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ON THE SHAPE OF THE
LIKELIHOOD/POSTERIOR IN
COINTEGRATION MODELS

FRANK KLEIBERGEN AND HERMAN K. VAN DiJk
Econometric Institute and Tinbergen Institiit
Erasmus University Rotterdam

A vector autoregressive (VAR) model is specified with equation system param-
eters, which directly reflect the possible cointegrating nature of the analyzed
time series. By using a flat/diffuse prior, we show that the marginal posteri-
ors of the parameters of interest (multipliers of the cointegrating vectors) may
be nonintegrable and favor difference stationary models in an undesired way.
To choose between stationary, cointegrated, and difference stationary models
in a meaningful way, the Jeffreys prior principle is used. We investigate the sen-
sitivity of the posterior results with respect to the construction of the Jeffreys
prior. In this context, we also analyze the effect of fixed and stochastic initial
values. The theoretical results are illustrated by using a VAR model for short-
and long-term interest rates in the United States.

1. INTRODUCTION

Although some small sample properties of estimators in cointegration mod-
els are known (see Phillips [21]), classical statistical analysis of cointegration
relies mainly on asymptotic distribution theory; see Johansen [10], Engle and
Granger [6], Kleibergen and van Dijk [13], and Phillips [18]. Bayesian statis-
tical analysis tends to analyze the small sample properties, which can be
derived when the likelihood function is specified. A problem with Bayesian
analysis is that analytical formulas for the posterior moments and densities
of the parameters are not known for several classes of econometric models.
In the present paper we analyze the marginal likelihood (posterior with uni-
form prior) of the parameters of a cointegration model. It is shown in Sec-
tion 3 that these marginal likelihoods are not members of a standard class
of probability density functions and are ill-behaved in the sense of having
asymptotes in the interior of the parameter region. This behavior of the like-
lihood is due to the nonidentifiedness of certain parameters, which occurs
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when the model is a difference stationary one. Thus, the results indicate that
flat priors are very informative in cointegration models because difference
stationary models are “infinitely” favored. To choose in a meaningful way
among stationary, cointegration, and difference stationary models, we make
use of the Jeffreys prior principle, i.e., we choose a prior that is proportional
to the square root of the determinant of the information matrix. In Section 4,
we analyze the sensitivity of the posteriors of the parameters of interest with
respect to four different cases of a Jeffreys prior. One of these priors has
implicitly been used by DeJong [3] to calculate the posteriors of the roots of
vector autoregressive (VAR) models. A second one has been used by Phillips
[19] to analyze unit roots in univariate autoregressive models. We also dis-
cuss the problem of fixed or stochastic initial observations. Here we intro-
duce a prior that approximates the Jeffreys prior for the case of the exact
likelihood. Preliminary to our Bayesian cointegration analysis, we discuss in
Section 2 several aspects of specification of cointegration models. We note
that a companion paper, Kleibergen and van Dijk [13], deals with a classi-
cal statistical analysis of our specification of the cointegration model.

To save on indices, the data series are depicted as row vectors. Also, the
common expression for the longrun multiplier o3’ is replaced by S«, where
B stands for the cointegrating vectors.

2. SPECIFICATION OF COINTEGRATION MODELS

Cointegration describes special features of multiple time series; see Engle and
Granger [6]. To analyze cointegration, one needs a model that explains the
joint behavior of the analyzed time series. We make use of the VAR model.
A pth order VAR model of k elements of the series x, = (x;, * - X,), t =
1, ..., T, which conditions on the first p observations, reads

(x,—p—tdNL)y=¢ t=1,...,T (1)
P

M(z) =1, — X, z'TL (3]
i=1

where x;, u, and 6 are 1 X k row vectors. The parameter vectors u and 6 rep-
resent the (nonzero) mean and growth level of the analyzed series x,. The
deterministic parameters are modeled in a multiplicative way to guarantee
that their interpretation does not change when unit roots become present. For
details on the standard assumptions for VAR models, we refer to Liitkepohl
[15].

To define cointegration in the VAR model (1), we rule out any explosive
and infinite cyclical behavior. The roots of the characteristic polynomial,
|II(z)| =0, are therefore assumed to lie outside the unit circle or to be equal
to one; see Johansen [10]. If & — r roots of the characteristic polynomial are
equal to one, 0 < r < k, we say that the series generated by the VAR model
(1) are cointegrated. Cointegration implies that the matrix of longrun mul-
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tipliers, I = —II(1), has a lower rank value. As a consequence, this matrix
can be specified as the product of two full rank k& X r matrices, 3 and «':

Il = B« B,k Xr. A3)

The cointegrating vectors 3 show the r stationary cointegrating (equilibrium)
relationships x,(.

In case of cointegrated series, the VAR model (1) is defined in terms of the
nonstationary variables x,. Models defined in terms of stationary compo-
nents are often preferred to models defined in terms of nonstationary com-
ponents. One may respecify the VAR model (1) such that it only contains
stationary components. Two of such specifications, which are observation-
ally equivalent with the VAR model (1), are the error correction model
(ECM) and the structural form model. Apart from containing only station-
ary components, Ax, and x,_,3, the ECM has the attractive property that
the longrun multiplier is directly estimable. The specification of the ECM
reads

A(x, —tO)T(L) = (x,p — . — (1 = p)d)Ba + & t=1,...,T, ()]
where use is made of a decomposition of the VAR lag-polynomial:
II(z) = (1 = 2)T'(z) — 2”Ba. ®)

The VAR model (1) and the ECM (4) may be considered as reduced form
models because they do not explicitly model the cointegrating (equilibrium)
relationships. A possible structural form model reads

(x, — u —t8)B (Ax, — O)A)P(L) = ¢, t=1,...,T, ©)
where the invertible VAR polynomial ®(z) is specified by
®,(2) I, 0 B
i) = - ) ;
@ (q)Z(Z)) (O (1 _z)_llk—r>('3 ) H(Z)(ﬁ A) (@)

and £, =¢,(B8 A)and (8 A) has full rank. Possible choices of 4 are 4 =
(0 I,_,) or A =8, (the orthogonal complement of 3). Through the inver-
tibility of the VAR polynomial ®(z), the structural model (6) allows one to
construct the implied vector moving average (VMA) representation and/or
stochastic trend representation; see Johansen [10] and Kleibergen and van
Dijk [13].

Given the specification of the longrun multiplier, IT = S«, one is usually
confronted with an identification problem. The number of parameters in Sa,
2kr, is in most cases not equal to the number of parameters in II, k2. Thus,
parameters in 8 and o have to be restricted before estimation. Classical
cointegration procedures overcome the identification problem by estimating
the cointegrating vector with a “data-parametric technique” such as canon-
ical correlations (Box and Tiao [1] and Johansen [10]) or principal compo-
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nents (Stock and Watson [23]). The procedure suggested by Johansen [10]
is rather well known because of the elegant relationship between the canon-
ical correlations and the number of cointegrating relationships or unit roots.
In principle, one may perform a Bayesian analysis by using a model like
Johansen’s but a prior has to be specified on the canonical correlations of
the system, which is not trivial. In this paper, we construct a model that con-
tains equation system parameters, which reflect a possible departure from a
cointegration model, by using a suitable specification of the longrun multi-
plier II; see also Kleibergen and van Dijk [13]. Let 8 and « be redefined as

1, 0 oy ap
B:( ), a=( ), then ®
B2 i, 0 Q22
(38! (3F)
II=ga= ( ) )
—Bray;  —Broz +

where B,: (k—r) X oy :rXrnap:rX(k—r),an:(k—r)x (k—r)are
all unrestricted.

We make use of the same symbols 8 and « as before. However, the inter-
pretation has changed considerably when a5, # 0. When «,, = 0, II has a
lower rank value and the specification of II = B« corresponds with the spec-
ification in equation 3) with 8= (I, —f3) and a = (), «a;3). If ayy #0,
the interpretation of 3 does not correspond with a cointegrating vector. Tests
for the number of cointegrating vectors or unit roots can be performed by
testing whether oy, = 0 for different values of . The specification of the
possible cointegrating vector 8(= (I, —f3;)’) can be considered as a kind
of reduced-form specification of the cointegrating vector. Under cointegra-
tion, more general specifications of 3(= (I, —f3)’) can be constructed, but
these specifications do not allow for parameters that measure the departure
from a cointegration model like ;.

If «;; has full rank, the parameters 3,, o, @2, and a,, are exactly iden-
tified and can be obtained from II. The specification of II in (8) is by no
means unique, however, and (';) (=k!/(r! (k —r)!)) different parameter-
izations of II exist, each of which contains a parameter that reflects a depar-
ture from a cointegration model.

