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JOURNAL OF APPLIED ECONOMETRICS, VOL. 8, S41-S61 (1993) 

NON-STATIONARITY IN GARCH MODELS: A BAYESIAN 
ANALYSIS 

F. KLEIBERGEN AND H. K. VAN DIJK 
Econometric Institute and Tinbergen Institute, Oostmaaslaan 950-952, 3063 DM Rotterdam, The Netherlands 

SUMMARY 

First, the non-stationarity properties of the conditional variances in the GARCH(1, 1) model are analysed 
using the concept of infinite persistence of shocks. Given a time sequence of probabilities for 
increasing/decreasing conditional variances, a theoretical formula for quasi-strict non-stationarity is 
defined. The resulting conditions for the GARCH(l, ) model are shown to differ from the weak 
stationarity conditions mainly used in the literature. Bayesian statistical analysis using Monte Carlo 
integration is applied to analyse both stationarity concepts for the conditional variances of the US 
3-month treasury bill rate. Interest rates are known for their weakly non-stationary conditional variances 
but, using a quasi-strict stationarity measure, it is shown that the conditional variances are likely to be 
stationary. Second, the level of the treasury bill rate is analysed for non-stationarity using Bayesian unit 
root methods. The disturbances of the GARCH model for the treasury bill rate are t-distributed. It is 
shown that the unit root parameter is negatively correlated with the degrees-of-freedom parameter. 
Imposing normally distributed disturbances leads therefore to underestimation of the non-stationarity in 
the level of the treasury bill rate. 

1. INTRODUCTION 

The literature on so-called Generalized AutoRegressive Conditional Heteroscedasticity 
(GARCH) models has grown rapidly since the introduction of ARCH models by Engle (1982) 
(see, for example, the surveys by Bollerslev et al., 1992; Bera and Higgins, 1992). However, 
some features of GARCH models are not well known, in particular, possible non-stationarity 
of the conditional variance in the GARCH(1, 1) model. The distinction between weak and 
strict stationarity plays a crucial role in this respect. We note that the odd kind of implications 
of the weak stationarity concept for the conditional variances have been commented upon by 
Geweke (1986), while Nelson derived (1990) derived the strict stationarity conditions. 

In this paper we analyse the difference between strict and weak stationarity using the concept 
of a sequence of probabilities of increasing or decreasing conditional variances. This helps to 
give an intuitive explanation why the two conditions differ in case of the GARCH(1, 1) model. 
If one defines the key feature of non-stationarity (explosiveness) by the infinite persistence of 
shocks, one expects a sequence of probabilities of increasing conditional variances to exhibit 
an upward-sloping behaviour over the number of periods (and to converge to 1 in the limit). 
The resulting quasi-strict stationarity condition (definition 1) is shown to give different 
parameter restrictions for the GARCH(1, 1) model from the weak stationarity condition. It is 
interesting to note that the weak stationarity conditions are far more restrictive than the quasi- 
strict stationarity conditions for the GARCH(1,1) model. The two different stationarity 
conditions are discussed in Section 2. 
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Due to the complicated non-linearity appearing in the quasi-strict stationarity condition, a 
classical statistical analysis of this condition will be hard to pursue. We therefore rely on 
Bayesian methods which approximate the posterior of the quasi-strict stationarity condition 
using simulation methods. As an example in Section 3, we analyse an interest rate series, the 
US 3-month treasury bill rate. Some interest rate series are known to have conditional 
variances which are weakly non-stationary (see Bollerslev et al., 1992). The quasi-strict 
stationarity conditions have not, however, been analysed for these series. Given the 
questionable appropriateness of the weak stationarity concept for the GARCH(1, 1) model, we 
prefer the stationarity conclusions to be based on the quasi-strict stationarity conditions. 

Non-stationarity in the conditional variances is not the only possible source of non- 
stationarity for interest rate series. The level of the treasury bill rate may also be non- 
stationary. In Section 4 we analyse non-stationarity in the level of the series by conducting a 
Bayesian unit root analysis. The volatile behaviour of the disturbances contradicts the 
assumption of normally distributed disturbances. The disturbances are therefore modelled as 
independent Student t-distributed random variables with unknown common degrees of 
freedom. By modelling the disturbances using an independent Student distribution, an 
interesting phenomenon appeared, i.e. the negative correlation of the degrees of freedom with 
the unit root parameter. Imposition of normality underestimates the non-stationarity of the 
interest rate level as a consequence. Robustness arguments can be used to explain this 
phenomenon. Finally, in the fifth section some conclusions are drawn. 

2. PERSISTENCE AND STATIONARITY IN GARCH MODELS 

In Bollerslev (1986) it is shown that the GARCH model belongs to the class of AutoRegressive 
Moving Average (ARMA) models. Consider a stochastic process {XtJ) t= defined by a certain 
statistical model with disturbances (Et) t= with conditional variances, ht = Et(2), which are 
generated by a GARCH(1, 1) model. The relationship between this GARCH(1, 1) model and 
an ARMA (1, 1) model reads 

ht =y+ ct- + 1ht-i (1) 

e2 = 7 + (a + l)et-2 - pt- + lot (2) 

where a and f3 > 0, y > 0, nt = 2 - ht = ht(Z2 - 1), and z is a standardized random variable 
with mean 0 and scaling factor 1; for example, z - n(0, 1). The difference between the model 
in equation (2) and a standard ARMA model refers to the parameters a and 0 and the 
disturbances rt. The parameters a and f3 are restricted to be non-negative, which has some 
consequences for the stationarity conditions, and although the disturbances rt have mean 0, 
they are clearly not white noise because of their time-varying asymmetric probability density 
functions. Bollerslev (1986) and Engle and Bollerslev (1986) discuss the weak stationarity 
conditions of the restricted ARMA (GARCH) model under the non-negativity of the 
parameters. One can show, however, that, due to the asymmetric probability density function 
of the disturbances, the strict stationarity condition differs from this weak stationarity 
condition. 

