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BAYESIAN SIMULTANEOUS 
EQUATIONS ANALYSIS USING 
REDUCED RANK STRUCTURES 

FRANK KLEIBERGEN AND HERMAN K. VAN DIJK 
Econometric and Tinbergen Institutes 

Erasmus University Rotterdam 

Diffuse priors lead to pathological posterior behavior when used in Bayesian anal- 
yses of simultaneous equation models (SEM's). This results from the local non- 
identification of certain parameters in SEM's. When this a priori known feature is 
not captured appropriately, it results in an a posteriori favoring of certain specific 
parameter values that is not the consequence of strong data information but of local 
nonidentification. We show that a proper consistent Bayesian analysis of a SEM 
explicitly has to consider the reduced form of the SEM as a standard linear model on 
which nonlinear (reduced rank) restrictions are imposed, which result from a sin- 
gular value decomposition. The priors/posteriors of the parameters of the SEM are 
therefore proportional to the priors/posteriors of the parameters of the linear model 
under the condition that the restrictions hold. This leads to a framework for con- 
structing priors and posteriors for the parameters of SEM's. The framework is used 
to construct priors and posteriors for one, two, and three structural equation SEM's. 
These examples together with a theorem, showing that the reduced forms of SEM's 
accord with sets of reduced rank restrictions on standard linear models, show how 
Bayesian analyses of generally specified SEM's can be conducted. 

1. INTRODUCTION 

Since the early 1940's a lot of research has focused on the development of statis- 
tical methods for analyzing simultaneous equation models (SEM's) (see, e.g., 
Haavelmo, 1943; Anderson and Rubin, 1949). It shows that models that are able 
to generate variables simultaneously are important because this is a stylized fact 
of many economic time series. The SEM is not only important but also rather com- 
plicated as a result of the problems regarding the identification of its parameters. 
The identification of the structural parameters is reflected in the rank and order con- 
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ditions that result from the implied reduced form (see Hausman, 1983). The order 
condition reflects overall identification whereas the rank condition reflects local 
(non) identification. This latter phenomenon, local nonidentification, is shown to 
lead to pathological posterior behavior when flat priors are used in Bayesian anal- 
yses of the SEM. This behavior occurs in the traditional Bayesian analyses of 
SEM's documented in the literature (see, e.g., Dreze, 1976; Dreze and Morales, 
1976; Dreze and Richard, 1983). We show its occurrence in a limited information 
(one equation) analysis of the SEM. Similar behavior can be found in other spec- 
ifications of the SEM as well because the origin of the pathological posterior be- 
havior, local nonidentification of parameters, is exemplary to SEM' s. 

To obtain a consistent Bayesian analysis of a SEM that does not suffer from 
these pathologies, we construct a framework in which the reduced form of a SEM 
is specified as a multivariate linear model with nonlinear (reduced rank) restric- 
tions on its parameters. Using singular value decompositions we specify the re- 
strictions such that a one-to-one correspondence with a linear model is obtained 
when the restrictions do not hold and the reduced form of the SEM is obtained 
when they hold. The prior and posterior analysis then results when this specifi- 
cation is used in the framework for analyzing nested models as parameter restric- 
tions of embedding models constructed in Kleibergen (1997). It a.o. leads to 
invariance of the priors and posteriors with respect to the specification of the 
model. The resulting posteriors of the parameters of the SEM accord with the 
posterior of the embedding linear model. Our analysis is therefore similar to 
the construction of the Savage-Dickey density ratio (see Dickey, 1971). That is, 
we construct the priors/posteriors in the points where the hypothesis (restriction) 
holds. In contrast, the posterior of the parameters of a SEM, derived in the usual 
way using a diffuse prior, is inconsistent in the sense that its implied posterior of 
the parameters of the embedding linear model is not a member of the standard 
class of posteriors of the parameters of linear models (see Kleibergen, 1997). 

The paper is organized as follows. In Section 2, we show the pathologies aris- 
ing in the posteriors of the parameters of an incomplete (one structural equation 
analysis of a) SEM when flat priors are used. Sections 3 and 4 show how an 
incomplete SEM is rewritten as a multivariate linear model with nonlinear pa- 
rameter restrictions. We use this specification jointly with the framework for 
analyzing nested models as parameter restrictions of embedding models to obtain 
the prior and posterior analysis. Singular value decompositions are also involved 
that are similar to the canonical correlations used in a limited information max- 
imum likelihood analysis (see Anderson and Rubin, 1949). In Section 5, posterior 
simulators are constructed to sample from the posterior of the parameters of an 
incomplete SEM. Section 6 extends the one structural equation analysis to a full 
system analysis by showing that a fully specified SEM accords with a set of 
reduced rank restrictions on a linear model. Different subsections then show the 
framework for prior and posterior analysis for two and three structural equations 
and also show that the order condition for a full system analysis of a SEM can 
differ from the order condition resulting from a one structural equation analysis. 
Finally, Section 7 contains conclusions. 
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2. NONIDENTIFICATION AND PATHOLOGICAL POSTERIOR BEHAVIOR 

To show the consequences that local nonidentification of parameters of SEM's 
has for posterior distributions, we analyze, as an example, the case of one (set of) 
structural equation(s). This model is also known as the incomplete simultaneous 
equations model (INSEM). As the results for the posteriors of the INSEM are 
exemplary for other specifications of the SEM, the importance of a proper treat- 
ment of the issue of local nonidentification is shown by the analysis of the INSEM. 

We use as specification of the INSEM (see Zellner, Bauwens, and van Dijk, 
1988) 

Yi = Y2/3+ZIy+eI, 
(2.1) 

Y2= Z1H12 + Z2122 + e2, 

where Yi: TX 1 and Y2: TX (m - 1) are endogenous and Z1: TX k1 and Z2: T X 
k2, k = k, + k2 contain the (weakly) exogenous (see Engle, Hendry, and Richard, 
1983), and lagged dependent variables, /: (m - 1) X 1, y: k X 1, 12 = 

(H'2 I22)': k X (m - 1) and we assume that (el E2) - n(O, 0 IT). The iden- 
tification problems arise when the parameter H22 = 0 (or has reduced rank) as 
(parts of) the structural form parameter / is then nonidentified. This is easily 
seen when we construct the reduced form of the INSEM (2.1), 

YI = Z1 T1I1 + Z21r22/8 + 1X 

Y2= Z1H12 + Z2H22 + ?2, 

where ITI1-Y + 1112,89 1 =61 + 82/, (61 82) - n(O,Q), X = B'QB, and 

/1 0\ 

V-V Im - 1 

When 1122 = 0, 8 is not identified in (2.2) and the disturbances el are not affected 
by the value of ,. So, the likelihood is flat and nonzero in the direction of 8 when 
I22 = 0. If we use flat (diffuse) priors in a Bayesian analysis of the INSEM, such 
that the joint posterior is proportional to the likelihood, the joint posterior of the 
different parameters will also be flat and nonzero in the direction of /3 for zero 
values of I22. This property is passed on to the marginal posteriors, which are the 
integrals of the joint posterior over the different parameters. To show the conse- 
quences for the marginal posteriors in practice, we calculated the marginal pos- 
teriors of the parameters of the demand equation of the "Tintner meat market" 
model (see Tintner, 1952). In this exact identified model, Yi reflects quantity of 
meat consumed, Y2 is the price of meat, z1 is national income per capita, z2 is the 
cost of processing meat (all variables are in deviation from their mean), m = 2, 
k1 = k2 = 1. 

In Figure 1, the joint posterior of /3 and 122 is drawn for the Tintner meat 
market dataset, and Figure 2 contains the contour lines of this bivariate posterior. 
The functional form of this posterior is obtained by using a flat prior (oc 1) and 
integrating out (,,r11,I12) and reads 
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FIGURE 1. Bivariate posterior (P, 22) demand equation Tintner model. 

P (68, 122 I Y, Z) ?' I (YI Z2 I-22 P)'M(Z1 E2) ( Y1 Z21122 p) I -(1/2)(T-k1-m-1) 

X I(Y2 - Z2I22)'MZ1(Y2 - Z21122) /1 (2.3) 

as Y2 = Z1112 + Z21122 + 62 and MV IT - V(V'V)1 V', V= Z1, V = (Z1 62). 
Both Figures 1 and 2 and the functional form of the posterior in (2.3) show that 

-0.1 

- U3 - 2 C l m p 2 

FIGURE 2. Contour lines marginal posterior ,81 1-122) demand equation. 
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the marginal posterior does not depend onf3 when I122 = 0 as it is flat and nonzero 
in the direction of 8 for zero values of 1122. This implies that the marginal pos- 
terior of 122, which is the integral of the posterior (2.3) over f, will be infinite at 
H122 = 0 as at this particular value of 1122 we construct an integral of a function 
over an infinite parameter region whereas the function itself does not depend on 
the parameter ,8 over which we integrate. So, the integral will be proportional to 
the size of the parameter region, i.e., infinity. Both the functional form of the 
marginal posterior of 1122, 

P(H22j{Y,Z) oc 
Iu22ZM(z182)Z21122 f-112 

X [ I22Z2M(z, Y2 Z2 I22 I -(1/2)(T-kj-2(m-1)) 

L1 1H2'2 Z2' M(Z, Y, Y2) Z2 r22 1J 

X I(Y2 - Z2H22)'MZ1(Y2 - Z21122)1-(1/2)(T-kl-m-1) (2.4) 

and the marginal posterior of 122 for the Tintner dataset from Figure 3 show this 
phenomenon, and consequently the value of the posterior of I122 is infinite at 
H122 = 0. 

The nonidentification of fi also has consequences for its own marginal poste- 
rior, which belongs to the class of 1 - 1 poly t densities. See Bauwens and van 
Dijk (1989), Dreze (1976), Dreze (1977), Dr6ze and Richard (1983), and Richard 
and Tompa (1980) for an efficient algorithm to calculate the moments of this class 
of densities. This posterior reads 

6 

5- 

4 

3- 

2- 

.05 0.4 -0.3 -0.2 0I 0 0.1 

FIGuRE 3. Marginal posterior V22 demand eq6uation Tintner model. 
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P(I31Y,Z) I(YI - Y2P)'MI(Z2)(Y- 2p)j(1/2)(T-kj-k2-m-1) 

X I(Yi- Y2P8)'Mz,(yi - g28)j-(1/2)(T- (2.5) 

and it has fat tails resulting from the flat nonzero conditional posterior of /8 given 
[122 = 0. For the case of the Tintner model, the marginal posterior is even nonin- 
tegrable, which is plausible given the fat tails of the marginal posterior of /8 
shown in Figure 4. In general, the moments of the posterior in (2.5) exist up 
to/including the degree of overidentification minus 1, implying that exact iden- 
tified models lead to nonintegrable posteriors when flat (diffuse) priors are used. 

A popular method for numerical calculation of posterior densities is to con- 
struct the conditional posteriors and use them to perform Gibbs sampling (see 
Gelfand and Smith, 1989; Smith and Roberts, 1993). When this Markov chain 
Monte Carlo (MC2) algorithm is used to compute the marginal posteriors of the 
parameters of the INSEM, as in Geweke (1996), the local nonidentification prob- 
lems lead to a reducible Markov chain because when a locally nonidentified 
parameter value is drawn, the sampler continues drawing nonidentified param- 
eter values. Stated differently, the region of locally nonidentified parameter val- 
ues is an absorbing state. in the Markov chain. The posterior, therefore, violates 
the convergence conditions for Gibbs samplers as outlined in Roberts and Smith 
(1994). A solution to this problem is to use informative priors, but this approach 
is questionable when priors are used that are not in accordance with the likelihood 
(see Kleibergen, 1997). 

1.6 

1.4 

1.2 

0.8 - - 

0.6- 

0.4- 

0.2- 

O 
-3 -2 -1 0 1 2 3 

FIGURE 4. Marginal posterior ,8 demand equation Tintner model. 
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The integrability problems of the posteriors discussed previously result from the 
dependence of the structural form parameter /3 on 122. In classical econometric 
analysis (seeAnderson, 1982; Phillips, 1983; Poirier, 1994), the parameter/3 is an- 
alyzed conditional on a so-called concentration parameter. This is essentially a sta- 
tistic to test the hypothesis Ho: H22 = 0, and it shows whether the information in 
the likelihood is concentrated around II22 = 0. When this concentration parameter 
tends to infinity when the sample size becomes large, normal asymptotic theory 
can be applied (see Anderson, 1982; Phillips, 1983). When 122 = 0, however, es- 
timators of 3, like 2SLS, converge to random variables (see Phillips, 1989). The 
integrability problems outlined previously show that also in a Bayesian analysis ,/ 
has to be analyzed given 122, which is natural given that the identification prob- 
lems in the likelihood result from model properties, i.e., the nonidentification of 
,8 at [I22 = 0, and are not the result of inferior data. Because we know a priori that 
these integration problems arise, a framework is needed that formalizes the way 
the parameters are analyzed conditional on one another and that leads to nonpath- 
ological posteriors. This framework is constructed in Kleibergen (1997) and is used 
in the following sections. 