Short- and long-term interest rates in the United States are used to illus-
trate the analysis. The short-term U.S. interest rate is the 3-month U.S. trea-
sury bill rate, and the long-term interest rate series refers to securities that
have a maturity of 10 years. Both series are obtained from the “Main Eco-
nomic Indicators” databank of the OECD, from January 1957 to April 1989
(388 observations) and are shown in Figure 1.

The Dickey-Fuller statistics in Table 1 indicate that the hypothesis that
both interest rate series are nonstationary cannot be rejected, but the eco-
nomic theory of term structures indicates that certain relationships between
interest rate series should hold; see Campbell and Shiller [2]. Consequently,
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FiGURE 1. U.S. short-term (--) and long-term (—) interest rates, 1957-1989.

the interest rate series may be cointegrated. Table 1 also shows Wald, like-
lihood ratio, and Lagrange multiplier statistics to test the hypothesis of a cer-
tain number of cointegrating relationships. For details on the derivation of
these statistics and their asymptotic distributions, we refer to Kleibergen
and van Dijk [13). By using the asymptotic critical values obtained from

TasLe 1. Classical cointegration characteristics of U.S. interest rates (p = 4)

long term short term
Dickey-Fuller —1.26 -2.10
—0.056 0.027
(-1.96) (2.64)
il — 0.036 —0.031
OLS = (1.21) (—2.85)
0.11 0.062
(1.11) (1.81)
Number of cointegrating relationships 0
R 7.10
Critical (95%) 20.1
Estimated cointegrating vector long short
Maximum likelihood 1.0 0.93

(10.1)

2.98
2.69
2.26
9.09

long term
short term

constant

constant

—0.60
(—0.69)
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Johansen and Juselius [11], all three statistics indicate that the hypothesis of
zero cointegrating vectors, i.e., difference stationary model, cannot be
rejected. However, according to the theory of term structures, there should
be one cointegrating vector, (1 —1). We will return to this example in the
next sections. To keep matters simple, we do not focus on the heteroskedas-
tic and leptocurtic nature of the disturbances of interest rate models. The
hypothesis tested in Table 1 includes both the interest rates and the constant
term in the cointegrating relationships such that no linear time trends can
become present.

3. PATHOLOGICAL BEHAVIOR OF MARGINAL POSTERIORS

The possibility of pathological behavior of posteriors, i.e., nonintegrability,
is a complication for Bayesian analysis. Some examples of models where the
posterior shows pathological behavior are discussed in Schotman and van
Dijk [22] for univariate autoregressive (AR) models and in Kleibergen and
van Dijk [12] for simultaneous equations models (SEM). The cointegration
models mentioned in the previous section contain properties of both classes
of models discussed in these two papers. One source for pathological behav-
ior is the product of the parameters 3 and « in model (4). When one of these
two parameters equals 0, the other parameter automatically drops out of the
model. Thus, the latter parameter is then nonidentified because all possible
values of this parameter have the same influence on the model. The specifi-
cation of the parameter matrices 8 and « in our analysis is such that only «
can be equal to 0 or have a lower rank value; see equations (8)-(9). The prod-
uct Ba is such that elements of 3, or a,, become nonidentified when o, has
a lower rank value. When, for example, «; = 0, the product B« becomes

O le) (O (637) >
II = = fBa = . 10)
(0 Iy, 0 —Brap+ax

The k(k — r) different elements of 3, and a5, have to be obtained from
the (k — r)(k — r) different elements of IT,,. As a consequence, r(k — r)
elements of 3, and «,, remain unidentified. If one assigns all these elements
to B,, it follows that (3, is unidentified when «;; = 0. Thus, given that o,
has full rank, the parameter 3, is locally identified.

The specification in (9) has a parameter, a,,, which represents a depar-
ture from a cointegration model. We note that for the cointegration model,
where a5, = 0, nonidentifiedness of elements of 3, is possible. Therefore,
even for the cointegration model where «,, = 0, 3, is only locally identified
(when («;; «;;) has full rank).

The nonidentifiability problem, which results in pathological behavior of
marginal posteriors, is not restricted to parameters of the cointegrating vec-
tor. Elements of the deterministic component parameters p and é can also
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become nonidentified for certain specific values of other parameters. This
is illustrated by using the ECM (4):

pBa = ((u1 — paB2)ay (uy — paB2)a; + paan); a1

p—1
6(I'(1) — tLPBa) = (31 — (& &) X T— (1 —p)(6 — 88
i=1

p—1

6 — (8, &) 2 Ty — (t—p)
py

X [(6y — 028)ap + 52“22])- 12)

When « has full rank, the elements of x, and u, are identified in the
product pBc in (11). When a5, = 0, the term pu; — u, 3, is identified, and it
is not possible to determine the distinct elements of u, and u,. The same
reasoning holds for the growth term parameter 8, equation (12), which con-
tains nonidentified elements when the ECM equals a cointegration model in
second differences, i.e., both oy, = 0 and I'(1) = I, — LT, has lower rank.
For the cointegration model, o, = 0, it follows that only » = u; — n, 3, and
(6, &,) are locally identified (when (o;; «;;), I'(1) have full rank).

In classical statistical analysis of stationary nonlinear models, the estima-
tors of locally nonidentified parameters may converge to random variables
instead of their fixed true values; see Phillips [17]. Bayesian analysis of mod-
els with locally nonidentified parameters is also rather difficult; see Kleiber-
gen and van Dijk [12] and Schotman and van Dijk [22]. In Bayesian analysis,
the problem originates from the constancy of the likelihood along the axis
of the nonidentified parameters, say 3,, in a nonidentified parameter point,
say o;; = 0. In the ECM (4), for example, when «;, = 0, equation (10)
shows that the likelihood will be constant for all values of 8, and «y, for
which II,, = —8,a, + a5,, where both II,, and o, are fixed. So, even for
infinite values of 3, and «5,, the likelihood will still have a non-zero value
when a;; =0 and I1,, = —f, a1, + ax. As a consequence, the integral of the
likelihood with respect to the parameters (3,,a,;) on the region R¥%*=" will
be infinite. Another way of explaining the problem is that the conditional
variance of the parameter 3, given a;, (= 0), is infinite, in the nonidenti-
fied parameter points. Thus, the information matrix (= inverse covariance
matrix) is singular in a nonidentified parameter point.

Although the likelihood may not be integrable, the posteriors of the
parameters may be integrable once a suitable prior is chosen. In the follow-
ing sections, different priors are constructed, and we analyze whether these
priors lead to integrable posteriors. The integrability of the posterior is of
great importance because, in case of nonintegrable posteriors, inference is
difficult. Yet, it is important to investigate the properties of marginal like-
lihoods. First, because the data information may be such that the noniden-
tified points (or regions) in the parameter space are relatively far from the
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region where the data information is important. In other words, the marginal
likelihood has a strong local mode far from the nonidentified parameter
value. In this case, the use of uniform priors truncated near the nonidenti-
fied parameter points lead to proper posteriors, which are not sensitive to the
truncation. Second, to construct a class of prior densities that “conforms in
some sense” to the likelihood, one has to know the special features of the lat-
ter ones. In the remainder of this section, we investigate the properties of the
marginal likelihood of a cointegration model.

So far, three different parameters, u, 6, and §8,, are mentioned, which
could contain nonidentified elements. To keep matters simple, we analyze an
ECM without deterministic components to focus on the consequences of the
identifiedness problems of 3,. The problems concerning the deterministic
components will then be discussed briefly. A respecification of the ECM in
(4) without deterministic components yields

AX =ZT + X_,Bo + &, 13)

where AX = (Ax{ -+ Ax7), Z=(Z, -+ Z,_1), Z; = (Ax{_; - -+ Axr_})),
X_p,=i_p - xr_p),e= (g ---er), ' = (' --- T,_;). Assume that the
disturbances ¢, t = 1,..., T are independently generated by a multivariate
normal distribution with mean 0 and covariance matrix €. Then the likeli-
hood reads

1(8,,T,Q| X, Z) o ||~ /DTexp[—L1tr @~ (AX — ZT — X_,Ba)’
X (AX — ZT — X_,Ba)] a4

A Bayesian analysis starts with the specification of a prior density. Because
we want to analyze the properties of the likelihood of a cointegration model
in detail, we choose a diffuse prior,

p(B,a,T,Q) o |Q|~1/2A, a1s)
The posterior is proportional to the product of the prior and the likelihood:
p(B,a,T, Q| X,Z) o |Q 72T P exp[—3tr Q71 (AX — ZT — X_, o)’

X (AX —ZT' — X_,Ba)]. (16)

The identification problems especially concern the parameters o and 3 and
only indirectly influence the remaining parameters I' and . We are primar-
ily interested in the marginal and conditional posteriors of o and 8. To derive
these posteriors, we have to integrate the parameters I' and  out of the joint
posterior (16). Figure 2 contains an integration scheme for the construction
of the joint posterior of « and 3, where M, = I — Z(Z'Z)~'Z’". For more
details on the integration steps in Figure 2, see Dréze and Richard [5] and
Zellner [25]. Given the joint posterior of o and 3, one can construct the con-
ditional posteriors of o given 8 and 8 given «.