To show this difference a quasi-strict stationarity definition will be used. Strict stationary 
stochastic processes are defined by the invariance of the joint distribution of several successive 
realizations of the stochastic process with respect to the time period of the initial realization 
(see Box and Jenkins, 1976). Note that strict stationarity refers to the joint probability density 
function while weak stationarity is defined in terms of the moments of the process. If the 
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disturbances are normally distributed, the two concepts coincide. The functional form of the 
joint probability density function of a set of successive realizations from a stochastic process 
is often very hard to analyse. We therefore use a convenient definition of quasi-strict 
stationarity (non-explosiveness) based on probability measures. 

Definition 1. A stochastic process (xt t=l is quasi-strict stationary if, for every t, 

Pr[lxt+jI > IxtI] = 1 - j, j > > 0, j= 1,...,oo 

The quasi-strict (tail probability) definition guarantees that xt is measurable, i.e. it prevents 
I Xt I from converging to infinity with probability 1, so the series are not explosive, and it 
prevents the probabilities from being time dependent. The definition of strict stationarity used 
in the literature is slightly different from the tail probability definition stated above, because 
it considers all possible values of the stochastic process (xtj) i, while the definition stated 
above considers only values of xt for which I X+j I > Xt , j = 1, ..., oo. The tail probability 
condition guarantees that explosive processes are quasi-strict non-stationary. It also implies 
that stochastic processes with time-varying parameter models are quasi-strict non-stationary 
because the assumed independence between the Ej terms and the time period, t, is violated. As 
a consequence, for many processes the conditions for strict and quasi-strict stationarity will 
coincide. 

Before we discuss the difference between the quasi-strict stationarity and weak stationarity 
concepts for GARCH models we show that both definitions have the same implications for 
ARMA models. To be able to analyse both stationarity concepts we need a definition of weak 
stationarity (see Box and Jenkins, 1976). 

Definition 2. A stochastic process {Xt) = is weakly stationary if, for every t and j, 
j=- 1,...,oo, 

- oo < E(xt) = , < oo, - oo < cov(xt,xt+j)= yj < oo 

Application of the weak stationarity definition to an ARMA(p, q) model with i.i.d. 
disturbances is quite straightforward. Consider 

p(L)xt = a(L)et (3) 

where p(L), a(L) are finite-order lag polynomials specified by 
P q 

p(z)= 1 - pii a(z) = 1 + zi (4) 
i=1 i=1 

and var(Et) = a2. The autocovariances can be calculated by assuming that p(L) is invertible, 
which allows the construction of the implied infinite-order Moving Average (MA) process: 

j-i 
Xt=c(L)et=p(L)-l1(L)et= Ciett-i+Cjxt-j (5) 

i=o 

where 

c(z)= cizi and Cj= cic+j c i, j=0,...,oo 
i=O i=O i= 

The autocovariances then become 
00 00 \ 

yj = COV(t+j, Xt) = 2 Z CiCi +j = o2Cj ) j = 0,... )oo (6) 
i=0 i=O 
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The autocovariances are independent from the observation time period t, implying that 
univariate ARMA processes are weakly stationary when the parameters yj, = 0, ..., oo are 
finite. The parameters yj = Cj(E7=o i2) are finite when both the polynomial a(z) has finite 
parameters and the roots of the polynomial p(z) lie outside the unit circle. If the roots of the 
polynomial p(z) lie within the unit circle, the parameters ci converge to infinity when i 
increases, which results in an infinite value of yj. 

To analyse the quasi-strict stationarity measure, we substitute equation (5) in definition 1. 
This yields 

- j-1 
Pr [l xt+j > I xt 1 =Pr E ciet+j-i + Cjt > I Xt (7) 

i=O 

Taking the limit for j -+ oo gives 
j-1 

lim Pr E ciEt+j-i+Cjxt > Ixt = 1 lim Cj= oo (8) 
j- oo _ i=0 j- 0oo 

The disturbances et have a symmetric probability density function with mode 0. Therefore 
the probability density function of E=-o cjet+j_- is also symmetric with mode 0. The 
limiting behaviour of the probability in equation (7) depends solely on the convergence 
behaviour of Cj when j -X oo as a consequence. When Cj converges to infinity, the probability 
measure will converge to 1 and the stochastic process is non-stationary. Cj converges to infinity 
when the roots of polynomial p(z) lie within or on the unit circle and/or when the polynomial 
a(z) has infinite parameters. Equations (7) and (8) also show that the probability measure is 
independent from the time period t. Therefore the only condition which needs to be verified 
is the boundedness of the probabilities. The quasi-strict stationarity condition correspond to 
the condition derived for the weak stationarity definition. As a consequence, quasi-strict 
stationarity corresponds with weak stationarity in ARMA models. 

The weak stationarity condition of the GARCH(1, 1) model is constructed using a 
multiplicative specification of the GARCH(1, 1) model, which is also convenient for the 
construction of the quasi-strict stationarity condition (see also Bollerslev, 1986; Nelson, 1990): 

ht = y + ac-1 + 3ht-1 (9) 
- t 

/ 
1. 2+/ t-1 k 

=ho II ( + az2-i) + 1 + ( + az -i) (10) 
i=l k=l i=l 

t-1 
=hoGt+ y I Gk (11) 

k=0 

where Zt = Et/htl/2, Gj = Gj-l(3 + czt-j), Go = 1. The mean of the conditional variances in a 
GARCH(1, 1) model can directly be calculated from equation (11). Assuming normality, one 
has 

E(Gk) = E(Gk-1l( + azt-k)) = E(Gk-1)E(G + aZ2-k) = (ca + )k (12) 

so that the unconditional variance becomes 

E(ht)=y E E(Gk) = Y E (at + )k = l( - ) a+ < 
k=O k=O 

=00 a + 1 (13) 

To calculate the variance of the conditional variances of the GARCH(1, 1) model we need 
to know the third- and fourth-order moments of the disturbances. Once these moments are 
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known it is again straightforward to calculate these variances and covariances. Assuming 
normality, one can derive that 

E(Gk) = E(Gk_-)E(3 + ak-i)2 = (32 + 2ao3 + 3a2)k (14) 

2 o=i / Ckj2C2 E(GkGj) = E(Gj ( + Czi) = (s+ t)kJ(2 + 2a + 32)j (15) 

