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ON THE SHAPE OF THE 
LIKELIHOOD/POSTERIOR IN 
COINTEGRATION MODELS 

FRANK KLEIBERGEN AND HERMAN K. VAN DIJK 
Econometric Institute and Tinbergen InstitOt 

Erasmus University Rotterdam 

A vector autoregressive (VAR) model is specified with equation system param- 
eters, which directly reflect the possible cointegrating nature of the analyzed 
time series. By using a flat/diffuse prior, we show that the marginal posteri- 
ors of the parameters of interest (multipliers of the cointegrating vectors) may 
be nonintegrable and favor difference stationary models in an undesired way. 
To choose between stationary, cointegrated, and difference stationary models 
in a meaningful way, the Jeffreys prior principle is used. We investigate the sen- 
sitivity of the posterior results with respect to the construction of the Jeffreys 
prior. In this context, we also analyze the effect of fixed and stochastic initial 
values. The theoretical results are illustrated by using a VAR model for short- 
and long-term interest rates in the United States. 

1. INTRODUCTION 

Although some small sample properties of estimators in cointegration mod- 
els are known (see Phillips [21]), classical statistical analysis of cointegration 
relies mainly on asymptotic distribution theory; see Johansen [10], Engle and 
Granger [6], Kleibergen and van Dijk [13], and Phillips [18]. Bayesian statis- 
tical analysis tends to analyze the small sample properties, which can be 
derived when the likelihood function is specified. A problem with Bayesian 
analysis is that analytical formulas for the posterior moments and densities 
of the parameters are not known for several classes of econometric models. 
In the present paper we analyze the marginal likelihood (posterior with uni- 
form prior) of the parameters of a cointegration model. It is shown in Sec- 
tion 3 that these marginal likelihoods are not members of a standard class 
of probability density functions and are ill-behaved in the sense of having 
asymptotes in the interior of the parameter region. This behavior of the like- 
lihood is due to the nonidentifiedness of certain parameters, which occurs 
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when the model is a difference stationary one. Thus, the results indicate that 
flat priors are very informative in cointegration models because difference 
stationary models are "infinitely" favored. To choose in a meaningful way 
among stationary, cointegration, and difference stationary models, we make 
use of the Jeffreys prior principle, i.e., we choose a prior that is proportional 
to the square root of the determinant of the information matrix. In Section 4, 
we analyze the sensitivity of the posteriors of the parameters of interest with 
respect to four different cases of a Jeffreys prior. One of these priors has 
implicitly been used by DeJong [31 to calculate the posteriors of the roots of 
vector autoregressive (VAR) models. A second one has been used by Phillips 
[191 to analyze unit roots in univariate autoregressive models. We also dis- 
cuss the problem of fixed or stochastic initial observations. Here we intro- 
duce a prior that approximates the Jeffreys prior for the case of the exact 
likelihood. Preliminary to our Bayesian cointegration analysis, we discuss in 
Section 2 several aspects of specification of cointegration models. We note 
that a companion paper, Kleibergen and van Dijk [13], deals with a classi- 
cal statistical analysis of our specification of the cointegration model. 

To save on indices, the data series are depicted as row vectors. Also, the 
common expression for the longrun multiplier ao4' is replaced by O3a, where 
j stands for the cointegrating vectors. 

2. SPECIFICATION OF COINTEGRATION MODELS 

Cointegration describes special features of multiple time series; see Engle and 
Granger [6]. To analyze cointegration, one needs a model that explains the 
joint behavior of the analyzed time series. We make use of the VAR model. 
A pth order VAR model of k elements of the series x, = (xl * . xkt), t = 

1, . .. , T, which conditions on the first p observations, reads 

(x - -tb)Il(L) = et t = 1, . T (1) 

p 
I1(z) Ik - zHii (2) 

1=1 

where xt, I, and 6 are 1 x k row vectors. The parameter vectors ,u and 6 rep- 
resent the (nonzero) mean and growth level of the analyzed series x,. The 
deterministic parameters are modeled in a multiplicative way to guarantee 
that their interpretation does not change when unit roots become present. For 
details on the standard assumptions for VAR models, we refer to Lutkepohl 
[15]. 

To define cointegration in the VAR model (1), we rule out any explosive 
and infinite cyclical behavior. The roots of the characteristic polynomial, 
II (z)I = 0, are therefore assumed to lie outside the unit circle or to be equal 

to one; see Johansen [10]. If k - r roots of the characteristic polynomial are 
equal to one, 0 < r < k, we say that the series generated by the VAR model 
(1) are cointegrated. Cointegration implies that the matrix of longrun mul- 
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tipliers, fl = -1I(1), has a lower rank value. As a consequence, this matrix 
can be specified as the product of two full rank k x r matrices, ,B and a': 

1I = fO 3, a': k x r. (3) 

The cointegrating vectors : show the r stationary cointegrating (equilibrium) 
relationships x3. 

In case of cointegrated series, the VAR model (1) is defined in terms of the 
nonstationary variables x,. Models defined in terms of stationary compo- 
nents are often preferred to models defined in terms of nonstationary com- 
ponents. One may respecify the VAR model (1) such that it only contains 
stationary components. Two of such specifications, which are observation- 
ally equivalent with the VAR model (1), are the error correction model 
(ECM) and the structural form model. Apart from containing only station- 
ary components, zAx, and x,_po, the ECM has the attractive property that 
the longrun multiplier is directly estimable. The specification of the ECM 
reads 

A(x,-t6)r(L) = (x,-t_ - (t-p)6)Oa + et t = 1, . . ., T, (4) 

where use is made of a decomposition of the VAR lag-polynomial: 

11(z) = (1 - z)r(z) - zpfca. (5) 

The VAR model (1) and the ECM (4) may be considered as reduced form 
models because they do not explicitly model the cointegrating (equilibrium) 
relationships. A possible structural form model reads 

((xt -u -t6)0 (Axt-6)A)4(L) = it t = 1,. . ., T, (6) 

where the invertible VAR polynomial Ib(z) is specified by 

= z (Z) ) - (r (1 - 'Z)'Ikr) (1 A) (z)(O A) (7) 

and c, = t(1 A) and (1 A) has full rank. Possible choices of A are A = 

(O Ik-r)' or A = 13 (the orthogonal complement of 1). Through the inver- 
tibility of the VAR polynomial 1(z), the structural model (6) allows one to 
construct the implied vector moving average (VMA) representation and/or 
stochastic trend representation; see Johansen [10] and Kleibergen and van 
Dijk [131. 

Given the specification of the longrun multiplier, H = O3a, one is usually 
confronted with an identification problem. The number of parameters in o1e, 
2kr, is in most cases not equal to the number of parameters in fI, k2. Thus, 
parameters in 1 and a have to be restricted before estimation. Classical 
cointegration procedures overcome the identification problem by estimating 
the cointegrating vector with a "data-parametric technique" such as canon- 
ical correlations (Box and Tiao [1] and Johansen 110]) or principal compo- 
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nents (Stock and Watson [23]). The procedure suggested by Johansen [10] 
is rather well known because of the elegant relationship between the canon- 
ical correlations and the number of cointegrating relationships or unit roots. 
In principle, one may perform a Bayesian analysis by using a model like 
Johansen's but a prior has to be specified on the canonical correlations of 
the system, which is not trivial. In this paper, we construct a model that con- 
tains equation system parameters, which reflect a possible departure from a 
cointegration model, by using a suitable specification of the longrun multi- 
plier Il; see also Kleibergen and van Dijk [13]. Let 3 and a be redefined as 

(-2 i2-r) a = 1 012 then (8) 

H O/a = ~ /2i+2)(9) 
(-02 a 1 -02Ua 2 + C22) 

where /2: (k - r) x r, al : r x r, a12: r x (k - r), a22: (k - r) x (k - r) are 
all unrestricted. 

We make use of the same symbols a and at as before. However, the inter- 
pretation has changed considerably when a22 * 0. When a22 = 0, H has a 
lower rank value and the specification of H = O3a corresponds with the spec- 
ification in equation (3) with / = (Ir -/32)' and a = (a1 a 12). If a22 i 0, 

the interpretation of : does not correspond with a cointegrating vector. Tests 
for the number of cointegrating vectors or unit roots can be performed by 
testing whether a22 = 0 for different values of r. The specification of the 
possible cointegrating vector / (= (Ir -O')') can be considered as a kind 
of reduced-form specification of the cointegrating vector. Under cointegra- 
tion, more general specifications of /3 ( = (Ir -(32)') can be constructed, but 
these specifications do not allow for parameters that measure the departure 
from a cointegration model like a22. 

If a1II has full rank, the parameters 2, a11, a12, and a22 are exactly iden- 
tified and can be obtained from H. The specification of 11 in (8) is by no 
means unique, however, and (k) (=k! /(r! (k - r)!)) different parameter- 
izations of Hl exist, each of which contains a parameter that reflects a depar- 
ture from a cointegration model. 