THEOREM 1. Given equations (13)-(16), the kernels of the conditional
posteriors of a, given (3, and (3, given o, by using the diffuse prior (15) read
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p(B o, T,Q| X, Z) o |Q] 2AT+Mexp[—TtrQ~"e’e)
i

inverted-Wishart step on Q

{
p(61a1F|X,Z) o< le'e | =1/2(T+h—k-1)
{
matric-variate t step on I’
M

p(B,aX,Z) & [{AX = X_pBa) MAAX — X_, Bex)| ~V2(T+h=pk=1)

FIGURE 2. Integration scheme for the construction of the joint posterior of o and
(3, marginal with respect to Q and T'.

p(aIB,X,Z) o4 'AXIM(Z X_pﬁ)AX
+ (= a)B' X ,MzX_,03(a — Q)| TVHIH=Pk=D (1)

p(Bla,X,Z) & |(B = BYX Mz sxapy X-p(B = B)
+ (Q(AX’M(Z X__p) AX)“(X’)‘I I-]/Z(T+h—-pk—]), (18)

where § = (X.,M;X_,)"' X', M;AX(AX'M; x_,AX)"'a’(a(AX" X
M(Z X_p)AX)—]Ot,)_] and & = (B,leMzX_pB)_lBIXLpMzAX.

Proof. See Appendix.

We emphasize that the functional forms of the posteriors in (17) and (18)
are independent of the functional form of « and . So, the conditional pos-
terior corresponding to the case of cointegration, oy, = 0, as well as the
conditional posterior corresponding to the case of no cointegration, oy, # 0,
are described by Theorem 1. Notice, however, that when a5, # 0, the matrix
« is assumed to have full rank such that o, = 0 (empty matrix).

By using some rules of matrix analysis for decompositions of the determi-
nants in Theorem 1, the conditional posteriors of the individual parameters
a1, Q12 02z, and B, can be constructed. These conditional posteriors are
all proportional to matric-variate ¢ densities, regardless of the chosen model.
In Theorem 2, the functional forms of the conditional matric-variate ¢
posteriors are stated (for a definition of a matric-variate ¢ density, see the
Appendix).

THEOREM 2. Given the conditions of Theorem 1, let o = (ay; «)3),
and B = (I, — B3). The conditional posteriors of a and (3, become

p(a'B’X’Z) =fMt(a|&’B,X,—pMZX—p67AX’M(Z X_pB)AX)
T+h—pk—r—1) (19)
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p(lea,X,Z) =er(52|321,X'—p2M(z axa)) X—p2s
(¢(AX'M X_p)AX)“oc’)‘1
+ (L = B X i Mz axag X_p) X—p1 (I, — B81),

T+h—pk—(k—-r)—1). 20)
Let o = (a” 0‘12) =(a; o),
0 axp
I 0
and 8 = ( g )
=B L,

The conditional posteriors of oy, o, and B, become
ploz|ar,B,X,Z) = fan(az| G2, AX3 Mz ax, x_,8AX2s
B'X. , Mz ax,—x_,801) X-pB>
T+h—pk—k-1), @1
Pl |BX,Z) = fiurn(ony | 611, AX Mz x_,—x_,.8,) A X1,
(X_p1 = X_p2B2) Mz(X_p1 — X_p22),
T+h—pk—(k—r)—r—1), 22)
p(B2| a1, X, Z) =fM;(5zlez,XipzMzX—pzyal—ll'
X [AXiM(z x_)AX1 + (o — Tyy)
X XL, Mz x_ X_pi(ay — #)legy's
T+h—pk—2k—r)—1), 23)
where
B=(Bi By,
Bar = B2 = (XLp2aMiz sxap X—p2) ' XL poaMiz axap X-p1 (I = B1),
B = —myan' - (X,—pZMZX—pZ)_lX,—pZMZX—pl(all - w)agt,

a

ML = (X, Mz X)X Ma X, = (1),
21
Gy = (B X, Mz ax,-x_ppan X-pB) B’ X, Mz ax,-x_,pa1) 8 X2,
a = (X_p1 — Xop2B2)Mz(X_p1 — X_p2B2)) 7!
X (X_p1 — X_p282) Mz AKX,
X ,iTxr,  XopiTx(k=r), X_p=(Xop X_pa).

Proof. Use Theorem 1 and the decomposition theorems of matric-variate
t densities stated in Zellner [25, p. 397].
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Although the conditional posteriors stated in Theorem 2 seem to indicate
a regular functional form, they contain some peculiarities. For expository
purposes, we analyze the mean and variance of the conditional posteriors of
B,, given «a.

8(52]01,0122 = 0)
= (X2p2Mz saxay X-p2) ' X p2M iz axap X-p1 LB
— (X oMz saxapy X—p2) ' X 0o Mz axan X—pi1- 24

var (vec(;) | a, a2, = 0)
=(T+h—pk—(k—ry—r—3)"
X ([(a(AX'Mz x_yAX) ')
+ (1, — Bl)'X/—le(z AXal X_pz)X—pl(Ir - 61)]
® (X paMz axap X-p2)7"). (25)
8(62[0[“,0122#:0)
= (XL Mz X_ ) ' X o My Xy L)t
— (X oMz X )7 ' X a My X . (26)
var (vec(B;) |y, a2 # 0)
=(T+h—pk—2(k—r)—r-3""
X (i [AXiM{z x ) AXy + (any — #0) X Mz x_ )
X X_pi(ay —w)lon' @ (X, MzX_,5)7"). Q7

Because 3 converges to infinity (see Theorem 1) when « converges to a
lower rank value, the mean of the conditional posterior of 8, with a5, = 0
also converges to infinity when o converges to a lower rank value. The mean
of the conditional posterior of 3, is, therefore, infinite, when « has a lower
rank value. The same argument holds for the variance of the conditional pos-
terior. It is also infinite for lower rank values of «. The finiteness of the mean
of the conditional posterior of 8, when ay, # 0 depends on the rank of «;;.
When «,; has a lower rank value, (26) and (27) show that the mean and
variance of the conditional posterior are infinite. The question is how impor-
tant these infinite means and variances are in practice. If the probability of
a lower rank value of «;; or « is negligible, one would, in practice, not
notice the infinite means and variances of the conditional posteriors. To show
the importance of the infinite means and variances of the conditional pos-
terior, we calculate the joint posterior of «;; and 8, for the earlier men-
tioned fourth-order bivariate ECM describing the joint behavior of U.S.
long- and short-term interest rates. Because the model is bivariate, kK = 2, and
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we investigate the plausibility of one cointegrating relationship, » = 1. The
model used allows a5, to be different from 0. In Figures 3 and 4, the bivar-
iate posterior and the contourlines of the bivariate posterior, respectively, of
ay; and B, are drawn. To avoid the problems involved with the use of deter-
ministic components, the interest rate series are used in deviation from their
means. Both figures show the nonnegligible probability of «;; lower rank
(a;; = 0). Thus, the infiniteness of the mean and variance of the condi-
tional posterior of 3, is really important. This is confirmed by the huge tails
of the posterior, which are located at o;; = 0.

Although it does not hold generally, possible infiniteness of the means and
variances of the conditional posteriors affects the marginal posteriors in the
models analyzed. In Theorem 3, the marginal posteriors of o and S, for the
case where oy, = 0, and the marginal posteriors of «;; and 3, for the case
where «a,, is not restricted to be equal to 0, are given.