\2 co 00 k-l 

E(h 2) = 2 E GkE) =y 2 Z E()+2 GkGj) 
k=O _k=0 k=O j=O 

= ^2(1 + a + 3)/((1 - (/2 + 2at + 3a2))(1 - (a + :))) 

(f2+2atl +3a2)< 1 

=o (2+2ca +3c2) > 1 (16) 

Therefore the variance of the conditional variances is given by 

var(ht) = E(h2) - (E(ht)2) 
= 2y2a2/((1 - (02 + 2ac3 + 3a2))(1 - (a + 1))2) (2 + 2a: + 3a2) < 1 

=00 (32 + 2c + 3c2) > 1 (17) 

In the case of more general error distributions such as the Student t, the mean and 
variance of ht can be calculated by using the moments of a standardized t-distributed random 
variable, z: 

E(ht) = /(1 - tE(z2)- 3) aE(z2) + t < 1 (18) 

var(ht) = y2 [E(Z4) - E (Z2)] 2/ [ (1 - 
(12 + 2E(z2)oa + E (4)oa2))(1 - (E(z2)aT + ))2] 

p2 + 2E(z2)oa + E(z4)a2 < 1 (19) 

The covariance of ht and hj can be calculated using equations (11) and (15): 
(t-\ j- I 

cov(ht, hj )=cov(hoGt +y Gk, hoGj + Gk) 
k=0 k=0 

= (acE(z2) + 3)t- var(ht) t > j (20) 

If (1 - (P2 + 2E(Z2)aCI + E(z4)a2)) > 0, the variances and covariances are finite and time 
independent. The GARCH(1, 1) conditional variance process is weakly stationary in that case. 
The stationarity properties indicated by the weak stationarity condition can be quite restrictive 
in practice in the sense that even for values of a and 1 which indicate weak non-stationarity, 
the process behaves quite regularly. The probability of a decreasing variance in the next 
period(s) exceeds the probability of an increasing variance even for values of a and 0, which 
are said to be weakly non-stationary. If the probability of an increasing variance is exceeded 
by that of a decreasing variance, shocks to the variance are not likely to persist for long. If 
this property holds for non-stationary series, one has a strange kind of definition of non- 
stationarity because one of the key conditions of non-stationarity, infinite persistence of 
shocks, is violated. The probability of a decreasing conditional variance can be analysed using 

Pr [ht+1 < ht] = Pr [y + 2 + /ht < ht] 
= Pr [et2/ht < ((1 - ) - y/ht)/a] (21) 

= Pr [et2ht < 1 - ylaht] ca+ =1 (22) 

y = 0, normal dist. (23) 
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The probability measure in equation (21) also allows one to construct an upper bound and 
the unconditional expectation of this probability measure: 

co(Pr [ht+ < ht]) = Eo(Pr[e/t ht < ((1 - yht) - t)/a) 

= Pr[t2lht < 1] caE(z2)+ 0 < 1 
= Pr[e2/ht < (1 - 3a)/a] E(z2) + E 1 (25) 
= 0-68 cx + 3 < 1, normal (26) 

Pr [ht+ < ht] = Pr [2/ht < ((1 - 01) - 'yht)/a] (27) 

Pr[e2/ht < (1 - 3)/a] (28) 

The upper bound on the probability of a decreasing variance will be tight for large values 
of the conditional variance ht and/or small values of the parameter y. Both these phenomena 
are typical for series with weakly non-stationary conditional variances, as will be shown later. 
This is also in agreement with the unconditional expected value of the probability of a 
decreasing variance which equals the upper bound in case of weakly non-stationary conditional 
variances. 

As an example of a series with possible non-stationary conditional variances we use the 
3-month US treasury bill rate from January 1957 to April 1989 (388 observations). Interest 
rates are known for their weakly non-stationary conditional variances (see Bollerslev et al., 
1992). The analysed interest rate series is shown in Figure 1. The assumption of GARCH(1, 1) 
conditional variances is often not sufficient to explain the heteroscedastic and leptokurtic 
nature of the disturbances of exchange rates and interest rates (see Engle and Bollerslev, 1986; 
Spanos, 1991). Following these authors, we obtain Maximum Likelihood (ML) estimators of 
the parameters of a model incorporating independent t-distributed disturbances with unknown 
common degrees of freedom by means of numerical optimization. Using the Akaike 
information criterium an AutoRegressive model of order 1 (AR(1)) with GARCH(1, 1) 
conditional variances and t-distributed disturbances is selected to describe the behaviour of the 

1960 1965 1970 1975 1980 1985 

Figure 1. US 3-month treasury bill rate from January 1957 to April 1989 
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series (ho = = 1 t2 /T): 

Yt = 0-016 + 1 00yt-i + et 
(1 22) (398) 

ht = 0.00038 + 0-013et2_ + 0-77ht_- 
(0-82) (3-3) (16-8) 

p(et)=(r (X + 1)) -1/2(X+ 1) 

XP(Et)= + () ( ,ht12 
t 

LRnor-dis = 20 3 LRcons-var = 49'8 

The Likelihood Ratio (LR) statistics for testing the hypotheses of a large number of degrees 
of freedom which approximately corresponds with normally distributed disturbances (20 3) 
and constant variances (49 8) show that models which neglect the heteroscedastic or Student 
t properties of the disturbances are strongly rejected. The parameter estimates indicate that the 
hypothesis of weakly non-stationary conditional variances cannot be rejected because 
1 - aE(z2) - = 1 - aX/(X - 2) - f3 = -0 16. The hypothesis of non-stationarity in the level 
of the series is not rejectable either because of the estimated value of AR(1) parameter p of 
1 0. These properties make this treasury bill series suitable for a stationarity analysis of the 
conditional variance (Section 3) and of the level of the series (Section 4). 

Given the estimated values of the parameters of the interest rate model it is possible to 
calculate the conditional variances and probabilities of a decrease in the conditional variance. 
Figure 2 contains these conditional variances together with the probabilities of a decrease of 
the conditional variance in the next period and the upper bound on this probability. Figure 3 
shows the empirical probabilities of an increase in the conditional variance in the next j periods 
for j = 1, ..., 100. The high values of the probability of a decrease of the conditional variance 
in the next period shown in Figure 2 are not a sound indication of stationarity because of the 
increase in the empirical probability of an increasing conditional variance after one period 
(Figure 3). The empirical probabilities in Figure 3 do not give a clear indication of stationarity 

1 

0.9- i 

0.8 - 

0.7 

0.6 

0.5 - 

0.4- 

0.3- 

0.2- 

0.1 

, , . .. 

