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The parameters of several families of distributions arc estimated by means of minimum 1’; use is 
made of random samples taken from Dutch income-earning groups in 1973. The numerical 
search routine used, is the Complex method due to Box. The x2 function is evaluated by 
standard numerical integration procedures. The lognormal and the Gamma families are rejected 
because of a poor fit. The log t and the log Pearson IV families are introduced. This results in a 
considerable improvement of x2 critical levels. The generalized Gamma and the Chatnpernowne 
function describe the income distribution reasonably well in some cases. 

1. Introduction 

The most attractive way to characterize an empirical distribution is by 
means of a small number of parameters. Preferably, these parameters should 
have a clear interpretation and define a theoretical distribution with a good 
lit to the empirical data. These statements hold for statistical distributions in 
general. 

In this paper we study size distributions of income. In this context 
theoretical distributions might serve several purposes, of which we mention 
the following one. Suppose one is interested in the consequences of a 
systematic change of an income distribution, which can be described in terms 
of changing one parameter. If one wants to study the consequences of such a 
change for aggregate consumption of individual commodities, one does not 
only need Engel curves but also a carefully specified income distribution.’ 

The best-known families of theoretical distributions, used so far in the field 
of income distributions, are the Pareto, lognormal, and Gamma families; see 

*A preliminary version of this paper was presented at the European Meeting of the 
Econometric Society in Helsinki, August 1976. The authors are indebted to a referee for a 
number of helpful comments. 

‘This was already emphasized by de Wolff (1941). We are indebted to J.S. Cramer for drawing 
our attention to this reference. 

E 
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Cramer (1969, ch. 4), Aitchison and Brown (1957), and Salem and Mount 
(1974). These families, however different in other respects, have in common 
that their members are characterized by (only) two parameters. The in- 
terpretation of these parameters does not present great problems, but as 
regards fit, their performance is rather poor,* which is probably due to 
oversimplification. More precisely, members of the Pareto family very well fit 
the higher incomes, but they are inappropriate for the middle and lower 
incomes. Members of the lognormal family perform well in the central part 
of the distribution but their tails are not heavy enough to lit empirical data 
well: compare Aitchison and Brown (1957, pp. 117, 118) and Cramer (1969, 
fig. 22). The weak points of the Gamma family are similar to that of the 
lognormal family. 

In this paper we explore possibilities to obtain considerable improvements 

in lit by adding a small number of iarameters.3 Starting from the 
lognormal family of distributions we tried to reach a greater flexibility by 
replacing the normal family by the Student-t family. The latter allows for 
heavier tails than the former but is still symmetric in log income. Skewness 
may be introduced by using the Pearson typeIV family. Starting from the 
Gamma family we investigated the generalized Gamma family, described by 
Stacey (1962). Finally, we gave some attention to a type of distribution 
proposed by Champernowne. A more detailed discussion of these families of 
distributions will be given in section 3. 

Our data are all of the class frequency type. The distribution parameters 
were estimated using the criterion of minimum chi-square. The numerical 
optimization approach we used is well-known in other contexts but so far it 
seems not to have been used in the field of income distributions. More 
details on the estimation method employed will be given in section 2. In 
section 4 we present our empirical results. Section 5 contains a number of 

conclusions. Details on the data are given in the appendix. 

2. An efficient estimation method using minimum chi-square 

The data we consider are the results of a random sample of size n. They 
are recorded in the form of class frequencies. Let n, (i = 1,. . ., I) denote the 
observed class frequencies corresponding to r mutually exclusive and exhaus- 
tive income classes and pi(O) the corresponding (theoretical) probabilities, 

‘Salem and Mount (1974) report positive results with respect to the Gamma family, but our 
results do not confirm their conclusion; see section 4, below. This might be due to the fact that 
we studied a different data set; compare also footnote 7. 

3For completeness we emphasize that our goal is merely descriptive. The much more 
ambitious goal of explaining income differences by means of analyzing supply and demand in 
the labor market requires much more and better data than usually are available; see 
Somermeyer (1977) for a theoretical analysis. For the estimation of a simple reduced form 
equation based on data from the same research project, we refer to Jansen and Kloek (1976). 
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where 8 represents the s parameters of the theoretical distribution considered. 

