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ABSTRACT
Neural networks are fitted to real exchange rates of several industrialized
countries. The size and topology of the networks is found through the use of
multiple correlation coefficients, principal component analysis of residuals
and graphical analysis of network output per hidden layer cell and input layer
cell. These pruned neural networks are good approximations to varying non-
linear trends in real exchange rates. Non-linear dynamic analysis shows that
the long-term equilibrium values of several European currencies correspond
to the actual values within the European Monetary System. Based on its
long-term equilibrium value, the Euro appears to be undervalued vis-à-vis
the US dollar at the introduction of the Euro on 1 January 1999. Copyright
 2002 John Wiley & Sons, Ltd.
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INTRODUCTION

Neural networks are flexible models for handling complex data patterns of economic variables.
This feature has led to the diffusion and implementation of neural network models in the fields of
economics and econometrics; see e.g. (Gallant and White, 1988; White, 1989; Kaashoek and van
Dijk, 2002). However, the price of this flexibility is the danger of overfitting. That is, fitting the
noise process may easily occur and bad predictive behaviour may be the result; see Bishop (1995).
Possible overfitting of neural networks may be explained as follows. A simple neural network
model consist of three layers each of which contains a number of cells. The three layers are an
input layer with a certain number of cells, a hidden layer with a large number of cells and an output
layer with few cells. Given the large number of cells in the hidden layer the network output may
encompass almost entirely the spectrum of the real observed output variable. Thus, a crucial point
is to develop practical procedures to reduce or ‘prune’ the size of the hidden layer. Such a strategy
can also be applied to ‘prune’ the size of the input layer.

A threefold procedure for reducing the size of the network is proposed in this paper. The basic idea
is what is called by Theil (1971), in the context of linear regression, the incremental contribution
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of explanatory variables. That is, how much is the reduction of the explained variance of the
dependent variable when we exclude an explanatory variable. We apply this idea to neural networks
by excluding hidden layer cells and/or input cells from the networks.

Our starting point is a graphical comparison of network output and observed data with only one
cell excluded and with all other cells included. Next, in order to get a quantification of network
performance with one cell excluded, the reduced contribution is measured in terms of multiple
correlation coefficients. A variable with a low incremental contribution will be a candidate to be
excluded from the model. Third, we calculate the principal components of the set of residuals
obtained by omitting successively one network cell. The vector representing the first principal
component may reveal which cell can be excluded from the network. As a pruning method, it falls
in the category of cell reduction methods; see e.g. Mozer and Smolensky (1989). Our approach
is less numerically intensive since the contribution of cells is based on the outcome of only one
optimization procedure with all variables included.

We emphasize that our method is a descriptive technique which can be useful for exploratory
data analysis. The particular network, which results from the cell-pruning procedure, may be used
for dynamic analysis and prediction. That is, by making use of a simple recursive procedure, the
network generates a data series called orbit. The generated orbit may indicate the presence of
non-linear trends in the data. Further, long-run stability and equilibrium values may be computed.
Predictive properties may be investigated using scoring rules like mean square prediction error and
information criteria. For a statistical approach to deleting cells we refer to White (2000).

As actual data we use the logarithms of monthly dollar real exchange rates of several industri-
alized countries for the period 1957-1998. We determine the varying trend, the stability and the
long-term equilibrium values of the exchange rates. Next, we investigate the exchange rates within
a number of countries of the European Monetary Union. Our results indicate that within the EMU-
countries the exchange rates were at 1 January 1999 ‘properly fixed’ in the sense that the actual
values of these exchange rates are conform the estimated long term values. The same subject is
investigated for the Euro/US dollar exchange rate. Here we find evidence that at 1 January 1999
the value of the Euro compared to the US dollar was fixed at a rate which is 10% lower than the
long-term equilibrium value.

The contents of the paper is organized as follows. In the next section the graphical analysis, the
incremental contribution of cells and the principal component analysis of residuals are explained
in the context of a standard feedforward neural network. In the remainder of the paper the pruning
procedures are applied to several examples. In the third section data are generated from a ‘true’
neural network. The fourth section deals with the logarithms of real exchange rates of several
industrialized countries. The final section contains our conclusions.

NETWORK PRUNING

The functional form of the network used in this paper may be summarized as:

yt D h0
tc C d C εt �1�

ht D G�Axt C b� �2�

where t D 1, . . . , T. The scalar variable yt denotes the real output variable at time t. The 1 ð H
vector h0

t denotes the layer with hidden cells. These hidden or unobserved cells are connected to
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the I ð 1 vector of inputs x through a vector of non-linear functions G D �g1, g2, . . . , gH�0 with as
typical element

gh�z� D 1

1 C e�z

The disturbances εt are stochastic variables. We note that in the present paper the input vector x is
given as the set of lagged real output variables �yt�1, yt�2, . . . , yt�I�. The H ð 1 vectors b, c, and
d and the H ð I matrix A consists of unknown coefficients. Network output will be denoted as Oyt.
A network with I input cells and H hidden cells will be denoted as nn�I, H�.