THEOREM 3. Given the conditions stated in Theorem 1, let a =
(a1 ap), and B = (I, — B3). The kernels of the marginal posteriors of a
and (3, become

P(B2| X, Z) o< |(By — Bas) X pa Mz X2 (B2 — Ba3)
+ X1y Mg x_p Xy |VATHR=PR=r=k=D | X7
XMz ax x_p» X—p1 + (B2 — 324)'Xip2M(z AX)
X Xy (By — Boa)| V2T Hh=pk=r=1), 28)

/'I/;[
il

GZFELL]
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..c‘\“‘::“:”o’o’o’oOOO' '
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FIGURE 3. Bivariate posterior (a;;, 8,) for fourth-order ECM for U.S. interest rates,
with a5, unrestricted.
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p(a| X, Z) < | XL, Mz axa; x_pp) X—pr|/2THA7PED
X | X paMz axap X_p2|1/2(T+h—pk—r—l)
X |a(AX'M, X_p)AX)—la'I—l/2(T+h—pk—1)
x|, = B')’X,"NM(Z axa X_pp) X—p1 (I = A1)
+ (e (AX'Mz X_p)AX)—la')—lI—1/2(T+h—pk—(k—r)—1)'

29)
pera= (% “2) = oy
0 ax
T, 0
andﬁz( g )
_BZ Ik—r

The kernels of the marginal posteriors of a,, and 3, become
P(52|X,Z) o (B, - 323),Xl—p2MZX—p2(BZ - 323)
+ X,—le(Z X 2)X~pl|1/2(T+h—pk—(k—r)——2r—l)
-p

X | XMz ax, x_ppX-p1 + (B2 — st)’X'—pzM(z AX))

X X—pz(Bz _ st)l—1/2(T+h—pk—(k—r)—r—l)’ (30)
plan| X, Z) o Jay | " 7 (ayy = 1) Xy Mz x_pp) X—pr (a1 — 711)
+ AXiM(Z X_p)AXI |—1/2(T+h—pk—2(k-r)—l)’ (31)

0.05

oYy -0.05

0157 05 0 0.5 1 15 2 25
B2

FiGURE 4. Contourlines bivariate posterior (a,;, 85).
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where

Bas = (XI—pZMZX—-pZ)_lX/—pZMZX

—pl>s
Bas = (X pa Mz ax) X_p2) "' XL Mz a3 X1
Bas = (XLpaMz ax)) X_p2) 7' X oMz ax)) X—p1-

Proof. Use the joint posterior of o and 8 from Figure 2. Integrate out the
parameters by using the matric-variate ¢ conditional posteriors stated in
Theorem 2.

The marginal posterior of (3, belongs to the class of 1-1 poly ¢ densities;
see Dreze [4]. By using the theory on poly ¢ densities or by using Raleigh quo-
tients (see Kleibergen and van Dijk [12]), one can show that the moments of
these marginal posteriors exist up to the degree defined by the difference
between the orders of the exponent terms minus r. For the model with
o, = 0, the moments exist up to the degree kK — r ((k — r)th moment is infi-
nite), whereas for the model where «, is not restricted to 0, even the Oth
moment (distribution) is infinite. When the marginal posterior of a certain
parameter is integrable, the marginal posteriors of the other parameters are
also integrable and vice versa because the order of integration is not impor-
tant for obtaining finite integrals. The marginal posteriors of the parameters
in the cointegration model with o, = 0, therefore, are all proper, whereas
the marginal posteriors of the parameters in the model where a5, is not
restricted to 0 are all nonintegrable.

To show the importance of the (non-)integrability of the marginal poste-
riors, we calculated the marginal posteriors of the different parameters for
the ECM for the U.S. short- and long-term interest rates. In Figures 5-8,
these marginal posteriors are drawn. Again, Kk =2 and r = 1.

The huge difference in the tails of the marginal posteriors of 3, with
ay, = 0 and a5, not restricted (Figure 5) indicates that the infinite means of
the conditional posterior of 3, are indeed more important for the marginal
posterior of 3, in the model with unrestricted a5, than in the model with
restricted ay,. Figure 5 also shows the nonintegrability of the marginal pos-
terior of (3, in the model with unrestricted o,,. The effect of the infinite
means and variances of the conditional posterior of 3,, on the marginal
posterior of o for the restricted a,, model, is also apparent. In Figures 6
and 7, where the bivariate posterior of («;;,a;,) is shown, the asymptote at
(ap1,a12) = (0,0) in the bivariate posterior is clearly visible. When one
compares this asymptote with the asymptote in the marginal posterior of o,
for the unrestricted o, case (Figure 8), one can conclude that the asymptote
of the marginal posterior of «;; lies much more within the region with non-
negligible probability mass than in the case of the posterior for (o, ay2).

As mentioned before, the parameter (3, is not the only parameter that can
become nonidentified; the parameters of the deterministic components can
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FIGURE 5. Marginal posterior 8, with a,;, = 0 (=) and a5, not restricted (--).

also become nonidentified. Because of the similarity between the noniden-
tifiedness of u and 8, and the nonidentifiedness of §8,, the conditional and
marginal posteriors for the parameters u and 6 are not constructed.

4. JEFFREYS PRIORS FOR COINTEGRATION MODELS

As shown in the previous section, diffuse priors can be highly informative
in an undesired way in cointegration models because they may lead to non-
integrable posteriors. We proceed with the construction of priors, which lead
to balanced posteriors. We propose the class of Jeffreys priors. The reason
the Jeffreys priors overcome the problems encountered is that they are pro-
portional to the square root of the determinant of the information matrix,

p(6) o [1(8)]"?, (32)

where I(6*) = —&((8*In/(6*))/(30 36")), the information matrix evalu-
ated in 6*. For the nonidentified parameter values, the information matrix
(= inverse covariance matrix) is singular. This is due to the infinite variance
of the conditional posteriors of the nonidentified parameters in these partic-
ular parameter points. As a consequence, the Jeffreys prior penalizes non-
identified parameter points and overcomes the problems encountered with
the diffuse priors, which where located exactly at the nonidentified param-
eter values. Another attractive property of the Jeffreys prior is that the result-
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FIGURE 6. Bivariate posterior (o, a3;) With as; = 0.

ing posteriors are invariant with respect to the parameterization of the model.
The information matrix of a parameter, say 6, is equal to a quadratic form
of the Jacobian matrix of the transformation of the analyzed parameter spec-
ification toward another specification, say n = (), with respect to the infor-
mation matrix of the latter specification. Given n = 7n(6), where 5(8) is
differentiable, it follows that

0.1+

0.06} .
0.04}+ _
0.02} .

-0.02F ' 1

-0.04} 1

005 004 003 o002 001 0 0.1
11

FiGuURE 7. Contourlines bivariate posterior (a;;,c;,) with o = 0.
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FIGURE 8. Marginal posterior a;;, a,, unrestricted.

(@) _ an)' (aHnl(n(o)))(gg_)
1) = 8( Y ae'>" (ae' & dn o7 a0’

an \' an
= (66’> 1(n(0))(ao,)- 33
To construct the information matrix of a particular specification, it is con-
venient to construct the information matrix with respect to a specification
for which the information matrix can rather straightforwardly be derived.
As a next step, we construct the desired information matrix by taking the out-
lined quadratic form. For the analyzed cointegration models, the VAR spec-

ification (1) allows a rather straightforward construction of the information
matrix,

r 3
W' QIW 0 0
T-1 -1
(Q_l ®8< 2 Y{:”u)) s <9_1®8( Z Y{rYpr>>
=0 t=0
1(6) = 0 X . 0 s
T-1 T-1
(Q“®8( 2 Y;’,,Yu)) (9"®8(Z Y;;tth))
=0 =0
| o 0 3TDUR ' ® ) D,

34
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wheref=(u 6 vec(Il;) ---vec(Il,) v(Q)) kg X1, W= (L, (v 7o) —

@G 72, Yo=Yy Yy), Y= (i —p—8(t = i), 7, =
(14i---T+i),ky=21k+ (p+1)k? and D, is a duplication matrix map-
ping all 1k(k + 1) different elements of the symmetric matrix, 2, into the
vector v (). To calculate the information matrix of the ECM, we also need the
Jacobian matrix of the transformation of the ECM to the VAR notation, i.e.,
the Jacobian matrix of the transformation from «, 8, and I'; to II; (see Mag-
nus and Neudecker [16]):

(L 0. . . .0 )
—lye Tk
JAD,(T,B,a) = | 0 —Iy , 35
Iy 0
L0 -0 —Iy J(Ba)|

where

]; ’
J(B,a)=(<1k®( ))«m J(“zz))@( 0 ))) =y an)
—62 Ik—r

and J(ay,) = (0 I;_,) for the model with the unrestricted a,,, and J (o)
drops out of the Jacobian matrix when «, is restricted to 0. By using the
Jacobian matrix in (35) and the information matrix in (43), the Jeffreys prior
can be constructed.

THEOREM 4. The Jeffreys prior for the unrestricted o, model reads

17(1‘,(¥,‘3, V,())
1/2k

o |Q|—l/2(pk+k+l)|W/(Q—l ® IT)Wll/Zlanl ; (36)

T
o3 vv)
t=1
and for the model with a,, = 0, the Jeffreys prior reads
p(F,a,B, D,Q) o 'Q|—1/2((p—l)k+k+1) IaQ—larll/2(k—r) ' W’(Q—l ® IT)WI 172

T 1/2(k)
X 8(2 (AYy, -+ AY,_ 1) (AYy, - - AYp—lt))
=1
T 172(r)
X 8(2 YézM<AYu--~AYp-.,)Ypr)
t=1
I, ’ T Ir 1/2(k—r)
X ( ) 8(2 Y;’:tM(AYu~~-AYp_1,)th>( )
-BZ t=1 _62
(k1))

Proof. See Appendix.
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The expectation (2 Y/ Y,) can be constructed in several different ways.
Therefore, there is not one general expression for the class of Jeffreys prior.
We proceed with the construction of the Jeffreys prior for four different, a
priori, plausible expressions of the expectation (X Y/Y,).