Short- and long-term interest rates in the United States are used to illus- 
trate the analysis. The short-term U.S. interest rate is the 3-month U.S. trea- 
sury bill rate, and the long-term interest rate series refers to securities that 
have a maturity of 10 years. Both series are obtained from the "Main Eco- 
nomic Indicators" databank of the OECD, from January 1957 to April 1989 
(388 observations) and are shown in Figure 1. 

The Dickey-Fuller statistics in Table 1 indicate that the hypothesis that 
both interest rate series are nonstationary cannot be rejected, but the eco- 
nomic theory of term structures indicates that certain relationships between 
interest rate series should hold; see Campbell and Shiller [2]. Consequently, 
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FIGURE 1. U.S. short-term (--) and long-term (-) interest rates, 1957-1989. 

the interest rate series may be cointegrated. Table 1 also shows Wald, like- 
lihood ratio, and Lagrange multiplier statistics to test the hypothesis of a cer- 
tain number of cointegrating relationships. For details on the derivation of 
these statistics and their asymptotic distributions, we refer to Kleibergen 
and van Dijk [13]. By using the asymptotic critical values obtained from 

TABLE 1. Classical cointegration characteristics of U.S. interest rates (p = 4) 

long term short term 

Dickey-Fuller -1.26 -2.10 

-0.056 0.027 long term 
(-1.96) (2.64) 

II _ 0.036 -0.031 short term 
11OLS (1.21) (-2.85) 

0.11 0.062 constant 
L (I.1I1) (I. 81)j 

Number of cointegrating relationships 0 1 
tWald 7.17 2.98 
tLR 7.10 2.69 
tLM 7.04 2.26 
Critical (950/0) 20.1 9.09 
Estimated cointegrating vector long short constant 
Maximum likelihood 1.0 0.93 -0.60 

(10.1) (-0.69) 
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Johansen and Juselius [11], all three statistics indicate that the hypothesis of 
zero cointegrating vectors, i.e., difference stationary model, cannot be 
rejected. However, according to the theory of term structures, there should 
be one cointegrating vector, (1 -1)'. We will return to this example in the 
next sections. To keep matters simple, we do not focus on the heteroskedas- 
tic and leptocurtic nature of the disturbances of interest rate models. The 
hypothesis tested in Table 1 includes both the interest rates and the constant 
term in the cointegrating relationships such that no linear time trends can 
become present. 

3. PATHOLOGICAL BEHAVIOR OF MARGINAL POSTERIORS 

The possibility of pathological behavior of posteriors, i.e., nonintegrability, 
is a complication for Bayesian analysis. Some examples of models where the 
posterior shows pathological behavior are discussed in Schotman and van 
Dijk [22] for univariate autoregressive (AR) models and in Kleibergen and 
van Dijk [12] for simultaneous equations models (SEM). The cointegration 
models mentioned in the previous section contain properties of both classes 
of models discussed in these two papers. One source for pathological behav- 
ior is the product of the parameters ,B and a in model (4). When one of these 
two parameters equals 0, the other parameter automatically drops out of the 
model. Thus, the latter parameter is then nonidentified because all possible 
values of this parameter have the same influence on the model. The specifi- 
cation of the parameter matrices /3 and a in our analysis is such that only a 
can be equal to 0 or have a lower rank value; see equations (8)-(9). The prod- 
uct O3a is such that elements of 02 or a22 become nonidentified when all has 
a lower rank value. When, for example, a11 = 0, the product Ola becomes 

0 ( 1112) =a(0 /3a 12+a2 (10) 
(? 22) (? -2a12 + CZ22) 

The k(k - r) different elements of 02 and a22 have to be obtained from 
the (k - r)(k - r) different elements of 1122. As a consequence, r(k - r) 
elements of /2 and a22 remain unidentified. If one assigns all these elements 
to /2, it follows that /2 iS unidentified when all = 0. Thus, given that a1I 
has full rank, the parameter /2 iS locally identified. 

The specification in (9) has a parameter, a22, which represents a depar- 
ture from a cointegration model. We note that for the cointegration model, 
where a22 = 0, nonidentifiedness of elements of /2 iS possible. Therefore, 
even for the cointegration model where a!22 = 0, /2 iS only locally identified 
(when (a l, a! 12) has full rank). 

The nonidentifiability problem, which results in pathological behavior of 
marginal posteriors, is not restricted to parameters of the cointegrating vec- 
tor.. Elements of the deterministic component parameters i and 6 can also 
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become nonidentified for certain specific values of other parameters. This 
is illustrated by using the ECM (4): 

Oa = (I- A2 2)1II(/A - tt2 02)a12 + A2a22); (11) 

p-l 

6(r(l) - tLpOa) = 61 - (61 62) rli - (t -P)(6I - 6202)Ull 

p-i 

62 - (61 62) r2i - (t -p) 
i=l 

x [(61 - 622)a12 + 62a22]). (12) 

When a has full rank, the elements of Al and A2 are identified in the 
product ,u q in (1 1). When a22 = 0, the term i - 12302 iS identified, and it 
is not possible to determine the distinct elements of it1 and l2. The same 
reasoning holds for the growth term parameter 6, equation (12), which con- 
tains nonidentified elements when the ECM equals a cointegration model in 
second differences, i.e., both a22 = 0 and r(1) = Ik- Er has lower rank. 
For the cointegration model, a22 = 0, it follows that only I' = tt- ,-2 12 and 
(61 62) are locally identified (when (al1l a12), r1(1) have full rank). 

In classical statistical analysis of stationary nonlinear models, the estima- 
tors of locally nonidentified parameters may converge to random variables 
instead of their fixed true values; see Phillips [17]. Bayesian analysis of mod- 
els with locally nonidentified parameters is also rather difficult; see Kleiber- 
gen and van Dijk [12] and Schotman and van Dijk [22]. In Bayesian analysis, 
the problem originates from the constancy of the likelihood along the axis 
of the nonidentified parameters, say 2, in a nonidentified parameter point, 
say a 1 = 0. In the ECM (4), for example, when a11I = 0, equation (10) 
shows that the likelihood will be constant for all values of 12 and a22 for 
which 122 = -02a12 + a22, where both H22 and a12 are fixed. So, even for 
infinite values of 2 and a22, the likelihood will still have a non-zero value 
when all = 0 and 22 = -02a12 + a22. As a consequence, the integral of the 
likelihood with respect to the parameters (132, a22) on the region Rk(k-r) will 
be infinite. Another way of explaining the problem is that the conditional 
variance of the parameter 12, given a1 I(= 0), is infinite, in the nonidenti- 
fied parameter points. Thus, the information matrix (= inverse covariance 
matrix) is singular in a nonidentified parameter point. 

Although the likelihood may not be integrable, the posteriors of the 
parameters may be integrable once a suitable prior is chosen. In the follow- 
ing sections, different priors are constructed, and we analyze whether these 
priors lead to integrable posteriors. The integrability of the posterior is of 
great importance because, in case of nonintegrable posteriors, inference is 
difficult. Yet, it is important to investigate the properties of marginal like- 
lihoods. First, because the data information may be such that the noniden- 
tified points (or regions) in the parameter space are relatively far from the 
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region where the data information is important. In other words, the marginal 
likelihood has a strong local mode far from the nonidentified parameter 
value. In this case, the use of uniform priors truncated near the nonidenti- 
fied parameter points lead to proper posteriors, which are not sensitive to the 
truncation. Second, to construct a class of prior densities that "conforms in 
some sense" to the likelihood, one has to know the special features of the lat- 
ter ones. In the remainder of this section, we investigate the properties of the 
marginal likelihood of a cointegration model. 

So far, three different parameters, ,u, 6, and 2, are mentioned, which 
could contain nonidentified elements. To keep matters simple, we analyze an 
ECM without deterministic components to focus on the consequences of the 
identifiedness problems of /2. The problems concerning the deterministic 
components will then be discussed briefly. A respecification of the ECM in 
(4) without deterministic components yields 

AX = Zr + X-P8O + C, (13) 

where AX = (,Ax' * Ax'), Z = (Z1 ... Z-1), Zi = (AX1, AX/ 
= (xl ... * *X )' e = (** eT)' r = (rF I` , ) . Assume that the 

disturbances et, t = 1,... , T are independently generated by a multivariate 
normal distribution with mean 0 and covariance matrix Q. Then the likeli- 
hood reads 

1(0, a,r,Q IX, Z) ocI Q-(12)T exp[- 1trQ-'(,AX- Zr - :X-o) 
x (AX - zr - X_pOa)] (14) 

A Bayesian analysis starts with the specification of a prior density. Because 
we want to analyze the properties of the likelihood of a cointegration model 
in detail, we choose a diffuse prior, 

p (S, CZ,r, Q)oc I QI - (12)h. (15) 

The posterior is proportional to the product of the prior and the likelihood: 

p ,r, Q I X, Z) oc I Q1l-/2 (T+ h) exp [ -2' tr Q -1(/X - zr - X- paY 

x (,ax- zr - x-p0al)] . (16) 

The identification problems especially concern the parameters a and 3 and 
only indirectly influence the remaining parameters r and Q. We are primar- 
ily interested in the marginal and conditional posteriors of a and A. To derive 
these posteriors, we have to integrate the parameters r and Q out of the joint 
posterior (16). Figure 2 contains an integration scheme for the construction 
of the joint posterior of a and /, where MZ = IT- Z(Z'Z)-1Z. For more 
details on the integration steps in Figure 2, see Dreze and Richard [5] and 
Zellner [25]. Given the joint posterior of a and /, one can construct the con- 
ditional posteriors of a given ,B and A given a. 