3. PRIORS FOR THE INSEM PARAMETERS 

In the previous section, we showed that the parameters that suffer from local 
nonidentification problems should be analyzed conditional on the value of their 
identifying parameters. This is one of the main properties obtained through the 
pnors constructed in this section. In previous versions of this paper (see Kleiber- 
gen and van Dijk, 1992, 1994a; see also Kleibergen and van Dijk, 1994b; Kleiber- 
gen and Zivot, 1998; Chao and Phillips, 1998), Jeffreys' priors are used to obtain 
this property. The resulting posterior when this prior is used is, however, not 
nested within the assumed posterior of the parameters of the embedding un- 
restricted linear model. This is a key property of the priors constructed in this 
section. The prior we construct in this section results from Kleibergen (1997), 
where it is shown that a whole range of models can be considered as nonlinear 
restrictions on the parameters of standard linear models. This gives a general 
framework for the analysis of a large class of models (see also Kleibergen and 
Hoek, 1996; Kleibergen and Paap, 1997). 

3.1. SEM's as Linear Models with Nonlinear Parameter Restrictions 

Overidentified SEM's can be considered as a nonlinear restriction on the param- 
eters of a multivariate linear model. It is well known how diffuse and conjugate 
priors and their resulting posteriors are constructed for the parameters of linear 
models (see Zellner, 1971). When we explicitly consider the SEM as a nonlinear 
restriction on the parameters of a linear model, the priors and posteriors of the 
parameters of the SEM result, straightforwardly, as proportional to the priors and 
posteriors of the parameters of the linear model under the condition that the re- 
strictions on these parameters hold (see Kleibergen, 1997). 
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To analyze the restrictions imposed by a SEM on the parameters of a linear 
model consider the INSEM (2.1) and its implied reduced form (2.2). To show the 
imposed restrictions, we add a parameter A to this model that is such that when it 
is nonzero, (i) there is a one-to-one correspondence with a standard linear model 
and when it equals zero both (ii) the reduced fortn of the INSEM results and (iii) 
it is locally uncorrelated with specific other parameters. This latter property is 
needed to obtain priors and posteriors of the parameters of the INSEM that are 
invariant with respect to the specification of the model (see Kleibergen, 1997, for 
an exact specification of the conditions the restrictions have to satisfy). Several 
restrictions imposed on the linear model namely lead to the reduced form of the 
INSEM, but only one restriction leads to priors and posteriors that are invariant 
with respect to parameter transformations. This invariance property is needed to 
avoid the Borel-Kolmogorov paradox (see Billingsley, 1986; Dr6ze and Richard, 
1983; for more details on this posterior invariance, see Kleibergen, 1997). The 
resulting model, which we call the unrestricted SEM, reads 

(Yi Y2) = Z1(7T11 H12) + Z2J22(63 Im-1) 

+ Z2HI221A(p Im-I)j + ({ I 2), (3.1) 

where A: (k2 - m + 1) X 1 and I'221 (/3 Im-i)A are the orthogonal complements 
of II22, (p Im-1) resp., such that H'22I221 0, (/ Im-)(/3 Im-i1) 0, 
and II221I1221 Ik2-m+ls 

(P Im-D?(l Irl)ii- 1 (i.e., H221 = 

(-H1222 H211~ Ik2-m+1)' (Jk2+M- I + H222H2211122 11222) /, when I122 = 
(H21 l11222)', 11221:(m - 1) x (m - 1), I222: (k2 - m + 1) X (m - 1), and 

(P Im _)_L = (1 + pp,8)-l/2(1 -,3')). We note that the orthogonal complements 
used in other parts of the paper are defined identical to the ones stated previously. 

It is clear that when A = 0, (3.1) is identical to (2.2) and because A is multiplied 
by the orthogonal complements of the matrices containing / and p122, the infor- 
mation matrix is block diagonal at A = 0. We therefore say that A is locally 
uncorrelated with ,/ and H122 at A 0 O. The one-to-one correspondence between 
the parameters of (3.1) and a multivariate linear model, 

(Yl Y2)= (Z Z2) bii n,2) + 6 62) (3.2) 

where Xl: k2 X 1, )2: k2 X (m - 1), can be shown using a singular value decom- 
position (SVD) of 1) = (41 4(2) (for definitions of a SVD, see Golub and van 
Loan, 1989; Magnus and Neudecker, 1988). The equality of (3.2) and (3.1) is 
shown in Appendix E and uses the SVD of 1), 

1) = USV', (3.3) 

where U: k2 X k2, U'U= Ik2; V: m x m, V'V= I,; and S: k2 x m is arectangular 
matrix containing the (nonnegative) singular values (in decreasing order) on its 
main diagonal (= (s11... smm)). If we now write 



BAYESIAN SIMULTANEOUS EQUATIONS 709 

UlU11 U12\ SI 0\ Vll V12\ 

U21 U22) 
s (? 52)' 

and 
V= 21 V22) 

(3.4) 

where U11,S1,V2,: (mr-) 1X (mr-1); v12: 1 X 1; v1, v22: (mr-1) X 1; U12: (m - 
1) X (k2-rM+ 1); U21:(k2-rM+ 1) X (mr-1); U22:(k2-m+ 1) X(k2-rM+ 
1); s2: (k2 - m + 1) X 1, then the following relationship between (H22,0, A) and 
(U, S, V) results: 

II22 = SU)1 V2'1 ,1= V2-1v l and 

A = (U22 U52) 112U22 s2v12(v12v2)'12* (3.5) 

Furthermore, the SVD shows that A is identified by the smallest singular value of 
(F contained in s2 and is essentially a rotation of s2 because s2 is pre- and post- 
multiplied by orthogonal matrices to obtain A. Because the singular value s2 is 
invariant with respect to the ordering of the variables contained in Y (-(yi Y2)) 
and Z2, the length of A, which is equal to the length of s2 because it is a rotation 
of s2, is identical for all orderings of the variables contained in Y and Z2. This 
property is needed to obtain a prior/posterior of the parameters of the INSEM 
that is invariant with respect to the ordering of the variables in Y and Z2. 

When we use the least-squares estimator of (F in (3.3), ( = 

(Z'Mz1 Z2) lZ2'MZ1(Yl Y2), the estimators for 8 and 22 resulting from (3.5) 
are similar to the limited information maximum likelihood estimators (see An- 
derson and Rubin, 1949; Hausman, 1983) when the instruments are reasonable 
(for a proof of this, see Kleibergen and Zivot, 1998). The hypothesis Ho: A = 0 
can also be tested in that setting to check the validity of the imposed 
overidentification. 

The preceding discussion shows that the INSEM can be considered as a non- 
linear (reduced rank) restriction, A = 0, on the parameters of the linear model 
(3.2). We therefore construct the priors and posteriors of the parameters of the 
INSEM (2.1) as proportional to the priors and posteriors of the parameters of 
the linear model (3.2) evaluated in A = 0. This framework for constructing priors 
and posteriors results from Kleibergen (1997), and we discuss its results for the 
INSEM in the following (sub) section. The framework can also be used in a full 
system analysis in which SVD' s have to be applied recursively. As this becomes 
notationally more complicated we discuss it in a later section. Note also that the 
analysis for exact identified SEM' s directly results from the standard linear model 
because in that case there is a one-to-one correspondence between the parameters 
of the structural form and the linear model. 

3.2. Prior Framework for SEM's 

As shown previously, the INSEM can be considered as a nonlinear restriction on 
the parameters of a multivariate linear model. It is, however, not possible to 
analytically construct the conditional posterior of the parameters, Q, irII, /, I12, 
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and 1122, given the parameter reflecting the restrictions, A (see Kleibergen, 1997). 
To show this let 0 = (7r ,11A,l3, 12, II22) and q = (),i i1 l,1 fl2), then 

Punsem (0, A I fl Y, Z) ?C plin (q7 (0, A)I Hl, Y, Z) a (0 A) (3.6) 

where ?1 is a function of 0 and A and unsem stands for unrestricted SEM and lin 
for linear model. Assume that the posterior of 77 is well behaved, which is 
typically the case for the posterior of the parameters of a multivariate linear 
model; then we cannot give an exact expression of the conditional posterior of 
0 given A, Punsem(Ol A, H, 1Y, Z), including its normalizing constants because we 
cannot construct the marginal posterior of A, Punsem(A I Y,Z), analytically. This 
results as A is multiplied by H1221 and (,8 Imr-)L in (3.1). The term A is there- 
fore partly a nonlinear function of /3 and IH22 such that we cannot construct its 
marginal posterior analytically. So, to obtain a consistent analysis, in the sense 
that the INSEM has to accord with its embedding linear model, we cannot 
ignore that the INSEM is a linear model with nonlinear restrictions on its pa- 
rameters and just proceed by constructing the posterior as in Section 2. In that 
section we namely implicitly assumed that the involved posterior is propor- 
tional to Punsem(r( Al , QY,Z) IA=O, This implies a posterior for the parameters of 
the linear model in A = 0, 

Plin (?71lHY,Z)IA=O o Punsem(1 (0, A) I l, Y, Z) IA=O | ( A) =(3.7) 

As shown in Section 2 the posteriorpunsem(0, Al H, Y, Z) IAO is badly behaved, and 
the resulting Plin(l IQ, Y, Z) IA=O is thus also badly behaved. This is, however, a 
posterior of the parameters of a linear model that is normally well behaved and 
well understood. It therefore does not belong to (or is nested within) the standard 
class of posteriors of parameters of linear models. For more details, refer to Kleiber- 
gen (1997). Also slight modifications of the INSEM, to, for example, an INSEM 
that is nested in the original INSEM, lead to a different implied posterior of the 
parameters of the embedding linear model. We therefore use the priors/posteriors 
of the parameters of the linear model as a base to construct the priors/posteriors 
of the parameters of the INSEM. So, we specify a prior for the parameters of the 
linear model, for example, a diffuse or natural-conjugate prior (see Zellner, 1971), 
and we evaluate this prior in A =0 to obtain the prior for the INSEM (see Kleiber- 
gen, 1997; Kleibergen and Paap, 1997), 

Pinsem (, l) Oc Punsem (9 A, A, Q) I A=O 

xc Plin (q(9 A),l) I A=O( A)| (3.8) a (0oA) / = 

where insem stands for INSEM. We note that we can also perform the construc- 
tion of the prior vice versa by constructing a prior on the structural form param- 
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eters and checking whether the implied prior on the parameters of the embedding 
linear model is plausible (see Kleibergen, 1997; Kleibergen and Zivot, 1998). 

3.2.1. Diffuse prior. Using the frameworkresulting from (3.8), a diffuse (Jef- 
freys') prior for the parameters of the linear model, (r1a,I112,0,rn, 

P in(V [I24,'DQ) 0G I,Q1-(1/2)(k+m+1) OIQl1-(l/2)(m+l) fl-1 0 ZizI12, (3.9) 

implies the prior for the parameters of the INSEM, (/3, 'I I 1112, i22, f) 

Pinsem (f Vi 1 H 12 H 22 , Ql) 

OC I Q I -(1/2)(m+ 1) I Q- 1 (g) Z,ZI 1/2 | J (0S M22 ,l8, A)) I A =O I 
oc | Q |-(112)(kl +m+1) |Z1 Zl |(1/2)ml|Bj_QB_ |-(I/2)(k2-M+ 1) 

X I1H221(Z2Mz, Z2)' H22 1K12 

( BfF1B'0ZM Z BQf 'el 0ZMz,Z21n22 ) 1/2 

e \Q-V1 B' (0) H22Z2MZ,Z2 ej Q.Vle1 0 H22Z2MZ,Z2n22 

(3.10) 

where el:m X 1 is the first m-dimensional unity vector, B = (/3 Im1), 
I J(4 ((M22, P A)) I = Ia /a(0, A) I and is constructed in Appendix A. 

