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Abstract

In this paper, we make use of state space models to investigate the presence of
stochastic trends in economic time series. A model is specified where such a trend can
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based on the former are analogous to Dickey—-Fuller tests of unit roots, while the latter
are analogous to KPSS tests of trend stationarity. We use Bayesian methods to survey
the properties of the likelihood function in such models and to calculate posterior
odds ratios comparing models with and without stochastic trends. We extend
these ideas to the problem of testing for integration at seasonal frequencies and
show how our techniques can be used to carry out Bayesian variants of either the
HEGY or Canova-Hansen test. Stochastic integration rules, based on Markov
Chain Monte Carlo, as well as deterministic integration rules are used. Strengths and
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1. Introduction

State space models have been widely used for the analysis of time series in
many fields in the physical and social sciences. The literature on state space
modelling is extensive. Influential references include Harvey (1989), Aoki (1990),
Nerlove et al. (1979) and West and Harrison (1997). Such time series models can
also be used to analyze so-called stochastic trends in macroeconomic and
financial data. Stock and Watson (1988) offer an expository survey of stochastic
trend behavior in economic time series. One of the models they focus on is a type
of state space model.

In this paper, we use state space models and Bayesian methods to investigate
whether stochastic trends are present in economic time series. In classical
econometrics, a large number of tests have been developed which test for
stochastic trends (see the survey by Stock (1994) or see Dickey and Fuller
(1979)). The vast majority of these tests have the unit root as the null hypothesis.
In light of the low power of unit root tests, Kwiatkowski et al. (1992) developed
a test for trend stationarity, hereafter the KPSS test (i.e. the null is trend
stationarity and the alternative is the unit root, see also Leybourne and McCabe
(1994), Nyblom and Makelainen (1983), Harvey and Streibel (1997) and Tanaka
(1996) and the references cited therein).

The two types of classical tests can be illustrated in the following models.
Dickey-Fuller-type unit root tests use:

Yo =pYi-1 t e, (1)

where ¢, is a stationary error term and the null hypothesis is p = 1. A simple
version of the KPSS test for stationarity makes use of a state space representa-
tion:

=1 +te,
T =T—1 + Uy, (2

where u, is white noise with variance o2, ¢, is white noise with variance ¢ and
u, and e, are independent for all s and ¢. The null hypothesis is ¢2 = 0, in which
case the series is stationary.

Bayesian analysis of nonstationarity (see, among many others, DeJong and
Whiteman, 1991; Koop, 1992; Phillips, 1991; Schotman and van Dijk, 1991a,b)
has focussed almost exclusively on generalizations of (1). Hence, one purpose of
this paper is to develop Bayesian tests based on extensions of (2) which can be
used to test for stochastic trends by looking at ¢ (as in the KPSS test) or by
looking at the autoregressive coefficients (as in the Dicky—-Fuller test) or both.
The first part of this paper is devoted to analyzing evolving trends models (i.e.
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investigating roots at the zero frequency). We begin by focussing on (2) to
provide intuition into this class of models. For empirical relevance, however, it is
important to allow for deterministic components and more general stationary
dynamics. These are added as we generalize the model. The proposed model is
very flexible and allows for stationary and integrated process which may be I(1)
or I(2). Using Bayesian methods we can, unlike classical approaches, compare
several hypotheses on stationarity and nonstationarity in a single analysis. The
second part of the paper focuses on testing for integration at the seasonal
frequency using the extension of (2) referred to as the evolving seasonals model
(Hylleberg and Pagan, 1997). In the context of seasonal models one can test for
roots by looking at the autoregressive coefficients (see Hylleberg et al., 1990
— hereafter HEGY) or at parameters similar to o2 (see Canova and Hansen,
1995). We show how the evolving seasonals model can be used to nest both these
approaches and, hence, Bayesian tests for seasonal integration analogous to
HEGY or Canova-Hansen can be developed.

Related Bayesian literature on models with time varying structure include
(amongst others) West and Harrison (1997) and the references cited therein,
Shively and Kohn (1997), Kato et al. (1996), Carter and Kohn (1994), Shephard
(1994), De Jong and Shephard (1995), Frihwirth-Schnatter (1994, 1995), Kim et
al. (1998), Min (1992) and Min and Zellner (1993). West and Harrison (1997) is
the standard Bayesian reference on dynamic linear models with time varying
parameters, but these authors do not discuss the issues of prior elicitation
and testing involving ¢2. Frithwirth-Schnatter (1994), Carter and Kohn (1994)
and the papers involving Shephard focus on simulation methods for carrying
out Bayesian inference in very general (e.g. non-Normal) state space models.
Kato et al. (1996) estimate a multivariate nonstationary system, but do not test
for nonstationarity. Shively and Kohn (1997) use Bayesian state space methods
and Gauss-Legendre quadrature to investigate whether regression parameters
are time varying. Frihwirth-Schnatter (1995) is a theoretically oriented paper
developing methods for Bayesian inference and model selection in state space
models. Although the focus of these latter two papers is different from ours,
some of the basic issues are similar. In particular, they are interested in questions
analogous to our testing ¢ = 0. It is worth noting that Shively and Kohn use
truncated uniform priors for their error variance parameters, while Frithwirth-
Schnatter uses training sample methods to elicit informative priors for these
parameters.

A further purpose of this paper is to develop computational tools for ana-
lyzing state space models from a Bayesian perspective. We want to emphasize,
however, at the outset that as far as numerical methods for the evaluation of
integrals is concerned there is, in our opinion, no single best approach which is
relevant for all applications. Accordingly, this paper illustrates how different
computational methods can be used and outlines the strengths and weaknesses
of each.
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The effectiveness and efficiency of a computational procedure depends, of
course, on the complexity of the model. For instance, one may be able to
integrate a posterior analytically with respect to a subset of the parameters. This
happens, in particular, when part of the model is linear and/or the prior is
conjugate. This has the additional advantage of obtaining analytical insight into
part of the model. If the analytical methods can be used to reduce the dimen-
sionality of the problem sufficiently, deterministic integration® rules can be used
efficiently for the resulting low-dimensional problem, (see, e.g. Schotman and
van Dijk, 1991a). Stochastic integration has truly revolutionized Bayesian
analysis of state space models (see the references cited before, in particular the
works involving Shephard). The best known methods are Markov Chain Monte
Carlo (MCMC) and Metropolis-Hastings (see, e.g. Casella and George (1992),
and Chib and Greenberg (1995) for clear expositions and Geweke (1999) for
a recent survey).

In this paper we make use of both deterministic and stochastic integration®
methods and indicate the strengths and weaknesses of each approach. Typically,
for the Normal state space model one can use analytical methods to integrate
out all but one or two of the parameters of interest. The resulting marginal
posterior can be handled more efficiently by deterministic integration rules than
by stochastic integration methods. Furthermore, the use of analytical methods
allows us to derive formulae for the marginal posterior of the parameter of
interest and for the Bayes factor for testing for unit root behavior. With
deterministic integration methods, it proves convenient to calculate this Bayes
factor using the Savage-Dickey density ratio (SDDR, see Verdinelli and Wasser-
man, 1995). As shall be stressed below, this combination of deterministic integra-
tion plus SDDR is perfectly suited for handling the relatively simple evolving
trends model with any sort of prior.