THEOREM 1. Given equations (13)-(16), the kernels of the conditional 
posteriors of a, given /3, and /, given a, by using the diffuse prior (15) read 
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P(f3,a,F,QJX,Z) oc 11-12(T+h)exp[j1tr Q-1 6eE) 

inverted-Wishart step on 0 

p(G3,axrx,Iz) Oc I EE I 
- 1/2(T+h-k-1) 

matric-variate t step on r 

p(3, aIX,Z) o (AX - X_p fa)'Mz(AX - X_p 1y) 1/2(T+h-pk) 1 

FIGURE 2. Integration scheme for the construction of the joint posterior of a and 
03, marginal with respect to Q and r. 

p (a ,X, Z) oc IAX'M(z X_po AX 

+ (C - &)'f X1pMzX_( - Y&)1IM1/2(T+hpkl) (17) 

p( I a,X,Z) oc I(i3 - f)'X' pM(z Xa ) X_p(-P ( ) 

+ (a(AX'M(z x_X),Ax)a) -I/2(T+h-pk-1) (18) 

where 13 (XLPMZX)1,XLPMZAX(AX'M(Z X )AX a'(a(AX'X where ,8 = (X' p MzX _p)- pMzXA f x_P) AX)-o'o(Xx 
M(z X_p)AX)-'a)-l and &- = (13'X'pMzX_p/)-'1'X'pMzAX. 

Proof. See Appendix. 

We emphasize that the functional forms of the posteriors in (17) and (18) 
are independent of the functional form of a and j. So, the conditional pos- 
terior corresponding to the case of cointegration, a22 = 0, as well as the 
conditional posterior corresponding to the case of no cointegration, a22 * 0, 
are described by Theorem 1. Notice, however, that when a22 ? 0, the matrix 
a is assumed to have full rank such that a, = 0 (empty matrix). 

By using some rules of matrix analysis for decompositions of the determi- 
nants in Theorem 1, the conditional posteriors of the individual parameters 
a1l, a112, a22, and 12 can be constructed. These conditional posteriors are 
all proportional to matric-variate t densities, regardless of the chosen model. 
In Theorem 2, the functional forms of the conditional matric-variate t 
posteriors are stated (for a definition of a matric-variate t density, see the 
Appendix). 

THEOREM 2. Given the conditions of Theorem 1, let a = (a 11 a 12), 
and 13 = (Ir - 02). The conditional posteriors of a and 12 become 

p(aof1,X,Z) =fMt((aJ& |,X_PMzX_P3, AX'M(z XP3) AX, 

T+ h-pk-r-1) (19) 
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p(0321 Ca,X,Z) =fMt(1321I21,X-'p2M(Z AXa)X-p2, 

(a(AX'M(z X_ ) AX)- a')-l 

+ (Ir - )'X pl M(z Axa{ x_p2)X_pI (Ir- I), 
T+ h-pk-(k-r)-1). (20) 

Leta= (l a CZ a12 ay2), 
0 0a22 / 

and ,8 (ir ? 

The conditional posteriors of a11, a2, and 0B2 become 

P(a2 a 1, 1, X, Z) = fMt ((a2I 32, AX2M(Z AXl X1pO AX2, 

,3'XIpM(z AX,-Xp,BaI) X_pt, 

T + h-pk-k-1), (21) 

p(a,iff3,X,Z) =fMt(allj&l,11AXIM(Z x_P,-AZP232) 1, 

(XpI- X-p2 2)'Mz(XpI- X-p212), 

T+ h-pk--(k-r)-r-1), (22) 

P($ 1 ell,X,Z)-mt( 2 29,X' p2MZX-p2, alll p(21 2a I1,X, Z) =fMt (2132 
, 

Xf- MXP2aj 

x 
[AX,M(z XM)AXl + (a11 -11) 

x X' I M(z X_p2) X-pI (all -11)] a 

T+ h-pk-2(k-r)-1), (23) 

where 

1=1 31 2)' 

(21 = 2- (X' 2 M(z AXaI) X-p2) -Xp2 M(Z AXc{) X_p1 (Ir - , 

1322 = -i21 -_ (XI I2MzX -2X' X 
2MzX-pl 

(a11 - 1l 9 

II, = (X'pMzXk1p)-,XLpMzAX = A 

ca2 = (1'XLpM(z Ax -x-P1) x-p0) -10'XLPM(z Ax,-x_pXaj) AX2, 

= ((X-p - X-p2 2)'Mz(X-pI- X-p2 2)) 

X (X-pl- X-p22)'MzAX1, 

X_pl: T x r, X-p2: T x (k -r), X_p = (X-p I Xp2) 

Proof. Use Theorem 1 and the decomposition theorems of matric-variate 
t densities stated in Zellner [25, p. 3971. 



524 FRANK KLEIBERGEN AND HERMAN K. VAN DIJK 

Although the conditional posteriors stated in Theorem 2 seem to indicate 
a regular functional form, they contain some peculiarities. For expository 
purposes, we analyze the mean and variance of the conditional posteriors of 
12, given a. 

F,(021 UU22 = 0) 

= ((X'p2M(z Xa,X)X-p2)-lXLp2M(Z AXal)x-pX Ik-r) 

- (X'p2M(Z AXo,K) X-p2) X' p2M(Z AzXcK)X-pl (24) 

var (vec(02) | a, a22 = 0) 

= (T+ h -pk - (k - r) - r- 3)-1 

x ([(a(xAX'M(z X_P)AX) lao) 1 

+ (Ir - )'XP Pl M(z AXcK X_p2) X-PI (Ir 

(g (X'p2 M(Z AXaL) X-p2) (25) 

(021?a 1, a22 * 0) 

= ((XLp2MzX-p2)-1XLp2MzX-pI Ik-r)11t aj1 

-(X' (26) 

var(vecO(02) | a I1, a22 * 0) 

= (T + h - pk - 2(k - r) - r - 3)-i 

x (a,'[AXl M('z x_P)\AXl + (all - il)'XIPl M(z X_p2) 

x X I (a1 1 I- 1r I )] aI-I, (0) X' p2MzX-p2)). (27) 

Because 1 converges to infinity (see Theorem 1) when a converges to a 
lower rank value, the mean of the conditional posterior of 12 with a22 = 0 
also converges to infinity when a converges to a lower rank value. The mean 
of the conditional posterior of 02 is, therefore, infinite, when a has a lower 
rank value. The same argument holds for the variance of the conditional pos- 
terior. It is also infinite for lower rank values of a. The finiteness of the mean 
of the conditional posterior of 02 when a22 ? 0 depends on the rank of a11. 
When a 11 has a lower rank value, (26) and (27) show that the mean and 
variance of the conditional posterior are infinite. The question is how impor- 
tant these infinite means and variances are in practice. If the probability of 
a lower rank value of a11 or a is negligible, one would, in practice, not 
notice the infinite means and variances of the conditional posteriors. To show 
the importance of the infinite means and variances of the conditional pos- 
terior, we calculate the joint posterior of a1l and /2 for the earlier men- 
tioned fourth-order bivariate ECM describing the joint behavior of U.S. 
long- and short-term interest rates. Because the model is bivariate, k = 2, and 
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we investigate the plausibility of one cointegrating relationship, r = 1. The 
model used allows a22 to be different from 0. In Figures 3 and 4, the bivar- 
iate posterior and the contourlines of the bivariate posterior, respectively, of 
all and O2 are drawn. To avoid the problems involved with the use of deter- 
ministic components, the interest rate series are used in deviation from their 
means. Both figures show the nonnegligible probability of all lower rank 
(all = 0). Thus, the infiniteness of the mean and variance of the condi- 
tional posterior of 2 is really important. This is confirmed by the huge tails 
of the posterior, which are located at a II = 0. 

Although it does not hold generally, possible infiniteness of the means and 
variances of the conditional posteriors affects the marginal posteriors in the 
models analyzed. In Theorem 3, the marginal posteriors of a and 12 for the 
case where a22 = 0, and the marginal posteriors of a1II and 12 for the case 
where a22 is not restricted to be equal to 0, are given. 