Then we have 

s ai+ 

Pite)= fb; Qdq’, (1) 
ai 

where y is income, (ai, n,, r ) is the ith i ncome interval and f (y ; 0) is the 
density of the theoretical distribution. 

A well-known criterion for fitting theoretical distributions to empirical 
distributions is Pearson’s chi-square (x2) criterion, 

x2t~Ir i {ni-nPi(8)12 

i=l nPi(e) ' 

which can be interpreted as a generalized least-squares or minimum-distance 
criterion. For large samples, the criterion (2) follows a x2 distribution with 
I - 1 degrees of freedom, if the theoretical probabilities pi(e) are known; see 
Cramer (1946, sec. 30.1). In our case the s-vector 0 is to be estimated from 
the sample. Then the criterion (2) follows a x2 distribution with r-s- 1 
degrees of freedom; see Cramer (1946, sec. 30.3) and the references cited 
there. Estimators of 8 obtained by minimizing (2) are known to be 
asymptotically normal and efficient. 

The derivatives of (2) with respect to Bj can easily be expressed in terms of 
the derivatives dp,/dtI, but the latter require numerical integration for all 
distributions considered. Due to recent advances in computer technology and 
numerical optimization methods it is now possible to minimize (2) 
straightforwardly by direct search. This means that one need not provide 

expressions for derivatives but just evaluates the criterion function in a 
certain number of points.4 Several search methods of this type are available; 
see, e.g., Beveridge and Schechter (1970) or Himmelblau (1972). The one we 
used is called the Complex method and is due to Box (1965). 

The evaluation of pi(e) has been carried out by making use of standard 
numerical integration routines. We experimented with an iterative ninth- 
degree Newton-Cotes formula; see Abramowitz and Stegun (1964). 
Experiments with the Gauss-Legendre quadrature yielded the same results. 
For certain distributions, use was made of the restriction c pi = 1 to find the 
multiplicative constant, while for other cases, where the integration constant 
is known, a check on the accuracy of the integration process was possible. 

Since the chi-square values are not comparable if the numbers of para- 
meters (and hence the degrees of freedom) are different, we computed critical 

4An implication of this approach is that no linearization is required such as proposed by 
Aigner and Goldberger (1970) and used by Kakwani and Podder (1976). 
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levels, which are comparable. Such a critical level is defined as 

s cc 

P(x2Zx)= 
1 

x 2f’I-(iv) 
e-“t’Y- ‘&, (3) 

where x is the empirical minimum x2 value and v is the number of degrees of 
freedom (in our case v = r-s - 1). These integrals were computed by means 
of Gauss-Laguerre quadrature. 

These critical levels can be used for testing purposes, in the sense that one 
may choose to reject theoretical distributions which have critical levels below 
0.05. For more complicated tests comparing separate families of hypotheses 
see Cox (1961) and Goldfeld and Quandt (1972, ch. 5, and the references 
cited there). We have confined ourselves, however, to computing the simple 
statistics mentioned above. 

3. Some families of theoretical distributions 

As announced in the Introduction, we studied generalizations of both the 
lognormal and the Gamma families. The first of these is the log-Student 
family. This is obtained by applying the transformation t = log y, where y is 
income, to a general Student density. The resulting density formula reads 

vf” 1 
f(Y;PJP)=B(t,tv)T ‘y v+(10gy;;ogp)2 

[ 1 
-f(v+ 1) , (4) 

where y > 0, p > 0, T > 0, v > 0. The location of such a distribution is described 
by the median p, the dispersion by the standard deviation (a) of log income 
which is obtained from g2 =vr’/(v- 2) if v > 2. The degrees of freedom 
parameter v characterizes the tails. At v= 1 we have a heavy-tailed log- 
Cauchy distribution; as v+co the distribution tends to a light-tailed lognor- 
ma1 distribution. For v >4, the kurtosis coefficient equals 6/(v-4). The 
symmetry property of the distribution of log income is preserved. 