The great advantage of Markov Chain Monte Carlo (MCMC) methods is
that they are very general and can be used for all the models in this paper and
the many extensions discussed in the conclusion to this paper. With MCMC
methods, Chib (1995) provides an excellent method for calculating the marginal
likelihoods which are used to construct the Bayes factor. We shall refer to this as
the ‘Chib method’. As shall be stressed below, this combination of MCMC
plus Chib method is perfectly suited for handling high-dimensional state
space models. However, this approach may be somewhat complicated and

! These are frequently called ‘numerical’ integration techniques. However, we find this terminol-
ogy misleading and prefer the more precise term ‘deterministic’.

21n order to minimize possible confusion to the reader, note that we use the word ‘integration’ in
two ways in this paper. Whether it refers to calculating an integral or unit root behavior should be
clear from the context.
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computationally inefficient when we move away from a restricted class of
priors.® Furthermore, the routine use of MCMC methods without fully under-
standing the analytical properties of the posterior can be misleading in some
cases (e.g. the posterior or its moments may not exist, yet MCMC methods may
incorrectly yield posterior results, see Fernandez et al. (1997)).*

The outline of this paper is as follows. In Section 2 we start with the local level
model as a canonical case. As a next step, we add autoregressive dynamics to the
model. This gives a flexible structure so that we can analyze four hypotheses of
interest: stationarity, nonstationarity through the state equation, nonstationar-
ity through the autoregressive part, and nonstationarity through both parts (i.e.
I(2) behavior). We note that nonstationarity of the state equation is an indica-
tion of a strong moving average component in the series. We present results
using both deterministic and MCMC methods. We also investigate the sensitiv-
ity of the posterior results with respect to the parameterization and to the choice
of the prior. In Section 3 we introduce the evolving trend model and investigate
the presence of stochastic trends in the extended Nelson Plosser data sets (see
Schotman and Van Dijk, 1991b). In Section 4, our modeling approach is
extended to analyze the case of unit roots at seasonal frequencies. Some
illustrative results are presented using several seasonal series from the United
Kingdom. In Section 5, we summarize our conclusions and discuss extensions
for further work. The appendices contain some analytical results, a description
of our MCMC methods, and a discussion of the choice of the parameterization.

2. Canonical times series models
2.1. The local level model

We begin with the simplest state space model given in (2) with the further
assumptions that the errors, u, and e, are Normally distributed and that 7, = 0.
This model is referred to by Harvey (1989) as the local level model. There exist
several different ways of interpreting this model. First, it can be interpreted as

3 Of course, we are not saying that the MCMC plus Chib method cannot be used in every case.
However, with nonstandard priors a Metropolis-Hastings step may have to be added (see the
evolving seasonals model in this paper). With truncated priors (such as we have in our evolving trend
model), additional prior simulation may be required. Furthermore, when we have many different
hypotheses to compare, the Chib method requires simulation from each model to be done. These
issues are discussed in Appendix B.

“#Since the state space models used in this paper have moving average representations, a third
computational approach would be to use the algorithm in Chib and Greenberg (1994) combined
with either the Chib method or the SDDR for Bayes factor calculation. We do not consider such an
approach in this paper.
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saying that the observed series is decomposed into a local level plus error where
the local level contains a unit root. Secondly, it can be interpreted as a time-
varying parameter model (i.e. 7, is the mean which varies over time). Thirdly, by
substituting the state equation into the measurement equation, the observed
series can be seen to have an ARIMA(O,1,1) representation. Fourthly, by
successively substituting the state equation into the measurement equation we
obtain

t
Ye=¢€ + z u;. (3)

i=1

The dependent variable y, is, thus, the sum of a random walk and a white noise
component with a weight for each component which depends on the ratio
/. = a}/a?. This so-called signal-to-noise ratio is commonly used by state space
modellers (e.g. Harvey, 1989).

It may be convenient to map the parameter A from the interval [0, o0 ) to the
interval [0,1) through the transformation 0 = 2/(1 + /) = ¢2/(62 + ¢?). This
parameterization also has a simple interpretation: 6 is the share of the variance
of y; accounted for by the random walk component. Alternatively, 6 is the share
of the variance of y, conditional on y,_, accounted for by the random walk
component. Thus, there are three common parameterizations for the local level
model: (i) in terms of ¢ and ¢2, (ii) in terms of ¢ and /4, and (iii) in terms of
o2 and 0. The choice of parameterization is crucial in Bayesian analysis since it is
much easier to elicit priors on parameters which have an intuitive interpretation.
In the present paper, we focus largely on 6, but the basic methods of the paper
can be used for any parameterization. The consequences of our prior specifica-
tion on 0 and ¢ for the other parameterizations are discussed in Appendix C.

It is well-known that proper, informative priors are required when calculating
the Bayes factor in favor of a point hypothesis (e.g. § = 0) against an unrestricted
alternative. Noninformative priors defined on an unbounded region typically
lead to the case where the point hypothesis is always supported. This is known
as Bartlett’s paradox (see Poirier, 1995, p. 390). However, following Jeffreys
(1961), it is common to use noninformative priors on nuisance parameters
appearing in both hypotheses (e.g. o2 appears in both the unrestricted model
and the one with 6 = 0 imposed). Kass and Raftery (1995, p. 783) provides
a discussion of this issue along with numerous citations. With these consider-
ations in mind, in this paper we pay close attention to prior elicitation of
parameters involved in the tests (e.g. 6), but are relatively noninformative on the
other parameters.

Since 0 lies in the bounded interval [0, 1), a plausible prior is p(0) = 1, which is
proper. In a prior sensitivity analysis, we consider a more general prior for 0. In
particular, we use a Beta prior which contains the uniform as a special case. The
formulae derived below assume the uniform prior, but can be extended in the
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obvious way to include the Beta prior. In the Normal linear regression model,
a Gamma prior for the error precision, h, = ¢, % is natural conjugate. We
maintain this common choice and assume, a priori, that h, is independent of 6.
Formally, we assume the following prior:

p(hev 9) :fG(Vea Se 2)

for0 <0 <1and0 < h, < oo, where fg(a, b) indicates the Gamma distribution
with mean b and a degrees of freedom (see Poirier, 1995, p. 100). However, h, is
a nuisance parameter which we will integrate out shortly, so its prior will have
little effect on the Bayes factors we calculate (assuming the prior is reasonably
flat).” In practice, we set v, = 10~ 3°° and hence use a prior that is proper but is
extremely close to the usual improper noninformative prior for the precision.
For this choice of v,, the value of s, ? is essentially irrelevant and we just set
it to 1.

To develop a Bayesian version of the KPSS test, consider the Bayes factor
(Bo1) comparing Hy: 8 =0 to H;: 0 < 6 < 1, which can be calculated using the
Savage-Dickey density ratio® (see Verdinelli and Wasserman, 1995). The Bayes
factor can be written as

_ p(0 = 0|Data)
01 — p(@ _ 0) 5

where the numerator of the Bayes factor is the marginal posterior of 0 for the
unrestricted model (or the alternative hypothesis) and the denominator is the
marginal prior for 6 evaluated at the point of interest 6 =0 (or the null
hypothesis).