1960 1965 1970 1975 1980 

Figure 2. Probability decreasing variance next period (-), upper bound (- -) and (O 25 x) conditional 
variances (...) 

Et = 1, ..., 387 

et- t(O, ht, \), \ = 3-00 
(5 62) 

(29) 

-- 1- - --- -- -- I - " - - 
- -i I, ^, ^ 
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0.9- 

0.8- 

0.7- 

0.6 - 

0.5 - 

0.4- 

0.3 -/ 

0.2- 

0.1- 

0 10 20 3o 40 50 6 70 80 90 100 

Figure 3. Probability of an increasing variance in the next j periods 

or non-stationarity either, because the probabilities keep lingering around 0 5 and do not show 
a clearcut upward- or downward-sloping behaviour. The value of 1 -aE(z2)- 8(-0-16) 
clearly indicates weak non-stationarity, however, while Figures 2 and 3 are quite indecisive 
between stationarity or non-stationarity of the conditional variances. The weak stationarity 
condition seems to overestimate the true amount of non-stationarity in the analysed interest 
rate conditional variances as a consequence. 

Figures 2 and 3 show that analysing non-stationarity by using the weak stationarity 
condition overestimates the amount of non-stationarity in the conditional variances. This 
results from the fact that the Gk process does not converge to its mean, (aE(z2) + 1)k, as 
implicitly assumed in the weak stationarity condition, but to a value which is well below its 
mean for many values of a and f. It can be shown that the Gk process converges to 0 for a 
region of values of a and 0 which exceeds the region, aE(z2) + 3 < 1, which was used in the 
derivation of the weak stationarity concept. 

Theorem 1. The stochastic process [Gkl k=o, Go = 1, Gk = Gk- 1 (3 + a2), converges to 0 when 
k -- oo when e(ln( + az2)) < 0, elsewhere the process converges to oo (see also Nelson, 1990). 

Proof: 
k 

lim Gk= lim HI (t+az2) 
k - oo k- ooj=l 

- k 
= lim exp E ln(5 + czj2) 

k- oo j=1 

- k - 

=exp lim E ln( +axzj2) 
k -- oo j=l 

(Using Slutsky's theorem: g(x) continuous, plimr-o g(xT) = g(plimrToo XT)) 

- exp lim kE(ln (, + az2)) 
_k - oo 

1. . . . . . . . . 
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(Strong law of large numbers: plim k-1 j = e(z) 
k - oo j= / 

=0 E(ln( + CXz2)) < O 
=00 E(ln( + cz2)) > 0 

Using a Taylor approximation of ln(3o + ca2) one can easily show that the region where 
E(ln(8 + az2)) <0 includes one where 1- 0-c E(z2) > 0, i.e. the region with 'finite 
unconditional variances'. This can be derived using a first-order Taylor approximation of 
E(ln(O + az2)) = E[(O8 + Caz2 - 1) _ I()- 2(g + ac2 - 1)2] < E((+ + aZ2 - 1), where E is a 
scalar between 0 and 1 + az2 - 1 (Jensen inequality). So E(ln( 3 + az2) < E(lt + az2 - 1) and 
the region where 1 - p - aE(z2) > 0 is included in the region where E(ln( 8+ az2)) < 0. 
Figure 4 shows the region of values of c and ft where E(ln(8 +caz2)) <0 for different 
distributions of the disturbances. These regions of values of (a, 13) for which Gk converges to 
0 considerably exceed the region of 'finite unconditional variances', especially when one bears 
in mind that in case of Cauchy disturbances the unconditional variance is always 'infinite'. The 
existence of values of (a, f3) for which E(ln(/3 + az2)) < 0 but 1 - t - aE(z2) < 0 shows the 
inappropriateness of the weak stationarity concept to the GARCH(1, 1) model. In the 
derivation of the weak stationarity condition the convergence of the Gk terms towards 0 was 
determined through the (t: + Cazk) variables independently. The convergence of the Gk terms 
is accelerated through the multiplicative effect of the asymmetry of the probability density 
function of (1 + az2) on the Gk terms. The weak stationarity condition neglects this 
multiplicative effect which the different random variables (B + azk) have on one another. The 
stationary region resulting from the weak stationarity concept almost equals but is still 
exceeded by the region where Pr[(3, + azk) < 1] > 0-5 (* 0-83a + 3 < 1 in case of normality) 
namely, the region where the probability of a decrease in the conditional variance in the next 
period exceeds 0 5 or, put differently, the region where Pr[Gk > Gk+l] > 0-5. As a 
consequence, the weak stationarity condition neglects the multiplicative effect. This effect 

0.9f 

0.8 - 

0.7- 

0.6- 

0.5 - 

0.3 - 

0.2 - 

0 0.5 1 1.5 2 2.5 3 3.5 

Figure 4. Region where E(ln(o + az2)) < 0 or stationary conditional variances for z- n(0, 1) (-), 
z - Cauchy(0, 1) (") and z - t(0, 1,3) (- -) 

S49 



F. KLEIBERGEN AND H. K. VAN DIJK 

combined with the asymmetry of the probability density function of Z2 accelerates the 
convergence of the Gk terms towards 0 compared with the independent case. 

Essential to the concept of stationary conditional variances is that the Gk terms should 
converge to 0 at such a speed that their sum is finite. The negativity of E(ln(f + az2)) suffices 
to secure the finiteness of the sum of the Gk terms and to ensure quasi-strict stationarity as 
a consequence. 