Case (i). (X Y/Y,) is constant over different parameter values. For
instance, let &(X Y, Y,) be equal to the realized value of XY, Y,. However,
by assuming constancy of &(X Y, Y;), one neglects the time series nature
of Y,.

Case (ii). Vec(8(Y(Yp)) = (I, — (A’ @ A)) "' vec((e; ® L)'Q(er ® L)),
i.e., the variance of the initial observations equals the asymptotic variance
of the series.

Case (iii). §(YYy) = 0. The series start at their expected value, 0. This
case extends the priors used by Phillips [19] to multivariate models.

Case (iv). Construct the Jeffreys prior of the exact likelihood by incorpo-
rating the probability density functions of the initial observations.

We will analyze the four cases in more detail.

(i) 8(X Y/ Y,) = constant (full rank) over all different parameter values.
The Jeffreys prior of the ECM then becomes

DT, B,,8,Q) o | Q] 7V2UP=—Dk+k+D | Q=1 g7 |12
X (T(Q™2Mq~1/2,,Q7’T (1) ® (1)
+ (BaQ a8 ® TEM, 7o) ?
X |J(B,) (27 ® E)J(B, )|, (38

where L = §(2 Y},Y,,) = constant. The prior in (38) only depends on the
parameters «, 8, @, and I' (1). Instead of using the parameter g, the prior in
(38) is specified in terms of » = uf. The parameter w43 is also identified when
a9y = 0, which does not hold for u separately. The assumption of linear
time trends in the analyzed interest rates is rather odd. For reasons of sim-
plicity and because of the empirical illustration with interest rates, the ECM
does not contain a growth term parameter 6.

By using Theorem 4, it can be shown that the Jeffreys prior for the unre-
stricted o4, model reads

p(L,a,8,r,Q) o |Q] V2RI | |, (39

whereas for the model where a5, = 0, the Jeffreys prior reads
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p(F’a’B’ V’Q)

o |~k g 1 g |12
(e (5)e(5) (e )=( NN\
(oo (0 )5( %) (oo (0 )e(,”))

(L))

, (40)
whereL =32 ¥, Y,, ¥, = (x_, — XL, x_,/T). The Jeffreys prior of
the model with unrestrlcted o, equation (39), still allows analytical deriva-
tion of some of the marginal and conditional posteriors. However, one has
to rely on numerical techniques for the approximation of the marginal pos-
teriors of the model with «,, = 0 when using the prior (40). In Theorem 6,
the marginal posterior of «; is stated when using the prior (39).

o IQI—l/Z(pk+r+l) IOIQ‘lOl' I 1/2(k—r+1)

THEOREM 5. When using the Jeffreys prior, equation (39), the marginal
posterior density of o, in the unrestricted o, model becomes

P(Oll |X,Z) =fo(011 lﬂl’X’—le(Z X_p2 L)X—pl’AX/M(Z X_p L)AX, T),
1)
where fIl = (X’—le(Z X_p2 L)X.pl)_lX:_le(z X_p2 L)AX.
Proof. Integrate the joint posterior with respect to the other parameters.

Theorem 5 shows that in the model with unrestricted «,,, the Jeffreys
prior leads to a proper posterior. Because the marginal posterior of «; is
proper, the marginal posterior of 3, is also proper. It can be proved (see
Kleibergen and van Dijk [12]) that the marginal posteriors of 3, and a5, are
bounded by Cauchy densities. As a consequence, the marginal posteriors of
B> and «,, will have infinite means and variances.

To derive properties of the posteriors of the parameters of the model with
the restricted a,,, we note that there is a mathematical equivalence between
the ECM and the incomplete SEM. Let

Vi=WG+§
Va=ViB+ &, 42)
where Vi = M;AX,, V,=MzAX,, W=Mz(X_, 1), =Mze;,5=Mz(e;—

£,B), B=aj'ap, and G = (af, —ai;f; —afv’) =(G, G gi)-
By using bounding functions, Kleibergen and van Dijk [12] showed that the
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posterior moments of the parameter B exist up to the degree of overidenti-
fication plus 1 (= k — r + 2). We are interested in the parameter (8; »’)’
(= —(Gj; g5,)Gii"), however. The parameter B is defined as a7 aj; =
Gi'ay,. The inverse element, Gij!, is the same for both 3, (= —G,;G;1')
and B. Because the Jeffreys prior leads to invariant posteriors, the posterior
moments of both parameters will exist up to the same order (k — r + 2). The
(k — r + 1)th moment is therefore the finite integer posterior moment of
(B,,v) of the highest order. The posterior moments of the parameters in
which no “inversions” are involved, i.e., the parameters (o, o2), will exist
up to approximately the order T.

To illustrate the implications of the Jeffreys prior for the marginal pos-
teriors, we again use the example of U.S. interest rates. In Figure 9, the mar-
ginal posteriors of «;;, a;,, and a,, using the Jeffreys prior are presented.
All these posteriors behave regularly, and, as proved in Theorem S, the mar-
ginal posteriors of «;; and «;, are both matric-variate ¢, whereas the mar-
ginal posterior of a5, is bounded by Cauchy densities just like the marginal
posterior of 38,. The difference between the marginal posterior of o, using
a diffuse prior (Figure 8) and the posterior using a Jeffreys prior (Figure 9)
is apparent. Figure 10 shows the marginal posteriors of 3,, both using a
diffuse prior and a Jeffreys prior. Again, the difference between these pos-
teriors is clear-cut. Figures 9-10 contain the marginal posteriors of the
parameters in the model with the unrestricted a,,, and Figures 11 and 12

0.02 0.04 0.06 0.08 0.1

FIGURE 9. Marginal posteriors ay; (=), a;; (-~), and a5, (---) for U.S. interest rates
by using Jeffreys prior.
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FiGure 10. Marginal posterior 3, with diffuse prior (—) and Jeffreys prior (--).

contain the marginal posteriors in the model with a,, = 0. Figure 11 con-
tains the marginal posteriors of «;; and «,, and Figure 12 contains the
marginal posterior of 3,, both using a diffuse prior and the Jeffreys prior.
Figures 11 and 12 are drawn by using a model, which incorporates a constant

35F

25F

2+

L5+

1k

0.5+

Y8 o6 04 w2 0 02 0.4 0.6 0.8 1

FIGURE 11. Marginal posteriors a;; (—) and o, (--) by using Jeffreys prior with
Ay = 0.
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FIGURE 12. Marginal posterior 3, by using diffuse prior (--) and Jeffreys prior (—)
Wlth Qyy = 0.

term in the cointegrating vector. As a consequence, the resulting posteriors
cannot be compared with the posteriors drawn in the previous section.
All posteriors in this paper are calculated numerically by using Importance
Sampling with a multivariate ¢ importance function (see Kloek and van Dijk
[14], van Dijk and Kloek [24], and Geweke [7]), except for the posteriors of
the parameters of the unrestricted o, model with constant expectation
Jeffreys prior (Table 2). These posteriors are calculated by directly generat-
ing the parameters I';,II from a matric-variate ¢ density and solving for o
and 3. The computer program SISAM (Hop and van Dijk [9]) was used to
perform these calculations. The relative numerical error (which equals the

TaBLE 2. Moments posteriors

a;, Unrestricted ay =0

Mean S.D. Mean S.D. Relative numerical error
oy -0.032 0.01 0.036 0.11 0.0015
as 0.03 0.03 -0.026 0.31 0.0041
B, 0.92 0.13 1.05 0.38 0.0021

. —0.020 0.014 0 0 0
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numerical error of the posterior mean divided by the posterior standard devi-
ation) shows the accuracy of the calculated posterior means in case Impor-
tance Sampling has been used.

Because the posteriors in the previous figures are proper densities, it now
becomes possible to perform hypothesis testing by using these posteriors.
Two Bayesian testing procedures are highest posterior density (HPD) regions
and posterior odds. Posterior odds testing with posteriors calculated by
Importance Sampling can be done by using methods suggested by Geweke
[8]. Especially for posterior odds testing, properness of the posteriors is cru-
cial. Otherwise, one would always choose the hypothesis with an improper
posterior. In the present paper, the testing procedures will be informal, and
we only rely on HPD regions.