As an example, consider a nn�1, 2� network. This neural network with one input cell and two
hidden layer cells, has as functional form:

yt D d C c1

1 C e�a1yt�1�b1
C c2

1 C e�a2yt�1�b2
C εt �3�

In order to determine the parameters of the network we minimize the sum of the squared differences
of real output yt and the network output Oyt, t D 1, . . . , T with respect to A, b, c and d. As a nonlinear
optimization procedure we apply the variable metric method of Davidon, Fletcher and Powell, see
Press et al. (1988).

Graphical analysis
An simple way to look at neural network performance is to compare the graphs of real output data
�t, yt� and neural network estimates �t, Oyt�.

Consider now network (1) with hidden layer cell h left out; this is equivalent with putting ch

equal to zero. All other parameters are left the same. Without this hidden layer cell h, the network
produces an output called Oy�h. The graphs of �t, � Oy�h�t� are compared to the graph of �t, yt� and
this comparison may give evidence of the contribution of hidden cell h in explaining the variance
of yt.

In a similar way the importance of input cells yt�1, . . . , yt�I can be examined. Let � Oy�i�t, i D
1, . . . , I be neural network output with inclusion of all cells except input cell (variable) i (adjusted
for mean differences). Then again, visual inspection of the graphs of �t, yt� and �t, � Oy�i�t� may
show evidence for inclusion or exclusion of input cell i. This graphical analysis was already used
by Koopmans (1937) and Tinbergen (1939) within the context of the linear regression model.

Incremental contributions of cells
A natural candidate for quantification of the network performance is the square of the correlation
coefficient of y and Oy

R2 D � Oy0y�2

�y0y�� Oy0 Oy�
�4�

where Oy is the vector of network output points. Note that y and Oy are adjusted for the mean.
The network performance with only one cell deleted can be measured in a similar way. For

instance, if the contribution of hidden cell h is put to zero (ch D 0), then the network will produce
an output Oy�h with errors

e�h D y � Oy�h �5�
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This reduced network can be measured by the square of the correlation coefficient R2
�h between y

and Oy�h with

R2
�h D � Oy0

�hy�2

�y0y�� Oy0
�h Oy�h�

�6�

where y and Oy�h, are adjusted for the mean.1

Now the incremental contribution of cell h is given as the following difference:

R2 � R2
�h �7�

If the value in (7) is low for some h compared to all other values, then this cell is a candidate
for exclusion from the network. In our experience, cells with contribution less then one tenth of
the cells with highest contribution are to be considered as having a low contribution; the cell with
lowest contribution is the first candidate for exclusion.

Note that for a linear model with constant term (see e.g. equation (1)), the R2 of equation (4)
equals to

R2
lin D 1 � e0e

y0y
�8�

with

e D y � Oy �9�

Suppose the h-variable is left out, and the reduced linear model is estimated again with errors
Oe�h then the incremental contribution of variable h, is given as the difference between the (linear)
correlation coefficients (see Theil, (1971)); in formula:

Oe0
�h Oe�h � e0e

y0y
�10�

The notation Oe�h is used to emphasize that these residuals are the result of an additional regression
of the reduced linear model while the errors given in equation (5), in the linear case, would be
simply the result of putting a parameter h to zero. Since equation (10) is based on re-estimating
the model after exclusion of a variable, the decision to leave out a network cell based on its low
contribution measured by equation (7) is conservative with respect to the one which is based on the
value given in (10). However, this approach has the obvious advantage that the quantities used are
based on one non-linear regression of a non-linear model with possible non-identified parameters.
Moreover, after the exclusion of a cell, optimization is prolonged with all parameters (except the
one left out) equal to the results obtained in the foregoing optimization round.

The same procedure can be applied to reduce the number of input layer cells. In this case, f Oy�i�t�g
is network output, given network parameters estimates, without input cell i. The contribution of

1 Apart from consistency in the definition of multiple correlation coefficients, which are defined in deviation of means, the
inclusion of the constant d in the network definition is motivated by the possibility to adjust easily network output f� Oy�h�tg
for differences in mean.
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input cell i is put to zero (Ahi D 0, h D 1, . . . H), then the reduced network can be quantified by
the square of the correlation coefficient R2

�i between y and Oy�i with

R2
�i D � Oy0

�iy�2

�y0y�� Oy0
�i Oy�i�

�11�

where y and Oy�i are adjusted for the mean. The contribution of cell i is measured as

R2 � R2
�i �12�

The relative value of incremental contributions in R2 can be used in evaluating whether an input
cell can be omitted or not.