Theorem 2. The conditional variances of a GARCH(1, 1) process are stationary such that 

vt Pr[ht+j > ht] = 1 - Ej, Ej > O, j= 1,., c 

if and only if E(ln(,/ + Cz2)) < 0 

Proof: 
j-1 

Pr [ht+j > ht] = Pr htGj + 'y Gk > ht (ht t Y) 
k=O 

< Pr ht , Gk > ht- y 

- 
j 

k=l 
= Pr Gk > I -yht k 

=Pr exp (, ln(/ + az ,+i)) > 1 - /ht 
_k=1 i=1 

lim Pr[ht+j > ht] = 1 E(ln(/ + az2)) > 0 (using Slutsky's theorem, 
X/>00 see theorem 1) 

< 1 - E E(ln(3 + caz2)) < 0 

In Nelson (1990) the strict stationarity conditions for the GARCH(1, 1) model are derived 
and they coincide with the quasi-strict conditions in theorem 2. In the next section the 
stationarity measure E(ln(,/ + Cz2)) will be applied to analyse the amount of non-stationarity 
present in the conditional variances of the analysed interest rate. 

The differences between the weak and quasi-strict stationarity conditions in the 
GARCH(1, 1) model show that one has to be careful with the construction of non-stationarity 
conditions in non-standard models, i.e. models which are not in a linear form or those 
containing disturbances with asymmetric probability density functions. In constructing these 
non-stationarity conditions it is also better to use quasi-strict stationarity measures such as 
definition 1, because the equality of the weak and strict stationarity conditions in ARMA 
models happens to be the result of the symmetry of the probability density function of the 
disturbances and the linearity of the ARMA model and does not generalize directly to other 
models. 

3. NON-STATIONARITY ANALYSIS OF THE CONDITIONAL VARIANCE OF THE 
US TREASURY BILL RATE 

The more formal statistical analysis of the (non) stationarity of the conditional variances of 
the AR(1)-GARCH(1, 1) model for the US treasury bill series will be conducted using Bayesian 
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statistical analysis. Performing a Bayesian analysis means that one has to construct and 
calculate the posteriors of the parameters. Using a flat prior, the marginal posteriors of the 
parameters of an AR(1)-GARCH(1, 1) model with t-distributed disturbances are analytically 
intractable. These posteriors have to be calculated using numerical techniques therefore. A 
popular method of numerical calculation of the posteriors is the so-called Gibbs sampling 
technique (see Gelfand and Smith, 1990). For this technique to be both elegant and efficient 
one has to know the analytical form of the conditional posteriors of each set of parameters 
given the remaining parameters. The presence of the GARCH conditional variances obscures 
the analytical construction of these conditional posteriors. If one does not have these GARCH 
conditional variances the Gibbs sampling technique is elegant to apply even in the presence of 
t-distributed disturbances (see Geweke, 1992). The Gibbs sampling technique is still applicable 
with GARCH conditional variances but one has to use approximating functions of certain 
conditional posteriors. Instead of approximating certain different conditional posteriors we 
choose to approximate the joint posterior of all parameters by a multivariate t density with 
one degree of freedom and to perform Importance Sampling (see Kloek and van Dijk, 1978; 
van Dijk and Kloek, 1980; Geweke, 1989b). Importance Sampling using models with ARCH 
conditional variances and normally distributed disturbances has already been applied by 
Geweke (1989a). The program SISAM (see Hop and van Dijk, 1992) has been used to calculate 
the marginal posteriors of the different parameters of interest. 

Using the SISAM program and flat uniform priors for all parameters, the following means 
and 't-values' of the marginal posteriors of the model in equation (29) were calculated: 

Yt = 0-022 + 1 00yt- + et t = 1,...,387 
(0-68) (129) 

ht = 0-0014 + 0-18e l+0-72ht- t - t(0,ht,X), X=3-45 
(1-17) (3 -3) (11-7) (4-80) 

Through the asymmetry of some of the marginal posteriors the 't-values' (or standard 
deviations of the posteriors) obtained from the Importance Sampling method are more reliable 
then those obtained by numerical differentation shown with the maximum likelihood estimates 
in equation (29). 

In this stationarity analysis of the conditional variances of the US treasury bill rate we 
analyse only the parameters which concern the conditional variances, i.e. 'y, ca, f, and X. 
Spillovers between these parameters and those of the level of the series, c (constant term) and 
p (AR(1)), are discussed in the following section. For the stationarity analysis we are not 
especially interested in the values of the parameters, per se but more in the values of certain 
functions of the parameters. The first function which we analyse indicates the 'finiteness' of 
the unconditional variance, 1 - aE(z2) - 0 = 1 - aX/(X - 2) - f (see equation (18)). When this 
parameter function is negative, the unconditional variance is 'infinite'. In Figure 5 the contour 
lines of the bivariate posterior of 1 - acx/(X - 2) - f and X are shown. Given that the second- 
order moments of t-distributions with less then two degrees of freedom are infinite, the contour 
lines have a hyperbolic shape, indicating the 'infinity' of the means of the conditional posterior 
of 1 - aX/(X - 2) - A given a value of X, for X < 2. This hyperbolic shape also shows the large 
positive correlation between X and 1 - cX/(X - 2) - ,B, which is equal to 0 63. The mode of the 
bivariate posterior of 1 - aX/(X - 2) - , and X lies at a negative value of 1 - aX/(X - 2) - ,B. 
The 'infinity' of the unconditional variance and consequently the weak non-stationarity of the 
conditional variances are again quite unusual viewed from the perspective of the realized values 
of the conditional variances and the probabilities of increases or decreases in the conditional 
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Figure 5. Contour lines: bivariate posterior 1 - E(z2)- -3 = 1 - X/(X - 2) - f and X 

Moments posteriors Mean Std dev. 
1 - X/(X - 2)- -0-17 0-12 
X 3-45 0-72 
corr(1 - caX/(X - 2) - 0, X) 0-63 

variances shown in Figures 2 and 3. Again the weak stationarity concept is quite misleading 
in the sense that the posteriors show that there is almost no probability for the stationary 
alternative, while the realizations (conditional variances, probabilities) are quite indecisive 
about stationarity or non-stationarity. 

The marginal posterior of 1 - aX/(X - 2) - 3 (see Figure 8) shows the infinity of the 
unconditional variance. This infinity automatically implies that the conditional variances are 
weakly non-stationary. In the previous section we have, however, shown the inappropriateness 
of the weak stationarity concept in the GARCH(1, 1) model and derived a quasi-strict 
stationarity measure. We would therefore like to analyse the posteriors involving this latter 
measure, E(ln(A + Caz2)). 