For the case of the local level model with our prior for 6 and h,,

vy "2

By = SIS A .
VIR Y T y) T TR do

)

> We have also experimented with more informative priors for this parameter and found that they
have little effect on Bayes factors. The argument for using noninonformative priors on nuisance
parameters is further strengthened if they are not strongly correlated with the parameter being
tested. In many cases, it makes sense to assume that magnitude of the error in the measurement
equation is independent of the relative contributions of the random walk and stationary components
to the overall variance. In such cases, it is reasonable to assume that ¢2 is a priori independent of
either 0 or 4. See Appendix C for further details.

© The Savage-Dickey density ratio is a very general way of calculating Bayes factors for sharp null
hypotheses. It is valid provided two conditions hold: (i) 0 < p(6 = 0|Data) < oo, (ii)
0<p(y,0 =0) < oo, and (iii) p;(¥|0 = 0) = po(Y). In the previous formulae  contains all the
parameters in the model other than 6 and p;(.) is the prior under H;. These conditions hold in the
present paper. If the third condition is violated, a slightly more complicated expression can be used
(see Verdinelli and Wasserman, 1995).
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For details, including a definition of V, see Appendix A. The use of a different
prior for 0 will cause only minor changes in this formula. In particular, if p(0) is
the prior for 6 then it will appear inside the integral sign in the denominator.
Since one-dimensional deterministic integration is a simple procedure, virtually
any form for p(0) can easily be accommodated.

Note that the Bayes factor with the uniform prior on [0,1) reduces to
something similar to a likelihood ratio (with ¢2 integrated out), except the
denominator of the likelihood ratio is an average over the parameter space
under the alternative hypothesis.

To illustrate our test procedure, we simulated two data sets from the local
level model. In all cases, T = 100 and ¢2 = 1. For the first data we set 0 = 0 and
for the second 0 = 0.5. Using simple deterministic integration, we calculated the
integrating constant for p(6|Data) used in the Bayes factor. The Bayes factors
comparing the stationary to the unit root model for the two data sets are 90.82
and 2.86 x 10~ 8°, respectively indicating that they distinguish well between the
two hypotheses. A third data set is simulated from the standard AR(1) unit root
model: Ay, = ¢, where ¢, is ..N(0, 1). Note that this model can be obtained from
the local level by setting 62 = 0 and, hence, 0 = 1.” The Bayes factor in favor of
stationarity is 9.85 x 10~ 1#®. This suggests that if there is an AR unit root in the
data generating process, our methods will be good at detecting nonstationarity.
The posteriors for (0,67) and the marginal posteriors for 0 are plotted in
Figs. 1-4 for the three data sets. These posteriors are quite reasonable.

We note that these results can also be calculated using the MCMC plus Chib
method. Details on how to do this are given in Appendix B. However, in order to
achieve the same accuracy as the deterministic method, MCMC requires con-
siderably more computational effort in this simple case.

2.2. Adding an AR(1) component

The Bayes factor above compares a white noise model to one with a random
walk plus noise. With macroeconomic series, we are usually interested in testing
whether a series can be characterized by stationary fluctuations around a deter-
ministic trend, or whether it is better characterized by a stochastic trend. As
a step in this direction, and as a way of illustrating the connections between the
Dickey-Fuller and KPSS tests, consider:

W=t +py-1te,
Ty = Ti—1 + U, (5)

7 Note that when 0 = 1, the matrix V becomes infinite. Hence, formally speaking, the pure random
walk model is not nested in the local level model, although the latter can come arbitrarily close to the
former. This is why we restrict 6 to lie in the interval [0, 1). When doing deterministic integration we
use a grid over the interval [0,0.9999].
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Fig. 1. Posteriors for DGP I, with 0 = 0, ¢2 = 0.

where the assumptions about the errors are as in the previous section. If > 0
and |p| < 1, then y, has a random walk component plus a stationary component.
If 0 =0, then we get the AR(1) model: y, = py,—1 + e,.

In (5), a unit root is present if either 6 > 0 or p = 1. Our specification is very
flexible and allows us to consider four hypotheses:

H;: 0 =0 and |p| < 1. The series is stationary.

H,: 0 <0 <1 and |p| < 1. The series is I(1) plus a stationary component.
H;: 6 =0 and |p| = 1. The series is I(1) and a random walk.

H,: 0 <0 <1 and |p| = 1. The series is 1(2).

We use the same prior on 0 and o2 as before and add the assumption that p(p)
is uniform over the interval [ — 1,17 and p is a priori independent of the other
parameters. If we condition on the initial observation, set presample values of
u, to zero, multiply likelihood function by prior and integrate out ¢2 analyti-
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Fig. 2. Posteriors for DGP II, with 0 = 0.5, 62 = 0.

cally, we obtain
p(0, plData) oc [V~ 12[(y — py 1)V 'y —py-)]" "2, (6)

where y = (y2,...,yr) and y_y = (y1,...,yr-1)"

We label By, B, and By, as the Bayes factors for testing 0 =0, |[p| = 1 and
(60 =0, |p| = 1), respectively. The Savage-Dickey density ratio can be used to
calculate any of these Bayes factors. In particular, any such Bayes factor will
involve only the two-dimensional unrestricted posterior in (6) and the prior for
0 and p. Although the setup here is more general than the simple Dickey-Fuller
or Schotman and van Dijk (1991a,b) setup, the similarities between B, and these
tests are apparent. The similarity between By and the KPSS test is also apparent.
However, our setup allows for more general comparisons. In fact, the posterior
probability of any of the four hypotheses listed above can be calculated using
By, B, and By,.
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Fig. 3. Posteriors for DGP III, with 0 = 1, ¢2 = 1.

To investigate posterior properties and the performance of Bayesian model
comparison procedures, we simulate data assuming T = 100 and o2 = 1.
Table 1 presents posterior probabilities for the four hypotheses listed above for
different values of 6 and p.

Given that our simulated data sets exhibit a wide variety of behavior: from
white noise, through stationary but persistent, to I(1), to I(2) series, it can be seen
from Table 1 that the Bayes factors, as reflected in the posterior model probabil-
ities, do detect the appropriate degree of integration with high probability. In
general, they also seem to detect whether nonstationarity is entering through an
AR unit root or through a nondegenerate random walk state equation. The only
exception is the case 8 = 0.5, p = 0.5 where more weight is put on the AR unit
root than we would expect. This result may be explained as follows. When we
compare (5) with a general ARIMA specification, it can easily be shown that, in
the case of 0 = 0.5, p = 0.5, the implied ARIMA nearly has a common factor. It
is well-known that the posterior (with a relatively noninformative prior) is
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Table 1
Posterior model probabilities for simulated data sets

p(H|Data) p(H;|Data) p(H;|Data) p(Hy|Data)
0=0,p=0 0.975 0.025 0.000 0.000
0=05p=0 0.000 0.998 0.002 0.000
0=0p=1 0.154 0.040 0.798 0.009
0=05p=1 0.000 0.010 0.000 0.990
0=05p=05 0.008 0.199 0.772 0.020
0=0,p=05 0.987 0.013 0.000 0.000

ill-behaved in such a case. We have used this pathological case to show the
flexibility of model selection in a Bayesian setup. Of course, in practice, an
applied time series researcher may use prior information to surmount such
difficulties. For instance, a tight prior on p (e.g. p ~ N(0,0.10)) would force all
the persistence in the series into the state equation, leaving the AR component to
pick up only the temporary component.