An interesting hypothesis to test concerns the presence of unit roots in the
VAR polynomial. The model with the restricted «,, already assumes that a
unit root is present. In the unrestricted a,, model, the parameter «,, mea-
sures the departure from a cointegration model. In the unrestricted a5,
model, one can therefore test for the presence of unit roots by using the mar-
ginal posterior of a,,. The 95% HPD region of the marginal posterior of
ap, for the interest-rate series (Figure 9) contains 0. So, according to usual
Bayesian procedures, one cannot reject the hypothesis of one unit-root in the
ECM. The hypothesis of cointegration is, in several cases, not restricted to
the parameter a,, but also deals with the deterministic components. The
interpretation of deterministic components changes when unit roots are
present; see Johansen [10] and Kleibergen and van Dijk [13].

The support of the hypothesis of a difference stationary ECM for the two
separate models for the U.S. interest rates is quite different. For the unre-
stricted a», model, the assumption of a difference stationary model implies
that «;;, a2, and ay, are all equal to 0. When analyzing the three different
marginal posteriors of these parameters (Figure 9), we conclude that,
although 0 lies in the 95% HPD region of the marginal posteriors of «a;;
and «y,, it does not lie in the 95% HPD region of the marginal posterior of
oy;. The 95% HPD region of the trivariate posterior of («;;, a2, a5;) also
does not contain 0. As a consequence, the hypothesis of a difference station-
ary model is rejected when using this posterior. For the model with the re-
stricted or5,, the hypothesis of a difference stationary model corresponds with
(ay1,0a12) = (0,0). The 95% HPD regions of the marginal posteriors of
both of these parameters contain 0 (Figure 11), and so does the 95% HPD
region of the bivariate posterior of («;;,®;,). Thus, the hypothesis of a dif-
ference stationary model cannot be rejected. The different conclusions
regarding the plausibility of the hypothesis of a difference stationary model
are due to the structure imposed on the cointegrating vector and the deter-
ministic components. That is, one imposed a unit root in the restricted a,,
model and restricts the constant term to lie in the cointegration space.
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FiGURE 13. Marginal posterior modulus largest (—) and second largest (--) roots for
VAR model of U.S. interest rates.

For testing for cointegration one can also analyze the posteriors of the
roots of the characteristic polynomial |II(z7!)| = 0; see DeJong [3]. When
1 lies in the 95% HPD regions of the posteriors of the roots, the hypothesis
of cointegration cannot be rejected. The problem with the roots is their pos-
sible complexity. The comparison of complex and real roots is not straight-
forward because of their different implications (cycle). To show the possible
cointegrating nature of the U.S. interest rates from the root perspective, we
calculated the posteriors of the largest roots. The problem of the complex
roots is partly overcome by taking the modulus of the roots. In Figure 13 (see
also Table 3), the marginal posterior of the largest and second largest roots
(in modulus) are drawn. Figures 14 and 15 contain the bivariate posterior and
the contourlines of the bivariate posterior of the largest and second largest
root. The posteriors are calculated by generating parameters «, 8, and I' from
their posteriors (unrestricted o,, model, Jeffreys prior) and by calculating
the roots of the implied VAR polynomial. The 95% HPD region of the pos-

TasLE 3. Moments posteriors

Mean S.D.

Largest root 0.99 0.0078
Second largest root 0.93 0.025
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FIGURE 14. Bivariate posterior moduli, largest and second largest roots.

terior of the largest roots contains 1. So, the hypothesis of a unit root can-
not be rejected. The second largest root confirms the statements made with
the unrestricted oy, specification. Again, the hypothesis of a difference sta-
tionary model is rejected.

There is, however, also another peculiarity regarding the second largest

1.005

0.995
0.99
0.985
max
0.98
0.975
0.97

0.965

0.88 0.9 0.92 0.94 0.96 0.98
’\z-max

FiGuRre 15. Contourlines bivariate posterior, largest and second largest roots.
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root. The marginal posterior of the second largest root is almost bimodal.
The bivariate posterior of the largest and second largest root (Figures 14 and
15) explain why the bimodality occurs. The second mode is the result of com-
plex roots. These complex roots are always pairwise, which explains why the
bivariate posterior consists of two “distinct posteriors.” The first posterior
only contains real largest roots, whereas the largest roots tend to be complex
in the second posterior. As a consequence, the latter posterior exactly lies on
the line x = y as indicated by the contourlines. The (fat) left tail of the pos-
terior of the largest root also almost completely consists out of complex
roots. When complex, the largest root tends to be less than its real counter-
part because of its complex conjugate, which leads to the same nonstation-
ary properties. A complex root with a certain modulus as a consequence
induces much more nonstationary kind of behavior than a real root with the
same modulus. So the complications of the possible complex nature of the
roots are not overcome straightforwardly by taking the modulus of the roots.
Another problem arises when the largest roots have a double multiplicity,
which happens when the series are 7(2). One should evaluate the eigenvec-
tors of the implied companion matrices to check whether the eigenvalues have
a higher-order multiplicity. One may conclude, therefore, that unit root test-
ing by using the posteriors of the roots in multivariate models is not straight-
forward.

In the previous section, we assumed the expectation &(2 Y, Y;) to be con-
stant over the different parameter values. As a consequence, the observations
are fixed, and a typical feature of time series is the stochastic nature of the
observations. In the classical statistical paradigm, this would correspond with
the use of normal limiting distributions although these limiting distributions
tend to be nonnormal for unit root time series. In the Bayesian analysis of
unit roots, several theoreticians have tried to model the observations sto-
chastically; see Phillips [19] and Schotman and van Dijk [22]. To model the
observations stochastically for the VAR models, we need to construct the
expectation (2 Y, Y,). Theorem 4 shows that the expectation &(X Y/ Y,)
enters the Jeffreys prior for the unrestricted oy, and restricted ay, models in
different ways.

The expectation (2 Y/ Y;) can be constructed by using the VAR(1) spec-
ification of ¥, ¥, = Y,_; A + v,, where v, = (¢; 0 ---0)" and A is the com-
panion matrix of the VAR( p) model in (1).

o, I, 0 . 0
.0 . 0
A= : . 3)
. A
o, o 0



ON THE SHAPE 541

By using the companion matrix, the expectation (X Y, Y,) becomes

T T—-1
8(2 Y, Y,) = 3 ATE(Y)Yp) A
=1 r=1
T-2
+ 2 (T—1t=1DA"(e; ® L)' e, ® L)A', 44)
t=0

where e, is given as the first p-dimensional unity vector, e; = (1 0 --- 0).
By using vec operators, the expectation can be calculated exactly:

T
vec (g(z v y)) = Tl — (4 ® A)vec((e; ® LYRe, ® 1)
=1
+ Ty — (A ® A) )Ly — (A ® AN~
X [vec(8(Y{Yo) — (i — (A4’ ® A"
x vec((e, ® 1YR(e, ® ). 45)

In equation (45), the only unknown term concerns vec(&(YYy)). In the
present paper, we analyze two different expressions of vec(&(Y{Yy)). The
first expression, Case (ii), takes the exact expectation, vec(&E(YYy)) =
Iy — (A ® AN tvec((e; ® 1) (e, ® 1)), whereas the second expres-
sion, Case (iii), assumes that the series started in equilibrium, Y, = 0 such
that &(Y}Y,) = 0. Another expression of the Jeffreys prior is discussed
in Case (iv), where the initial observations are incorporated in the likeli-
hood (exact likelihood) and the Jeffreys prior of the resulting likelihood is
constructed.

(i) vec(&(Y4Yo)) = (I, — (A ® A) 'vec((e; ® I)Q(e; ® ) (see
Liitkepohl [15]). The expectation vec(&(X Y/ Y,)) then becomes T(I;, —
(A ® A) vec((ey ® 1) Q(e; ® Ii)). As a consequence, vec(&(2 Y/ Y,))
and the Jeffreys prior will be infinite when A has an eigenvalue equal to 1,
which corresponds with a unit root in the VAR polynomial. By using this
kind of Jeffreys prior, the posterior will again be improper and favor unit
root models. The same reasoning holds if we replace &(YY,) by the ob-
served value of Y(Yj.

(iii) (Y{Yy) = 0. The posterior means of the largest and second largest
roots suggest that the model is explosive. However, the series themselves (Fig-
ure 1) and the posterior of the roots shown in Figure 13 indicate that the
plausibility of an explosive model is really very small. So, not only in the uni-
variate models investigated in Phillips [19], but also in the multivariate model
does the Jeffreys prior with §(Y3Y,) = 0 lead to more explosive VAR mod-
els than the Jeffreys prior with fixed expectation (Table 4).