The prior (3.10) shows that / is analyzed conditional on the value of 122, as it 
should be according to the local nonidentification of /3 for lower-rank values of 
H122. Furthermore, the prior shows the functional form of a diffuse prior for the 
parameters of the INSEM. This accords with our conclusions from the previous 
section that diffuseness for models like the INSEM has to be defined in a different 
way than the usual one for parameters of linear models. 

We note that the prior (3.10) is the Jeffreys' prior of the unrestricted reduced form 
of the INSEM (3.1) evaluated in A = 0. In Kleibergen and van Dijk (1994a), 
the Jeffreys' prior of the reduced form of the INSEM (2.2) is used to obtain 
well-behaved posteriors (see also Chao and Phillips, 1998). This prior is apart from 
|BjLB{ -(l/2)(k2-m+l)1 H2?l(Z_M 

' Z2Y1 11221 1/-2 identical to (3.10). We use 
(3.10) instead of that prior for three reasons. First, (3.10) results in a generic man- 
ner from the linear model (3.2). Second, the concept for constructing (3.10) can 
also be applied in the full system analysis whereas the Jeffreys' priors of the re- 
duced forms of full system SEM's are intractable. Third, although we use data ma- 
trices in (3.10) to obtain a more interpretable expression of the prior, it is not data 
dependent as no data matrices appear in the Jacobian J(CF,(H22,f/, A)), and I Z'ZI 
can just be left out. A Jeffreys' prior on the reduced form (2.2) is data dependent 
however. For more details, see Kleibergen and Zivot (1998). 

The prior (3.10) is identical to the Jeffreys' prior for the reduced form of the 
orthonormal SEM (see Phillips, 1983; Chao and Phillips, 1996), where Ql = Im 
and Z2 MZ Z2 = asBas =1, 22122 = 'k2-m? Using Rayleigh quotients 
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it can also be shown that the ratio of the prior (3.10) and a Jeffreys' prior on the 
reduced form (2.2) is bounded between finite nonzero constants. 

3.2.2. Natural conjugate prior In case of a natural conjugate prior for the 
parameters of the linear model, we specify an inverted-Wishart prior for Q and a 
matrix normal prior for (OTi11,H12, (D) given Q, 

Plin (fl) ? I GI (1/2)h II-(1/2)(h+m+1) exp[- 'tr(-1G)] 

Plin (lTll I`12~ (D f| Q) a: In I |-(1/2)m | A |(1/2)k 

X exp[- tr A((1 12\ p 

A\(( I F2) 
))] (3.11) 

where G: m X m, A: k X k, G and A are positive definite symmetric (pds) matri- 
ces, P: k X m, and h is the prior degrees of freedom parameter. The matrix A can 
be decomposed as 

lA11 A12\ 
A= ,1 A (3.12) 

\A21 A22/ 

where A1 k1 X k1 , A 12 = A'1 k2 X k1 , A22: k2 X k2. The prior of the parameters of 
the INSEM resulting frompin ( 1, 11 12, (F, Hl) can again be constructed using (3.8), 

Pinsem (1IT, 11 12, X22, Hl) 

? Plin(Tll,rIH2,((3,HI22,A),lIA=oIJ((,(HI22,/,8A))IA=o I 
1 (1/2)h I HI -(1/2)(h+kl +m+ 1) IA11 I (1/2)m BIHB{ I (1/2 

XHn22 A-', 11221 1-1/2 

(t BH lB'g 0A22.1 Bl-le1 ( A22. 122 [ 1/2 

efl-HB' (0 nH2A22.1 eHl 1el 0 Hr2A221.H22| 

Xexp[--trIfH-1lG+ J P 
L[2 \\ 22fl 11122/ 

XA I122, /3 22 ))) (3.13) 

where A22.1 = A22 -A21 A A 12 and the specification of (3.13) is not unique in the 
sense that certain scaling factors are used to obtain a more interpretable expression. 

It may be that we have more knowledge about possible values of the param- 
eters of the INSEM than about the parameters of the linear model. This knowl- 
edge can be used in the construction of the prior of the parameters of the linear 
model though, as these parameters are an exact function of the parameters of the 
INSEM when the restriction A = 0 holds. We can also directly specify a prior on 
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the parameters of the INSEM and check whether the implied prior on the param- 
eters of the embedding linear model is plausible (see Kleibergen and Zivot, 1998). 

The prior (3.13) does not belong to a known class of probability density func- 
tions, and we do not know analytical expressions of its moments (which only 
exist up to its first order (but not including it)) or normalizing constant. These 
properties can be calculated using Monte Carlo simulation, and in Section 5 we 
construct a simulation algorithm to obtain drawings from (3.13). 

4. POSTERIORS OF THE INSEM PARAMETERS 

The framework for constructing the priors of the parameters of the INSEM can 
directly be applied to construct the posteriors of the parameters of the INSEM. 
This results because the likelihood of the INSEM is a continuous function of the 
parameters such that the posterior, which is proportional to the product of the 
prior and the likelihood, can be evaluated in the same way as the prior, 

Pinsem (1 I 11, [ 112, II22, Q I Y, Z) 

QC Pinsem(P87'Tlllll2,122,H)Linsem(YIP,TTll,l-112,22,QfZZ) 

?n Punsem(13A,'rllT1112,n22l) I A=OLunsem(YI 13, A.7r I r12,Hr22, ,Z) IA=O 

OCPlin (f11 2 1112 q (Ds A,, AJ22), Q ) I A=O I J (09 (1122, A A) IA =0 I 
X Llin (YIlrl :I l2i4(D66AX:22)sAZ)1A=0- (4.1) 

In the following two subsections, we construct the posteriors for different spec- 
ifications of the prior, i.e., a diffuse and natural conjugate prior. 

4.1. Posterior INSEM Using Diffuse Prior 

Using the diffuse prior (3.10), the joint posterior of the parameters of the INSEM 
can directly be constructed from this prior and the likelihood using (4.1), 

Pinsem(P,91TI1112,122fZlI Y,Z) 

?C Pinsem(16?lrllH2nr22,f)L(YI,6,VllgfIl2sIl22,fsZ) 

CI Q I-(1/2)(T+kl+m+1) j Z , I(1/2)m B QB'I -(1/2)(k2-m+1) 

X IH 2'2(Z2MZ, Z2)' Hl22? 1-1/2 

( BQ 1B' (0 Z2Mz, Z2 BY-'el (20 Z2Mz, Z2HI22 1/2 

\el-lB' 0i)H22Z5MZ,Z2 e'f1-el 0H'22ZZMz1Z2H22J 

X exp[- tr( l ((Y1 Y2) - (ZI Z2) (Tl vI:))' 

X (YI Y2) - (Z Z2) 23 I122))) (4.2) 
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The posterior (4.2) does not belong to a known class of probability density 
functions nor do any of the conditional posteriors, apart from the conditional 
posterior of (1r1,1112) given (3,H22,f), which is matrix normal, belong to a 
known class of probability density functions. So, we can only analytically in- 
tegrate out ( 1I,1, 12) to obtain the marginal posterior of (/3,122,11), 

Pinsemn(P,1122,l Q| Y, Z) ct: |I1 -(1/2)(T+m+ 1) I BI fBI J-(1/2)(k2-m+ 1) 

/ B-1B' 0Z2Mz Z2 Bf-e1 0(Z2Mz1 Z2H22 1/2 

|el Q-B' (0 1122Z2/MZ Z2 el Ql-le,(2) 0I22 2Mz, Z2 H22/ 

XI H2- I 2(Z2'MZ I Z2) 
- 

j221 112 

X exp[--tr(1-11((y1 Y2)-Z21122(13 Im-I))' 

X MZI((yI Y2)-Z2H22(8 Im-l)))b 43 

which shows the functional form of the kernel of the density of a matrix normal 
distributed random matrix with reduced rank (see Kleibergen, 1997). The poste- 
rior (4.3) is proportional to the product of the marginal posterior of (SF, Ql) and the 
Jacobian of the transformation evaluated in A = 0, 

Pinsem(3,1_122,kIY,Z) ?c plin(FD(p,A,r22),flI YZ)IA=OIJ(F([122,/3,A))IA=o01 

(4.4) 

In Section 5, we construct importance and Metropolis-Hastings samplers for 
calculating the marginal posteriors of (4.3) that use (4.4). 

4.2. Posterior INSEM Using Natural Conjugate Prior 

Identically to the posterior of the parameters of the INSEM using a diffuse prior 
(4.2), we can construct the posterior of the parameters of the INSEM when we use 
the natural conjugate prior (3.13), 

Pinsem( 13, 1J 1112 1I22J fQIY,Z) 
oc I1nI(1/2)(T+k1+m+1)I(A + ZtZ)llJ(1/2)m1B?lB I(l/2)(k2m?l) 

BY-1B' (0 (A + Z'Z)22.1 B1-'e, (0 (A + Z'Z)22.1 122 1/2 

( eJ0-1B' 0 1H2(A + Z'Z)22.1 e'nF1e1 0 2 H2(A + Z'Z)22.1H122/ 

X I r221 (A + Z'Z)22.1 HI221K112 

X< exp[-? tr(W1 (6 +((T1 Hi L 2 ( 1122 I22 /I2 

X 
(A+ZZ)(( -I22 22 J (4.5) 

wherefl= (A +Z'Z)-(Z'Y+A'P), G= G+ Y'Y-HI'(A +Z'Z)II, Y= (y1 Y2). 
Again similar to the posterior using a diffuse prior (4.2), only the conditional 
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posterior of (11,flH12) given (18,1122,l) belongs to a known class of probability 
density functions, and (ir1, H12) are the only parameters that can be integrated 
out analytically to obtain the marginal posterior of (3, H122, fl), 

PinSm(/,n22filY,)t:XIn I -(1/2) (T+m+ ) IB_L IBi l-(1/2)(k2-M+l) 

(t B-I1B' 0 (A + Z'Z)22.1 Bf-lel (g0 (A + Z'Z)22.1 H122 1/2 

eIV BI 0) 22(A + Z'Z)22 1 ej4)7e1 0 W2(A + Z'Z) 

X IH2'2(A +Z'Z)22J.1rI221j1/2 

x exp[- tr(f- 1 (G + (1122(13 Im-I) - [12)' 

X (A + Z'Z)22.1(H122(13 Im-) H -2)))] (4.6) 

where II = (MI Hl)', Il: k1Xm, X 2 k2 X m. 

Again (4.4) applies to this posterior, and we use it in the following section to 
construct a posterior simulator. 

5. SIMULATING POSTERIORS 

As mentioned before the posteriors (4.3) and (4.6) do not belong to a standard 
class of probability density functions nor do their conditional posteriors. We can 
therefore not perform Gibbs sampling as the conditional posteriors are nonstan- 
dard. The simulation algorithms constructed in this section therefore generate 
drawings from a probability density function that approximates the true posterior. 
To correct for not drawing from the true posterior, weights are attached to each 
drawing of the parameters proportional to the ratio of the posterior and the ap- 
proximating density in the generated parameter points. These weights can be 
used in both importance sampling algorithms (see Kloek and van Dijk, 1978; 
Geweke, 1989) and Metropolis-Hastings algorithms (see Metropolis, Rosen- 
bluth, Rosenbluth, Teller, and Teller, 1953; Hastings, 1970) to draw from the 
posterior. We first discuss the construction of the weights and the approximating 
density, and hereafter we briefly discuss the two different simulation algorithms. 