The next step is the introduction of the possibility of skewness of the 
distribution of log income. This can conveniently be done by considering the 
family of distributions which is known as Pearson’s Type IV; see Elderton 
and Johnson (1969, pp. 42, 43). The density function of such a distribution is 
proportional to the product of the right hand side of (4) and 

exp { - 1 arc tan (x/a)}, (5) 

where x = log (y/p) and a = XJV. Clearly, 2 is a skewness parameter. For A= 0 
we obtain the symmetric Student family for the distribution of log income. 
For I < 0 the distribution of log income is skew to the right, for I > 0 it is 
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skew to the left. As before, p is a location parameter, r a scale parameter and 
v a kurtosis parameter. Simple interpretations in terms of medians and 
variances are no longer possible. It is easily verified that the mode of the 
distribution of log income is given by 

mode = log p - Irv*/(v + 1). (6) 

Note that the mode of log income is not equal to the log of the mode of 
income. The expression for the latter is more complicated than (6). It follows 
from (6) that, if the mode has a small sampling variance, the correlation 
between the estimators log b and 1 will be positive and may be large in 
absolute value. For that reason it might be advisable to replace p by the 
mode as a parameter in the computations. 5 We shall denote this family of 
distributions by the term log Pearson Four. 

Another well-known class of theoretical density functions is the Gamma 
family. In its standardized form the density formula reads 

where r >O and (r - l)! E I(r). The mean and variance are equal to I and the 
mode equals max {O, r - 1). So the skewness of the function is positive. Note 
that this function is applied to the distribution of income, rather than log 
income. Recently Salem and Mount (1974) used the transformation z = y/I, 

with /I>0 and fitted the resulting density function to class frequencies of 
income data. Our results with this transformation were not very successful; 
see section 4. 

For that reason we considered a more general transformation, mentioned 
by Stacey (1962), which includes several well-known transformations of the 
standard Gamma function. Let z= (y/a)” with CI >O, p#O, then we have 

(8) 

The interpretation of the parameters is not so easy. Obviously, a is a scale 
parameter. The degrees of freedom parameter r determines the skewness of 

sThe high correlation between the estimators logfi and 2 gives rise to an elongated valley in 
the surface of the chi-square function [the term valley is used here in the sense as one finds in 
books on nonlinear optimization; see, e.g., Himmelblau (1972, p. 83)]. In order to avoid search 
problems along such a valley one may reparameterize the function as indicated above. We 
hope to discuss this type of problems in more detail in a forthcoming paper. 
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the function, but so does6 p. The mode of the function is given by 

(9) 

when p= 1, one obtains the so-called Gamma-l function. Similarly for p= 
- 1 and p= -2 one obtains the Gamma-l inverse function and the Gamma- 
2 inverse function, respectively; see Raiffa and Schlaifer (1961, ch. 7). Our 
results with (8) were not as good as the results based on the log Pearson 
Four family. 

It is interesting to observe that, if p<O, the right-hand tail is asymptoti- 
cally Pareto in the following sense. Let h > 1 be a fixed number. Then 

A similar exercise for the Pareto function 

f(y:a,y+; ; -a-1 0 if y>yO, 

yields 

logfVv;a,.h) 
f b;a,h) 

=(-a-1)logh. 

(11) 

(12) 

We conclude that pr plays the same role in the right tail of (8) as -a in the 
Pareto density. So one may reparameterize (8) in terms of a and r by using p 
= -a/r. 

Another family of income distributions was suggested by Champernowne 
(1937). We studied the following four-parameter density function: 

where y>O, y,, >O, a ~0, O<p ~2, y > 1. The parameter’ y,, is a scale 
parameter, and the parameters a and y have interpretations of inequality 
measures for high and low incomes, respectively. The parameter /I apparently 

‘The numerical search routine described in section2 broke down on collinearity between a 
and p. So we used the mode instead of a as an independent parameter in the numerical 
optimization procedure. Compare also footnote 5. 
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has been introduced to improve the flexibility of this family in the middle 
income range, but it is hard to give a clear interpretation. The right-hand tail 
of the density function (13) is asymptotically Pareto, in the sense indicated 
above. 