(iv) Another interesting posterior can be constructed by using the proba-
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TasLE 4. Moments posterior

Mean S.D. Relative numerical error
Largest root 1.18 0.06 0.061
Second largest root 1.08 0.22 0.072

bility density function of the initial observations. If we assume normality,
the probability density function (p.d.f.) of the initial observations reads

P(Yo]8) o< |E(YY,)| 2 exp[—3vec(¥o) (8(Y¥o)) ™! vee(¥o)] (46)

When constructing the joint posterior of all parameters as proportional to
the product of the exact likelihood and the Jeffreys prior of the exact like-
lihood, it becomes possible to partly offset the term |> §(Y; Y,)|/2®
appearing in the Jeffreys prior in (36). To construct the Jeffreys prior of the
exact likelihood, we have to construct the information matrix of the exact
likelihood. The information matrix of the exact likelihood equals the initial
information matrix in (34) minus the expectation of the second-order deriv-
atives of the log of the p.d.f. of the initial observations.

2
g, (8) = I(8) — g(ﬂl’(J’_OV’))

36 o0’
=1(6) + 8[(Ik,, ® [vec(E™") — (vee(Yo)' ® vec(¥o))]) %
N (a VZZ‘fY“ )'E (a VZ;('YO) )]
—16) + (iv—;gf—’:’)'(z—‘ ®L) (-a—%:—;—@)
N (a V;CO(IY0)>'2<3V;CO(IY0))’ @7

where T = (8§(Y4Y)) ™! and §(Y;) = 0. In our approach, we neglect the sec-
ond term in the information matrix (47), which can be justified from an
asymptotic argument. The only influence of the initial observations then
arises from the last term of the information matrix (47), which is only dif-
ferent from 0 for the deterministic component parameters, u and 6. For the
unrestricted a,, specification, the Jeffreys prior then becomes
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p(T,a,B,7,Q) o | Q|7 2P T’ + (@ LYET' (@ L)|V?

X |8(Y5¥o)| 2, 48)

where ¢ = (1 - - - 1)’ To get sensible posterior results, we assume that the term
| 8(Y§Y,)| V23X cancels out with the term |&(Y{Y,)| ™2 from the exact like-
lihood. As a consequence, the term |E(Y;Y,)| does not appear in the result-
ing posterior. In univariate models, where k = 1, the posterior is proportional
to the product of the exact likelihood and the Jeffreys prior of the exact
likelihood, whereas for the multivariate models we have made a heuristic
assumption to get plausible results, which would produce otherwise improper
posteriors. By using the approximate Jeffreys prior from (48), the joint pos-
terior then becomes

p(T,0,B8,7,Q| X, Z)
1o |QI—-1/2(T+pk+k+2)lTa/a + (L ® Ik)lE—l(L ® Ik)ll/ZIa“[

x exp[—1[vec(Yp) (8(Y{Yp) ™! vec(Yy) +tr Q7 'e'e]]. 49)

Before (numerically) integrating the different parameters out of the pos-
terior in (49) to calculate the marginal posteriors, examine the resulting pos-
terior further. We start with the joint posterior of the AR(1) model with
mean u. For details on the model, see Schotman and van Dijk [22].

p(p.0,0|X,Z)
o |o] "TT(1 = p)? + (1 — p?)|'?
X exp[—3072[(1 = p?)(¥o — u)* + (¥ —ep(1 — p) — py_y)’
X (¥ — (1l = p) —py_]Il. (50)

When p = 1, the model corresponds with a random walk, and the initial
observations are not important. As a result, the initial observation, y,, is
deleted from the posterior. Because of the slower convergence of (1 — p?)
to 0, when p converges to 1, compared with (1 — p)?2, u still has the inter-
pretation of a mean parameter when p = 1. Contrary to the model without
the initial observations where ¢ = u(1 — p) has the interpretation of a growth
term when p = 1. This phenomenon may also be analyzed by using the mean
of the conditional posterior of u on p.

uw(p) =[V(y—py_1)+ (1 +p)y]/[T(1 —p) + (1 +p)] initial present;
=J(y—py_1)/[T(1 =p)] no initial. (51)
When p =1, u(p) = (¥7 + ¥4)/2 for the posterior with the initial obser-
vations, and (1 — p)u(p) = (¥ — ¥o)/T for the posterior without the ini-
tial observations. In the first case, u(p) still corresponds with the mean of
the series, whereas in the second case, (1 — p)u(p) measures the average

growth of the series. Although the difference is subtle, it may be important
because of the crucial role the deterministic components have in unit root
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testing. For instance, it is now possible to test for p = 1 without the need to
restrict the constant term because its interpretation for p < 1 is the same as
forp = 1.

The posterior in (50) corresponds partly with the posterior used in Schot-
man and van Dijk [22]. The only different element in the posterior (50) con-
cerns the term |T(1 — p)? + (1 — p?)|/2, which needs to be replaced by
|1 — p2|"? to get a similar posterior as used by Schotman and van Dijk
[22]. Although the difference between the two posteriors is subtle, it has quite
important consequences for the marginal posterior for p. For the two differ-
ent priors, this posterior becomes

p(p|X,Z) o f(p)~V/27+D  Jeffreys prior exact likelihood (52)
o< (1+T(1=p)/(1+p)"2f(p) 1>
Schotman and van Dijk [22], (53)

where f(p) = |(1 =p*)(yo—p(p)) >+ (¥ =t (p) (1 —p) —py_1) (¥ —tu(p) X
(1 —p) —py_1)| and p(p) corresponds to the first expression of u(p) stated
in (51). Although the difference between the two marginal posteriors of p
seems small, it can be quite important. First, the posteriors are in essence
only intended for stationary processes. Second, the posterior (52) does
allow explosive values for p, whereas the posterior (53) has an asymptote at
(T+ 1)/(T—1) (>1). That is, the posterior (53) is not defined for p > 1.

The analysis for the AR(2) models can be shown to give similar results as
for the AR(1) model, i.e., the deterministic components keep the same inter-
pretation even in the presence of unit roots.

Similar results for the exact likelihood of the VAR model with unit roots
can be shown by using the structural form model in (6)-(7). The quadratic
form vec(Y,) (6(Y{Yy)) ! vec(Yy) can be specified as

vec(¥5) (8(Y(Y,)) ™" vec(Yp)
=vec(Yo) (L ® (B ANEIL @ (B AN YiYo(L ® (B AND™!
X (I, ® (B A))vec(Yy). (54)

Because the VAR polynomial ®(z) is invertable, the expectation &[(/, ®
(B A Y Yoy ® (B A))] will be finite. When unit roots are present,
similar phenomena arise in equation (54) as discussed for the AR(1) model.

Although the specification (54) is theoretically interesting, it is difficult to
operationalize to VAR models. The expectation will be hard to calculate
because the exact expression, vec(8(YYp)) = (Iy, — (4’ ® AN vec((e; ®
I,)YQ(e; ® I;)), involves the inversion of a large matrix for VAR models. In
the example for the interest rates, we chose to approximate the variance of
the initial observations by using the recurrence formulas,

Fo=(ey ® I)Q(e, ® Iy)
F=AF_A+ (e, ® I,)Qe ® I) i=1,...,q (55)
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The recurrence formulas in (55) converge quite fast and also have the
attractive property that they allow for explosive values of the parameters,
which lead to large variances of the initial observations.

With the recurrence formulas in (55) with 50 iterations, we calculated the
marginal posteriors of the parameters of the unrestricted o,, model by using
the approximate Jeffreys prior of the exact likelihood. Just as for the Jeffreys
prior with (YY) = 0, the calculated posteriors are less accurate than the
other calculated posteriors. For the other posteriors, one can considerably
reduce the number of parameters to be integrated out numerically, whereas
for the Jeffreys prior with §(Y(}Y,) = 0 and the approximate exact likeli-
hood Jeffreys prior, all parameters have to be integrated out numerically.
Also, the highly nonlinear functional form of the priors decreases the con-
vergence of the Importance Sampling procedures.