We use the posterior of the unrestricted SEM, punsem(13, A, 122Ql I Y, Z), as ap- 
proximating density of the posterior of the INSEM, Pinsem(13, p22, I Y, Z). The 
posterior of the unrestricted SEM contains the parameter A, however, which is not 
present in the posterior of the INSEM. To obtain a density that both accords with 
the posterior of the INSEM and contains A, we assume that A is generated given 
(13, 122, ) from a proper conditional density g(A I18, lII22,11), which we specify 
ourselves (see Chen, 1994; Verdinelli and Wasserman, 1995; Kleibergen, 1997; 
Kleibergen and Paap, 1997). Furthermore, we assume that 13, 122, and Q1 are 
generated frompinsem(1, T22 l I Y, Z). So, as density function to be approximated 
by Punsem(139 A, n22, l Y, Z) we have 

g(A 1 13, i122 11)Pinsem (6, rI22, fI Q Y, Z) 

,x g(A1,8II22,11)(Punsem(13,A,l122,flIYZ)1A=o)- (5.1) 
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The weight function thus becomes 

g(A11322fl)(Punsem(3 A,H I22 Q I Y, Z) Lk2) 
w (f,8A, 1122,9fl) =Pun 

A 22 I .(5.2) 

The quality of the approximating density punsemr(P, A, I122, Q I Y, Z) crucially de- 
pends on the chosen specification of g (A I f3, T22, XQ). In case we use the diffuse prior 
for the parameters of the INSEM (3.10), a natural choice of g(A 113, 1122, f) is 

g(AI ,H22,fl) 

= (21) -(1/2)(k2-m+ 1) IB1 fV lB{ I (1/2)(k2-m+ 1) H221Z2MZ, Z2[1n221 11/2 

X exp[--tr(Bifl Y1B(A - 
A)'H212'MZ, Z21I221(A A))], (5.3) 

where 

A = (IW21Z2iMz, Z211221)-' I22Z2Mz, (Y - Z21122B)Q-YB{(B_LQ-B{)', 

whereas 

g(A /, 1I22, fl) 

= (2,7)-(1/2)(k2-m+1) B 'B{ I (1/2)(k2-m+ 1)1 1221(A + Z'Z)22.1 pI221 1/2 

X exp[- 2tr(Bj_f 1B_(A - A)' 221(A + Z'Z)22.1H122L(A -A))] (5.4) 

where A = (l21,(A + Z'Z)22.1 12221Y1I H121((AP + Z'Y)2 - (A + Z'Z)22.1 HI22B) X 
fv-1Bj(Bjfl-B{)-1, AP + Z'Y ((AP + Z'Y)1 (AP + Z'Y))', (AP + 

Z'Y)1:k, Xm,(AP+Z'Y)2:k2Xm,isanaturalchoiceofg(AI,1,1I22,fk)whenwe 
use the natural conjugate prior (3.11). 

The weight function resulting from these choices of g reads in both cases 

w(/3,A,H22,fl) = IJ(iF 6(, Ak1 22)) I I=O I 

where g(A /A 1122,1f) should be chosen from (5.3) and (5.4) according to 
the involved prior. In Appendix A, we show that I J(F,(p, A, 1122))I 
IJQF,(/,,A,H22))IAOI such that the ratio of the Jacobians in (5.5) is always 
finite. Furthermore as g(A 11, 1122,1f)I is a proper conditional density, it is also 
finite, and the weight function is consequently always finite. 

When A = 0, the ratio of Jacobians in (5.5) is equal to one, and the weight 
function then simplifies to the proposed conditional density of A evaluated in 
A = 0. The weight function is therefore always finite and nonzero when A = 0. All 
drawings of (/3, A, 1122) for which A = 0 thus get a finite nonzero weight. This has 
consequences for the existence of moments of the posteriorpinsem68 (12, 22, fl I Y1 Z) 

because it implies that the degree of finite moments is determined by the trans- 
formation of iD to (,3, A, 1I22). According to (3.5), ,8 = V2? 1 v 1. As no restrictions 
are imposed on the rank of V21, this implies that the posterior of ,3 has Cauchy- 
type tails and no finite mean and variance (see Kleibergen and Zivot, 1998). Note 
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also that the sampling distributions of limited information maximum likelihood 
estimators have Cauchy-type tails (see Anderson, 1982; Phillips, 1983). 

We summarize the different steps involved in obtaining the weight function, 
attached to the ith drawing, i = 1,.. ., N, in a simulation algorithm as follows (see 
also Kleibergen, 1997; Kleibergen and Paap, 1997), 

Draw fl from pli (flIY,Z). 
Draw .V frompin (D fl,Y,Z). 
Perform a singular value decomposition of V>i = UiSiVi'. 
Compute f3, A, 1122 according to (3.4) and (3.5). 
Compute w(f' A'H11i2,fli) according to (5.5). 
Draw 7rl, 1112 fromP1in( 1,HJ12 J 4(P, A,1i2),fli Y,Z)IA=O 

The posteriors of the linear model parameters, Q1 and FD, used in the first step 
are standard density functions, i.e., inverted-Wishart and matrix normal, respec- 
tively, in case of diffuse or natural conjugate priors. The exact functional speci- 
fication of these densities depends on the specification of the involved priors and 
is straightforward to construct, i.e., 

pln(fl I y,Z) IJ fI -(1/2)(T+l?m+1) exp[- -tr(fl Q)], (5.6) 

where 1 =, Q = Y'MzYin the case of the diffuse prior, I = h and Q = G in the case 
of the natural conjugate prior, and 

p1~~(PIfQ y,Z) f1 I -(1/2)k2 exp[- 1tr(7l1 (4) - i>)'W(4@ - D)], (5.7) 

where 4' = (Z'MZ, Z2)-1Z2 Mz, Y, W = Z2 MZ Z2 in the case of the diffuse prior 
and 'D = fl2, W = (A + Z'Z)22.1 in the case of the natural conjugate prior. In 
Kleibergen and Zivot (1998) another simulation algorithm to generate drawings 
from the posterior Pinsem (A 122, a | Y, Z) is constructed that is sometimes more 
efficient but is more difficult to generalize to the full information case. 

The weight function can either be used in an importance or a Metropolis- 
Hastings sampling algorithm to calculate the marginal posteriors or moments of 
these. Using the importance sampling algorithm (see Kloek and van Dijk, 1978; 
Geweke, 1989), we approximate the moment E(f (iri1,H I 2, ,B, HI22, fl)) by 

N 

E(7r11 J12A122J Q)) N 

(5.8) 

where we use E to indicate that it is an estimator of the true expectation E. In 
Geweke (1989), it is shown that under quite general conditions central limit theo- 
rems can be used to prove the convergence of the approximation (5.8) to its true 
value. As the weights are always finite, they satisfy the conditions for the central 
limit theorems to apply, and statistics can be calculated that show the numerical 
accuracy of the approximation (5.8). 
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The weights (5.2) can also be used in a Metropolis-Hastings (M-H) algorithm 
(see Metropolis et al., 1953; Hastings, 1970) known as the independence sampler 
(see Tierney, 1994). This algorithm constructs a Markov chain from the drawn 
(1iI ,l rl 12 1 J l sli ) .'s The (r{ 1, HW2I 3i,Hi2,If)'s in this Markov chain are ac- 
cepted as drawings from the posterior. This is achieved using the following steps: 

0. i = 1. 
1. Draw (Or+ I 9 12 22 ) using the simulation scheme stated previ- 

ously. Given that (i r, HW2, /i3 i 220, W) is accepted as drawing from the posterior, 
(X11 ,fl4i+I,pBi+?1, HII+2 , f ) is accepted as the (i + 1)th drawing from the pos- 
teriorwith probability min((w(/3i, A', H22, fi))/(w(/3 i,k A+1, Hl1 ,fll+ 1 )), 1); other- 
wise (v'i+,rl,l41 ,3i+l,r1+H1,fi+1) (IrT, flij2,/i,fl22,f ) 

2. i=i+l.Gotol. 

When the resulting Markov chain, (.1, fl 2,/3i,8JJ2,2fi), i =1,... has con- 
verged to its equilibrium distribution, say after H drawings, we can record 
(iT l 2,1 /l I HI 2, XWi), i = H + 1, ... as simulated values of the parameters from 
the posterior. 

The simulation algorithms can also be used to calculate other properties of the 
posterior, like Bayes factors and Bayesian Lagrange multiplier statistics (see 
Kleibergen and Paap, 1997), and to obtain drawings from the natural conjugate 
prior (3.13). In that case, the natural choice of the involved g(A /, 122,Q) reads 

g(A I /122,fl) = (2) -(1/2)(k2-m+1) B1_fl-lB_ I (1/2)(k2-m+ 1) | FL2IA22.1 112211l 

X 
exp[-ltr(B_LlB{(A- 

A)'II21A221H221(A-A))], 

(5.9) 

where A = (Fl221A22.1H22?j 1 2lA222(P2_-AI22B) YlB{(BJ1Bf)-1, P= 

(P1 Ps)', Pl:kl X m, P2:k2 X m, and Ii.(fl Y, Z) plin(Il, Y, Z) both result 
from (3.11). This also shows the conjugateness of this prior as it equals the pos- 
terior using a diffuse prior of some arbitrary set of observations that does not hold 
for the extended natural conjugate priors, which are also specified for SEM's, 
used by Dreze and Morales (1976) and Dreze and Richard (1983). We note that 
the simulation algorithms do not calculate y; as y = irrl + 1112/3, we can easily 
incorporate y into these algorithms. 

6. FULL SYSTEM ANALYSIS 

The INSEM is a reduced rank restriction on a parameter matrix of a linear model. 
A full system analysis of a SEM can also be specified as a linear model with 
nonlinear restrictions on its parameters. Again these restrictions are reduced rank 
restrictions, but the difference with the INSEM is that they can depend on one 
another in a recursive way. Theorem 1 states that the reduced form of a SEM is a 
linear model with reduced rank restrictions on its parameter matrices. 
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THEOREM 6.1. Assume that a SEM has the following specification: 

/B1nFn Bjnm 
(Yn m)Bm)K Bmm) (Z- Zm- Zm)(I'mn mFinm) + (&mn Cm), (6.1) 

Bmm Bmm \ 
?~~~~~ rmm/ 

where the number of variables contained in -Ym is chosen such that rmm: im X jm 
(im 2 jm) and rJ?m: lm X Im are unrestricted, the parameter matrices, rFm: lm X jm, 

rmrs lm X ji, Bfi ji X i, Bmm ji X Im, Bmmi:jm X Ij, Bm: ji X jm contain 
(some) parameters that are restricted to zero except for Bnn, which has all di- 
agonal elements equal to one and some off-diagonal elements equal to zero, and 
Bmm = I ; then the reducedform of the SEMfrom equation (6.1) is equal to a set 
of reduced rank restrictions on the standard linear model, 

(Ym Ym) = (Zn ZCm Zm)D + e, 

where F: (lmn + lm + im) X (ji +ij). 

Proof. See Appendix B. 

Theorem 1 shows that we can use the framework for prior/posterior analysis 
used in the previous sections, which results from Kleibergen (1997), in a Bayes- 
ian full system analysis of a SEM. An important difference with the analysis from 
the previous sections is, however, the dependence of the different reduced rank 
restrictions on one another. For the INSEM, we can either analyze FD conditional 
on (iT 1,1rI12) or vice versa. So, the conditionalization of these parameters on one 
another does not matter. This does not hold for the full system analysis that we 
can conclude from the proof of Theorem 1. It results in a strict ordering in which 
the reduced rank restrictions have to be imposed, and hence the parameters have 
to be analyzed conditional on one another. The reduced form of the SEM con- 
structed in Appendix B already shows some important conditionalization rules 
for the parameters of the SEM. For example, the structural form parameter,f3mC is 
analyzed conditional on the structural form parameter fl3mm, which are both de- 
fined in Appendix B. More of these conditionalization rules will appear when the 
reduced form is constructed further. 

The conditionalization rules also imply rank and order conditions that can 
differ from the INSEM-based conditions used in general. This is part of the point 
made in Maddala (1976). Regarding the conditionalization rules, the reduced 
form, constructed in Appendix B, shows that f3mm is identified when Hmm has full 
rank (or when that part of 1Im that is multiplied by the nonzero parts of /3jm has 
full rank), where the elements of fH are defined in Appendix B. When the INSEM- 
based conditions are used, it is assumed that no restrictions are imposed on Hmm. 
If restrictions are imposed, however, the resulting rank and order conditions can 
become different. In the following, an example of this will be discussed. It can 
also be seen in /3mF, which is identified jointly by rnm, I`I,wiCfflim, and rImm, and 
its rank and order conditions therefore depend on the specification of the SEM. 
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As mentioned before, the framework for prior and posterior analysis used in 
the previous sections can also be used to construct the priors and posteriors of the 
parameters in a full system analysis of a SEM. When we apply this framework we 
have to give an exact specification of the reduced form and its (hyper) parameters 
reflecting the restrictions that obey the three conditions, that (i) when these (hy- 
per) parameters are nonzero, the model is observationally equivalent with a stan- 
dard linear model and when these (hyper) parameters are zero, (ii) both the reduced 
form of the SEM results and (iii) these (hyper) parameters are locally uncorre- 
lated with specific other parameters such that the resulting posterior is invariant 
with respect to the ordering of those variables for which the likelihood is also 
invariant (for an exact specification of the conditions the restrictions have to 
satisfy, see Kleibergen, 1997). This enables us to construct the prior/posterior of 
the parameters of the SEM as proportional to the prior/posterior of the param- 
eters of the linear model under the restriction that the (hyper) parameters reflect- 
ing the restrictions are zero, which is identical to the construction of priors/ 
posteriors of the parameters of the INSEM. Because there are still some differences 
compared to the analysis of the INSEM, because the reduced form has a more 
complicated structure and the number of additional parameters we have to sim- 
ulate in the posterior simulator increases (see (5.1)), we give two detailed exam- 
ples, two and three (sets of) equation(s) models, to indicate all these differences. 
These examples jointly with Theorem 1 show how a Bayesian full system anal- 
ysis of any kind of SEM is conducted. 