One may question the robustness of the results in Table 1 to the choice of
prior. In this respect, we make the following comments. In Bayesian analysis,
a desirable strategy is to specify the model so that its parameters can be easily
interpreted. The researcher can then elicit informative priors about them in
a straightforward way. In time series models, the parameters rarely have a struc-
tural interpretation and, hence, it is often difficult to follow this strategy. So far,
we have responded to this problem by working with a parameterization which is
rather natural. Furthermore, we have made a particular choice for the prior on
this parameter. We acknowledge, however, that some of our readership might
prefer other parameterizations (e.g. in terms of moving average coefficients) and
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Table 2
Bayes factors in favor of 6 = 0 for artificial data set

0o = 0.1 0o =3 0 =1 0o =2 0, = 10
0, =0.1 35%1074 20x1076 3.0x107° 57%10713 2.6x 10762
0, =4 45%107% 27%1076 44x107° 9.5% 10713 1.2x 10761
0, =1 58x107* 3.6x1076 6.1x107° 1.5%x 10714 42x10761
0, =2 89x 104 5.8%1076 1.0x 1078 28x 10714 2.4x 10760
0, =10 84x1073 6.6x1073 1.5%x10°7 69x107 12 3.5% 10757

other priors. Since the purpose of the present paper is to develop Bayesian
methods for testing for integration, we note that other readers can use different
parameterizations and priors with only minor alterations to the techniques
introduced here (see Appendix C). Furthermore, we perform a prior sensitivity
analysis on 0 to test the robustness of the results reported.

Since 0 is bounded in the unit interval, a sensible class of prior distribution is
the Beta, which can take on a myriad of different shapes (see Poirier, 1995, pp.
104-105). In the table below, we assume 6 ~ f5(6,,0,) for different choices of
0, and 60,. For the rest of the parameters we retain the priors used in the body of
the paper. To aid in interpretation note that the mean and variance of the Beta
are 00/(0y + 01) and (0,0,)/(0 + 0; + 1)(0y + 0,)?, respectively. The distribu-
tion is symmetric around 0 =} if 0, = 0,, positively skewed if 0, < 0; and
negatively skewed otherwise. Special cases worth noting are: (i) The uniform
which implies 0, = 0, = 1, (ii) If 6, and 6, are both greater than one then the
distribution has an interior mode and becomes roughly bell-shaped as 0, and
0, increase, and (iii) If 6, and 6, are both less than one then the distribution is
U-shaped. Using these facts, it can be seen that the prior sensitivity analysis
below covers an enormous range of priors.®

For brevity, we present only the Bayes factor in favor of the hypothesis that
0 = 0. Table 2 reports results from a new artificial data set from (3) with
T=100,0=14% 62=1and p =0.

We note that the table provides clear evidence in favor of the unit root
hypothesis, despite the fact that we have considered an enormously wide range
of priors. It can be seen that most evidence for a unit root is found when the
prior has an interior mode and allocates less weight to the region near zero (see

8 The Beta distribution is defined on the interval (0, 1) and not our desired interval of [0, 1). So
formally speaking, what we are using in this paper is not the Beta distribution but the Beta
distribution plus the assumption that the density evaluated at the point zero is some finite constant.
Since zero is a point of measure zero it can easily be verified that the precise choice of constant does
not matter.
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the right-hand side of the table). Priors that allocate substantial weight
near 0 =0 yield less evidence for the unit root (see the left-hand side
of the table). In summary, for a clear cut case like the present one (i.e. 0 = ) the
Bayes factor can vary a lot, but in all cases strong evidence of a unit root
appears. This prior sensitivity analysis will be continued below and in the
following section.

The previous tables were calculated using deterministic integration methods
plus the SDDR. It is useful to also consider the MCMC plus Chib method. This
depends on the precise parameterization and priors used. Appendix B develops
this method for the case where either the 6 or A parameterization is used and the
prior for p,o. 2 is either noninformative or Normal-Gamma. In order to
continue our investigation of the sensitivity of results to different priors and
parameterizations, we use the methods of Appendix B along with the artificial
data set used to make Table 2. We work with the A parameterization and try
different priors for 4 in the inverted-Gamma class. For p we use a Normal prior
with mean 0 and standard deviation 1. Note that the inverted-Gamma distribu-
tion can be parameterized in terms of a degrees of freedom parameter, v, and the
mean, u,;. We set v, =2 and pu; = 0.005,0.01,0.1 or 1.0. In other words, we are
expressing a wide range of prior means reflecting a range of beliefs from ¢, being
very small relative to o, through a case where they are roughly equal. The Bayes
factors for testing 0 =0 for these four priors are 5.8x 1078 3.2x1078,
1.4x 1072 and 2.7 x 10~°, respectively. These results are similar to those given
in Table 2, indicating that the MCMC plus Chib method is giving reliable
results.” As before, the sensitivity analysis indicates that priors which place more
weight near the trend-stationary hypothesis (here 4 = 0) give it more support.
The degree of prior sensitivity in the A-parameterization appears less than was
found in Table 2. This is due to the fact that all of the inverted-Gamma priors set
v, = 2, a relatively noninformative value. However, some of the priors in Table
2 are very informative and differ enormously from one another. Hence, the
greater prior sensitivity found in Table 2 is not surprising.

3. Testing for integration in the evolving trend model

Economic time series typically have more dynamic and deterministic terms
than (5) allows for. These considerations suggest that the following specification

® However, at least for this simple model, MCMC methods are much more computationally
demanding than deterministic ones. Furthermore, the calculation of posterior probabilities of all
four hypotheses would have required MCMC simulation from four different models. Note that the
use of the SDDR requires only that the researcher works with the unrestricted model.
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is more appropriate for empirical research:
GL)y, =7 + e,
T =0+ T + U, (7)

where ¢(L) is a polynomial in the lag operator of order p and the assumptions
about the errors are the same as for the previous models, but here we no longer
assume 7, = 0. It is worthwhile to motivate briefly this particular extension as
opposed to one which puts the deterministic component directly in the measure-
ment equation or puts the AR component in the state equation. If we assume
that ¢(L) satisfies the stationarity conditions and difference y,, we can write

O(L)Ay, = o + u, + Ae,. (8)

That is, if > 0 the model becomes an ARIMA(p, 1, 1) plus drift. If 6 = 0, then
the model can be written in terms of stationary fluctuations around a determin-
istic trend:

DLy, = 10 + at + e,. )

Hence, if we test € = 0 we are testing a null of trend stationarity against an
alternative of a unit root with drift. We feel that these are the sensible hypotheses
to be considering in practice. An alternative way of extending (5) is to add the
AR component to the state equation. Then, under 0 = 0, the model would
reduce to white noise fluctuations around a deterministic trend which is not
a reasonable null hypothesis for most macroeconomic data. We note that the
present specification is identical to the one presented in Leybourne and McCabe
(1994).1°

Since this specification is now suitable for working with macroeconomic
time series, in this section we investigate the properties of the extended
Nelson-Plosser data in an empirical illustration. Schotman and van Dijk
(1991b) use this data set to carry out Bayesian tests for a unit root in an AR
process (allowing for deterministic time trend). The reader is referred to this
paper for a description of the data. In an attempt to make our results compara-
ble to Schotman and van Dijk (1991b), we set p = 3 for all series except the
unemployment rate for which we set p = 4. Table 3 presents posterior model
probabilities for these series, the last column of this table presents the probabil-
ity of a unit root calculated by Schotman and van Dijk.'!