THEOREM 3. Given the conditions stated in Theorem 1, let c = 

(a1ll 0a12), and: = (Ir - f3). The kernels of the marginal posteriors of a 
and 2 become 

p(12 X, Z) a 1(12 -23)'X' 2MZX-p2(12 - 1223) 

+ X_pX M(z x_p2) X-p l| 1/2(T+h-pk-r-k-1)1XI 

x M(z Ax X_p2)X-pl J+ (12 - 024)'XLP2M(Z AX) 

X X-p2(02 - 024)1 ) (P ); (28) 

FIGURE 3. Bivariate posterior (a11, 132) for fourth-order ECM for U.S. interest rates, 
with a22 unrestricted. 
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p(a |X, Z) oc IXLPI M(z Axa X_p2)Xp-PI 1/2(T+h-pk-1) 

X |X'p2 M(z AXae') X-p2 |1/2(T+h-pk-r-1) 

X a (AX'M(z XL) AX)-I a -1/2(T+h-pk-1) 

X l(Jr - 31)XPIl M(z Xax{" X_p2) X-pl (Ir- 1) 

+ (aoe ( AX'M(z x ) AXf'a'CYf' )-1 1-1/2(T+h-pk-(k-r)-1) 

(29) 

Let a = (Z a1 a12 = (Z aC), 0 aX22/ 

and 1:= (i ic?) 

The kernels of the marginal posteriors of a1II and 02 become 

P(32 X, Z) 1( (32 - 323)'X' 2 MZ X-p2(2 - /323) 

+ XLpl M(z X_ 2) X-pl| 1/2(T+h-pk-(k-r)-2r-1) 

X IXLPI M(z AX, X_P2) X-P1 + (32 - 325)'X'pP2M(Z AXI) 

X X2(132 - 325)1 -1/2(T+h-pk-(k-r)-r-1) (30) 

( I[Z) | |a-(k-r) (Ca1 - _ )'XIyX IM(Z X.P2)X-pl (a11 

+ AX' M(z X) AX1 I1/2(T+h-pk-2(k-r)-1) (31) 

0.05 

0~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

CY1 -,_0 - / 

-0.15I 
-1 -0.5 0 0.5 1 1.5 2 2.5 

Fi2 

FIGURE 4. C:ontourlines bivariate posterior (aZ11, 134. 
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where 

123 = (X'p2MZX-p2)Y1XLp2MZX-pI, 

124 = (X'p2M(Z AX) X-p2) -X'p2M(Z AX)X-p) I 

125 = (X'p2M(z AX,)) X-p2)- 
I 
X'p2 M(Z AX,) Xpl I 

Proof. Use the joint posterior of a and 1 from Figure 2. Integrate out the 
parameters by using the matric-variate t conditional posteriors stated in 
Theorem 2. 

The marginal posterior of 2 belongs to the class of 1-1 poly t densities; 
see Dreze [4]. By using the theory on poly t densities or by using Raleigh quo- 
tients (see Kleibergen and van Dijk [12]), one can show that the moments of 
these marginal posteriors exist up to the degree defined by the difference 
between the orders of the exponent terms minus r. For the model with 
CX22 = 0, the moments exist up to the degree k - r ((k - r)th moment is infi- 
nite), whereas for the model where a22 is not restricted to 0, even the 0th 
moment (distribution) is infinite. When the marginal posterior of a certain 
parameter is integrable, the marginal posteriors of the other parameters are 
also integrable and vice versa because the order of integration is not impor- 
tant for obtaining finite integrals. The marginal posteriors of the parameters 
in the cointegration model with a22 = 0, therefore, are all proper, whereas 
the marginal posteriors of the parameters in the model where a22 is not 
restricted to 0 are all nonintegrable. 

To show the importance of the (non-)integrability of the marginal poste- 
riors, we calculated the marginal posteriors of the different parameters for 
the ECM for the U.S. short- and long-term interest rates. In Figures 5-8, 
these marginal posteriors are drawn. Again, k = 2 and r = 1. 

The huge difference in the tails of the marginal posteriors of 12 with 
a22 = 0 and a22 not restricted (Figure 5) indicates that the infinite means of 
the conditional posterior of 2 are indeed more important for the marginal 
posterior of 12 in the model with unrestricted a22 than in the model with 
restricted a22. Figure 5 also shows the nonintegrability of the marginal pos- 
terior of 12 in the model with unrestricted a22. The effect of the infinite 
means and variances of the conditional posterior of 12, on the marginal 
posterior of a for the restricted a22 model, is also apparent. In Figures 6 
and 7, where the bivariate posterior of (a11, a12) is shown, the asymptote at 
(aI11,a12) = (0,0) in the bivariate posterior is clearly visible. When one 
compares this asymptote with the asymptote in the marginal posterior of 11II 
for the unrestricted a22 case (Figure 8), one can conclude that the asymptote 
of the marginal posterior of a11I lies much more within the region with non- 
negligible probability mass than in the case of the posterior for (a11, a12). 

As mentioned before, the parameter 2 is not the only parameter that can 
become nonidentified; the parameters of the deterministic components can 
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4.5 

4- 

3.5 
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0.5 - ... 

als beoeeaue0.5 

. 
FIGURE 5. Marginal posterior 02 with 

c22 
= 0 (-) and r22 not restricted (--). 

also become nonidentified. Because of the similarity between the noniden- 
tifiedness of A and 6, and the nonidentifiedness of 02, the conditional and 
marginal posteriors for the parameters ,u and 6 are not constructed. 

4. JEFFREYS PRIORS FOR COINTEGRATION MODELS 

As shown in the previous section, diffuse priors can be highly informative 
in an undesired way in cointegration models because they may lead to non- 
integrable posteriors. We proceed with the construction of priors, which lead 
to balanced posteriors. We propose the class of Jeffreys priors. The reason 
the Jeffreys priors overcome the problems encountered is that they are pro- 
portional to the square root of the determinant of the information matrix, 

p(6) o I I() 1/2, (32) 

where I(6*) = - &((a2 ln 1(0*))/(ad 06')), the information matrix evalu- 
ated in V*. For the nonidentified parameter values, the information matrix 
(= inverse covariance matrix) is singular. This is due to the infinite variance 
of the conditional posteriors of the nonidentified parameters in these partic- 
ular parameter points. As a consequence, the Jeffreys prior penalizes non- 
identified parameter points and overcomes the problems encountered with 
the diffuse priors, which where located exactly at the nonidentified param- 
eter values. Another attractive property of the Jeffreys prior is that the result- 
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FIGURE 6. Bivariate posterior ((III, a22) with a22 = 0- 

ing posteriors are invariant with respect to the parameterization of the model. 
The information matrix of a parameter, say 0, is equal to a quadratic form 
of the Jacobian matrix of the transformation of the analyzed parameter spec- 
ification toward another specification, say -q = -q(0), with respect to the infor- 
mation matrix of the latter specification. Given 7 = -(O), where 77(0) is 
differentiable, it follows that 

-0.02 

0.06 - 

0.04- 
a12 

0.02 - 

0- 

-0.02h 

-0.04 

-0.05 -0.04 -0.03 OX -0.02 -0.01 0 0.01 

FIGURE 7. Contourlines bivariate posterior ((II1,a12) with a22 = 0. 
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FIGURE 8. Marginal posterior a I1, C022 unrestricted. 

I(0) = -8a(2 
In 

la(0) ) aqt a2 In 71' (- ) (aq' ao ao' ~ ao'!ka a '! ao' 

= lq 
(a0')I(?W )) I an(33) 

To construct the information matrix of a particular specification, it is con- 
venient to construct the information matrix with respect to a specification 
for which the information matrix can rather straightforwardly be derived. 
As a next step, we construct the desired information matrix by taking the out- 
lined quadratic form. For the analyzed cointegration models, the VAR spec- 
ification (1) allows a rather straightforward construction of the information 
matrix, 

W'(Qf (IT)W 0 0 

(Q (O& E yi,t Y, t) . .. (Q @ (2 E yi,tYpt) 

I(0)= 0 0 

( (t=O )) ( (t=O )) 

0 0 2 TDk"Q-0 (-I I)Dk 

(34) 
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where0 (,u 6 vec(H1I)' * vec(I1p)' v(9)')': k0 x 1, W= (Ik 0 (t ro)) - 

Z-i (11, J (t T-r)) Yt = (Y1t .. *Ypt), Yi, = (xt - - 6(t - i)), Ti = 

(. +i ... T+ i)', k0 = 2k + (p + 2)k2, and Dk is a duplication matrix map- 
ping all k(k + 1) different elements of the symmetric matrix, 9, into the 
vector v (Q). To calculate the information matrix of the ECM, we also need the 
Jacobian matrix of the transformation of the ECM to the VAR notation, i.e., 
the Jacobian matrix of the transformation from a, j3, and ri to Hi (see Mag- 
nus and Neudecker [16]): 

Ikk 0. .. .0 

-Ikk Ikk 

J((H),(r, 3,a)) = -Ikk , (35) 

. . . Ikk 0 

0 0 Ikk J(3, a) 

where 

=0 ((1Ik 0 (-12) ((aI' J(aZ22)) 0 (i?r)) =Cl 2 
( ( ( 2 ))(ik-r))) 

and J(a22) = (O Ik-r)' for the model with the unrestricted a22, and J(a'22) 

drops out of the Jacobian matrix when a22 is restricted to 0. By using the 
Jacobian matrix in (35) and the information matrix in (43), the Jeffreys prior 
can be constructed. 