Incremental contribution through principal components analysis of network residuals
For the hidden layer cells we define the matrix:

E�H D �e�1, e�2, . . . , e�H� �13�

with e�h, h D 1, . . . , H defined in equation (5). A principal component analysis on the matrix
E�H, i.e. the calculation of the orthonormal eigenvectors and eigenvalues of the symmetric matrix
E0

�HE�H, will give the principal components of E�H. The first principal component, corresponding
to the maximal eigenvalue, will have maximal variance since the amount of variance of each
principal component is proportional to the corresponding eigenvalue; see e.g Malinvaud (1970) and
Theil (1971). Hence the first component or better, the eigenvector vmax at largest eigenvalue �max

of E0
�HE�H, defines the linear combination of elements e�h with the largest variance. Otherwise

stated: the vector vmax gives the worst case combination with respect to omitting cells. Moreover,
the elements of this vector vmax reveal which variable may be omitted: the cell with index h for
which the corresponding element in the first principal component is minimal in absolute sense, may
be excluded: its exclusion of the model does not contribute very much to the worst case!

Whether a decision for exclusion and/or inclusion can be based on the factors (Deigenvector) of
the first principal component only will depend on the relative weight of this component. Again by
the above statement, the relative importance of each component is proportional to the corresponding
eigenvalue. Hence, the weight wk of the kth component is given as the relative magnitude of the
corresponding eigenvalue �k :

wk D �k/
H∑

kD1

�k �14�

As a pragmatic rule, based on our experience principal components with a weight below 0.7 are
insignificant.

Similarly, for the input layer cells, we define the matrix:

E�I D �e�1, e�2, . . . , e�I� �15�

where e�i, i D 1, . . . , I are defined as

e�i D y � Oy�i �16�
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Again, the first principal component of E�I may give evidence which input layer cell can be
excluded. Of course, economic and time-series analysis may have a stronger impact on the exclusion
decision than in the case of hidden layer cells.

We summarize the proposed procedure as follows. Cells are candidates for exclusion if they have
a minimal incremental contribution in R2, measured by equation (7), and/or are the smallest compo-
nent (in absolute sense) of the first principal component. Both quantities measure the contribution
of one cell only and do not reveal (at first sight) for instance ‘anti-symmetric’ output of pair of
cells. The term ‘anti-symmetric’ output refers to the possibility that one cell generates errors while
another cell generates errors with a similar pattern but with reverse sign; see e.g. Figures 4 and
5 below. Such behaviour can be found by graphical analysis and is also revealed by the principal
component analysis since both cells will have components in the first principal component of the
same order of magnitude but with reverse sign; see e.g. Table V.

We emphasize that our procedures are descriptive and meant for exploratory data analysis. State-
ments like ‘cells with contribution less then one tenth of the cells with highest contribution are to
be considered as having a low contribution’ and ‘principal components with a weight below 0.7
are insignificant’ are purely based on practical experience. The descriptive statistics used, like R2,
have usually no simple expression for their statistical distribution. An informal explanation is that
our class of neural network models is similar to that of threshold models with partially identified
parameters. The issue is that the parameters in the logistic function are not well identified when
some of the c parameters in equation (1) have a value close to zero. Classical distribution theory in
partially identified models is a topic outside the scope of the present paper; see e.g. Phillips (1989).
For a recent statistical analysis of the ‘pruning’ of neural networks we refer to White (2000). The
purpose of the present paper is to develop practical tools for a descriptive analysis of a flexible
neural network model. The resulting model is ‘validated’ by investigating its long-term dynamic
properties and its predictive performance. In this context one may use scoring rules like the Akaike,
Schwartz or Bayesian Information Criterion. Our experience with the two descriptive tools and a
graphical method are positive in the sense that the resulting neural network model shows good
in-sample predictive performance.

AN EXAMPLE OF A TRUE NEURAL NETWORK

We start with an example which illustrates the pruning method explained above. The data used in
this section are generated by a two-dimensional model:

y2,t D y1,t�1

y1,t D F1�y1,t�1, y2,t�1� �17�

or equivalently written

y2,t D F1�y2,t�1, y2,t�2� �18�

with F1 is the function �2 ! � given by a nn�2, 2� neural network. The observed data, denoted
as NN0202, are only one-dimensional: fy1,tg � yt; the sample size is 500.