10 Another interesting specification is used in Harvey and Streibel (1997) which forces 0 to zero as
p approaches 1.

1 The last column of Table 2 is taken from Hoek (1997), who made some corrections to Schotman
and van Dijk’s original calculations.
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Table 3
Posterior model probabilities for Nelson-Plosser data

p(H{|Data) p(H,|Data) p(Hs|Data) p(H,|Data) S.v.D.

Real GNP 0.169 0.819 0.012 0.000 0.300
Nominal GNP 0.010 0.931 0.055 0.004 0.619
GNP per capita 0.247 0.740 0.013 0.000 0.290
Industrial production 0.293 0.686 0.021 0.000 0.316
Employment 0.002 0.998 0.001 0.000 0.313
Unemployment 0.463 0.533 0.004 0.000 0.217
GNP deflator 0.011 0.866 0.110 0.014 0.678
Consumer prices 0.000 0.996 0.003 0.001 0.697
Nominal wages 0.026 0.887 0.078 0.010 0.602
Real wages 0.006 0.948 0.042 0.004 0.642
Money 0.036 0.897 0.055 0.012 0.397
Velocity 0.001 0.983 0.015 0.000 0.666
Interest rate 0.001 0.973 0.011 0.015 0.641
Stock prices 0.021 0.898 0.079 0.001 0.653

The results in Table 3 accord reasonably well with the results of Schotman
and van Dijk (1991b), despite differences in specification (and slight differences
in the prior). In particular, most evidence for stationarity is found for series like
real GNP, GNP per capita, unemployment and industrial production. Other
series provide much stronger evidence of integration. The present approach,
however, finds more evidence of evolving trends. Given the results reported in
Hoek (1997, p. 91) on the strong presence of MA terms in the Nelson-Plosser
data, we conclude that the implicit MA component added in our state-space
approach is an important extension for macro data. For most series, H, receives
much more probability than H; indicating that the data prefer the state space
unit root (which implicitly adds a moving average component) to the autoreg-
ressive unit root. To see why this might increase the probability of integration,
suppose that a true data generating process exists and it is ARIMA(3,1,1) and
that the MA coefficient is substantial and negative. This series, of course, is 1(1)
and we would hope a test would indicate this. The Schotman and van Dijk
approach would approximate the ARIMA(3,1,1) by an AR(3) model. The
presence of a negative MA coefficient would tend to pull the AR coefficients into
the stationary region, reducing the probability of the unit root relative to the
present approach which would correctly model the ARIMA(3, 1, 1).

The following table continues our prior sensitivity analysis, using the Beta
family of priors for 0 for one of the Nelson-Plosser series.

Table 4 indicates a greater degree of prior sensitivity than Table 2. It is
worthwhile to discuss this result. The uniform prior for 0 indicates moderate
support for the hypothesis that 0 > 0. If we use a prior which allocates more
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Table 4
Bayes factors in favor of 6 = 0 for real GNP

0o = 0.1 0o =3 0 =1 0o =2 0, = 10
0, =0.1 243.55 15.85 0.02 20%10°8 241075
0, =4 244.84 52,40 0.08 11x1077 22x10753
0, =1 246.90 88.40 0.21 341077 14%1075¢
0, =2 248.00 130.03 0.52 12x107¢ 1.6x 10733
0, =10 249.17 206.12 4.68 40x107° 1.9% 10749

weight to the region 0 > % or keeps the prior mean greater than 4 and tightens
the prior variance, the support for the hypothesis that 8 > 0 is strengthened (i.c.
if we look in the right and upper right-hand parts of the table we see strong
support for integration). However, if the prior allocates significant weight near
the region 0 = 0, we find support for 0 = 0. This lack of robustness is due to the
strong correlation between 0 and p. If the prior for 0 places a great deal of weight
near 6 = 0, then the marginal posterior for 6 also gets pulled towards zero and
p becomes larger. Since the posterior for 0 is located near zero, the hypothesis
that 0 = 0 gains support. However, if the prior for 0 is more spread out, then the
opposite happens. Loosely speaking, in our model there are two ways that
integrated behavior can enter. For real GNP, the data are happy with either of
them and the prior can determine whether persistence enters through 6 or
through p. Our conclusion is that this macroeconomic time series is only weakly
informative about the presence of a stochastic trend. This corresponds with
other Bayesian studies in the literature and appears to be much more sensible
than the mechanical classical failure to reject the unit root hypothesis for U.S.
real GNP. It is worth noting, however, that with other data sets (cither artificial
or real) that this lack of prior robustness is usually not observed.

4. Testing for integration in the evolving seasonals model
4.1. Theory

The evolving seasonals model has recently been reintroduced to the econo-
metrics literature in Hylleberg and Pagan (1997). Originally developed in
Hannan et al. (1970), this model is a very flexible specification which allows
the seasonal pattern to vary over time. A simple variant of this model is
given by

Vi = To: COS(agt) + T4, COS(0ty t) + 275, cOS(ant) + 273, sin(ayt) + e, (10)
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where oy =0, oy =n and «, = w/2 capture behavior at the relevant 0 and
seasonal frequencies, respectively. The t;,’s capture the evolution of the trend
and seasonal patterns over time. Hylleberg and Pagan (1997) shows how this
specification nests most common seasonal models. Note that there are other
ways of modelling seasonality (see, for instance, Franses (1996), West and
Harrison (1997, Chapter 8) or Harvey (1989, Chapters 2 and 6)). The evolving
seasonals model is a particularly flexible specification.

In this paper we focus on testing for seasonal unit roots from a Bayesian
perspective. It is worthwhile to briefly digress and describe the two chief classical
approaches. The most common of these is outlined in Hylleberg, Engle, Granger
and Yoo (1990) - HEGY - and is based on the fact that an AR(p) specification:
¢(L)y, = e, can be written as

¢*(L)yay = 00Y1, -1 +01V24-1 +02V3,-2 +3V3,-1 + e,

where y, ,=(1+ L + L? + LYy, Var=—(1—=L)1 + L)y, ys, = —(1 — L?)y,
and y,, = (1 — L*y,. A nonseasonal unit root is present if d, = 0, while if
01 = 0 aseasonal unit root at frequency = is present. d, and J; relate to possible
seasonal unit roots at frequency m/2 and HEGY suggests a joint test of
0, = 03 = 0. An alternative test is given by Canova and Hansen (1995) and is
based on a specification similar to (10) under the assumption that, for
i=0,1,23:

Tip = Tig—1 T Ui,

and var(u;) = o?. If 63 = 0 then a seasonal unit root at frequency 7 is present
while if 63 = 63 = 0 then a seasonal unit root at frequency m/2 is present. The
nonseasonal unit root occurs if 63 = 0.

