oc 1. 

The lag order determination is done in the same way as in 
Section 8. The resulting order is 2, which is also obtained if the 
BIC is used to determine k. The Bayesian cointegration analysis 
is a multivariate extension of the analysis in Section 7. The prior 
for a and 82 for the cointegration specifications (ranks 1 and 2) 
are similar to (45). We assign equal prior probabilities to the 

possible cointegration ranks (46), that is, Pr[rank = r] = 1 for -4 
r = 0, 1, 2, 3. 

The first panel of Table 3 displays the log BFs together with 
the posterior probabilities for different values of t. For all val- 
ues of -, the BFs lead to 100% probability of a VAR model 
with 1 cointegration relation. [The standard Johansen (1995) 
trace tests do not indicate the presence of a cointegration re- 
lation between the three series if the deterministic trend is re- 

stricted within the cointegration space.] This is also true if one 
chooses to consider the PIC-based BFs. 

The posterior results suggests that we must consider a 
VAR(2) model with 1 cointegration relation. The estimated 
model is given by 

Yt = Nt +Zt, 
481.78 .70 

(.69) (.13) 
470.22 .74 Nt = - (1.08) + (.17) (t - 1) 

651.48 .84 
(4.28) (.52) 

.03 
(.04) 

At_ (.01 (.07) (1 -.95 .24)Zt_1 (56) 

-.22 
(.34) 

.20 -.07 .04 
(.14) (.16) (.03) 
.68 -.17 .04 AZtwith 

(.21) (.25) (.05) 
3.80 -.98 .18 
(.86) (.98) (.20) 

.49 .46 .61 
(.06) (.07) (.25) 
.46 1.19 3.91 

(.07) (.14) (.50) 
.61 3.91 18.37 

(.25) (.50) (2.15) 

where again the point estimates are posterior means (except for 
the cointegration relation parameters) and posterior standard 
deviations are given in parentheses. The posterior results are 
based on a diffuse prior specification. The posterior modes of 
the cointegration relation parameters are -.95 for the consump- 
tion series and .24 for the investment series. The corresponding 
95% HPD regions are (-.47, 1.07) and (-2.19, .04). Note that 
the HPD regions are quite large, which is due to the relatively 
small values of the adjustment parameters. 

Table 3. Log BFs and Posterior Probabilities for the Cointegration Rank in a Linear VAR Model (k = 2) 
and the Multivariate Markov Trend Model (k = 1) 

= 1 r=.1 r =.01 PIC 
r In BF(rl3) Pr[rl YT] In BF(rl3) Pr[rl YT] In BF(rl3) Pr [rl YT] In BF(rl3) Pr [rl YT] 

Linear VAR model 
0 < -5 0 < -5 0 < -5 0 < -5 0 
1 14.75 1.00 10.15 1.00 5.58 1.00 15.23 1.00 
2 2.30 0 1.15 0 .01 0 3.06 0 
3 0 0 0 0 0 0 0 0 

Multivariate Markov trend model 
0 < -5 0 < -5 0 < -5 1.00 < -5 0 
1 15.54 1.00 9.58 1.00 5.28 0.99 14.93 1.00 
2 2.47 0 1.39 0 .27 .01 3.33 0 
3 0 0 0 0 0 0 0 0 

NOTE: A log BF, In BF(rl3) > 0, denotes that a cointegration model with r cointegration relations is more likely than a model with three cointegration relations. Posterior 
results are based on 400,000 iterations with the Gibbs sampler, neglecting the first 100,000 draws. 
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The posterior means of the slope parameters of the consump- 
tion and income series are somewhat larger than for the bivari- 
ate model discussed in Section 8.1. The posterior mean of the 

slope parameter of the investment series corresponds reason- 

ably well with the average quarterly growth rate of the series 

equal to .89%. 

9.2 A Multivariate Markov Trend Model 

To allow for the possibility of different growth rates across 
the series and across the stages of the business cycle, we con- 
sider the Markov trend model (21). We take similar prior distri- 
butions as for the bivariate model in Section 8.2. Hence the prior 
distributions for the model parameters are given by (29)-(44) 
with S= I, v= 4, P= 0, and A = r/T t=l YYt, where Yt 
denotes the demeaned and detrended value of Yt. 