Finally, we mention some families of distributions which we do not 

consider in the empirical part of our paper. The first of these is the so-called 
sech square family which has been suggested in the literature as a possible 
description of the size distributions of income. This family is related to the 
Champernowne family; see the discussion by Fisk (1961) of Champernowne’s 
article (1952). Another family of distribution functions, related to the 

Champernowne function, is obtained by application of the Box-Cox transfor- 
mation to a general Student-t family; see Box and Cox (1964). Consider 

t = (Y/P )” - 1 
/I ’ 

(14) 

where t is distributed according to the general Student family with zero 
median. The variable I’ stands for income and is restricted to be positive. The 
resulting density of 4’ resembles (13). When ,I+0 one obtains the log Student- 
t function. Now, consider the difference 

(15) 

with y >O, I #O. For y #p this difference is positive when I >O and negative 
when 1~0. So the Box-Cox transformation introduces more flexibility with 
respect to the behavior of the tails of theoretical distributions. However, this 
transformation introduces also a restriction on the range of the random 
variable t. Since y is restricted to be positive, it follows that (14) maps the 
interval (0, co) into (- l/n, ‘x)) if I.>O, and into (- co, - l/n) if 1~0. For 
instance, when 2 = 1, the Student-t variable should be greater than - 1 with 
probability one. The error introduced by these assumptions, of course, 
depends on the size of 3, and T. This means that A should be close to zero 
unless t is small. 

4. Empirical results 

The data used result from random samples taken from several populations 
of income earning groups in the Netherlands in the spring of 1973. They 
were collected for a research project entitled ‘Economic Consequences of 
Taxation’, a joint project of two institutes of the Erasmus University, 
Rotterdam. These data are listed in the appendix. 
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It seems appropriate to comment briefly on the sampling procedure. As a 
starting point a random sample of municipalities in the Netherlands was 
taken. From each of these, a sample of residences was taken at random. 
Finally one income-earning person per residence was selected at random and 
interviewed. In this way income earners from residences with two or more 
income earners are ‘underrepresented. One could correct for this by a 
reweighting procedure and a modification of the X2-criterion. We preferred, 
however, to delete all families with two or more income earners not only for 
simplicity, but mainly in the interest of homogeneity of the subpopulation.’ 
It was possible to split this representative sample into four subsamples, i.e., 

Table 1 

Chi-square critical levels ( x 10’) of several families of income distributions. 

Distribution 

No. Wage 
of earners 
par. (9) 

Self- 
employed 

(11) 

Free 
professions Old-aged 

(9) (6) 

Represen- 
tative 
sample (12) 

Lognormal 2 0.003 1.637 1.247 7.925 0.000 
Gamma 2 0.000 0.000 50.347 0.718 0.000 
Log t 3 0.028 13.109 48.638 19.668 6.020 
Generalized 

Gamma 3 1.956 13.520 63.496 25.125 0.000 
Champernowne 4 1.405 22.805 80.917 23.577 3.763 
Log Pearson 

Four 4 1.254 20.102 80.536 21.110 6.295 

“Numbers between brackets denote numbers of income intervals; see appendix. 

wage earners, self-employed persons, free-profession members and old-age 
persons. Since three of these subsamples were very small, they were augmen- 
ted with the results from some additional samples taken from the relevant 
groups. So we ended up with five samples, see the appendix. 

The first stage of our numerical work consisted of estimating the lognor- 
ma1 and Gamma families, by means of the minimum x2 method discussed in 
section 2.s We used the optimum ;c2 value found and computed correspond- 
ing critical levels. Numerical results are reported in table 1. The results 
indicate that the two-parameter distributions considered exceed the live 
percent critical level in only one case each. This poor result was already 
mentioned in the introduction. We conclude that these families are too 
simple to be realistic. 

‘Notice that this procedure implies that our incomes refer to personal incomes and family 
incomes at the same time. This does not hold for other data sets, as a rule. One should be aware 
of this fact when comparing different empirical studies. 