While one can still calculate likelihood ratio statistics to test the hypothesis of weakly non- 
stationary conditional variances through the linear restrictions it imposes on the parameters, 
it will be very hard to construct a LR statistic to test the hypothesis of non-stationary 
conditional variances using the proper criterion E(ln( 3 + Caz2)). A procedure is to approximate 
the likelihood in the ML parameter point by some probability density function and to evaluate 
the value of E(ln((f + az2)) for parameter values generated from this function. This procedure 
accounts for the parameter uncertainty while a method based on the sample values of 
ln(/ + azt2), Zt =t/ht1/2, t= 1, ..., T, does not incorporate parameter uncertainty. The 
asymmetry of the likelihood, however, complicates the construction of a proper approximating 
function. A Bayesian kind of analysis which can properly deal with the asymmetry of the 
likelihood is therefore preferred. 

To construct the marginal posterior of E(ln(/3 + az2)), we simulate sequences zi, i = 1,..., n, 
from a Student t-distribution with a degrees-of-freedom parameter resulting from the 
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generated parameter value from the Importance Function. For the generated parameter value 
from the Importance Function we approximate E(ln(3 + az2)) by n-1 E7= ln(1 + acz), 
where both a and 3 are generated by the Importance Function. The marginal posterior of 
E(ln(, + az2)) is then calculated by using the weights attached to each drawing of 
E(ln(O + az2)), resulting from the Importance Sampling procedure. For more details on 
Importance Sampling, see Hop and van Dijk (1992). 

It is interesting to analyse the relationship between the value of E(ln(O + az2)) and the 
degrees-of-freedom X or the measure for weak stationarity ('finite' unconditional variance), 
1 -c E(z2)- 3 = 1 - aX/(X- 2) - 3. First, in Figure 6 the contour lines of the bivariate 
posterior of E(ln(13 + oaz2)) and X are shown. As can be concluded from these contour lines, 
the correlation between the degrees of freedom and the theoretical stationarity measure is 
negative (-0-21). Imposing normality therefore leads to more stationary conditional 
variances. 

Second, Figure 7 contains the contour lines of the bivariate posterior of E(ln(/3 + az2)) and 
the 'finite' unconditional variance measure 1 - aE(z2) - 13= 1 - aX/(X- 2) - 3. The contour 
lines show that the two measures are negatively correlated, with a correlation coefficient equal 
to -0-38. This negative correlation arises because of the first-order Taylor expansion, 
E(ln( + az2)) = - (1 - 0 - aE(z2)) + error (see Section 2). The negative correlation is therefore 
quite natural. Also, given the fact that E(ln(/ 1+ az2)) should be positive to achieve non- 
stationarity while 1 - 1- aE(z2) should be negative to have an 'infinite' unconditional 
variance. The small value of the correlation coefficient indicates, however, that the error term 
in the Taylor expansion is quite large, implying distinct differences between the strict measure 
and the 'finite' unconditional variance measure. Approximating the perhaps difficult to 
calculate measure E(ln(5 + az2)) by 1 - 0 - aE(z2) leads to rather large errors as a 
consequence. To compare the two measures a little further, the marginal posteriors of the two 
different measures, E(ln(3 + az2)) and - aE(z2) - , are shown in Figure 8. These 
posteriors show that the probability of non-stationary conditional variances differs 
considerably between the two measures. The 'finite' unconditional variance measure, 

6 

5.5 - 

5- 

4.5 - 

4- 

3.5- 

3- K 
2.5 - 

2- 

.15. -0.1 -0.05 0 0.05 0.1 
E(ln(p + az')) 

Figure 6. Contour lines: bivariate posterior E(ln(3+ + az2)) and X 
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Figure 7. Contour lines: bivariate posterior E(ln(,B + az2)) and 1 - CaE(z2) - 3 = 1 - aX/(X - 2) - , 

Figure 8. Marginal posteriors E(ln(3 + az2)) (- -) and 1 - aE(z2) - 3 = 1 - aX/(X - 2) - / (-) 

Moments posteriors 
E(ln(/ + Caz2)) 

1 - aX/(X - 2) - 0 
corr(E (ln( + caz2)), X) 

corr(E(ln(/ + az2)), 1 - aX/(X - 2) - 3) 

Mean Std dev. 
-0 036 0-035 

3.45 0-72 
-0-17 0-12 

-0-17 
-0-38 
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1 - cE(z2) - 1, leads to a probability of non-stationarity of approximately 0 99 while the 
probability of non-stationarity using the proper measure E(ln(/ ++ az2)) is only 0 13. These 
two probabilities also allow one to approximate the posterior odds ratio. To calculate this ratio 
one has to specify prior odds (1 0) and a prior for the different hypotheses. To avoid the 
Lindley paradox we specified flat priors on the 99% Highest Posterior Density regions of the 
parameters under the different hypotheses. The posterior odds are then approximately equal 
to the ratio of the products of the prior and the posterior probabilities. For the parameters 
of interest, E(ln(3 + az2)) and 1 - 3- a E(z2), the posterior odds then become 

Ho: E(ln(3 + az2)) > 0, H1: E(ln(/ + az2)) < 0 

Kol (0*13/0 07)/(0*77/0 18) = 0 434 
Ho: 1 -3- cE(z2) < 0, H1: 1 - 3 - cE(z2) > 0 

Koi (0.99/0-6)/(0-01/0-03) = 4-95 

The two probabilities and, correspondingly, the two posterior odds ratios differ 
substantially. Using the 'finite' unconditional variance measure, stationarity is rejected while 
the proper measure rejects non-stationarity. In the articles referred to by Bollerslev et al. 
(1992) the possible non-stationarity of the conditional variances of interest rates was always 
tested using the 'finite' unconditional variance measure, 1 - aE(z2)- 3, which equals 
1 - a - 13 in the case of normally distributed disturbances. Thus we have shown (1) that 
1 - aE(z2) - 3 is a theoretically wrong condition for stationarity and (2) that it has also only 
a small correlation with the proper condition such that when using it as a non-stationarity 
condition, the probability of non-stationarity will be overestimated. 