In Figure 16, the marginal posteriors of ay;, a2, and a5, are drawn by
using the approximate exact likelihood Jeffreys prior. Figure 17 contains the
posterior of 3,, and the posteriors of the largest and second largest roots of
|II(z~")| = 0 are drawn in Figure 18. When using the 95% HPD regions of
the posteriors in Figures 16-18, one cannot reject the hypothesis of a one unit
root nor can one reject the hypothesis of a two unit roots difference station-
ary model. The marginal posteriors of «;; and «a»,, as well as the marginal
posteriors of the largest and second largest roots, confirm this statement. The
resulting posteriors confirm the conclusions drawn from the posteriors of the
parameters of the restricted a,, model with the fixed expectation Jeffreys
prior. This indicates the fragility of the inference because different (plausi-
ble) priors give different support to the hypothesis of cointegration/differ-

S0 i |

30+ i T
20+ i 1

10+ . -

03 02 01 0 0.1 0.2 0.3

FIGURE 16. Marginal posterior, a;; (—), a;; (--), and a,, (---), for U.S. interest
rates by using approximate exact likelihood Jeffreys prior.
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FIGURE 17. Marginal posterior 3, for U.S. interest rates by using approximate exact
likelihood Jeffreys prior.

ence stationarity. Notice, however, that again the role of the constant term
is crucial. For the unrestricted «,, model with constant expectation Jeffreys
prior, it is unrestricted such that it can represent a growth term once a,, =0.
For the restricted o, model and the unrestricted a,, model with exact like-
lihood Jeffreys prior, the constant term represents the mean of a certain set

60 B
50 -
-H) A

30 1

. I R J/ """ \

(9.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1 1.02 1.04

FiGuRrE 18. Marginal posterior, largest (—) and second largest (--) roots.



ON THE SHAPE 547

of variables. For the models where the constant terms represent means, we
could not reject the hypothesis of difference stationarity (two unit roots, two
stochastic trends). For the model with unrestricted «,, constant expectation
Jeffreys prior, however, we could reject this hypothesis but still we have two
trends, one stochastic and one deterministic (Table 5).

5. CONCLUSIONS

We have shown that the use of diffuse priors can be quite informative in
cointegration models, in the sense that the marginal posterior densities of cer-
tain parameters of interest have an asymptote in the interior of the param-
eter region. Thus, the posteriors may be nonintegrable. This result extends
to all models in which parameters can become nonidentified. By using the
Jeffreys prior principle, we show that one may overcome this identification
problem. The Jeffreys prior is not unique, however, because the expectation
of the endogenous variables can be evaluated in several different ways. It is
shown that for four different expressions of this expectation, only three
imply Jeffreys priors, which lead to proper posteriors. From these three
priors, only two priors give plausible posterior outcomes for the analyzed
U.S. interest-rate series. The two plausible priors are the Jeffreys prior, which
leaves the expectation constant over different parameter values, and the other
prior is the so-called approximate exact likelihood Jeffreys prior. The exact
likelihood prior is especially interesting because it treats the initial observa-
tions in a stochastic manner such that only in the unit root case the model
is conditional on the initial observations.

The Bayesian cointegration analysis conducted in this paper analyzes some
of the possible problems one encounters in this approach. A different
approach of analyzing cointegration models by using Bayesian statistical
analysis is conducted by Phillips [20] where a restricted version of the model
in (4) and (8)-(9) is used. The approach by Phillips [20] differs in the sense
that the posteriors are connected with the theory of stochastic martingale

TaBLE 5. Moments posteriors

Mean S.D. Relative numerical error
o 0.031 0.046 0.027
s —0.027 0.11 0.028
) 0.002 0.037 0.015
8, 0.93 0.26 0.025
Largest root 1.005 0.013 0.023

Second largest root 0.95 0.05 0.025
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processes, which allows one to construct the posteriors recursively. Also, the
model used is linear such that no identification problem occurs, but, as a con-
sequence, certain Granger longrun noncausality relationships are implicitly
assumed to hold; see also Kleibergen and van Dijk [13].
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APPENDIX

The k x m random matrix 7 is said to have a matric-variate ¢ (Mt) distribution with

N\ degrees of freedom if its probability density function is

— C—l |E|1/2()\)‘P|1/2(m)|2 + (T— T)'P(T—- 7“-)|-1/2()\+k)
— C—l lzl—l/l(k)|P|Al/2()\+k—m)|P—l + (T— T)E_I(T— T)/I—I/Z()\+k),

c= 7r‘/2<’"")ﬁ [I‘(% (N +1 —i)>/I‘<% N+ k+1 —i))]
i=1

where T is a k X m constant matrix, L is m X m PDS constant matrix, Pisa k X k
PDS constant matrix, and A > m — 1. The moments of this probability density func-
tion exist up to the order N — m + 1; see, e.g., Zellner [25], Appendix BS.

Proof of Theorem 1.

p(B,a|X,Z)
o '(AX—X_pBa)’MZ(AX_X_pBa)|—1/2(T+h—pk—l)
< |AX'Mz x_,5)AX+ (a—&)B'X , Mz X_,B(c— &)| VAT Hh=Pk=D)
®|AX'Mz x_,AX+ (Ba =YY X’ M X_,(Ba —II)|~V/2T+h=rk=D
o

[od

o

(X, Mz X_ )+ (XL, M X)) XL, Mz AX[(AX ' Mz x_,AX)™!
—(AX'Mz x_)AX) '@ (a(AX'Mz x_,AX) 'a’)"!

Xa(AX'Mz x_ ) AX) ' JAX'MzX_ (X ,MzX_,)""

+ (BB (AX'Mz x_,AX) a/(B— By |~ "2TH=PE=D

(XL, Mz X )"+ (X, Mz X_,) "' X ,MzAXa[(a, AX'M 7z x_,,AXa])™!
X oy AX'M;X_ (X Mz X_)™"

+(B—=B)a(AX'Mz x_,AX) 'a'(B— By |V TPk

(X, M Achi)X—p)_l

+ (B—B)(AX' Mz x_,AX) /(B — By |~ V2THh—pk=D
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« [[(a(AX'Mz x_,AX) "'oY + (B=BY XL, Mz sxap X—p(B—B)
X |a(AX' Mz x_) AX) '’ || X, Mz sxap X_p|~']712TH7PED,
M= (X, M;X_,)"' X' ,M;AX
Proof of Theorem 4.

n=(udvec(T')" - - vec(T,_;) vec(ay;) vec(a,) vec(B,) vec(ann) v (Q)')

(2 o (27
I(n) = (60,> 1(17(0))<ae,>

( 7
Ly 0 0
- 3
Lk 0 0
_Ikk Ikk
=|o 0 —Iu 0
Lo -0 —l  J(B,a) |
L0 0 Takesn)
-
(W/(Q—]®1T)W 0 0
-1 T-1
(9—'®s< > Y{,Yl,>> (n-1®8<2 Y,’,Yp,)>
=0 =0
0 . 0
T-1 7-1
(9-‘@)8( 2 Y,;,Y“)) (n-'®8( 2 Y,;,Y,,,))
=0 t=0
[ 0 0 1D '® 9 ")D,
J
s 3\
Ly 0 0
r 3
Ikk o .. . .0
o (T ¥
0 0 L . . . 0
. Lk 0
L0 -0 -~y J(Ba))
0 0 L2kikery

.

For the unrestricted «,, model, the Jacobian matrix is square such that
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_ ()
ot = |(22) [ ircncom

T-1
= |J(B, )| W0 ® Ir)W| ‘9“ ® 8( }_“(,) Y, Y,)llﬂl‘“”
=

k

= |a, |2 W(Q7! & IrW| | Q| (Phrk+D)

T—1
6(3 v, v,

=0
whereas for the restricted «,, model,

) oo (57)
'(ae’ TN\ 57

-

[1(n)]

-1 T-1
(9-' ® 8( 2 AYf,AYu)) (9-‘ ® 8( 2 AY;,AYp_,,>)

=0 =0

= T-1 -1
(Q"@S(ZAY,’,‘“AY“>> (Q-l ®8<ZE)AY;;—11AY;7—1:>)
1=0 t=

7—1 T-1
J(B,a)'(ﬂ‘l ® 8( >, Y;,,AY,,)) . -J(B,a)’(ﬂ" ® 8( > Y,;,AY,,_,,))
=0 =0

.

BN

7—1
(9—' ® s( P AY;,Y,,,)Jw,a)
=0

-1 W Q' ® Ir)W||Q|*+D
(9-1 ® 8< 2 AY;,_UY,;,>J<B,a)
=0

T—1
J(B,oz)’<9“ ® 8< > Y,;,Yp,)J(ﬁ,a)J
=0

7-1 k
= '8< 20 (AYy - AY, ) (AYy, - AY, ) | [WN(Q7' @ InW|

t=0

X 'Q‘((p—l)k+k+l)

T
J(B,a)'(Q“ ®¢& ( > Y,’,,M(Ay“..,Aypﬂ,)Yp,))J(ﬁ,a)
=1

T
]J(B,O!)' (9_1 ® 8(2 Y,'uM(AY“-«AY,,_,,)Ym))J(B.Dt)
=1

Ir ’ T , ]r
g, & EY,,,M(AYU.”AYP_”,Y,,, s,

r

(k—r)
- |ag—la/I(k—r)

X

T
8(2 Y!;’M(Aylt"‘AYp—lr)Yp!)
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