6.1. Two (Sets of) Equations 

We specify the structural form of the two (sets of) equation(s) model by 

YI = Y2/1 + Zl'll + Z2r21 + 81, 

Y2 = Y1/82 + ZI F12 + Z3Fr32 + 82, i (6.2) 

where Yl: T X ml, Y2: T X m2 contain the endogenous variables; ZI: T X kl, 
Z2: T X k2, Z3: T X k3 contain (weakly) exogenous and lagged dependent vari- 
ables; k2 ? ml, k3 ' m2, m = ml + M2, (?1 82) - n(O, 0g) IT), /1: m2 X ml, 

2: ml Xm2,rll:k1 Xml,r12:k, Xm2,r2l:k2XmI,r32:k3Xm2.Thereduced 

form of (6.2), which can be constructed using the proof of Theorem 1, reads 

y= Zl'11 + Z2H21 + Z3132/31 + 6, 

Y2= Z1112 + Z2H2132 + Z3H32 + 2 (6.3) 

where H11l = (rll + r12/31)(Im, -/2/31), I121 = r2l(im, - /2/1)-1) 1112 = ("12 + 

Fll/32)(IMr2 1, 132 = r32(Im2 - /31/2)1, 1 = (-I + -2/31)(Im, -2,8-1 

2= (82 + -i32)(Im2 - /1/82) ', ( l2) n(O,f 0 IT), X = B'QB, and 

B=(~ t _ ) 
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Similar to the reduced form of the INSEM (2.2) and as indicated in the proof of 
Theorem 1, we add parameters to the reduced form to obtain a model, which we 
call unrestricted SEM (UNSEM), that is observationally equivalent with a linear 
model. When these added parameters are zero, both the reduced form (6.3) results 
and the added parameters are locally uncorrelated with specific other parameters, 

(y1 Y2) = Zl(1111 If12) + Z2112I(Im, P2) + Z3n32(p1 Im2) 

+ Z2n211A2(Im, 12)1 + Z3 n321A (p1 Im2)I + (e1 2) (6.4) 

where A2: (k2 - ml) X M2, A3: (k3 - M2) X ml and the orthogonal complements 

n21i, n321, (Im, 02)1, and (P1 Im2)L are defined similarly to the ones used in 
(3.1) (see Appendix C). It is clear that when A2 =0, A3 = 0, the reduced form (6.3) 
results and that A2 and A3 are locally uncorrelated, when they are equal to zero, 
with (121,P2) and (H32, f1), respectively. When A2 # 0, A3 # 0, again similar to 
(3.1), (6.4) is observationally equivalent with the linear model, 

(Y1 Y2) = (Z1 Z2 Z3) L2) + (el ), (6.5) 

where D = (1111 112), D2: k2 Xm, (1)3 k3 X m. Using a SVD, the equality of (6.4) 
and (6.5) can be shown. SVD's are also used to obtain (62,A2,121) from (D2 and 
(Pi, A3, 1132) from 1)3 (see Appendix C). The resulting relationships are similar to 
(3.3)-(3.5) and straightforward to derive given (3.3)-(3.5). The SEM (6.2) is 
consequently a linear model with nonlinear restrictions on its parameters, A2 = 0, 
A3 = 0. The framework for prior/posterior analysis of the INSEM used in Sec- 
tions 3 and 4 can, therefore, directly be extended to the two equation SEM (6.2). 
So, we specify a prior for the parameters of the linear model ((I, D2,13, 1l), for 
example, a diffuse or natural conjugate prior, and this implies a prior for the 
parameters of the SEM (6.3) as this SEM equals the linear model evaluated in 
A2 = O, A3 = 0. (Note that we use the reduced form (6.3) but this model is obser- 
vationally equivalent with the SEM (6.2).) 

Psem ( 1 1, p12, i P21121,i 1132,1f) 

?C Punsem(Il1, 1112, P1, P2, A2, A3, I121,1i32,1l) IA2=O,A3=O 

?C Plin(1DI) D22, A2, 121)2 D)3(31, A3 ,1132),fl) IA2=O,A3=O 

X IJ((D2,(,62 A2,fI21)) IA2=OIIlJ((D3,(l,81A3,rl32)) IA3=01I (6.6) 

where sem stands for SEM, unsem for UNSEM, and lin for linear model and the 
Jacobians J(Q2,(682,A2,1121)), J(1)3,(01,A3,JI32)) are straightforward to derive 
given the derivation of the Jacobian of the transformation in the case of the INSEM 
and are stated in Appendix C. Using (6.6) and the expressions of diffuse and 
natural conjugate priors for the linear model, (3.9) and (3.11), we can again con- 
struct the functional expressions of diffuse and natural conjugate priors for SEM's 
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like (6.3). For reasons of compactness and similarity with Section 3 we do not 
give the exact functional expressions. 

For the posterior exactly the same reasoning as for the prior applies, i.e., the 
posterior of the parameters of the SEM (6.3) is proportional to the posterior of the 
parameters of the linear model under the imposed restriction. We can decompose 
the posterior of the linear model into a product of marginal and conditional pos- 
teriors that belong to a standard class of density functions, i.e., normal or inverted- 
Wishart (see, e.g., Zellner, 1971). This property can directly be used to decompose 
the posterior of the SEM, 

Psem( Il1,rIH2,i,8 /32, H21,1H32,fllY,Z) 

?C Punsem(Hl1IH12f319,8/29,A2, A3, H21 ,I32 ,I YZ) IA2=O,A3=O 

?C Plin (q)l 2(D2032 A2, 1121 ), (3 681 A3, 9 132),q Y Z) IA2=0,A3=0 

X IJ(D2,(82, A2,H21))1A2=OIIJ(13,(p13A3,H32))1A3=OI 

?CPlin((Dl( D2(p2, A2, H21),FD3(p1, A3,nI32), Q,Y,Z) IA2=O,A3=O 

X Plin 2(2l2,A2fI21 ) (D3(Pl,A3,:H32),q,Y,Z)IA2=O,A3=O 

? 1J(?2(D2J/2A2,TI21))1A2=0 I 

? Plin (F3(/3 1A3 ,l32)A flY,Z)IA3o=0 IJQ3,(P1A391132)) IA3=O0 

? Plin (Q I Y Z)- (6.7) 

Note that we can also use other orderings in this decomposition. To simulate 
parameters from the posterior of the SEM (6.3), we use the decomposition of the 
posterior of the SEM (6.7). This allows us to perform the simulation in two dif- 
ferent steps. Furthermore, we add, in each of the two different steps, parameters 
to the model that we, similar to Section 5, assume to be generated from some 
conditional density g, which we specify ourselves. In the case of diffuse priors, 
the following choices of these functions are natural: 

gI(A3 1 3I,H32,f) 

(21) -(1/2)13 1 BLl- Bl I (1/2)13 3 H21Z3 Z2) z3 321 1 (1/2)mI 

>X exp[-2tr(B111Bj?(A3 -XA3)'l32?Z;M(Z1 Z2) Z3 Hl2?(A3 ( A3))], 

(6.8) 

92 (A2 -g,I21 , (3 , Q) 

- (2,)-(1/2)12 IB21H-BBl 1(1/2)12 I H1 ZnM' 2n2111/2)M2 

X exp[- tr(B2? Q-HlB', (A2-A2)' fl32?Z2Mz, Z3132?(A2-A2))]A 

(6.9) 
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where 12 = k2 -M, 13 =k3 -m2, B1 = (P1 IM2) B2 (Im, P2) 

A3 = (H3'21Z'M(z Z2)Z3H32?) H32?ZM(Z,Z2) 

x (Y-Z3132B1)Q lBll(Bli lB'J)1, 

A2 A2 = (n'211Z2MZIZ2n2lL) 1n,21LZ,2mzI 

X (Y -Z3 3- Z2L121 B2)Q lB21(B21 l-Bt )I. 

The weight functions of the two different steps of the simulation algorithm, in- 
volving both (6.8) and (6.9), then become 

W,(JI, A3,II32,Q)= IJ(03,(PIA3,Ii32))1A30 I g1 (A3 I PI, rI32, )IA3=0, 

(6.10) 

- IJ(2(D2,A 62,H 12912)) IA2o=0 W2 (62, A2, It2l, Q1AID3) = I 
2(q 02( A21:I g21 92(A2 1P2,H21(X'3,Qfl)1A2=o. 

(6.11) 

Again these weight functions are always finite. The different steps involved in 
obtaining the weight attached to a certain drawing i, i = 1,-.. , N, of the parameters 
of the SEM can then be summarized as follows: 

1. Draw ?l' from pli (flI YZ). 
Draw V3 from Plin(F3 I fl Y,Z) 

2. Compute /31, A', HIi2 from V3 using a SVD. 
3. Compute w1(,P1,A',Hi2,Qk) according to (6.10). 
4. Draw (1 fromplinl(02 I 3(lIA3,i32),i 

i 
Y,Z)IA3=O 

5. Compute ',A IT21 from 42 using a SVD. 
6. Compute w2(f32, Ai2, HI,IY 1( |3 (p21, A3, 22)) IA3=O according to (6.1 1). 
7. Compute total weight ith drawing: 

W(fl,Ai3JI32,f2iAi2, 21,Qi) = W1 X W2. 

8. Draw 4V fromplin(4>11b2(,8iA2f]lIi),43(p8iA39II2)7Qi YZ)lA2 A3=O 

The posteriors from which we simulate are all standard, in the case of diffuse 
or natural conjugate priors, and are similar to the ones used in the algorithm in 
Section 5. The values of other structural form parameters can be directly calcu- 
lated using the equations used in (6.3) and the drawings from the preceding al- 
gorithm. The resulting total weights, w, can be used in an importance or a M-H 
sampler as discussed in Section 5 to obtain a posterior simulator of the posterior 
of the parameters of the SEM (6.3). 

6.2. Three (Sets of) Equations 

As an example of a three (sets of ) equation (s) model, we use the following model. 
(Note that contrary to the two equation model, the specification of a three equa- 
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tion model is not unique because the model is not invariant with respect to the 
ordering of the variables.) 