The importance of the less restrictive non-stationarity conditions using E(ln(B+caz2)) 
instead of 1 - aE(z2) - 3 = 1 - aX/(X - 2) - 3 lie especially in the area of forecasting. Using 
the standard forecasting formulae of the conditional variances (see Bollerslev, 1986), the 
forecasts are going to converge to infinity when 1- aE(z2) - / is below 0. The non- 
stationarity measure E(ln(B + Caz2)) shows, however, that even for values of 1 - caE(z2)- 13 
below 0, a finite limiting conditional variance is still possible. It is much better therefore to 
base the forecasts on direct simulations from models (9)-(11) than to use the forecasting 
formulas. 

For the analysed treasury bill rate is not only the non-stationarity in the conditional 
variances but also that in the level of importance. The possible non-stationarity in the level is 
discussed in the next section. 

4. SENSITIVITY OF THE UNIT ROOT WITH RESPECT TO FAT-TAILED 
DISTURBANCE DISTRIBUTIONS 

In Section 3 we have shown that the hypothesis of a unit root in the AR(1) polynomial cannot 
be rejected for the US 3-month treasury bill rate series given the values of the ML estimate 
of the AR(1) parameter, p, and the mean of the posterior (both were 1 0). A ML estimate or 
posterior mean of the parameter p exactly equal to 1-0 is rather odd, however, and is due 
partly to the assumption of t-disturbances. For normal distributed errors (t-distributed with 
infinite degrees of freedom), the ML estimates and posterior means lie well below 1 -0 and this 
indicates that the parameter p is negatively correlated with the degrees-of-freedom parameter 
of the t-distribution of the disturbances. In Figure 9 the marginal posterior using flat priors 
of the parameter p for four different AR(1) models for the treasury bill rate are shown. These 
models are (1) constant variance, normal distributed errors, (2) GARCH(1, 1) conditional 
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variances, normal distributed errors, (3) constant variance, t-distributed errors, and (4) 
GARCH(1, 1) conditional variances, t-distributed errors. Figures 10 and 11 contain the contour 
lines of the bivariate posteriors of p and the degrees-of-freedom parameter X for the constant 
variance model (10) and the model with GARCH(1, 1) conditional variances (11). The contour 
lines in this latter figure clearly show the negative correlation (-04 14) between the degrees-of- 
freedom parameter X and the AR parameter p. The negative correlation for the constant 
variance model is considerably smaller (- 0 046) but still negative. Another interesting feature 
which shows the negative correlation between the degrees of freedom and the AR parameter 
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Figure 9. Marginal posteriors p, cons. var., norm. (-), GARCH(1, 1), norm. (- -), cons. var., t ("), 
GARCH(1, 1), t ( -) 
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Figure 10. Contour lines: bivariate posterior p and X, constant variance 
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p is the slight increase in the mode of the marginal posterior of p by imposing GARCH(1, 1) 
conditional variances when the disturbances are normally distributed. A GARCH(1, 1) model 
leads namely to a larger kurtosis of the disturbances and can therefore be compared with a 
certain kind of t-disturbances with finite degrees of freedom. It is also interesting to note that 
imposition of constant variances leads to a higher variance of the marginal posterior of p when 
the disturbances are normally distributed. This is similar to the well-known property that the 
OLS estimator is consistent but not efficient in the presence of heteroscedasticity. The increase 
in the variance does not occur when the disturbances are t-distributed because with a lower 
value of the parameter X one can also explain occurrence of several rather large values of the 
disturbances, i.e. heteroscedasticity. The parameter X is therefore a good approximation of the 
degree up to which one is able to explain the variance/kurtosis of the disturbances. Models for 
the conditional variances which do not explain the variance/kurtosis properly will lead to lower 
values of the parameter X than models which explain a larger part of the variance/kurtosis. 
The treasury bill series confirm these statements, as can be concluded from Figure 12, where 
the two marginal posteriors of X are drawn for a model with GARCH conditional variances 
and constant variances. Figure 12 shows that imposition of a constant variance leads to t- 
distributed disturbances which degrees-of-freedom parameter is almost always below 2 0. The 
variance of the disturbances is infinite as a consequence. The posterior of X for GARCH(1, 1) 
conditional variances lies almost completely above 2-0 such that the conditional variances of 
the disturbances are finite. 

Figure 9, where the marginal posteriors of the parameter p are shown, allows us to test for 
the presence of unit roots. One straightforward method for testing the unit root hypothesis is 
to use the Highest Posterior Density regions (HPD). Figure 9 shows that 1 .0 lies in the 95%o 
HPD regions of the models having t-distributed disturbances and the presence of 1 0 in the 
95% HPD regions of the models with normal distributed disturbances is doubtful. Given the 
marginal posteriors in Figure 9, it is also possible to approximate the posterior odds of the unit 
root hypothesis, Ho: p = 1, against H1: p  1. Using a flat prior over the 99% HPD region of 
p to avoid the Lindley paradox and a prior odds ratio equal to 1 0, the value of the posterior 
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Figure 11. Contour lines: bivariate posterior p and X, GARCH(1, 1) contour variances 
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Figure 12. Marginal posterios X, GARCH(1, 1) conditional variances (-) and constant variance (- -) 

Moments posteriors Mean Std dev. 
p cons. var., norm. 0-971 0-012 

GARCH(1, 1), norm. 0*983 0-0078 
cons. var., t 1-002 00077 
GARCH(1,1),t 1*004 00077 

X cons.var. 157 026 

corr(pcons.,t, X) I-0046 
corr(poARcH.,t, X) -014 

odds equals approximately the product of the length of the 99% HPD region and the value 
of the marginal posterior in 1 .0. It has to be mentioned that the posterior odds ratio calculated 
in this way does not test the proper hypothesis Ho: p = 1 and c =0 (constant term), which 
affects two parameters instead of one. Calculation of the posterior odds using only the 
parameter p to test the hypothesis of a unit root can be justified using the argument that when 
p = 0, c automatically becomes 0 because there is no linear time trend in the treasury bill rate. 
The 't-value' of the posterior mean of c (0-68) also indicates that 0 lies in 95% HPD region 
of the marginal posterior of c, which corresponds to the absence of a linear time trend. In 
classical statistics one is also allowed to use only the parameter p to test for unit roots when 
there is no linear time trend in the analysed data series. The posterior odds for the hypothesis 
of a unit root in the four different AR(1) models then become 