THEOREM 4. The Jeffreys prior for the unrestricted a22 model reads 

p(r,a,f, ,9) 

oa 
IQI-1/2(pk+k+l) Wt( 

0 IT) WI 
12Ia,Ii 

I( 
yt y) 

1 

(36) 

and for the model with a22 = 0, the Jeffreys prior reads 

p(r, aZ, 9 P) g 91/2((p-1)k+k+l) Ca-1a'11/2(k-r) W'('-I 0 IT)W 11/2 

T ( 1/2(k) 

X ? ( A Ylt * *A Yp-t)1(1AY1t * *Ayp-it)) 

T 112(r) 

x E Yt(Ylt . ' i , .ay I') Yp t 

0(2) (t=l 0'PI) t -2) 

(37) 
Proof. See Appendix. 
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The expectation 6( Z Y' Y,) can be constructed in several different ways. 
Therefore, there is not one general expression for the class of Jeffreys prior. 
We proceed with the construction of the Jeffreys prior for four different, a 
priori, plausible expressions of the expectation 6 (Z Y, Yt) 

Case (i). &(Z Y Yt) is constant over different parameter values. For 
instance, let 6 (Z Y' Yt) be equal to the realized value of E Yt' Yt. However, 
by assuming constancy of 8(Z Y' Ye), one neglects the time series nature 
of Yt. 

Case (ii). Vec(&(Y6Yo)) = (Ikp - (A' 0 A'))-'vec((el 0 Ik)'Q{(el 0 Ik)), 
i.e., the variance of the initial observations equals the asymptotic variance 
of the series. 

Case (iii). F((Y'YO) = 0. The series start at their expected value, 0. This 
case extends the priors used by Phillips [19] to multivariate models. 

Case (iv). Construct the Jeffreys prior of the exact likelihood by incorpo- 
rating the probability density functions of the initial observations. 

We will analyze the four cases in more detail. 
(i) 6 (Z Y' Y,) = constant (full rank) over all different parameter values. 

The Jeffreys prior of the ECM then becomes 

p (r, a, 0, v Q oc I Q I-1/2((p-l)k+k+l) jaCQ-'at' 11/2 

x I(r(l)-l/2M(A_-1/2,,)-?2Tr(i)' 0& et) 
+ (Oa -1a'I' 0 TMTo)l l/2 

X IJ(, a)'(Q -1 0 E)J(f a)1 1/2 (38) 

where - = 6(Z YptYp,) = constant. The prior in (38) only depends on the 
parameters a, Q, i, and r (1). Instead of using the parameter f, the prior in 
(38) is specified in terms of v = AO3. The parameter AO is also identified when 
a22 = 0, which does not hold for I separately. The assumption of linear 
time trends in the analyzed interest rates is rather odd. For reasons of sim- 
plicity and because of the empirical illustration with interest rates, the ECM 
does not contain a growth term parameter 6. 

By using Theorem 4, it can be shown that the Jeffreys prior for the unre- 
stricted a22 model reads 

p (wr, f, or t Q) mo wr =-1,2(pk+k+2) t aa |y pi 

whereas for the model where a22 = ?, the Jeffreys prior reads 
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p (r, a ,P, 9) 

oc | -1/2((p-1)k+k+1) i 11/2 

| ( (~-12 ) -02 ) -12 )(Ik-r))j 

( \ ( ? 2Ik-r) (-42)) ( ? Ik( r )'(Ik-r2)) /2 

1 
0ll2(pk+r+ )i l Ia12(k-r+ (-1 2) (-I) 12(k-r) ( 

where E = =I Ypt Ypt = _ - 7=Ixt-p/T). The Jeffreys prior of 
the model with unrestricted a22, equation (39), still allows analytical deriva- 
tion of some of the marginal and conditional posteriors. However, one has 
to rely on numerical techniques for the approximation of the marginal pos- 
teriors of the model with a22 = 0 when using the prior (40). In Theorem 6, 
the marginal posterior of a, is stated when using the prior (39). 

THEOREM 5. When using the Jeffreys prior, equation (39), the marginal 
posterior density of a1 in the unrestricted a22 model becomes 

P(a1 |X,Z) =fmt(cei I -I,XPIM(z x,p X_P I /X'M(z x_P ,XT) 

(41) 

where f 1I = (XLP I M(z x,p2 l X1) XPlM(z x_2 L)AX. 

Proof. Integrate the joint posterior with respect to the other parameters. 

Theorem 5 shows that in the model with unrestricted a22, the Jeffreys 
prior leads to a proper posterior. Because the marginal posterior of a1II is 
proper, the marginal posterior of 132 is also proper. It can be proved (see 
Kleibergen and van Dijk [12]) that the marginal posteriors of /2 and a22 are 
bounded by Cauchy densities. As a consequence, the marginal posteriors of 
02 and a22 will have infinite means and variances. 

To derive properties of the posteriors of the parameters of the model with 
the restricted a22, we note that there is a mathematical equivalence between 
the ECM and the incomplete SEM. Let 

VI = WG + SI 

V2= V1B + 02, (42) 

where VI =MzAX,, V2=MzAX2, W=Mz(X_p t), I1 =Mzei, 42=MZ(c2- 
01B), B = a1 a 12, and G = (a', -a'1,32 -a1a V')' = (G11 GQI /I),. 
By using bounding functions, Kleibergen and van Dijk [12] showed that the 
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posterior moments of the parameter B exist up to the degree of overidenti- 
fication plus 1 (= k - r + 2). We are interested in the parameter (O3 V')' 

(=-(Gf1 g`1)'Gj1), however. The parameter B is defined as aIU2 = 
G`j'a12. The inverse element, G-1j, is the same for both 2 (= -G21 G ) 
and B. Because the Jeffreys prior leads to invariant posteriors, the posterior 
moments of both parameters will exist up to the same order (k - r + 2). The 
(k - r + 1)th moment is therefore the finite integer posterior moment of 
(02, P) of the highest order. The posterior moments of the parameters in 
which no "inversions" are involved, i.e., the parameters (a11, a12), will exist 
up to approximately the order T. 

To illustrate the implications of the Jeffreys prior for the marginal pos- 
teriors, we again use the example of U.S. interest rates. In Figure 9, the mar- 
ginal posteriors of all, 012, and a22 using the Jeffreys prior are presented. 
All these posteriors behave regularly, and, as proved in Theorem 5, the mar- 
ginal posteriors of cill and a12 are both matric-variate t, whereas the mar- 
ginal posterior of a22 is bounded by Cauchy densities just like the marginal 
posterior of f2. The difference between the marginal posterior of all using 
a diffuse prior (Figure 8) and the posterior using a Jeffreys prior (Figure 9) 
is apparent. Figure 10 shows the marginal posteriors of (2, both using a 
diffuse prior and a Jeffreys prior. Again, the difference between these pos- 
teriors is clear-cut. Figures 9-10 contain the marginal posteriors of the 
parameters in the model with the unrestricted a22, and Figures 11 and 12 

40 

35 

30- 

2-5- 

20 - 

15 --- - - - 

10- 

5- 

8.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1 

FIGURE 9. Marginal posteriors a11 (-), a 12 (--), and U22 (-.-) for U.S. interest rates 
by using Jeffreys prior. 
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FIGURE 10. Marginal posterior I02 with diffuse prior ()and Jeffreys prior (--). 

contain the marginal posteriors in the model with a22 =0. Figure 11I con- 
tains the marginal posteriors of cell and 0a12, and Figure 12 contains the 
marginal posterior Of f02, both using a diffuse prior and the Jeffreys prior. 
Figures 11I and 12 are drawn by using a model, which incorporates a constant 

4 

3.5- 

2.5- 

2- 

1.5- 

0.5 -- 

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 

FIGURE 11. Marginal posteriors al (-) and a12 (--) by using Jeffreys prior with 
a22 = 0. 
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FIGURE 12. Marginal posterior f52 by using diffuse prior (--) and Jeffreys prior (-) 
with Ci22 = 0. 

term in the cointegrating vector. As a consequence, the resulting posteriors 
cannot be compared with the posteriors drawn in the previous section. 