The lag order selection procedure for the VAR part of the 
model results in k = 1. The priors for a and r2 for the coin- 

tegration specifications are similar to (45). We again assign 
equal probabilities to the possible cointegration ranks, that is, 
Pr[rank = r] = 4 for r = 0, 1, 2, 3. The second panel of Table 3 

reports the log BFs and posterior probabilities for the rank of Hl 
for different values of -r. The values of the log BFs are similar to 
the values in the first panel of the table. Hence adding a Markov 
trend to the model does not change the posterior probabilities 
concerning the number of cointegration relations. 

The selected model by the BF is a VAR(1) model with one 

cointegration relation. The estimated model is given by 

Yt = Nt+ t + Zt, 

481.95 0.86 / .66 
(.61) (.11) (.16) 

469.78 1.15 1.32 
Nt= (.79) + (.15) (.16) Si 

648.54 2.80 5.12 i=2 

(3.03) (.49) (.62) 

.34 
(.14) 

t = (.14)st, (57) 
0 

.22 
(.07) 
50 AZ= .50) (1 -.71 -.06)Zt-1 +t, with 

2.02 
(.64) 

.40 .27 -.15 
(.05) (.06) (.22) 
.27 .72 2.21 

(.06) (.11) (.41) ' 
-.15 2.21 12.72 
(.11) (.41) (1.93) 

where again the point estimates are posterior means and poste- 
rior standard deviations are given in parentheses. The posterior 
results are based on a diffuse prior specification. The posterior 
means of the transition probabilities equal 

t=.86(.05) and = .76(.10), 

which are equal to those of the bivariate Markov trend model in 
Section 8.2. 

The posterior modes of the cointegration relation parameters 
are -.71 for the consumption series and -.06 for the invest- 
ment series. The corresponding HPD regions are (-1.00, -.35) 
and (-.18, .06), which are clearly smaller than those for the 
linear VAR specification. The adjustment parameters are more 
than two posterior standard deviations away from 0, and hence 
the cointegration relation seems more relevant than in the model 
without the Markov trend. The HPD region of the cointegration 
relation parameter for investment contains 0, suggesting that 
any contribution of investment to the cointegration relation is 
of minor importance. 

The posterior means of the Markov trend parameters of the 

consumption and income series are almost the same as those 
for the bivariate model in Section 8.1. For the investment se- 
ries, the posterior mean of the quarterly growth rate is 2.80% 
during expansions and -2.32% during recessions (2.80-5.12). 
Reduced-rank Markov trend cointegration (6'rl1 = 0) is again 
not very likely, because the posterior mode of f'rl equals .45, 
and its 95% HPD region is (.19, .99). 

In sum, we have seen that BFs suggest one out of three pos- 
sible cointegration relations in a VAR model with deterministic 
trend for per capita consumption, income, and investment. This 
implies that there are still two unit roots remaining in the sys- 
tem, as was also the case in our bivariate specification in Sec- 
tion 8. Although BFs suggest the presence of one cointegration 
relation, the relevance of the error correction term is small. If we 
turn to a multivariate Markov trend model, then the error correc- 
tion term becomes more relevant, and the contribution of invest- 
ment to the cointegration relation is negligible. The inclusion of 
a Markov trend now does not lead to a decrease in the number 
of unit roots in the system as in the bivariate case. Although in- 
vestment seems to partly replace the role of the Markov trend in 
the linear VAR, the posterior results of the Markov trend model 
role suggest that the Markov trend remains important. 

10. CONCLUSION 

In this article we have proposed using a multivariate Markov 
trend model to analyze the possible existence of a long-run re- 
lation between U.S. per capita consumption and income. The 
model specification was based on suggestions by simple eco- 
nomic theory and a simple stylized facts analysis on both se- 
ries. The model contains a multivariate Markov trend specifi- 
cation that allows for different growth rates in the series and 
different growth rates during recessions and expansions. The 
deviations from the multivariate Markov trend are modeled by 
a VAR model. We have chosen a Bayesian approach to analyze 
U.S. series with the multivariate Markov trend model. BFs are 
proposed to analyze the presence of a cointegration relation in 
the deviations of the series from the multivariate Markov trend. 