Kop cons. var., norm. 0417 
GARCH(1, 1), norm. 0 904 
cons. var., t 2*30 
GARCH(1, 1), t 2-50 

Using the formulas from Geweke (1989a), it is possible to calculate the different posterior 
odds accurately, including those for the proper hypothesis Ho: p = 1 and c = 0. The posterior 
odds mentioned above test for a unit root in the AR(1) polynomial. The unit root is, however, 
only one of the possible non-stationary parameter values, and tests for non-stationarity can 
also be performed using the hypothesis, Ho: p > 1 and HI: p < 1. 
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The sensitivity of the AR parameter p with respect to the value of the degrees-of-freedom 
parameter X is remarkable and can be explained using robustness arguments. Using constant 
variances and normal distributed disturbances one mainly focuses on proper modelling of the 
observations having relatively large disturbances. Minus the derivative of the log of the 
Probability Density Function (PDF) of the disturbances with respect to the squared random 
variable is namely a constant function of the random variable in the case of a standard normal 
PDF and a decreasing function in the case of a t PDF: 

Pnormal(E) = (27r)-1/2 exp[-½ E2] - a In Pn 
ae2 -2 

(31) 
Pt(e)= ((+ 1) 12 1+2 -1/2(X+1) In pt 1 ( + 1) 

pt(e) = 
F (2(X + 1)) x- 1/2 + a i pt= - 
(r 3X)r () X ae2 2 (X + 2) 

In Figure 13 minus the derivatives of the log of three different PDFs, i.e. normal, t with one 
degree of freedom (Cauchy) and t with 10 degrees of freedom are shown. While the derivatives 
for the normal remain constant over different values of the random variable, e, the derivatives 
decline for increasing values of the absolute value of the random variable, e, in the case of 
the t PDFs. For decreasing values of the degrees-of-freedom parameter X, this declining 
behaviour becomes even more pronounced. As a consequence, a log likelihood consisting of 
the sum of T of such log PDFs will have a constant sensitivity with respect to an increase or 
decrease in a certain disturbance in case of normal distributed disturbances, while the 
sensitivity differs over the observations in the case of t-distributed disturbances, being larger 
for relatively small values of the disturbances. The declining sensitivity of the log likelihood 
for increasing values of the disturbances (outliers) leads to an interesting aspect of modelling 
using t-distributed disturbances, the resulting robust parameter estimation procedure with 
respect to outliers. The decreasing derivatives indicate that the resulting estimation procedure 
attaches less weight to relatively large disturbances (outliers). Estimation using normal 
distributed disturbances and constant variances attaches the same weight to all disturbances, 
and the resulting estimation procedure focuses as a consequence on the relatively large values 

Figure 13. Minus derivative log PDF with respect to squared random variable, Cauchy (-), normal 
(. - ), t with X= 10 (- -) 
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of the disturbances. The focus of the estimation procedure on the large values of the 
disturbances (outliers) declines when the degrees-of-freedom parameter of the t-distribution 
decreases. Estimation using t-disturbances leads therefore to more robust ML estimators, 
posterior means with respect outliers. 

In the analysed data series such outliers are clearly present (see Figures 1 and 2) and possibly 
occur during the years 1975 and 1980-84. The arguments stated above show that when using 
normal distributed disturbances one especially focuses on these years of outlying observations 
and a large weight is implicitly attached to these observations. Using GARCH conditional 
variances (small decrease in weight) and/or t-distributed disturbances these weights are 
decreased and more even weights are attached to the different observations. 

In the growing literature on Bayesian unit root analysis (see Schotman and van Dijk, 1991; 
Phillips, 1991; DeJong and Whiteman, 1991) one concentrates mainly on the issue of the 
construction of proper priors. The analysis of the treasury bill rate has been conducted using 
flat priors which favour stationarity in models having normal distributed disturbances 
compared with the priors used by Phillips and Schotman and van Dijk. The sensitivity of the 
unit root with respect to the degrees of freedom of the t-distribution of the disturbances raises 
a new issue of importance, the proper modelling of the distribution of the disturbances. 
Geweke (1992) showed that the 'unit roots' in the well-known Nelson-Plosser series seem to 
be rather insensitive to the degrees-of-freedom parameter X. These series are not very 
heteroscedastic, however, and contain only a few outliers resulting from structural breaks. For 
the interest rate, and probably also for other financial series, the heteroscedasticity and 
presence of outliers are two of the important features of the series, and neglecting these 
properties, by imposing normality and/or GARCH/constant variances, can lead to quite 
different results (see, for instance, the treasury bill series). 

5. CONCLUSIONS 

Interpreting non-stationarity in terms of infinite persistence of shocks, we show that the non- 
stationarity properties of the conditional variances of GARCH(1, 1) models differ from the 
weak non-stationarity properties analysed mainly in the literature. Using the weak stationarity 
conditions, the literature shows, for example, that the US 3-month treasury bill rate has non- 
stationary conditional variances. Application of the quasi-strict stationarity conditions, 
defined in this paper and related to the concept of infinite persistence of shocks, shows, 
however, that the conditional variances of these series are likely to be stationary. 

Also, interest rate series are likely to be non-stationary in the level of the series. Standard 
unit root analysis often assumes that the disturbances are normally distributed. The treasury 
bill rate behaves in quite a volatile manner and the assumption of normally distributed 
disturbances is therefore not quite realistic. Applying independent t-distributed disturbances 
gives a remarkable phenomenon, i.e. the negative correlation between the degrees-of-freedom 
parameter of the t-distributed disturbances and the unit root parameter. By relaxing the 
assumption of normally distributed (t with infinite degrees of freedom) disturbances, the 
probability of a unit root in the AR(1) model increased considerably. Especially for financial 
series, the sensitivity of the unit root with respect of the assumption of normality will be 
important due to the volatile nature of these series. The importance of the proper construction 
of the probability density function of the disturbances raises a new issue in the discussion of 
Bayesian unit root analysis, which has been focused primarily on construction of priors so far. 
For some of the series analysed in this discussion (i.e. financial series) the assumption of 
normality can be quite restrictive and the results may be sensitive to this assumption. 
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