Y1 = Y21621 + Zlrll + 61, 

Y2 = Y3f832 + Zl r12 + Z2r22 + 62, (6.12) 

Y3 = Y1f813 + Y2/323 + Z2r23 + Z3r33 + 63, 

where Yl: T X ml, Y2: T X m2, and Y3: T X m3 contain the endogenous variables 
and ZI: TX k1, Z2: TX k2, and Z3: TX k3 contain lagged endogenous and weakly 
exogenous variables, P21: m2 X mlI, 1332: m3 X M2 9,813: in1 X M3, 1323. i2 X M3, 

rll: k, X Ml, r12: k1 Xm2, r22: k2 X M2, r23: k2 Xm3, r33: k3 X M3, M = ml + m2 + 

m3. Here,(sl 62 63) n(O,1 0) IT). Because the SEM (6.12) has to be properly 
identified, the following (INSEM) order conditions need to be fulfilled: k2 + k3 2 
M2, k3 ? M3, k, ? ml + M2. Using the proof of Theorem 1, the reduced form of 
the model in equation (6.12) is constructed and reads 

YI Z= fl I + (Zl Z21133)( 112P21 + 619 

Y2= Z1n12 + Z21122 + Z3H33 /832 + 62 (6.13) 

=3 Z101111 1112)(81) + Z21f123 + Z3H133 + 6 

where 

/iml -13 823\ 
(rl1 rF2) = (11 112)( Ipl 

Im, - 23813) 

r33 = 1133(Im3 - 12(6113 - P4)), 

/Im2 6623 + 321,813)\ 
(F22 r23) = (fI22 H23)(-P32 im3 

) 

(el 2 63)B, = (61 62 63) 

= B'QB, 
( Im 0 ? 113 

B = -121 Im2 -123 . 
0 1P32 IM3 

The reduced form (6.13) is again a system of reduced rank matrices like the 
reduced forms of the one equation (2.2) and two equation (6.3) models. An im- 
portant difference with these models is that its reduced rank matrices depend on 
another, which is a.o. reflected in the identification of /321, which depends on one 
of the other structural form parameters, /332. This difference also leads to a change 
in the order condition compared to the INSEM. According to the INSEM order 
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condition, P21 is identified when k2 + k3 ? M2, i.e., the number of excluded 
exogenous variables is at least equal to the number of included endogenous vari- 
ables (see Hausman, 1983). The model (6.12) shows, however, that Il21 is iden- 

tified when 1 2) has full rank. Although this matrix has k2 + k3 rows, which 

accords with the standard order condition, its row rank can never exceed k2 + M3 

Ik2 0 \/n22\ 
(:sk2 + k3) as it can be specified as Ij and the last matrix in this 

0 1133 13 
product has k2 + M3 rows. It is therefore important that the identification of the 
different parameters of a SEM in a full system analysis is conducted using the 
restricted reduced form parameter matrix instead of the unrestricted one as this 
can lead to different rank and order conditions (see also Maddala, 1976). This 
different order condition results from the dependence on one another of the re- 
duced rank structures imposed by the SEM (6.13) (see also proof of Theorem 1). 
The reduced rank structures appearing in the two equation model do not depend 
on one another, as can be concluded from (6.4), and therefore the INSEM order 
conditions still apply there. 

As a consequence of the sequential dependence between the reduced rank struc- 
tures, not only do the order conditions of the INSEM and the SEM (6.12) differ, 
as indicated previously, but also the parameters that we add to the model (6.13), 
to make it observationally equivalent to a linear model, are different from the 
ones we used before (see also the proof of Theorem 1). In the cases of the INSEM 
(3.1) and the two equation SEM (6.4), the parameters added to the reduced form, 
to make it observationally equivalent to a linear model, do not depend on one 
another in a sequential way. The parameters added to (6.13) do, however, depend 
on each other sequentially. To show this, consider the linear model 

(DI 

(Y1 Y2 Y3) = (Z1 Z2 Z3)1 (2 + (el e2 63). (6.14) 

(D3 

The reduced form model (6.13) can be obtained by using what we call an un- 
restricted SEM specification of the parameters of (6.14), 

=I (flt '1112) (Imrn 8123 + (rlll 112)1AL I rIm 
0 

2 ' 

(6.15) 

_D2 621 IM2 \ ) A(P21 IM2 ) (6.16) 
(D3 0 0 M I3 

(122 r23 

( 
= 

2 (6.17) 

02 = r133(1332 IM3) + H331 A3(P332 Imr3) (6.18) 
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where the orthogonal complements are defined similarly to the ones used in (3.1) 
(see also Appendix D), Al: (k1 - M - M2) X M3, A2: (k2 + k3 - M2 - M3) X mI, 
A3: (k3 - M3) X M2. To analyze the implications of the different orthogonality 
conditions in (6.15)-(6.18), we substitute the expression of 0 in ((D'2 3)', 

4)2 ( 1122 1I23 \(P21 Im2 O0 

(Dj3/ kr133(132 Im) + 11331A3([332 Im3)1dJ\ 0 0 Im3) 

1122 fI23 \ 821 IM 2 ?0 

+ 
(H33 (P32 Im3) + 1331 A3 (132 Im3)1 A2( 0 0 im 

(6.19) 

It is clear from (6.15)-(6.18) that when Al = 0, A2 = 0, A3 = 0, the model 
(6.13) results. Furthermore, when A1 = 0, A2= 0, A3 = 0, A1 is locally uncor- 
related with (111l,1112,/313,P823), A3 with (I133,832), and A2 with P821 and 
all parameters contained in 0, i.e., I122, 1123, 1133, A3, P32. SVD's are needed 
to obtain (11,11I12,Al,/813,p823) from bI, (0,A2,/821) from (F)2,(3), and 
(1122,123,1133, A3, /32) from 0 and to show the observational equivalence be- 
tween the model imposed by (6.15)-(6.18) and (6.14) when Al # 0, A2 + 0, 
A3 * 0. These SVD's are stated in Appendix D. The sequential dependence 
between the structural form parameters now reflects itself in SVD's that have 
to be applied recursively, a.o. of 0, which already results from a SVD as it is 
the reduced form of an INSEM, 