Given the evolving seasonals model, it is apparent that we can derive a speci-
fication that nests both these approaches in the same way that our specification
in the previous section nested both Dickey-Fuller and KPSS tests. As before, it
is important to allow for deterministic terms and hence we work with the
following specification:

O*(L)y4s = Tor + 71, cOS(ME) + 275, cos(nt/2) + 213, sin(nt/2)
+ 001, i-1 +01V2—1 +02V30-2 +03V3,-1 + e
Tip = 0 + Tig—1 + Uy, (11)

where the e,’s are 1.i.N(0,02), the u;,’s are 11.N(0,0?) and all error terms are
independent of one another. As in the previous section, we can test for unit roots
either through the AR coefficients or through the error variances in the state
equations (e.g. testing o = 0 or g, = 0 for the nonseasonal unit root). If the
state equations are substituted into the measurement equation it can be seen



G. Koop, H.K. Van Dijk | Journal of Econometrics 97 (2000) 261-291 279

that the 7;y’s enter as a deterministic seasonal pattern and the inclusion of drift
terms in the state equations (i.e. the o;’s) allows for a deterministic trend in the
seasonal patterns. In our empirical work, we rule out the latter and set
oy =a, =oa3 =0, but leave o, unrestricted. Assuming the AR coefficients
satisfy the stationarity condition, then if ¢; =0 for i =0,1,2,3 the model
is characterized by stationary fluctuations around a deterministic seasonal
pattern. Hence, Eq. (11) is an extremely flexible specification which nests
most common seasonal models, and our Bayesian counterpart to the Canova-
Hansen test has as its null hypothesis a reasonable model for macroeconomic
time series.
As before, we reparameterize in terms of

0; = 67 /(67 + a?).

This parameterization is less intuitive than we obtained for the evolving trends
model. Nevertheless, it seems as intuitive as other alternatives. Tests of the
various sorts of seasonal integration reduce to testing for zero restrictions on the
0;’s.

Note, however, that there are eight parameters of interest (i.e. §; and 6; for
i=0,1,2,3), so that, even if we analytically integrate out all nuisance para-
meters, deterministic integration is extremely difficult given current computa-
tional power. However, it is possible to set up an MCMC algorithm to analyze
this model (for details, see Appendix B). To calculate Bayes factors, it is
necessary to specify priors for the 0;’s. To do this, we extend the strategy of the
previous section, assume prior independence between these parameters, and
obtain: p(0;) = 1 if 0 < 0; < 1.2 For all other parameters, we use traditional,
flat, noninformative priors. Hence, the Bayes factors calculated here have the
same ‘weighted likelihood ratio’ form as in the previous section. Of course,
subjective informative priors can be used if so desired.

4.2. Empirical illustration

The techniques described above are here illustrated using several U.K. sea-
sonal series: GDP, total consumption (TOTCON), consumption of nondurables
(NONDUR), total investment (TOTINYV), exports (EXPORTS) and imports
(IMPORTYS). All data are quarterly, logged and run from 1955:1 to 1988:4.

12 Note that we are using an improper prior for the 6;’s and, hence, do not calculate Bayes factors
for these parameters. The methodology outlined in this section could be used to do this, but proper
priors would be needed. Such priors could either be elicited subjectively or we could use a flat prior
over the stationary region. The necessary restriction for imposing the latter is complicated (see
Franses, 1996, pp. 64-66). Hence, for reasons of simplicity and to keep the empirical illustration
focussed on the 0,’s, we do not consider proper priors for the AR parameters.
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Table 5
Posterior information on UK seasonal series

GDP TOTCON NONDUR EXPORTS IMPORTS TOTINV

B,, 49x107!% 15x10°13 32x1074t 70x107142  84x1073 21x10733

B,  0.10 581073 63x107* 026 57x10°2 027
B,, 0.4 24x10°2  27x107% 066 28x1072  3.1x10°2
B, 031 48x107%  74x10"* 018 0.15 0.29
5 —0.19 —0.11 ~0.09 —035 ~0.20 —~0.16
(0.07) (0.05) (0.07) (0.07) (0.06) (0.05)
8, —051 —~0.75 —082 —027 — 041 —0.34
(0.21) (0.26) (0.34) (0.06) (0.10) (0.18)
5, —053 ~ 098 —0.77 ~0.63 ~0.69 ~0.62
(0.11) (0.23) (0.19) (0.09) (0.10) (0.12)
8y —021 —0.34 — 040 0.08 021 —0.02
(0.12) 0.27) (0.25) (0.08) (0.13) (0.14)

These series have been analyzed extensively by many authors (see Franses (1996,
Chapter 5) for a list of citations). Franses (1996, Table 5.2) presents results from
the HEGY test on these series (and others), concluding that the nonseasonal unit
root seems to be present in all series, and TOTCON and NONDUR have in
addition roots at both seasonal frequencies. Table 5 presents Bayes factors for
testing 0; = 0, which we call By, for i =0,1,2,3. Small values of By, indicate
evidence in favor of seasonal integration. The last four rows present posterior
means of the J;’s, with posterior standard deviations in parentheses.

A standard Bayesian rule of thumb (see, e.g. Poirier, 1995, p. 380) is to say that
there is slight evidence against 0; =0 if 0.10 < B, < 1.0, strong evidence if
0.01 < By, <0.10, and decisive evidence if B, < 0.01. Using this rule of thumb,
all series provide decisive evidence in favor of a unit root at the nonseasonal
frequency. TOTCON and NONDUR provide decisive evidence in favor of
roots at both seasonal frequencies. These results accord with those provided by
the HEGY test. The Bayes factors for the seasonal unit roots for the other series
do not provide decisive evidence, but nevertheless some evidence for seasonal
unit roots is found.

Our specification allows for seasonal and nonseasonal unit roots to enter
through either the AR coefficients or the state equation. Although we do not
calculate Bayes factors for the former, the posterior moments for the §,’s indicate
that the data chooses to put unit roots (if they exist) in the state equations. This
finding is analogous to that noted in Section 3, where the Nelson—Plosser data
tended to favor H, over Hj.

It is also worth noting that we test each of the 0;’s individually. Given the
aliasing problem, one may be interested in doing a joint test of 6, = 65 = 0. This
can, of course, be easily done using our present framework.
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5. Conclusion

In this paper, we develop Bayesian tests of stochastic trends in economic time
series using combined state space and autoregressive representations. We
consider both trend and seasonal models, and AR unit roots and unit roots
arising in the state equation(s). Our general framework nests most of the
common approaches to testing for integration in the literature. We construct
computational methods involving either deterministic integration or posterior
simulation to calculate the probability associated with each type of unit root.
Empirical evidence using simulated and real data indicate that the approach
advocated in this paper is both simple to use and yields reasonable results. The
added flexibility of state space modelling and the allowance for the test of
stationarity to be a point hypothesis (in contrast to the usual setup where the
unit root is the point hypothesis) heighten the advantages of our approach.

The basic ideas in this paper can be extended in a conceptually straightfor-
ward manner. For instance, state space modelling of financial time series
involving fat-tailed distributions and stochastic volatility is studied by Kim et al.
(1998) and Bos et al. (1999). Model comparison involving nonlinear models,
outliers and models with structural instability is taken up by Koop and Potter
(19994, 2000). Issues relating to lag length selection are discussed in Koop and
Potter (1999b). In all of these areas, Bayesian state space methods have a poten-
tially important role to play (see, in particular, Koop and Potter, 1999a).
Furthermore, multivariate models, including those for panel data, can be easily
handled. For instance, testing for common trends (i.e. cointegration) in multi-
variate systems and unit roots in panels with Bayesian state space methods is
a topic of our present research.