All posteriors in this paper are calculated numerically by using Importance 
Sampling with a multivariate t importance function (see Kloek and van Dijk 
[141, van Dijk and Kloek [24], and Geweke [7]), except for the posteriors of 
the parameters of the unrestricted cr22 model with constant expectation 
Jeffreys prior (Table 2). These posteriors are calculated by directly generat- 
ing the parameters ri,I from a matric-variate t density and solving for oa 
and S. The computer program SISAM (Hop and van Dijk [9]) was used to 
perform these calculations. The relative numerical error (which equals the 

TABLE 2. Moments posteriors 

(22 Unrestricted a22 = 0 

Mean S.D. Mean S.D. Relative numerical error 

All -0.032 0.01 0.036 0.11 0.0015 
Oa12 0.03 0.03 -0.026 0.31 0.0041 
02 0.92 0.13 1.05 0.38 0.0021 
a22 -0.020 0.014 0 0 0 
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numerical error of the posterior mean divided by the posterior standard devi- 
ation) shows the accuracy of the calculated posterior means in case Impor- 
tance Sampling has been used. 

Because the posteriors in the previous figures are proper densities, it now 
becomes possible to perform hypothesis testing by using these posteriors. 
Two Bayesian testing procedures are highest posterior density (HPD) regions 
and posterior odds. Posterior odds testing with posteriors calculated by 
Importance Sampling can be done by using methods suggested by Geweke 
[8]. Especially for posterior odds testing, properness of the posteriors is cru- 
cial. Otherwise, one would always choose the hypothesis with an improper 
posterior. In the present paper, the testing procedures will be informal, and 
we only rely on HPD regions. 

An interesting hypothesis to test concerns the presence of unit roots in the 
VAR polynomial. The model with the restricted a22 already assumes that a 
unit root is present. In the unrestricted a22 model, the parameter a22 mea- 
sures the departure from a cointegration model. In the unrestricted a22 

model, one can therefore test for the presence of unit roots by using the mar- 
ginal posterior of a22. The 95%o HPD region of the marginal posterior of 
a22 for the interest-rate series (Figure 9) contains 0. So, according to usual 
Bayesian procedures, one cannot reject the hypothesis of one unit root in the 
ECM. The hypothesis of cointegration is, in several cases, not restricted to 
the parameter a22 but also deals with the deterministic components. The 
interpretation of deterministic components changes when unit roots are 
present; see Johansen [10] and Kleibergen and van Dijk [13]. 

The support of the hypothesis of a difference stationary ECM for the two 
separate models for the U.S. interest rates is quite different. For the unre- 
stricted a22 model, the assumption of a difference stationary model implies 
that all, a12, and a22 are all equal to 0. When analyzing the three different 
marginal posteriors of these parameters (Figure 9), we conclude that, 
although 0 lies in the 95%/o HPD region of the marginal posteriors of a12 

and a22, it does not lie in the 95W0o HPD region of the marginal posterior of 
all. The 95Wo HPD region of the trivariate posterior of (a11, a12,aC22) also 
does not contain 0. As a consequence, the hypothesis of a difference station- 
ary model is rejected when using this posterior. For the model with the re- 
stricted a22, the hypothesis of a difference stationary model corresponds with 
(a11,a12) = (0,0). The 950/o HPD regions of the marginal posteriors of 
both of these parameters contain 0 (Figure 11), and so does the 95 7o HPD 
region of the bivariate posterior of (a11 , a12). Thus, the hypothesis of a dif- 
ference stationary model cannot be rejected. The different conclusions 
regarding the plausibility of the hypothesis of a difference stationary model 
are due to the structure imposed on the cointegrating vector and the deter- 
ministic components. That is, one imposed a unit root in the restricted a22 

model and restricts the constant term to lie in the cointegration space. 
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FIGURE 13. Marginal posterior modulus largest (-) and second largest (--) roots for 
VAR model of U.S. interest rates. 

For testing for cointegration one can also analyze the posteriors of the 
roots of the characteristic polynomial I H (z-' )I = 0; see DeJong [3]. When 
1 lies in the 95070 HPD regions of the posteriors of the roots, the hypothesis 
of cointegration cannot be rejected. The problem with the roots is their pos- 
sible complexity. The comparison of complex and real roots is not straight- 
forward because of their different implications (cycle). To show the possible 
cointegrating nature of the U.S. interest rates from the root perspective, we 
calculated the posteriors of the largest roots. The problem of the complex 
roots is partly overcome by taking the modulus of the roots. In Figure 13 (see 
also Table 3), the marginal posterior of the largest and second largest roots 
(in modulus) are drawn. Figures 14 and 15 contain the bivariate posterior and 
the contourlines of the bivariate posterior of the largest and second largest 
root. The posteriors are calculated by generating parameters a, ,3, and r from 
their posteriors (unrestricted a22 model, Jeffreys prior) and by calculating 
the roots of the implied VAR polynomial. The 9507o HPD region of the pos- 

TABLE 3. Moments posteriors 

Mean S.D. 

Largest root 0.99 0.0078 
Second largest root 0.93 0.025 
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FIGURE 14. Bivariate posterior moduli, largest and second largest roots. 

terior of the largest roots contains 1. So, the hypothesis of a unit root can- 
not be rejected. The second largest root confirms the statements made with 
the unrestricted a22 specification. Again, the hypothesis of a difference sta- 
tionary model is rejected. 

There is, however, also another peculiarity regarding the second largest 
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root. The marginal posterior of the second largest root is almost bimodal. 
The bivariate posterior of the largest and second largest root (Figures 14 and 
15) explain why the bimodality occurs. The second mode is the result of com- 
plex roots. These complex roots are always pairwise, which explains why the 
bivariate posterior consists of two "distinct posteriors." The first posterior 
only contains real largest roots, whereas the largest roots tend to be complex 
in the second posterior. As a consequence, the latter posterior exactly lies on 
the line x = y as indicated by the contourlines. The (fat) left tail of the pos- 
terior of the largest root also almost completely consists out of complex 
roots. When complex, the largest root tends to be less than its real counter- 
part because of its complex conjugate, which leads to the same nonstation- 
ary properties. A complex root with a certain modulus as a consequence 
induces much more nonstationary kind of behavior than a real root with the 
same modulus. So the complications of the possible complex nature of the 
roots are not overcome straightforwardly by taking the modulus of the roots. 
Another problem arises when the largest roots have a double multiplicity, 
which happens when the series are I(2). One should evaluate the eigenvec- 
tors of the implied companion matrices to check whether the eigenvalues have 
a higher-order multiplicity. One may conclude, therefore, that unit root test- 
ing by using the posteriors of the roots in multivariate models is not straight- 
forward. 

In the previous section, we assumed the expectation ? (Z Y' Y,) to be con- 
stant over the different parameter values. As a consequence, the observations 
are fixed, and a typical feature of time series is the stochastic nature of the 
observations. In the classical statistical paradigm, this would correspond with 
the use of normal limiting distributions although these limiting distributions 
tend to be nonnormal for unit root time series. In the Bayesian analysis of 
unit roots, several theoreticians have tried to model the observations sto- 
chastically; see Phillips [19] and Schotman and van Dijk [22]. To model the 
observations stochastically for the VAR models, we need to construct the 
expectation &(Z Y' Y,). Theorem 4 shows that the expectation 8( YY, i) 
enters the Jeffreys prior for the unrestricted ix22 and restricted x22 models in 
different ways. 

The expectation 8(Z Y' Y) can be constructed by using the VAR(1) spec- 
ification of Yt, Yt = Yt_1A + vt, where vt = (c? 0 ... 0)' and A is the com- 
panion matrix of the VAR(p) model in (1). 

rl Ik ( 4 

A = (43) 
*Ir 
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By using the companion matrix, the expectation 8(Z Y Y,) becomes 

T T_ I- 

EYtt) = E At'8(Y'YO)At t=l t=l 

T-2 

+ E (T- t - l)At'(el Ik1Q(el 0 Ik)A', (44) 
t==O 

where el is given as the first p-dimensional unity vector, el = (1 0 . *)'. 
By using vec operators, the expectation can be calculated exactly: 

vec(8( E = T(Ikp- (A' A)) A'vec((el (0 Ik)Q (el 0 Ik)) 

+ (Ikp- (A' A')T)(Ikp - (A' 0) A')) 

x [vec(8(Y'Y0)) - (Ikp- (A' 0 A'))Y 

x vec((el 0 Ik) Q (el 0 Ik))]. (45) 

In equation (45), the only unknown term concerns vec(8(Y'Y0)). In the 
present paper, we analyze two different expressions of vec(8(Y6Y0)). The 
first expression, Case (ii), takes the exact expectation, vec(8(Y6Yo)) = 

(Ikp - (A' 0 A'))-1 vec((eI 0 Ik)'Q (el 0 Ik)), whereas the second expres- 
sion, Case (iii), assumes that the series started in equilibrium, YO = 0 such 
that 8 (Y6YO) = 0. Another expression of the Jeffreys prior is discussed 
in Case (iv), where the initial observations are incorporated in the likeli- 
hood (exact likelihood) and the Jeffreys prior of the resulting likelihood is 
constructed. 