Y-fl= 2,32 + Z1 I& I + VI, 
~~~~~ 

~~~~~~~~~ 
~~~~(6.20) 

Y2 = ZlA21 +Z2A22 + (26 

where Y, Y2, Z1, and Z2 are data matrices, A21 = 123, A22 = H133, A11 = I22 - 

A21f832. Therefore 0 is similar to the (Il 11' parameter matrix used in the 
proof of Theorem 1. 

So, the SEM (6.13) is again a linear model with restrictions on its parameters. 
We can, therefore, again apply the framework for prior/posterior analysis used in 
the previous sections, i.e., we specify the prior/posterior of the parameters of 
(6.13) as proportional to the prior/posterior of the parameters of the linear model 
under the condition that the restrictions hold, 

Psem(P321, 832, P13,3823,iflll,l2,l22,1123,1133,11) 

(x Punsem( 321, /332, /313, /823, A1, A2, A3,rl11 12n1122 1123 1133,11)I(A ,A2,A3) o 

cc Plin (D (1 (13, 823 A1I 1II 11 12), 

((F2,(F3)(f321,A2,0(H22,Il23,1133,A3,832),Ql)I(A,,A2,A3)=o 

x IJ((Fl,(,813,,23,A,1,11,Ill12))IA,=0I 

X IjJ(,(1122,1123,1133, A3,/832))IA3=o0 
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where J((F1,(1313,1323, A1H111l 12)), J(0,(M22,q23,133,A3,332))A J((Q2,'F3), 
(f821,A2,0)) are the Jacobians of the transformation from (F1 to (1613,1323,Ab, 
1111,12), (02,4(3) to (021,A2,0) and 0 to (1122,1123,1133,A3,332). These Jaco- 
bians are stated in Appendix D. When we specify a diffuse (3.9) or natural 
conjugate prior (3.11) for the parameters of the linear model, (6.21) shows the 
implied prior for the parameters of the SEM. We do not give the exact func- 
tional expressions as they can be constructed along the lines of Section 3. 

Also for the posterior, we use the framework from Kleibergen (1997). Further- 
more, we use the decomposition of the posterior of the linear model into a product 
of conditional and marginal densities, 

Psem(16219 /3329,1 7 13s23 9 n I 1 12i `122, n23, n33 9flI YAZ 

OC Punsem( 321,132, 133,/23, A, IA2, A3, 11A11 

1112, 1122 1.123 ,1.133 ,flI Y,Z) (A,,A2,A3)=0 

?C Plin (I(13,8123, A,I nlH, 1112), 

(q)2,(3)(1211 A2,0(O22) 123n1339 A39,132)I I YqZ) IA(A2,A3)=o 

? IJ(Di(41,(S13 S 823 XAl9, Ill1 I12)) IAI=0 I 

? IJ(0,(1l22,1H23,Hn33,A3,132))1IA3-0 

X IJ(((F2,(F3),(1321A2,0(1122,1123,1133,A3,1832)1A3o=))IA2=01, 

oc Plin(01(313, 1323,A1l,ll1112)1((D2,(F3)(1321lA2, ),fljY,Z)I(AI,A2,A3)=O 

X IJ((l,(,813,1323,A,1111,1112))IA,=oI 

X Plin(((F2,(F3)(132l,A2,0(1122,1123,1133,A3,1332)lI1Y,Z)I(A2,A3)=O 

X IJ((F2,( (3),(621, A2, (1122,1123,1133,A3, 832)1IA3=O))IA2=o I 

X IJ(9,(1l22123 X1133, A3, 132))IA3= 00pIln (f 1 Y, Z). (6.22) 

We note that for this model only a few decompositions of the posterior into con- 
ditional and marginal posteriors are allowed for, i.e., ((D2, (D3) given (D and vice 
versa, because of the reduced rank structure imposed by the SEM. We cannot for 
example analyze (D2 given (D3 or vice versa. We use the decomposition of the 
posterior (6.22) to construct a posterior simulator. Again, similar to previous 
sections, to simulate from the posterior of (6.13) we add parameters to the model, 
i.e., A1, A2, A3, which we assume to be drawn from a specific conditional density, 
which we specify ourselves (see (5.1)). In the case of a diffuse prior for the linear 
model (3.9), natural choices for these conditional densities are 
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g1(A 11313,/323, H11,1112,412,D3,f1) 

= (2 T) -(112)l 1 B_Ll-'BL (1/2)11 (n11 12)1z1(n1 12)11(1/2)M3 

X exp[-2tr(BI?111Bl?(A -A1) 

X (IH r l12)IZ'lZ1(1 1 12)1(A I-A))] (6.23) 

g2(A2 1621,0,H) 

= (21)-(1/2)l2 B2fk-lB11 (1/2)12 I12(z2 Z3)'Mm(Z2 Z3)01 (1/2)mI 

X exp[--tr(B2? flB 2(A2 -2)'O1 

> (Z2 Z3)'Mz,(Z2 Z3) 01(A - A2))], (6.24) 

93 (A 3 32),821 133 i Q) 

= (2f)-(1/2)13 JB3LB2f-lB2Bl 1(1/2)13 1H31ZM(ZIZ2)Z3)H33? (1/2)m2 

X exp[-- tr(B3 B2-'P1 BB1 (A -A3)_ 33A 

X ZM(z1z2)Z3)n331(A3 - A3))], (6.25) 

where 11 = - M - M2, 12 = k2 + k3 - M2 -M3, 13 =k3 -M3, 

= ('ml1 +m2 (23))' 

B 2((/1) ) 

B3 (P32 IM3), 

A= ((Ha I 12)IZlZI(1 1 12)1) (1 1 H12)iZ1 

X (Y- Z24)2 - Z33- Z(-II 12)Bl)flV1B'1(B11-lB'1)-1, 

A2=-(01(Z2 Z3)'MZ,(Z2 Z3)0?)Y10(Z2 Z3)'MZ, 

x (Y - (Z2 Z3)0B2)1 fBl 1(B211 2 B 2)1, 

A3 = (11 31Z'M(Z Z2) Z3 r)1 333)Z3M(Z, Z2) 

X (Y-Z3I33B3B2) 11B'B1(B3?B2fV1B2B?)1. 

Because we simulate from a density that approximates the posterior of (6.13), 
weight functions are involved in the different steps of the posterior simulator. As 
we simulate three different parameters, i.e., A1, A2, A3, that are not present in the 
original posterior we want to simulate from, three weight functions are involved, 
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wl (p13 ,P23, Al, I 1112,111 29 (3) 

IJ(c1,(813 P23, A1 I T11I12)) A,=O I 

I J@I1 ,(P13, /323,A1, 11,iH12))U1 

X g1(A1Ik13,l323,1111,1112,F29,3,fl)IAf=O (6.26) 

w2(82l, A2, 07) 

_ IJ(((D2, 3),(p2l, A2, 0)) IA2=O,A3-O= (A21 e Q)| (6.27) 

W3 6832 9,21 A 3 i 133 iQ) 

IJ(02,(P32, A3,133)) IA2I g3(A3 I P32,P21JI33,f)IA3=o, (6.28) 

where J(11,(p13, 323,A1,11l1,I12)), J((FD2, Af3), (212, 0)), and J(02,(p32, 
A3,1133)) are the Jacobians of the different parameter transformations and each of 
the weight functions is always finite (see Appendix D). 

The different steps involved in obtaining the weight attached to a certain draw- 
ing i, i = 1, ... , N, of the parameters of the SEM (6.13) can then be summarized as 
follows: 

1. Draw Ql' from pij (fl I Y, Z). 
Draw (42, F) from Pln (N2, (31 fli Y,Z). 

2. Compute f31,kA'2, 01 from (2, 41)) using SVD. 
3. Compute 83i2, Ai3,H33 from 02 using SVD. 
4. Compute w3(832,82i1,Ai3,JI3i3j). 
5. Compute W2(82i1, Ai2, fiVi). 
6. Draw 1?'j fromnplijl(4l I 1,FV,fl,Y,Z)IA2=o,A3=O 
7. Compute ii3, 23, A', A 1 1, I2 from 4D. 
8 .Compute W 1 68il I 3,X32 , Al l, Ill I, ,1 2 , Ql I (D 2i, 4)30 I IA 20 A 3=O 
9. Compute total weight ith drawing: w = w, X W2 X W3. 

The total weights can be used in an importance or an M-H sampler, as indicated 
in Section 5, to obtain a posterior simulator of the posterior of the parameters of 
(6.13). 

The means of the conditional posteriors of (1 given (F2,(D3) and (02, 3) 
given Fi can also be used in an iterative scheme to obtain the full information 
maximum likelihood estimator of (P21, P32, P313, 23, 1 1, 1112, 1122,1I23,1I33) (see 
Hausman, 1983). This is similar to the INSEM where evaluating the posterior 
of FD at its posterior mean using a diffuse prior gives a similar analytical ex- 
pression as the limited information maximum likelihood estimator of / and 
I22 when using the involved SVD. The iterative scheme for obtaining the full 
information maximum likelihood estimator proceeds as follows: 
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(0) Initialize (IDi =,; 
(i) Construct (121,1032,1122, H23, H33) from (iD2, (13) using SVD's from steps 2 and 3 

from the simulation scheme; 
(ii) Compute value of ((D2, 03) implied by (121,1332,1122,1123n1133); 

(iii) Construct (1313,123,1111,1112) from 'D1 using SVD from step 7; 
(iv) Compute value of 4> implied by (613 ,1623,n11,n12); 

(v) Unless ((DI, (F2, 03) have converged goto (i) 

where (TD jD)' = ((Z2 Z3)'(Z2 Z3))'(Z2 Z3)'(Y- ZlF), F1 = (ZlZ1)1 X 
Zf (Y - (Z2 Z3)(F (Df3)'. Using Theorem 1, iterative schemes similar to the 
preceding one can be constructed to obtain the full information maximum like- 
lihood estimators of the parameters of generally specified SEM's. Jointly with 
the examples of the two and three structural equations SEM's, Theorem 1 shows 
how Bayesian analyses of generally specified SEM's are conducted. 

7. CONCLUSIONS 

The traditional Bayesian analyses of SEM's using diffuse priors, as proposed by, 
for example, Dreze (1976), Dreze and Morales (1976), and Dreze and Richard 
(1983), suffer from local nonidentification problems that lead to an a posteriori 
favor for certain parameter values that is not the result of information in the prior 
or data. We therefore use a framework constructed in Kleibergen (1997) in which 
the priors/posteriors of the parameters of the SEM are proportional to the priors/ 
posteriors of the parameters of a linear model under the condition that the restric- 
tions, imposed by the SEM on the parameters of the linear model, hold. We applied 
this framework to examples of one, two, and three structural equation SEM's, for 
which expressions of the priors and posteriors are derived jointly with posterior 
simulators. Using a theorem that states that the reduced form of any kind of SEM 
accords with a linear model with reduced rank restrictions of its parameters, the 
analysis of the examples can be generalized to other specifications of SEM' s in a 
straightforward way. This theorem also shows how full information maximum 
likelihood estimators can be constructed. 

Using results from Kleibergen and Paap (1997), we can also construct tools for 
model comparison like Bayes factors, posterior odds ratios, and Bayesian La- 
grange multiplier statistics. In future work we will construct and apply these 
procedures to analyze the support for (multiple structural equations) SEM's in 
practice. It is also interesting to analyze the theoretical properties of the derived 
posteriors, as for example in Chao and Phillips (1998), where functional expres- 
sions are constructed for the marginal posterior of the structural form parameters 
of the INSEM using a Jeffrey's prior, to investigate the similarities/differences 
between small sample distributions of classical statistical estimators and the mar- 
ginal posteriors of the structural form parameters (see Kleibergen and Zivot, 1998). 
Both limited information maximum likelihood (LIML) estimators (see Anderson 
and Rubin, 1949) and the posteriors of the parameters of the INSEM are namely 
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constructed using SVD's (see Kleibergen and Zivot, 1998) that correspond with 
canonical correlations in the case of the LIML estimator. So, it is interesting to 
investigate to what extent these similarities hold further. 
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APPENDIX A. JACOBIAN OF TRANSFORMATION 
FROM LINEAR MODEL TO INSEM 

For the derivation of the Jacobian of the transformation from the linear model param- 
eters to the parameters of the INSEM, it is notationally convenient to conduct this trans- 
formation in two steps: (i) from 4 to (11221,62,13, A) where 02 = H22 1122-' and (ii) from 
(fl221,02, j, A) to (M221,J222,8, A). In the following we construct the Jacobians of the 
two transformations. 
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We can denote FD as 

=( ) 221 O)(B) 
?=(@ 81)t 0 A tBj_ 

= I221B + 9LABL, 

where 0 = (Qr- ID', 0?1 = (-02 Ik2-M+ 1)'(Ik2-m+1 + 0202) 
-12 B - ( Imn), B1= 

(1 + /3I3)-1/2(1 - l '). The Jacobians of 1 with respect to I1221, 02 /, and A then read 

a vec (Q) 
a vec(HI221) 

a vec(4) a vec(0) avec(0L) 
J2 = =('H'22101 k) +( kI' 0I) 

dvec(02) (2 2vec(02)' + (B2A 
( 

vec(02)" 

a vec(40) a vec(B) a vec(B,) 
J3 

= vec (,B)' (IM m( 221) a vec(/3)' a m) 1k) avec(/')" 

a vec(41) 
a vec(A) ), 

where 

a vec (0) I' ( 0 

avec()' (0 Ik2-m+ 1/ 

a vec (60) _ (I2) mi K 
a vec(02)' -kH2() 0 ? ))Kk2-m+ ,m- 

(1 ( -~ 02 a a vec((H112)-l) a vec(H1/2) a vec(H) 
+ Ik2-i+l Ik2_M+l- avec(H1/2)' avec(H)' avec(02)" 

avec ((H 1/2<) I 
-12) 

a vec(H'1/2) = -(H (1/2) 0H-1), 

a vec (H 1/2) 
= ((Ik2-m+ 1 & H 1/2) + (H (1/2)' (0 Ik2-M+ ))-1 a vec (H)' 

a vec (H) 
a vec(02)' = (02 0 Ik2-m+1) 

+ (Ik2-M+l 02)Kk2-m?1,m-n1 

a vec(B) 
avec (/3)'=(e0'r-) 
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avec (Bd) 
_3 

_ (/OKm\ 
a vec(f) -8 M-i_Ii) 

a vec(B-112) a vec(B"12) a vec(l3) 
+ ((1- /) 0 1) avec(B132)' avec(B)' avec(/3)` 

a vec(B- 1/2) =_ (13-(1/2)p g L3-1/2) 
_ _-1, a vec(B'12)i 

a vec(B3"12) _1 I 1 
= = ((1 0B B112) + (B3(1/2)' 0 1)) 

1 
13 

a vec (B) 2 

a vec(B11/2) 

a vec(/3) 
= 

(p 0 I)Km-,i + (1 0(g') =)283' 

and H = 'k2-m?l + 0202, H'12H1/2 H, B = (1 + 8313), 3112B1/2 = B, el is the first 
m-dimensional unity vector, Kj,j: ij X ij are so-called commutation matrices such that for 
any W: i X j, vec(W') = Kj,jvec(W), vec(W) Kj,ivec(W'), Kj, i = Ki'j (see Magnus and 