‘The Beta-2 inverse function was also used in the first stage; see Raiffa and Schlaifer (1961, 
ch. 7). Since the results were not very good, except for the self-employed, we decided to drop this 
family. 
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Table 2 

Parameter estimates of the lognormal, log T and log Pearson Four families.” 

P T2 Y I x2 

Wage earners 

Lognormal 20.65 0.21 30.95 
Log t 20.14 0.15 5.50 23.46 
Log Pearson Four 10.95 0.14 10.20 - 5.00 12.75 

Self-employed 

Lognormal 25.88 0.48 18.73 
Log t 24.64 0.31 3.71 13.40 
Log Pearson Four 16.61 0.30 4.55 - 1.38 8.54 

Free professions 
Lognormal 63.31 0.53 16.25 
Log t 71.05 0.26 1.68 8.49 
Log Pearson Four 108.11 0.25 2.69 1.29 1.62 

Old-aged 
Lognormal 9.65 0.24 6.18 
Log t 9.28 0.10 1.40 3.25 
Log Pearson Four 8.26 0.11 1.61 -0.39 1.56 

Representative group 
Lognormal 17.54 0.44 55.35 
Log t 17.26 0.24 3.51 14.95 
Log Pearson Four 18.74 0.24 3.35 0.28 13.40 

‘For the case of the lognormal, T’ is to be interpreted as the variance (a’) of log income. 

Group 

Table 3 

Parameter estimates of the generalized Gamma family. 

Mode r P a x2 

Wage earners 
Self-employed 
Free professions 
Old-aged 
Representative 

group 

15.62 2.98 - 1.39 39.96 13.14 
15.17 3.38 -0.85 91.18 11.08 
51.01 0.92 1.77 91.06 3.42 

6.91 1.22 -2.17 8.71 2.76 

11.04 22.41 -0.33 201,817.16 50.94 

In the second stage we considered three- and four-parameter families. The 
corresponding chi-square critical levels are also reported in table 1. The 
generalized Gamma and Champernowne families score three times out of five 
a critical level greater than five percent, while the log t and the log Pearson 
Four reach the score of four out of live. It is remarkable that none of our 
distributions was able to reach a good fit in the case of the wage earners. 
Another noteworthy point is that the critical levels of the generalized 
Gamma function are higher than those of the log t function in all cases 
except in the case of the representative sample. The same holds for the 



IO T. Kloek and H.K. van Dijk, Income distribution parameters 

Table 4 

Parameter estimates of the Champernowne family. 

Group YO c( P Y x2 

Wage earners 
Self-employed 
Free professions 
Old-aged 
Representative 

group 

15.87 2.90 2.00 5.65 12.49 
19.80 1.76 1.52 2.84 8.14 
93.70 2.91 1.40 1.31 1.60 

8.59 1.44 1.21 2.19 1.41 

18.13 2.23 1.39 1.97 14.88 

critical levels of the Champernowne function as compared with the log 
Pearson Four function. Details on the parameter estimates are presented in 

tables 2, 3, and 4. 
First, consider the estimates for the lognormal and the log t families; see 

table 2. It appears that the estimates of p are not very sensitive to the change 
from lognormal to log t, except in the case of the free professions. The 
minimum chi-square values indicate that the introduction of log t results in 
substantial improvements in lit, in particular for the case of the repre- 
sentative group. Next, consider the estimates of the log Pearson Four family. 
The parameter p no longer has the interpretation of a median. In addition, it 
appears that p and 2 are highly correlated. This is seen by comparing the 
unconditional estimates of p in the log Pearson Four and the corresponding 
conditional estimates given that A=O, in other words, the estimates of p for 
the log t. Because of these complications we do not consider this family a 
very attractive one, in spite of the improved goodness of fit. 

As we already mentioned in section 3, the parameters of the generalized 
Gamma family have not a clear interpretation. In addition we found that the 
chi-square surfaces showed elongated valleys.’ In the case of the repre- 
sentative group, we were unable to determine an unrestricted minimum of 
the chi-square function. The reported estimates are conditional upon p= 
-0.33. Rounding errors started to dominate for smaller values of p. 

The estimates for the parameters y and c( of the Champernowne family 
give some indication about income inequality with respect to low and high 
incomes, respectively. Notice the very high value of y for the wage earners. 
This result may be explained by institutional arrangements. 