(ii) vec(8(Y6Yo)) = (Ikp- (A' (0 A'))-'vec((el 0 Ik)Q(el 0 Ik)) (see 
Lutkepohl [15]). The expectation vec (E ( Z Y[ Yt)) then becomes T( Ikp - 

(A' 0 A')) vec((e I 0 Ik)'Q (el 0 Ik)). As a consequence, vec (E ( ( Yt' Yt)) 
and the Jeffreys prior will be infinite when A has an eigenvalue equal to 1, 
which corresponds with a unit root in the VAR polynomial. By using this 
kind of Jeffreys prior, the posterior will again be improper and favor unit 
root models. The same reasoning holds if we replace 8 ((Y6YO) by the ob- 
served value of YOYo. 

(iii) 8 (YOYO) = 0. The posterior means of the largest and second largest 
roots suggest that the model is explosive. However, the series themselves (Fig- 
ure 1) and the posterior of the roots shown in Figure 13 indicate that the 
plausibility of an explosive model is really very small. So, not only in the uni- 
variate models investigated in Phillips [19], but also in the multivariate model 
does the Jeffreys prior with 8 (YOYO) = 0 lead to more explosive VAR mod- 
els than the Jeffreys prior with fixed expectation (Table 4). 

(iv) Another interesting posterior can be constructed by using the proba- 
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TABLE 4. Moments posterior 

Mean S.D. Relative numerical error 

Largest root 1.18 0.06 0.061 
Second largest root 1.08 0.22 0.072 

bility density function of the initial observations. If we assume normality, 
the probability density function (p.d.f.) of the initial observations reads 

p(YO I C) oc tg(Y6Yo)1 -1/2exp[- vec(YO)'(,(YoYo))-vec(YO)] (46) 

When constructing the joint posterior of all parameters as proportional to 
the product of the exact likelihood and the Jeffreys prior of the exact like- 
lihood, it becomes possible to partly offset the term t8(YY)I 1/2(k) 

appearing in the Jeffreys prior in (36). To construct the Jeffreys prior of the 
exact likelihood, we have to construct the information matrix of the exact 
likelihood. The information matrix of the exact likelihood equals the initial 
information matrix in (34) minus the expectation of the second-order deriv- 
atives of the log of the p.d.f. of the initial observations. 

IEL(O) =1I() - F(a2lnp(yo I 0)) 

= 1(0) + 8[ (Ik, 0 [vec(-1) - (vec(YO)' 0 vec(Y?)')]) dvec(E) 

ao' ao' /~~aoao 
+ ( vec(YE) )' (-1 ( Y) E-) a vec(E) 

= a(0c ( Yv ) ( ? a vec( d') 

+( d vec(Y0) )' d vec( Y0)) (47) + o, dO' )'(7 

where E = (6(Y6Yo))-1 and 8(YO) = 0. In our approach, we neglect the sec- 
ond term in the information matrix (47), which can be justified from an 
asymptotic argument. The only influence of the initial observations then 
arises from the last term of the information matrix (47), which is only dif- 
ferent from 0 for the deterministic component parameters, A and 6. For the 
unrestricted r22 specification, the Jeffreys prior then becomes 



ON THE SHAPE 543 

p(r I (If,I ) W IC -l/2(pk+k+2) ITa'( + (t 0 Ik) Y (L 0 Ik)I 

X 18(y6yO)l 112(k) (48) 
where t = (1 ... 1)'. To get sensible posterior results, we assume that the term 

E(y6y0)1 1/2(t) cancels out with the term t(YYo)K -1/2 from the exact like- 
lihood. As a consequence, the term l ( Y6 YO)I does not appear in the result- 
ing posterior. In univariate models, where k = 1, the posterior is proportional 
to the product of the exact likelihood and the Jeffreys prior of the exact 
likelihood, whereas for the multivariate models we have made a heuristic 
assumption to get plausible results, which would produce otherwise improper 
posteriors. By using the approximate Jeffreys prior from (48), the joint pos- 
terior then becomes 

p(r,oe,v,XQ Ix,z) 

I Q I 1/2(T+pk+k+2)|Taa + (tO Ik)y21(t 0 Ik)jI al 

x exp[- [vec(Yo)'(&(Y'Yo))-f vec(YO) + tr Q-'e'e]]. (49) 

Before (numerically) integrating the different parameters out of the pos- 
terior in (49) to calculate the marginal posteriors, examine the resulting pos- 
terior further. We start with the joint posterior of the AR(1) model with 
mean ,t. For details on the model, see Schotman and van Dijk [22]. 

p (,u, p, aIX, Z) 

?' I al -(T+4) IT(I _ p)2 + (1 _ p2)11/2 

x exp[-' a-2[(l - P2)(yo - p)2 + (y - t,t(1 - P) - py_l)' 

X (y - ,u(lP) -PY-0)]] (50) 

When p = 1, the model corresponds with a random walk, and the initial 
observations are not important. As a result, the initial observation, yo, is 
deleted from the posterior. Because of the slower convergence of (1 _ p2) 

to 0, when p converges to 1, compared with (1 _ p)2, y still has the inter- 
pretation of a mean parameter when p = 1. Contrary to the model without 
the initial observations where c = A (1 - p) has the interpretation of a growth 
term when p = 1. This phenomenon may also be analyzed by using the mean 
of the conditional posterior of ,u on p. 

AL(p) = [t'(y - PY-i) + (1 + p)yo]/[T(l - p) + (1 + p)] initial present; 

= t'(y-py_1)/[T(1 -p)] no initial. (51) 

When p = 1, Au(p) = (YT + yo)/2 for the posterior with the initial obser- 
vations, and (1 - p),t (p ) = (YT - yO)/T for the posterior without the ini- 
tial observations. In the first case, ,t(p) still corresponds with the mean of 
the series, whereas in the second case, (1 - p) t(p) measures the average 
growth of the series. Although the difference is subtle, it may be important 
because of the crucial role the deterministic components have in unit root 
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testing. For instance, it is now possible to test for p = 1 without the need to 
restrict the constant term because its interpretation for p < 1 is the same as 
for p = 1. 

The posterior in (50) corresponds partly with the posterior used in Schot- 
man and van Dijk [22]. The only different element in the posterior (50) con- 
cerns the term IT(l - p)2 + (1 _ p2)11/2, which needs to be replaced by 

- I _ p2 11/2 to get a similar posterior as used by Schotman and van Dijk 
[221. Although the difference between the two posteriors is subtle, it has quite 
important consequences for the marginal posterior for p. For the two differ- 
ent priors, this posterior becomes 

p(p X,Z) ocf(p)-l/2(T+l) Jeffreys prior exact likelihood (52) 

oc (1 + T(l - p)/(l + p))l/2f(p)-l/2(T) 

Schotman and van Dijk [22], (53) 

wheref(p) (1 p2)(yo_I(p))2 + (y-_t(p)(l P) -PY-_I)'(Y- _/tl(p) x 
(1 - p) - Py-i)l and ,u(p) corresponds to the first expression of t (p) stated 
in (51). Although the difference between the two marginal posteriors of p 
seems small, it can be quite important. First, the posteriors are in essence 
only intended for stationary processes. Second, the posterior (52) does 
allow explosive values for p, whereas the posterior (53) has an asymptote at 
(T + 1)/(T- 1) (>1). That is, the posterior (53) is not defined for p > 1. 

The analysis for the AR(2) models can be shown to give similar results as 
for the AR(1) model, i.e., the deterministic components keep the same inter- 
pretation even in the presence of unit roots. 

Similar results for the exact likelihood of the VAR model with unit roots 
can be shown by using the structural form model in (6)-(7). The quadratic 
form vec(YO)'(8(YOYo))-vec(YO) can be specified as 

vec(YO)'(?(YYYO))<' vec(YO) 

vec(YO)'(Ik? (13 A)) (E [(Ik0 (g) A))'Y6Yo(Ik0 (1 A))]) 

x (Ik (X3 A)')vec(YO). (54) 

Because the VAR polynomial 4'(z) is invertable, the expectation 6 [(Ik 0 
(13 A))'YOYo (Ik0 (3o A))] will be finite. When unit roots are present, 
similar phenomena arise in equation (54) as discussed for the AR(1) model. 

Although the specification (54) is theoretically interesting, it is difficult to 
operationalize to VAR models. The expectation will be hard to calculate 
because the exact expression, vec(8(Y6Yo)) = (Ikp- (A' 0 A'))-' vec((eI 0 
Ik)'Q (el 0 Ik)), involves the inversion of a large matrix for VAR models. In 
the example for the interest rates, we chose to approximate the variance of 
the initial observations by using the recurrence formulas, 

Fo = (el 0 Ik)'Q (el 0 Ik) 
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The recurrence formulas in (55) converge quite fast and also have the 
attractive property that they allow for explosive values of the parameters, 
which lead to large variances of the initial observations. 