Neudecker, 1988). Note that when Q is symmetric, Q = PAP', where P are orthogonal 
eigenvectors and A is a diagonal matrix containing the eigenvalues, then Q 1J2 = pA'/2p' is 

also symmetric. 
The Jacobian of the transformation from 1 to (H1221,02, 8, A) then reads 

a vec(4F) 

a(vec(11221)'vec(02)' vec(/3)'vec(A)') ( 1 2 3 4) 

Because 02= II222 I[I221, the Jacobians of the transformations from (11221,02,f/, A) to 1221, 

11222, 3, and A read 

/Im-1 0E)Im-1 

G - d a(vec(lI221)'vec(02) vec(/3)' vec(A))' - 11221 0 1 222 IY2'X 

= a~~~~vec(122) 0 

o 

a(vec(11221)' vec(02)' vec(,8)' vec(A)')' I 122I1 ) Ik2- m+l 
a vec(11222)Y 0 

0 

G - a(vec(nI221)'vec(02)'vec(/3)'vec(A)')' ? 
= avec(/)' 1 (i9 Im_i) 
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a(vec(1I221)' vec(02)' vec(,8)' vec(A)')' _ ( 

G4 a vec(A)' - 0 

1 (g Ik,-m+ I 

The Jacobian of the transformation from 41 to (1122,B/, A) then becomes 

a vec((D) 
tJ(?),(H22,/3, A))! = d(vec(H22)'vec(/3)'vec(A)') 

d vec(4D) 

a(vec(II221)'vec(02)' vec(,8)' vec(A)') 

a(vec(I221)' vec(02)' vec(,B)' vec(A)')' 

d(vec(II22)' vec(,l8)' vec(A)') 

- .l'1 J2 J3 J4)II(G1 G2 G3 G4)j. 

So, 

J ((D,(M22,i,k)) I A- = (B' ( Ik2 el (0 "I22 B (0 H1221). 

To prove that I(J((D,(11221,02,A,,8)) >- I(J(F,q(11221,92,Ak))IAo)I we use that 

J(4D,(022, A, /)) = J(D,(11221, 02,A, ))J((221, 02, A,/3), (1122,A, /3)) 

As shown previously, 

J((11221, 02, A, ()I(H22, A,/8))IA=0 = J((I221, 02, A, 8),(122,kA,/)). 

It also holds that 

J(1,(I221,02,A,/3)) = J(F,(I1221,02,A,/3))A=o + W, 

where 

a vec(d) (Im & 1 vec(B3) ) W=(o (BIA,' 0lIO)a (0)' (1m k) / a vec (02)' avec(/) 

such that 

(J(4,(D1221,02,Ak,))IA=o)W' = 0. 

This implies that 

1J(0J(I122l,02, A,}3))1 = IJ((D,(11221,02, A,,3))J((D,(II221, 02, A,,)) I 11 

= (J(D,(H221,02,A,f8))IA=O)J(J(HD,(r221,02,A,/ 1 ))2A=O) + W I 11 

- I(J(@D,(H1221,02,A,/8))IA=O)(J((DH(221,02,A,/3))IA=O)I +1I2 

2 1(J((11221,02, A,/3))IA=O)I 
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and consequently 

IJ(D,(1122A,8))I 1(J(?(D,122,1,J))1A=0)1 

APPENDIX B 
Proof of Theorem 1. Assume that the reduced form of the SEM, 

YnBmn+n = Znrn + Z,mmn + &m 

reads 

Yf= Zj fnm + Z4mmfmm + fi, 

where Him = rmmB7, 11mm - = rmjrB- and this reduced form is equivalent to a set of 
nonlinear (reduced rank) restrictions on the parameters of a linear model and the (hyper) 
parameters of this linear model, which are restricted to zero to obtain the reduced form, are 
locally uncorrelated with specific other parameters. 

The parameter matrix of the reduced form of the SEM from Theorem 1 reads 

(i-Fn 0 
BO)(n B i BiB 1 B!nmj~ ~r 

rm 
nrm=m m mBm Bmmm 

-mm ~ ~ ~ ~ B -mB DB mmD~ 

0 rmm Dmm 

{rmm 0 {Bm +BmmBmmBmm mBm, Bmm -BmmBm Bmm m A 

- \ 
mm mm 'm- 

- B L-.mmmm B I_ 

r6nmin-j(h 
+ 13n1m.Imrn) -I nmnt3inm 

= Im0n(Ij- + P130mfm0i) 
I 

nm13min 1Inm lmoIm)I 

-rmm#mmn rimm 

where 
nmn 

= 
rrB-j, rmm1= rmmBmm, 1Imm = rBmBB - Im-r = F01mBmm.m' B--m 

Bmm-Bmm -m Bmm B mBm Bm,in Bmm m-nBmm - Bmn Bmm Bmm) fm=Bmmr 

13m1m = B01m B-m - This implies, as both fmm and r01m are unrestricted, that no restrictions 
are imposed on 11mm and rIm0m. The linear model of which the reduced fortn is a nonlinear 
restriction reads 

(Ymn Ym) = (Zmn ZFnm Zm) + 6, 

where FD: (lin + Im + im) X (jmn +1jm) and can be specified as 

/> 11 4?12 

(D F21 D22 

(D31 023 
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where 4), 1: l, X j, (21: Im X ij, (31 : im X ji, 412: Im XIim, (22: Im XJm, 423: im X im. To 
obtain the restrictions on the linear model parameters that result in the reduced form, we 
specify 4) as 

'D21 0>22 = 0Q21 Q-fl 0)t + '22 ( /3mm im) 

(D31 4?23 O limm 

= + (HmmAmm(-pmm Iim)) 

( 0i 012\ In-h 
021 022) lImFn) 

I m) + () iim(O Ijm) 

(I n- L- rnrn(Iei, -inm)l) 
+ (O ) 

where 011: l:m X im, 021: Im X i1n1 0 12: lIn X im, 022: m X im It is clear from the chosen 
specification that when Amm =0, Amm = 0, the reduced form results and that Amm is locally 
uncorrelated (when it is zero) with the parameters contained in 11mm and ,fmn, and Amf is 
locally uncorrelated (when it is zero) with the parameters contained in HnI- and f83im As 
we can apply the same kind of decomposition on IHmm and HImn, which we assumed to be 
possible, and because I1mm and Hlmm are unrestricted, such that there is no need to decom- 
pose them further, we can recursively apply the preceding decomposition and thereby the 
theorem is proved. U 

APPENDIX C. SINGULAR VALUE 
DECOMPOSITION AND JACOBIANS 

TWO EQUATION MODEL 

For the two equation model, reduced rank restrictions are imposed on the parameter ma- 
trices 02 and 4)3. In the following we state the SVD's and the Jacobians involved with 
these two parameter matrices. We start with 4)2. 

420l21 
? B2 \ 

4)2=(qi .r)k? A2 kB2?) 

= I/iH211B2 + i/k1A2B21, 
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where H121 -(I211 11212)', 1121 m )( in 11212: (k2 - M1) X M1, 2 = II212II21 

f = (Imi (2/)', = (-&2 Ik2-ml)i)(Ik2-ml + /2(12-) B2 = (Imn 132), B21 = (Im2 + 

212) (-/32 
_ 

m2)8 A SVD can be used to obtain these parameters from (2, 

UlIU12~' SI 0 VI1 I1V12 
2 

(U21 U22)( S2) (V21 V22) 

where U'U= Ik2; V'V= Im; U11,S1,Vll:ml X ml; S2:(k2 - MI) X M2; V22:M2 X M2; 

U21:(k2-M)XiMI; U12:MI X (k2-Ml);U22:(k2-iMI)X(k2-iMI);V21,V1'2:iM2XiMl; 

and S2 contains the smallest M2 singular values of 0'2. This leads to the relations 

1211 = U 1S1 V11, (2 = U21 U171, 

132 = (1V21 V1I D', A2 = (U22 U22) -2 U22 S2 V2( 1V22 V22)1/2. 

The Jacobians of 012 with respect to 11211, 12, 12, and A2 read 

a vec ((2) 
J aVec(2) 

= 
e(Bc()e(, 

]2= a e(b),= (B21121 03 1k2) ave(* + (B21A'2 0E)1k2) a vec((/2)" 
a vec(1/122)' 

2 

a vec(F2) dvec(B2) I vec(B2l) 
a vec(132)Y ( IO a vec(132)' +(I 0(?2) a vec(132)' 

a vec ((D2) = vec tB2 av)2 a vec (A2)' 

where 

a vec((/) ( ( O\\ 

a vec((NW2' ~ Ik -MlJ 

a vec(( ( 2 ) Kk2-Ml,ml 

avec(q/2)' \OJ 1 

+/ 0 (/- 
2 a vec(H-1/2) avec(H1/2) avec(H) + 

Ik2-ml Ik2jMl avec(H1/2)' avec(H)' avec(42)" 

a vec(H112) - (H_1/2)p 0H 1/2), 
a vec (H 1/2)' 

a vec(H) = ((1k2-m 0 H 1/2) + (H/(12)1 0 km)), 

a vec (H) 

a vec(/12)' (0t2 0 Ik2-Ml) + 
(Ik2in, 0 1112)Kk2_Ml,Ml 
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a vec (B2) 0I Ii 
a vec (132)' \m2J 

a vec(B2?) ((I ?)\3 ) 

a vec (/2)' (o ?) E'/m1 m2 

( vec(B3-112) a vec(B132) a vec(B) 
+ m2' I Im2 avec(L3112)' a vec(B)' a vec(13) 

a vec(B132) = _)-(B /2) ? 1/2), 

a vec(B11) 

a vec ('1/2) 
d vec(B- = ((Im2 ( B1/2) + (B(1/2),' 0 '))- 

a vec (B1/2) 
a vec(142)' =(p 9 Im2)KmI,m2 + (Im2 P82) 

and H = Ik+-Ml + f202, H1/2H1/2 =H, B = (Im2 + P2'/2), 3112B1/2 5 B. The Jacobian of 
the transformation from (D2 to (1121 1, I2, 12, A2) then reads 

a vec (C2) 

((vec(121 I)' vec(f2)' vec(182)' vec(A2)') = ( '2 "3 J4) 

Because 02 -212 H211, the Jacobians of the transformations from (1121,, 02, 32, A2) to 
1211, 1212, 82, and A2 read 

G -(vec(II21I)'vec(f2)'vecQ32)' vec(A2)')' -H211 _212 I2 

=- (vec(1M21) - , 

10 G (vec(1121 ) vec(f2)' vec(182)Y vec(A2)')' 2 

a vec(/32)1 2m21m , 
/01 

G 
3(vec(I21 1 )' vec(12)' vec(32)3 vec(A2)' 0 

G4 = d vec(A2)' I0 . M / 

0 
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The Jacobian of the transformation from (D2 to (1121,/32, A2) then becomes 

IJ(4)2,(1121,132,A))I a vec(4)2) 

a(vec(n121)'vec(182)' vec(A2)') 

a vec(402) 

a(vec(11211)'vec(q/2)' vec(,32)'vec(A2)') 

a(vec(112 1)'vec(q2)'vec( 32' vec(A2)')' 

a(vec(1121)' vec(,82)'vec(A2)') 

I R(J J2 J3 J4)1I(GI G2 G3 G4)1. 

The specification of 4)3 reads 

(D3 = (O /1)32 0 \3( BI1) 
(1)-10 0?)\~ A3)k~B14' 

where 0 = (Im2 02)' B1= (I3 Im2), 132 = (4121 11'22)Y, 1321: m2 X i2, 1322: (k3 - m2) X 

M2, 02 = 1322 n321 * So, the specification of (3 is identical to the specification of 4) for the 
INSEM. The parameters (1l32,,31, A3) can therefore be obtained using the SVD's (3.3)- 
(3.5) and changing the sizes of the involved matrices, i.e., k2 to k3, m - 1 to M2, 1 to ml. 
Also the Jacobian involved in the parameter transformation of the INSEM is identical to 
the Jacobian in the case of )3 when we change the sizes of the involved matrices in the 
outlined manner. 

APPENDIX D. SINGULAR VALUE 
DECOMPOSITION AND JACOBIANS 

THREE EQUATION MODEL 

For the three equation model, reduced rank restrictions are imposed on the parameter 
matrices (42 4()')' 0, and 4(D. The important difference with the INSEM and the two 
equation model lies in 0, which itself already results from a reduced rank restriction. As 
we have to analyze 0 given (V) 4)()', we start with the SVD and Jacobian involved with 
(V2 4))'. The specification of (4)V ()' reads 

/4)2\ /1321 Im2 0 \/13 21 Im2 O\ 

043) = 0 0 Im3j+ 0 A Im3 

This implies that when 4)2 = (421 4)22), 221: k2 X (mI + M2), 4)22: k2 X M3; 4)3 =(431 (D32), 

4)31 :k3 X (MIn + Mi2), 432:k3 x m3; 

/011 012\ 

021 022/ 
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011:k2 X (ml +m2),012:k2Xm3,021:k3 X (mI +m2), 022:k3 X m3 thatthe following 
equality holds: 

0e128 (?228 

\022) 'D32} 

and we are left with 

((F21) 
1 

) (r21 m2) + 
Oil 

A2('821 IM2)1 

which is again identical to the specification of (F for the INSEM such that when we change 
the sizes of the matrices in the appropriate manner, i.e., k2 to k2 + k3, m - 1 to M2, and 1 
to M3, we can directly use the SVD's and Jacobians for (F of the INSEM. 

The SVD's and Jacobians for 02 are constructed using (6.17) and (6.18), 

(021 022) = 33(p32 Im3) + 133? A3(/332 Im3)1L 

Again this specification is identical to the specification of (F for the INSEM such that we 
can use the SVD and Jacobians specified for the INSEM when we change the sizes of the 
matrices in the appropriate manner, i.e., k2 to k3, m - 1 to M3, and 1 to M2. 

The specification of (Di reads 

(Di = (,lu H12)(ml+m2 (13 )) + (H,, 112)1AI (Iml+m2 (p)1) 

This specification is identical to the specification of 02 in the two equation model such that 
we can use the Jacobians and the SVD listed there when we change the sizes of the ma- 
trices in the appropriate manner, i.e., k2 to k1,mI to mr + M2, and M2 to M3. 

APPENDIX E. OBTAINING SEM's FROM LINEAR 
MODELS USING SVD's 

The specification of (D reads 

KUl I U12 SI 0 \V I V2'1\ 

U21 U22/ 0 S2? /V12 V22 

s t22ha Imt - + 221A( IM 11, 

such that 
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and 

H22?A(p Im-i)L = (U2 S2(V'2 V22). 

Consequently, 

1122 
UI 

= SIV21 and 8-3= V2 7vl. 

Substituting these expressions in the specification of HI221 and (/8 Irn-I )I gives 

( 221 H12 1 22Hj 
;122-12) 

11221 = 
Ik2-m+ I (2 + I H222 f:221 [221 I222 

p22k =IkM'k2-m+ 1 / 

Uli 
2 U1)(k2m+l + U21 U-12 U1 u?1) 

= (I )(lk2-m+ 
+ U21Ui 'Ul' U2i) 2 

'k2-m+ 1/ 

as UlI U12 + U21 U22 = 0 (because of the orthogonality of U), U12 U221 -U71 U'1, and 
U12 U12 + U22 U22 = mk2-m+1, such that 

1I221 = (I )(Ik2 m + U2 

U12-m 1 ~ ) 

= ( U2)U221(U?1(U22 U22 + U1'2 U12) U2-')-2 

- U)U22 (~2(U22 2))/ 

= 
12(Ui2)i1 (U Ui-1) 1)1/2 

= (U12) U2 

Similarly for (3 Im,)i, 

(/l3 Im 1)1 = (1 + I VI-) 1/2(1 V,' ) 

= (1 + Vi 1 2Vj 1 V11 )'12(1 -V11Vjj1) 

-(1 + 
v122 222vj1)'12(1 v721'V22) 

= (Vj12(v'2V12 + V22V22)Vl12 )'12 1 (Vi2 V22) 

-(v 2 v1)1 12 j (V 2 v22) 

= (V12Vl2) 12v '(V2 V22), 
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because vjlvI2 + V21V22 = 0, such that-V2P I = 2v22vj, and vj2v12 + v22v22 = 1. 
Consequently, to have equivalence, 

Ak= Wu22 2 )l2u2S2V2U2(Vl2V'2)1/ 

= bs2a, 

where b = (U22 U22)1/2 U22, and a = vI2(vl2v2)-Y/2. Both b and a are orthogonal matrices 
(scalars) that result from the singular value decomposition because when X = USV', where 
both U and V are orthogonal, then 

(XX')1/2 = (USV'VSU')1/2 = (US2U')112 = USU', 

such that 

(XX,)-1/2X = US-1 U'USV' = UV', 

which is an orthogonal matrix, such that A equals the smallest singular value pre- and 
postmultiplied by orthogonal vectors/matrices, or stated differently, A is a rotation of the 
singular values. 
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