The posterior results suggest that there a stationary linear re- 
lation exists between log per capita consumption and income 
after correcting for a Markov trend. The Markov trend mod- 
els the different growth rates in both series during recessions 
and expansions. The growth rate in consumption is larger than 
the negative growth rate in income during recessions. To com- 
pensate for this difference, the growth rate in income is larger 



560 Journal of Business & Economic Statistics, October 2003 

than the growth rate in consumption during expansion periods. 
Replacing the Markov trend with a deterministic linear trend, 
the posterior results do not indicate the presence of a stationary 
linear relation between both series. 

To analyze the robustness of our approach, we included per 
capita investment in the model, because this series has a more 

pronounced cyclical pattern. Hence we considered a multivari- 
ate Markov trend model for log per capita consumption, in- 
come, and investment series. The posterior results suggest the 

presence of only one cointegration relation between the three 
series. This result is found for both the Markov trend and the 
linear deterministic trend specification. Hence, adding a possi- 
ble nonstationary variable to the Markov trend model does not 
increase the number of cointegration relations in the system. Al- 

though BFs suggest cointegration in the linear VAR model with 
deterministic trend, the posterior standard deviations of the ad- 

justment parameters show that the cointegration relation is of 
minor importance. In the multivariate Markov trend model, the 
error correction term is more relevant, and investment does not 
make a significant contribution to the cointegration relation. 

We end the article with some suggestion for further research. 
The multivariate Markov trend model that we have proposed 
is linear in deviation from the Markov trend. Possible coin- 

tegrating vectors and adjustment parameters are not affected 

by regime changes. We may, however, also allow the adjust- 
ment parameters or the cointegrating vector to have different 
values over the business cycle. This implies a nonlinear error- 
correction mechanism in consumption and income (see also 
Peel 1992). It is then even possible that the series are cointe- 

grated only in expansions and not in recessions. Testing for the 

presence of cointegration in the different regimes may be dif- 
ficult, however, because the number of observations for reces- 

sionary periods is usually very small. Furthermore, the dynamic 
properties of such models are not easy to derive (see Holst, 
Lindgren, Holst, and Thuvesholmen 1994; Warne 1996). Fi- 

nally, we may also consider alternative multivariate nonlinear 
models, like threshold models, to analyze the consumption and 
income series (see, e.g., Granger and Terisvirta 1993; Balke 
and Fomby 1997). 

APPENDIX A: JACOBIAN TRANSFORMATION 

Here we derive the Jacobian of the transformation from 11 

to (ca, , i2) for a two-dimensional VAR model. (For larger di- 
mensions, see Kleibergen and Paap 2002.) Define a = (acl, c2), 
where at and Y2 are scalars and 02 = --c2/c1 such that a = 

ail with 0 = (1 - 02)'. For notional convenience, the deriva- 
tion of the Jacobian of the complete transformation from 1 to 
(al, , E, , f2) is split up in the Jacobian of the transformation 
of I to (a•, 2, 0 , f12) and then the transformation of 02 to a2. 
Because 0_ e •I, we can write 

n = a + a 
0 

72; 
+U22)(Q!1 

0) (A.1) 

( 

1 
-P2 

2 

1T21/ 

=Q 
1 

-2 2 + - 212 02 

(1 + 02)(1 + fiE 
The derivatives of TI with respect to a1, 02, X, and f2 are 

1 
a vec(1) -02 

1 a Xal t -fi2 

0 

J2 =0 + 
afl2 2)(I2) 

00 2 + 2/( 1 + 2 2) 
S2 02 / ( 10+ 022) 

x 1 - 02 /(1 +022 
2 2 

-021/(1 +022) 
(A.2) 

-02fl2 
a vec(l) 1 

-f2 J302 
(1+0 + fi2 1 

a vec(l-) 0 X 

J4 -1 + + 

0 -02fl 2/(1 + -f2) 
S+2 

2 

The Jacobian from 02 to a2 is simply 

a02 1 
G 02 (A.3) 

a82 Q i 

Hence the Jacobian for the total transformation is 

J(0a, X, 02) = IJ1 J2 J3 J41 IGI. (A.4) 