We end this paper with a remark. MCMC algorithms for all of these
extensions are available in the literature (see our list of references). Deterministic
integration methods would be difficult to use with these extensions due to the
large number of parameters in the model that cannot be integrated out analyti-
cally. Hence, we recommend the MCMC plus Chib method for Bayes factor
calculation as a very general approach for Bayesian analysis.
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Appendix A. Further analytical results

For the local level model of Section 2.1, we calculate the Savage-Dickey
density ratio by integrating out the nuisance parameter ¢2. We set presample
values of u, to zero. Using (3) and defining y = (y4,...,yr), we obtain

y ~N(O,a2V),

where V =11 + (0/(1 — 0))CC’ and

1 0 . 0
110 0
1110 . . O

C is known as the random walk generating matrix. Multiplying prior by
likelihood and integrating out ¢? yields the marginal posterior for 0:

p(0|Data) oc |V|" V2V Ty 4 v,s2) T2, (A.1)

Since we are setting v, = 107 3°° and s2 = 1, terms involving these hyper-
parameters are extremely small (at least for the data sets used in this paper) and
can be ignored in Eq. (A.1). In our empirical work, they are included (although
they are numerically irrelevant). However, to make our expressions for posterior
and Bayes factors easy to interpret and compare to classical likelihood ratio
statistics, we omit them in the formulae in Section 2, which should be considered
as providing (extremely good) approximations to the true posteriors and Bayes
factors.
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The integrating constant of posterior (A.1) is, to our knowledge, not known in
terms of elementary functions (such as the Gamma function). However, one-
dimensional integration suffices to calculate it and the Bayes factor in (4).

For the local level model with AR(1) component, one starts from (5) and the
prior discussed in Section 2.2. Proceeding in a similar way as for the simple local
level model, one obtains the marginal posterior of (0, p) given in (6). Note that, if
we had assumed an untruncated uniform prior for p, we could also have
integrated out p analytically, using the properties of the Student-t density.
Details are omitted here. If we were to integrate out p, we could derive an
expression for the Bayes factor analogous to that given in Section 2.1:

(Vory- ) P My) TR

B = — 7 — — —(T — s
N R (A T R O e

where M =1 —y"(y_1y—1) 'y and s> = (y — py_ )V " '(y — py—1). Fur-
thermore, p = (y_1V 'y_) Yy, V 1y

For the case of the evolving trend model given in Section 3, it is convenient to
rewrite the measurement equation in (7) as

p—1
V=T +pYi-1 + Z T Ayi-i + e
i=1
With this specification, we can focus on the bivariate posterior for 6 and p in
order to make inferences about the presence of stochastic trends.
By repeatedly substituting the state equation into the measurement equation
in (7) we can write

Ve =X + vy,
Where X; = (yt—lslst,Ayt—lz "-9Ayt—p+1)’ ﬁ =(p:’y/)’,’y = (To,OC,Tfl, "-57Tp—1)la
k=p+2and
t
v=e + Y, u.
i=1

Defining y = (y4, ..., yr), X = (x}, ..., x7) and treating p initial values of y, as
fixed!® we obtain

y~N(XB,aV).

13 Note that, when we condition on p initial values, we are implicitly redefining T so that it is now
equal to the old T — p. That is, we are treating our observed data as running from period 1 — p
through T instead of as running from 1 through T as before. We maintain this convention
throughout the remainder of this Appendix.
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Using the same prior as in previous cases plus untruncated uniform priors for
the new parameters added, and integrating out ¢2, we obtain an expression for
the joint posterior of 6 and f:

p1(0, BiData) oc [V|™ 2 [(y — XBYV ™"y — XPT "7, (A.2)

which is similar to (6).
To get the bivariate posterior for 0 and p, we can integrate out y using the
presence of a Student-t kernel in (A.2), yielding

v/2

p1(0, plData) oc [V]V2|X "V~ xR (s2) (A3)
where v =T — k + 1, X* has t'th row given by x} = (L, t,Ay,—1,....,Ay;—p+1),
s? = (v = X¥)V I — X*))v,

y* has t'th element given by y# = y, — py,_; and § = (X' *V " LX*) 71X *P 71y,
Using two-dimensional numerical integration we can calculate posterior prop-
erties of 0 and p using Eq. (A.3). Bayes factors for the various hypotheses listed in
Section 3 can be calculated using the Savage-Dickey density ratio.

Appendix B. MCMC methods

In this appendix, we describe MCMC methods for posterior inference in the
evolving trend model of Section 3 and the evolving seasonals model of Section 4.
The formulae below assume standard noninformative priors for any regression
coefficients and o, 2. However, adding a Normal prior for the regression coeffi-
cients and a Gamma prior for o, % can be easily done in the standard way or see
de Jong and Shephard (1995, Section 5).

For the evolving trend model, conditional on knowing ¢2 and 0, the Gibbs
sampler can be set up exactly as in de Jong and Shephard (1995).'* In particular,
our evolving trend model is exactly in the form as the model in Section 3 of de
Jong and Shephard if we condition on p initial observations. Using their Egs. (2)
and (4) modified for the inclusion of regression effects as in their Section 5, we
can sample jointly from all the states and all regression parameters (conditional
on ¢2 and the 0). In our experience, the de Jong-Shephard algorithm is highly
efficient. Of particular value is the fact that it reduces the Gibbs sampler to three
blocks. For the sake of brevity, we do not repeat the exact form of the algorithm

14 Friihwirth-Schnatter (1994, 1995) and Carter and Kohn (1994) provide alternative methods for
Gibbs sampling with state space models.
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here, but refer the reader to de Jong and Shephard (1995). Hence, if we can
sample from p(c; *|Data, 3,0,7) and p(0|Data, B,c%,7) we can complete our
MCMC algorithm. The conditional density of ¢, ? is

T
plo. *|Data, B, 0, ) =fa<622|T, T/ > ef>. (B.1)
i=1
The conditional posterior for € can be obtained by noting that 0 is closely
related to the variance of the state equation and u, = At,. The resulting condi-
tional posterior is

1—0\T7? 1—-06
p(0|Data, 62,7) oc <0> exp< — QSSE>, (B.2)
where
T2
SSE = igl T;f

This distribution is nonstandard and, hence, we do not draw from it directly, but
instead add a Metropolis—Hastings step to our MCMC algorithm, which is
described below. Note that the use of the 0 parameterization implies a complica-
tion to the MCMC algorithm, one reason for prefering deterministic integration
rules for the evolving trend model.

If we had parameterized with 1 = ¢2/c? and used a flat prior for /, then the
resulting conditional posterior for 2~' would be Gamma and, hence, / is
inverted Gamma:'>

p(A|Data,o2,7) oc 2~ T?exp( — SSE/J). (B.3)

The uniform prior for 0, which is truncated to ensure 0 < 0 < 1, is proper and
implies a prior for A which is proportional to 1/(1 + 2)*. This suggests a simple
strategy for drawing from 6 using a Metropolis-Hastings algorithm (see, for
instance, Chib and Greenberg, 1995). Suppose the current draw of / is called
794 First take a candidate draw of 4 from (B.3) using the inverted Gamma
distribution (call it A2N¥). This draw is accepted with probability:

1
(1 + )vNew)Z
1 b
(1 + )LOId)Z
where probabilities greater than one are rounded down to one. If the candidate

draw is not accepted then the draw for A remains A°¢. Draws from A can be
converted into draws from 0 using the fact that 0 = /(1 + ).