The density functions of several families. of income distributions are plotted 
for the case of the representative sample; see figs. 1 and 2. We used two 
scales: income in fig. 1 and log income in fig. 2. The scale of log income has 
the advantage that the symmetry of the lognormal and log t with respect to 
their medians is shown. The skewness of the log Pearson Four was rather 

‘Compare footnotes 5 and 6. 
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small in this case. A preliminary plot showed that the log Pearson Four can 
not clearly be distinguished from the log t. So we decided to omit it from 
figs. 1 and 2. 

Graphical inspection also indicates that the lognormal and Gamma do not 
lit very well in the middle range” and that a substantial improvement in lit 

is obtained by using three- and four-parameter families of distributions like 
the log r and the Champernowne. 

Finally, we turn to the problem of sensitivity of the minimum chi-square 
values to the class interval groupings. In our case the observed income 
classes were exogenously determined, but we combined classes with less than 
ten observations; see the appendix. So the combination decisions were 

dependent on the sample outcomes. For that reason we tried to obtain 
information on the sensitivity of the class interval groupings by reestimating 
the parameters of several families of distributions in a number of cases. The 
results (not reported here in detail in order to save space) indicate that the 
chi-square values and their critical levels are sensitive to some extent. 
However, in all cases but one the ranking of the critical levels did not 
change. More generally, our main conclusions turned out not to be affected 
by the way we combined the income classes. 

5. Conclusions 

(i) Optimization methods based on direct search, which use a standard 
numerical integration routine in each (optimizing) step, are quite feasible on 

modern computing machinery and as such allow one to apply the minimum 
chi-square estimation criterion (or the maximum likelihood criterion) to 
many families of theoretical distribution functions. 

(ii) Using the minimum chi-square estimation criterion, we obtained 
empirical evidence that the lognormal and Gamma families are not flexible 
enough to describe the size distribution of income accurately. Considerable 
improvements in fit were obtained by introducing three-parameter families of 
distributions. The transition from three- to four-parameter families produced 
some additional improvements but these were much less convincing. The 
small samples yielded better fits than the large ones. One might conjecture 
that very large sample sizes will lead to a rejection of (almost) any family of 
distributions if the five percent rule is adopted irrespective of sample size. 

(iii) The interpretation of the parameters of the lognormal, the log t and 
the Gamma families is straightforward and clear. The interpretation of the 
parameters of the generalized Gamma, the log Pearson IV, and the 
Champernowne families gives a number of problems. So there is a certain 

“This contrasts with the results cited in the introduction. The difference is probably due to 
the weights implied by the minimum x2 criterion. 
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trade-off between the two requirements of clear interpretability of the 
parameters and a good lit to empirical data. 

(iv) The generalized Gamma family gave serious estimation problems in a 
number of cases. In particular, it is hard to obtain reliable estimates of the 
scale parameter a. Similar but less serious problems were encountered when 
estimating the parameters of the log Pearson Four. We give more attention 
to this problem in Kloek and van Dijk (1977). 
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Appendix: Data 

Table 5 

Class frequencies of income data (source: see section 4). 

Interval” 
(guilders 
x lc00) 

&3 
3-6 
6-9 
9-l 1 

11-14 
14-18 
18-22 
22-28 
28-36 
36-44 
44-56 
5&72 
72-88 

88-l 12 
112-144 

1442,ooo 

Wage 
earners 

I 
32 

68 
98 

I16 
82 
57 
19 
24 

1 13 

Self- 
employed 

1 
12 

15 
15 
28 
43 
38 
33 
22 
16 

1 I9 

I 

I5 

Free 
professions 

20 

1 17 

I5 
20 
27 
25 

32 
I7 

19 

Old-aged 

1 I9 

41 
26 
14 
12 

16 

Representative 

group 

I 46 

65 
66 
97 

133 
132 
100 
73 
23 
27 

1 IO 

I 

14 

509 256 192 128 786 

‘The brackets indicate which income classes were combined in order to have at least ten 
individuals per interval. 
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