APPENDIX B: FULL CONDITIONAL 
POSTERIOR DISTRIBUTIONS 

B.1 Full Conditional Posterior of the States 

To sample the states, we need the full conditional posterior 
density of st, denoted by p(stls-t, e2, yT), t = 1, ..., T, where 
s-t = sT\{st}. Because st follows a first-order Markov process, 
it is easily seen that 

p(st s-t) o p(stlst-1)p(st+l st), (B.1) 

due to the Markov property. Following Albert and Chib (1993), 
we can write 

p(stls-t, (2, yT) 

p(stls-t, 02, Yt)f(Yt+l,..., YTIYt t, s-t, st, 02) 
f(Yt+l ..., YTIYt, s-t, 02) 

o< p(st s-t, 02, Yt)f(Yt+l, .... YT IYt -t, St, 02). (B.2) 
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Using the rules of conditional probability, the first term of (B.2) 
can be simplified as 

p(stls-t, 02, yt) 

OC p(stls-t, 62, yt-1)f(Yt, St+l, ... STI Yt-1, st, 02) 

oc p(stlst-1, 62)f(Yt yt-1, St, 02) 

x p(st+l1St, O2, yt)p(St+2, .... STISt+l, 02, yt) 

oc p(stist-1, 92)f(Ytlyt-1, st, E2)p(st+- 1St, E2), (B.3) 

where we use the fact that {St+2, ... STr is independent of st 
given st+l. The second term of (B.2) is proportional to 

T 

f(Yt+1 ..., YrlYt, st', 012) Oc H f(Yiyi-'1, Si', 2)" (B.4) 
i=t+l 

Next, using (B.3) and (B.4), the full conditional distribution of 
st for t = k + 1 ...., T is given by 

p(stis-t, 02, yT) 

T 

ocp(stist-1, 02)p(St+l St, 02) f(yiIyi-1, Si, 02), (B.5) 
i=t 

where f(Yt Yt-l, st, 82) is defined in (24) and the constant of 
proportionality can be obtained by summing over the two pos- 
sible values of st. At time t = T, the term p(srT+l ST, 02) drops 
out. The first k states can be sampled from the full conditional 
distribution, 

p(stIS-t, 62, yT) oc p(st st-1, 02)p(St+l ISt, 82) 

T 

x H f(Yiyi-' si' e2), (B.6) 
i=k+1 

for t = 1,..., k, where at time, t = 1, the term p(stIst-1, 02) 
is replaced by the unconditional density p(s 112), which is a 
binomial density with probability (1 - p)/(2 - p - q). 

As Albert and Chib (1993) showed, sampling of the state 
variables is easier if HI = 0. Under this restriction, only the first 
(k - 1) future conditional densities of Yt depend on st instead of 
all future conditional densities. However, sampling is possible 
in the same way; take the most recent value of sT and sample 
the states backward in time, one after another, starting with ST. 
After each step, the tth element of sT is replaced by its most 
recent draw. 

B.2 Full Conditional Posterior of p and q 

From the conditional likelihood function (25), it follows that 
the full conditional posterior densities of the transition parame- 
ters are given by 

p(plsT, 02\ P , yT) C pNoo (1 - p)o,l 

(B.7) 
p(q5sT, 82\{q}, yT) c qA/11(1 - q)K?1,0 

where Aij again denotes the number of transitions from state 
i to state j. This implies that the transition probabilities can be 
sampled from beta distributions. 

B.3 Full Conditional Posterior of E 

It is easy to see from the conditional likelihood (25) that the 
full conditional posterior of E is proportional to 

p(E IsT, 62\E, yT) OC IE i-(T-k+2+) 

x exp 2 trE-1(S-+ (Y1 -N1)(Y1 -N1)'-+ EtE , 
t=k+l 

(B.8) 

and hence the covariance matrix E can be sampled from an 
inverted Wishart distribution (see Zellner 1971, p. 395). 