15n the body of the paper, we include some MCMC results using the 4 parameterization. These
are obtained by combining this formula with a inverted Gamma prior for 1 in the standard way.
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The MCMC algorithm for the evolving seasonals model is developed along
similar lines, except that 0 is replaced by 6; for i =0, 1,2, 3. In particular, the
conditional distribution of ¢, 2 is

T
p(c, *|Data, p*,80,01,65,03,7) =fG<0'92|T, T/ Y e,2>. (B.4)
i=1
The conditional posteriors for the 6;’s (for i =0, 1,2,3) are
1—0,\"? 1—0,;
p(0;|Data, ¢2,7) oc <9'> exp< - ‘SSE,«), (B.5)
where
T2
SSE; = =y
' J.; 202

Since these conditional posteriors are nonstandard, we use a similar Metrop-
olis-Hastings step as described above. If we had parameterized with /; = ¢?/a?
and used a flat prior for 4;, then the resulting conditional posterior for 4; would
be inverted Gamma:

p(Zi|Data, 62,7) oc 1 T? exp( — SSE;/2;). (B.6)

We use the conditionals for 4; as candidate generating densities in a Metrop-
olis-Hastings algorithm. Suppose the current draw of /; is called A", First take
a candidate draw of /; from (B.6) using the inverted Gamma distribution (call it
JNeY). This draw is accepted with probability:

1
1 b

where probabilities greater than one are rounded down to one. If the candidate
draw is not accepted then the draw for 4; remains A2, Draws from /; can be
converted into draws from 0; using the fact that 0; = A;/(1 + 4;).

Output from these posterior simulators can be used to calculate posterior
features of interest as well as the Bayes factor using the Savage-Dickey density
ratio (see, for instance, Verdinelli and Wasserman, 1995, Section 2.2)!¢ or Chib’s

16 Due to the difficulties of evaluating (B.5) at the point O due to division by zero, we evaluate it at
a point close to zero. Formally speaking, this means we are testing the hypothesis that 6; = 0.0001
rather than 6; = 0. In practical applications the differences between these two hypotheses are
negligible.
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method. The results in the body of the paper indicate that Chib’s method is
a very reliable way of calculating the marginal likelihood. Note, however, that it
requires the user to know the posterior and prior densities and the likelihood
functions precisely. Knowing the kernels of these densities is not enough. With
nonstandard priors (especially if they are truncated), figuring out the integrating
constants of densities is difficult to do analytically. Of course, it is usually
possible to figure out these integrating constants using prior simulation
methods, but this adds to the computational and programming burden. Hence,
when we use Chib’s method in the body of the paper, we do not impose
stationarity on the autoregressive coefficients. Furthermore, the use of Chib’s
method with the evolving seasonals model would require simulation from
several different models (e.g. the unrestricted model, the model with a unit root
at frequency © imposed, the model with a unit root at frequency /2 imposed,
etc.). Hence, we used the SDDR for the evolving seasonals model, which requires
only posterior simulation from the unrestricted model.

We take 11,000 replications from our MCMC algorithm and discard the
initial 1000. Experimentation with different starting values (and the experience
of other Bayesian state space modellers) indicates that our algorithm is well-
behaved.

Appendix C. Priors and parameterizations

In this appendix, we discuss the issue of prior and parameterization choice for
the case of state space models. We note that these issues are well-known in
autoregressive models (e.g. Schotman, 1994). In the local level model, we para-
meterize the variance of the state equation in terms of the parameter:

0 = oif(oy + 02) (C1)

which, as stressed in Section 2.1, has a natural interpretation relating to the
variance of y, conditional on y,_;. Formally, we work with (0,h,), where
h, = o, 2. Proper priors on both these parameters ensure that the posterior is
proper and that meaningful Bayes factors can be calculated.!” We discuss the
connection between the prior for (0,h,) and priors implied for two other
commonly used parameterizations, viz. (h,,h,) and (h,,A) where h, = ¢, ? and
) =allcl.

Here, and in the material below, h, is f(v., s, ). For 0, we use a flat prior over
the interval [0, 1) and the stationary case corresponds to 8 = 0.

17See Fernandez et al. (1997), which provides proofs on the existence of the posterior in a wide
class of models, including state space models.
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We begin by asking what this prior implies in the other parameterizations.
Using the change of variable theorem, it can be seen that our prior implies:

hYel? h,v,s?
h h e _ e’evYe .
p(he, h,) oc (h. + hu)zexp{ 3 }

Note that our prior implies that h, and h, are not independent. If we condition
on a value for h,, it can be seen that this prior goes to zero as h, goes to oo or
zero, indicating inverted-U behavior in h, space. This behavior is, of course, very
different from the Jeffreys’-type prior'® often considered: p(h,) oc 1/h,,.

In the 4 parameterization, we find that our prior implies:

hg‘)e _2)/2 hevese%
p(he, 2) oc m exp{ 5 },

which implies prior independence between h, and /. The marginal for the latter
parameter is finite at A = 0 and monotonically decreases to zero. Note that a flat
prior for 0 implies a prior for 1 which has a Cauchy tail.

It is also interesting to begin in an alternative parameterization, elicit a sen-
sible prior, and see what prior for 0 is implied. In the alternative parameteriz-
ations, we assume informative Gamma priors. That is, h, is fg(v., s, %) and 4 is
f6(v;, 55 %). The limiting cases with v, = 0 or v, = 0 yield standard Jeffreys’-type
priors, which are improper and will yield improper posteriors. These cases are to
be avoided, but by setting v, or v, to small but positive values one obtains
a relatively noninformative, but proper, prior. Alternatively, one can work with
these limiting case priors truncated to liec in some large but finite region.

If we had assumed that the prior for h, was fg(v,,s, %), we would have
obtained the following prior for (h,, 0):

(R B heest] (Gt
plhe,0) o expy — eXpy —————

0* 2 2

a complicated prior which does not exhibit independence between its para-
meters. To better understand its behavior in ‘noninformative’ cases, note that if
we set v, = v, = 0, we obtain

1
p(heag) o he(l _ ())0'

18 Note that we refer to this as a ‘Jeffreys’-type prior’ rather than a ‘Jeffreys’ prior’ since, in the
local level model, the latter is quite complicated and is improper. Since we cannot use improper
priors for parameters restricted under the null hypothesis for Bayes factor calculation, we do not
investigate the Jeffreys’ prior in this paper. For some background relevant for use of this prior see
Shephard (1993).
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This limiting case is composed of the standard Jeffreys’-type prior for h, and
a U-shaped prior for 0 which goes to infinity at 0 and 1.

If we had begun directly eliciting a prior for A of the form f5(v;, s; %), we would
have obtained:

0 N0 = 2)/2p(ve = 2)/2 h 2 0 2
p(h,,0) oc (t=9) e exp{ . eV2eSe }exp{ _ T-0Ya5) }5

(1— 0y 2

a complicated form with exhibits prior independence between the two para-
meters. The noninformative limiting case, v, = v, = 0, implies

1
Plhe.0) ¢ 3 G gy
This limiting case is identical to that given above. That is, it is composed of the
standard Jeffreys’ type prior for h, and a U-shaped prior for 0 which goes to
infinity at 0 and 1.

Hence, we have different ‘noninformative’ priors which imply very different
prior views about 0 (i.e. uniform or U-shaped). This illustrates the great care that
must be taken in prior elicitation, even when the researcher is striving to be
noninformative. However, we have found that, for reasonably large sample sizes
(e.g. T > 100) that the choice of prior has little effect on posterior inference. In
a more serious empirical exercise, the researcher would likely have prior in-
formation which could be used to guide construction of a suitable informative
prior.
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