With the recurrence formulas in (55) with 50 iterations, we calculated the 
marginal posteriors of the parameters of the unrestricted a22 model by using 
the approximate Jeffreys prior of the exact likelihood. Just as for the Jeffreys 
prior with &(Y'YO) = 0, the calculated posteriors are less accurate than the 
other calculated posteriors. For the other posteriors, one can considerably 
reduce the number of parameters to be integrated out numerically, whereas 
for the Jeffreys prior with ?(YOYO) = 0 and the approximate exact likeli- 
hood Jeffreys prior, all parameters have to be integrated out numerically. 
Also, the highly nonlinear functional form of the priors decreases the con- 
vergence of the Importance Sampling procedures. 

In Figure 16, the marginal posteriors of oil,, a 12, and a22 are drawn by 
using the approximate exact likelihood Jeffreys prior. Figure 17 contains the 
posterior of 02, and the posteriors of the largest and second largest roots of 
I H(z -1 )I = 0 are drawn in Figure 18. When using the 95Wo HPD regions of 
the posteriors in Figures 16-18, one cannot reject the hypothesis of a one unit 
root nor can one reject the hypothesis of a two unit roots difference station- 
ary model. The marginal posteriors of all and a22, as well as the marginal 
posteriors of the largest and second largest roots, confirm this statement. The 
resulting posteriors confirm the conclusions drawn from the posteriors of the 
parameters of the restricted a22 model with the fixed expectation Jeffreys 
prior. This indicates the fragility of the inference because different (plausi- 
ble) priors give different support to the hypothesis of cointegration/differ- 
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FIGURE 16. Marginal posterior, a11 (-), o12 (--), and a22 (--), for U.S. interest 
rates by using approximate exact likelihood Jeffreys prior. 
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FIGURE 17. Marginal posterior f2 for U.S. interest rates by using approximate exact 
likelihood Jeffreys prior. 

ence stationarity. Notice, however, that again the role of the constant term 
is crucial. For the unrestricted a22 model with constant expectation Jeffreys 
prior, it is unrestricted such that it can represent a growth term once a22 = 0. 
For the restricted a22 model and the unrestricted a22 model with exact like- 
lihood Jeffreys prior, the constant term represents the mean of a certain set 
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FIGURE 18. Marginal posterior, largest (-) and second largest (--) roots. 
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of variables. For the models where the constant terms represent means, we 
could not reject the hypothesis of difference stationarity (two unit roots, two 
stochastic trends). For the model with unrestricted a22 constant expectation 
Jeffreys prior, however, we could reject this hypothesis but still we have two 
trends, one stochastic and one deterministic (Table 5). 

5. CONCLUSIONS 

We have shown that the use of diffuse priors can be quite informative in 
cointegration models, in the sense that the marginal posterior densities of cer- 
tain parameters of interest have an asymptote in the interior of the param- 
eter region. Thus, the posteriors may be nonintegrable. This result extends 
to all models in which parameters can become nonidentified. By using the 
Jeffreys prior principle, we show that one may overcome this identification 
problem. The Jeffreys prior is not unique, however, because the expectation 
of the endogenous variables can be evaluated in several different ways. It is 
shown that for four different expressions of this expectation, only three 
imply Jeffreys priors, which lead to proper posteriors. From these three 
priors, only two priors give plausible posterior outcomes for the analyzed 
U.S. interest-rate series. The two plausible priors are the Jeffreys prior, which 
leaves the expectation constant over different parameter values, and the other 
prior is the so-called approximate exact likelihood Jeffreys prior. The exact 
likelihood prior is especially interesting because it treats the initial observa- 
tions in a stochastic manner such that only in the unit root case the model 
is conditional on the initial observations. 

The Bayesian cointegration analysis conducted in this paper analyzes some 
of the possible problems one encounters in this approach. A different 
approach of analyzing cointegration models by using Bayesian statistical 
analysis is conducted by Phillips [20] where a restricted version of the model 
in (4) and (8)-(9) is used. The approach by Phillips [20] differs in the sense 
that the posteriors are connected with the theory of stochastic martingale 

TABLE 5. Moments posteriors 

Mean S.D. Relative numerical error 

Z11 0.031 0.046 0.027 
Ca 12 -0.027 0.11 0.028 
U22 0.002 0.037 0.015 
/2 0.93 0.26 0.025 
Largest root 1.005 0.013 0.023 
Second largest root 0.95 0.05 0.025 
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processes, which allows one to construct the posteriors recursively. Also, the 
model used is linear such that no identification problem occurs, but, as a con- 
sequence, certain Granger longrun noncausality relationships are implicitly 
assumed to hold; see also Kleibergen and van Dijk [13]. 
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APPENDIX 

The k x m random matrix T is said to have a matric-variate t (Mt) distribution with 
X degrees of freedom if its probability density function is 

p (T) = fmt (T| T,E,P,X) 

I 1/2(X) I pIl/2(m)j + (T- T)P(T- -1/2(X+k) 

= -l TT-1/2(k)I pI-/2(X+k-m) P' + (TI- - -1T)'| /2(X+k) 

C [r(2 (A + I - i)) r( (x +k+ I - i) 
where T is a k x m constant matrix, E is m x m PDS constant matrix, P is a k x k 
PDS constant matrix, and X > m - 1. The moments of this probability density func- 
tion exist up to the order X - m + 1; see, e.g., Zellner [25], Appendix B5. 

Proof of Theorem 1. 

p(0, IX,Z) 

OC |(,X-X_poa)'Mz(,AX_X_:a)l-112(T+h-pk-1) 

o |AX'M(z X_pO)AX+ (c - &)'3'X_2pMzX_pO(U )- 1/2(T+hpk1) 

oc jAX'M(z X_p)Ax+ ( - )'X' pMzX_ (O-)1-1/2(T+hPk) 

oc I(X pMzX_p)-I + (X' pMzX_P) - XI pMZAX[(AX'M(z X_p)AX)- 

- (AX'M(z X_p)AX) -o1(n(AX'M(Z X_p) AX)cc ) 

X a (AX'M(z X_p) AX) ] AX'MzX_p(X' pMzX_p) - 

+ (/ - )o(AX'M(z X) AX) -I(/3 - {)y -1/2(T+h-pk-1) 

OC I(XIpMzXp)-I + (X pMzXp)- IX pMzAXUL(u? AX'M(z XAL)AXoa)- 

x aIAX'MzX_p(X pMzX_p) - 

+ (3 - 3)ce(AX'M(z X) AX)-a,(O _yI-1/2(T+h-pk-1) 

oc l(X/PM(z zXcK)X-P) 

+ (3 - ()a (AX'M(z X) AX)-1 l(O _ )y -1/2(T+h-pk-1) 
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x [l(a (AX'M(z XP)AX)-) + (/ - )'XpM(z AXcDX_p(/-)I 

x o (AX'M(Z XAp)AX) a||X' pM(z a I) X I 1]12(T+h-pk- ) 

1 = (X', MzXp)- I X' pMzAX 

Proof of Theorem 4. 

77 = (/,tb vec (rl)' * * * vec (rp- 1)' vec (u I 1)'vec (u 12)' vec (02)' vec (o22)'V WYY) 

I(n) = a) I(n (0an ) ao,~ ~ ao 

I2k 0 0 

Ikk 0 . . 0 

Ikk Ikk 

- 0 0 -Ikk 0 

= O Ik 0 

0 0 -Ikk J(3, C ) 

o 0 II/2k(k+ 1) 

W'(Q2 SIT) W 0 O 

(0- (S E ( E lty,) . .. (Q-,0 
Z Y,t ypt) 

O~~~~~~~= O= 

0 ~ ~ ~ ~ ~~00 

o Q-1 <23 g ( E t ... (Q-' 0 g ( Y'tYpt 

O 0 2 TDk(0- 0Q-' )Dk 

I2k 0 0 

Ikk 0.. .0 

Ikk Ikk 

0 0 Ikk * * 0 

. , . Ikk 0 

0 . -Ikk J(0, a) 

0 0 I1/2k(k+1 

For the unrestricted cr22 model, the Jacobian matrix is square such that 
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II(0)I = II0702 
"K3X)[ - J (daO,)T II(I 

= IJ(0,a)I2I W(Q-1 0 IT)WI |Q1 ? yit yt) II(k+l) 

= I1 121 IW(Q IT) WI ( Y, Yt IQ kI (pk+k+l), 

whereas for the restricted a22 model, 

MO = e NI(' (0)) 
a 

'| 

- ? 0~~~~T T 

| 0 ( ,0 l Y'Y1) ) J(QI 3 J )(' 0 ^ YP Y>i) ) = (T (, klt . (-1 F;AYp'AYp_lt 

It IIt Ea lYt)j:a 

T T I IT IW 1 ITWI|kl 

t( (t= PI p)(: 

j8(AE(^Yjt ' tYp-t)'(AtYi, * *^Y>-It) j W'(~V 0 IT)WI 

ZJ($3,a)' ( 0 a, tYJ.M(AY.. Io,a.) ($ 

= a-,la,1(k-r) (!r2)'?(~ YI',M(AYlI. . AYThI9YP) (-~2)(kr 
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