B.4 Full Conditional Posterior of N1, Fo, and F1 

To derive the full conditional posterior distribution of NI, ['o, 
and F i, we write (21) as 

LE 2 (L)Yt=E-D (L) Fo(t-1)+Fl si+Nl) +E-"et 
i=2 

k (IJ(t - 1) 

=- LDIj(Fo 01 Ni) Lj E=2 Si 
j=1 1 

+E-•2st, (B.9) 

where (D0 = -I. Without the 4j matrices, we have a multivari- 
ate regression model in the parameters N1, Fo, and Fi, and the 
full conditional distribution would be matrix normal. To reverse 
the order of Q>(L) and the parameters (Fo 'o Ni1), we apply the 
vec operator to both sides of (B.9). Using the vec notation and 
the fact that vec(ABC) = (C' 0 A) vec(B), we can write (B.9) 
as a linear regression model, and hence the full conditional dis- 
tributions of vec(Ni), vec(Fo), and vec(rl) are normal. 

B.5 Full Conditional Posterior of S1 

We write (21) as 

L,-2(L)(Yt - Nt) = 1,- (L)'R\t + E•2t, (B.10) 

with o = -I. Applying the vec operator to both sides leads to 
a standard regression model with regression parameter S1. The 
full conditional posterior of S1 is therefore normal. 

B.6 Full Conditional Posterior of nI and ( 

To sample from the full conditional posterior of the autore- 
gressive parameters, we use the fact that conditional on 1o, FI, 
N1, and the states {st}T=1, (21) can be seen as a multivariate re- 
gression model in the parameters I and I. From Zellner (1971, 
chap. VIII), if follows that the full conditional posterior distrib- 
ution of the parameter matrices are matrix normal. A draw from 
the full conditional distribution of X can be obtained by per- 
forming a singular value decomposition on the sampled I and 
solving for X using (39). 
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B.7 Sampling of oa and f2 

To derive the full conditional posterior distributions for aO 
and /2 we rewrite (23) such that conditional on 1, N1, Fo, FIl, 
and the states {stIt=1, it resembles a simple VAR(1) model. Us- 
ing Zt = Yt - Nt - Rt-1, we can write 

k-1 

AZt - DiAZt-i = afi'Zt-1 + st, 

i=1 (B.11) 
AZt* = 0a'Z1t + et, 

where AZ* = AZt - Ek-=1 DiAZt-i and Zt41 = Yt-1 -Nt-1 - 
Rt-1. It is easy to see that the full conditional posterior dis- 
tributions of ao and /2 are nonstandard. Therefore, Kleibergen 
and Paap (2002) proposed a Metropolis-Hastings algorithm to 

sample aot and 182 in this simple VAR model. Chib and Green- 

berg (1994, 1995) showed that it is possible to build such a 

Metropolis-Hastings algorithm into the Gibbs sampling pro- 
cedure. The Metropolis-Hastings algorithm step works as fol- 
lows. First, draw in iteration i of the Gibbs sampler "i from 
its full conditional posterior distribution. Perform a singular 
value decomposition on 1I and solve for aoti, Xh and /i8 us- 

ing (39). Now accept this draw of aO and /8 with probability 

min(w(a•t 6) 1), where i denotes the current draw, i - 1 

denotes the previous draw, and 

w(aOt, X, fi2)O= 1g( [l, yT) X=o, (B.12) 
AIJ(ot, , 2) 

where 

g(Xle1, YT) = (27r) IC l aE- I2 loj i (A +Z*'fIZ*i )I 

x exp( tr(((i(A +- Z*'1 Z* 1)Pf)(x - 
x exp - _, I)( --) 

X (Ot•_ E-lot)(X --B)),13) 

with 

i = (i(A + Z f ZIl) fi(A(P -fa') 
+Z*_ (AZ* - Z*I a')) -' a1tL (aOt E- a1 O- (B.14) 

S= (Z ... Z_l)', and AZ* = (AZk1 ... AZ)'. If the 

draw of a! a nd ,6 is rejected, then one must take the previous 

draw, that is, ati =oi-1 and Bi = B-1. 
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