Applying the procedures as explained above the original (true) neural network is to be found
again starting with a neural network with four variable inputs (yt�1, yt�2, yt�3, yt�4), one constant
input and six hidden layer cells. The results of an optimization are reported in Table I.
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Table I. Incremental contribution in R2 and principal components

Network (4,6) on Data: NN0202
Network total result: R2 D 0.9999

Cell excluded: �H1 �H2 �H3 �H4 �H5 �H6
R2

inc 0.0000 0.1764 0.5934 0.0912 0.0045 0.0112

Eigenvector at first principal component of E0
�HE�H (weight D 70.30%)

Cell excluded: �H1 �H2 �H3 �H4 �H5 �H6
�0.0000 0.5001 �0.8647 �0.0198 0.0685 �0.0153

Cell excluded: �yt�4 �yt�3 �yt�2 �yt�1

R2
inc 0.0000 0.0000 0.9579 0.9934

Cell excluded: �yt�4 �yt�3 �yt�2 �yt�1
Eigenvector at first principal component of E0

�IE�I (weight D 92.19%)
�0.0000 0.0001 �0.6923 �0.7200

Table II. Incremental contribution in R2 and principal components

Network (2,4) on Data: NN0202
Network total result: R2 D 0.9999

Cell excluded: �H1 �H2 �H3 �H4
R2

inc 0.5592 0.9565 0.0678 0.0635

Eigenvector at first principal component of E0
�HE�H (weight D 93.58%)

Cell excluded: �H1 �H2 �H3 �H4
0.6753 �0.7374 �0.0281 �0.0265

Cell excluded: �yt�2 �yt�1

R2
inc 0.9860 0.9948

Eigenvector at first principal component of E0
�IE�I (weight D 92.80%)

Cell excluded: �yt�2 �yt�1
0.7300 �0.6800

With respect to hidden layer cells, comparing the incremental contributions and the eigenvectors
of E0

�HE�H, hidden layer cells 1 and 5 may be excluded. Moreover, it is obvious that input cells 1
with yt�4, and 2 with yt�3 can be excluded. This gives a network with two inputs and four hidden
layer cells, a nn�4, 6� network. In Table II the results of an further optimization run are reported.

Table II shows that hidden layer cells 3 and 4 can be excluded now; see e.g. the remarkable
pattern in the eigenvectors of E0

�HE�H. Hence the original size of the true neural network is
‘reconstructed’ indeed.

PRUNED NEURAL NETS APPROXIMATE VARYING TRENDS IN REAL EXCHANGE
RATES

Empirical implementation of pruning
The data used in this subsection are the logarithm of US dollar real exchange rates, period January
1957 to March 1998. These data are the extended data of Schotman and van Dijk (1991) who
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fitted a subset of the same data to a linear auto-regressive model of order one, AR1 for the period
1973–1988.

The Yen-US dollar data are used for the empirical implementation of pruning techniques. These
are denoted as JPUS and shown in Figure 1.

All data are scaled down to the interval [0.1,0.9] and fed to an initial network which is rather
large: nn�5, 10�. The results of optimization are summarized in Table III where apart from the
incremental contribution measured by R2, only the principal components (eigenvectors of E0

�HE�H

and their proportional weights) of hidden layer residuals are given.
From Table III one can conclude that hidden layer cells 3 and 9 may be excluded. For these

two cells the incremental contributions are very low. Moreover, the factors in the first principal
component (with a relative weight of 93.72%) are also very low for these cells.

Although all input variables, except yt�1 have a rather low contribution (not reported here), only
reduction of hidden layer cells is applied at this stage. Therefore, optimization is continued after
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Figure 1. JPUS data (unscaled)

Table III. Incremental contribution in R2 and first principal component

Network (5,10) on Data: JPUS
Network total result: R2 D 0.9965

Cell excluded: �H1 �H2 �H3 �H4 �H5
R2

inc 0.9192 0.0763 0.0000 0.0001 0.0833
Cell excluded: �H6 �H7 �H8 �H9 �H10
R2

inc 0.0300 0.0258 0.0892 0.0000 0.0063

Eigenvector at first principal component of E0
�HE�H (weight D 93.72%)

Cell excluded: �H1 �H2 �H3 �H4 �H5
�0.3919 �0.0683 �0.0047 0.0195 �0.2444

Cell excluded: �H6 �H7 �H8 �H9 �H10
�0.6730 0.3501 0.1671 0.0134 0.4218
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Table IV. Incremental contribution in R2 and first principal component

Network �5, 8� on Data: JPUS
Network total result: R2 D 0.9967

Cell excluded: �H1 �H2 �H3 �H4 �H5
R2

inc 0.62452 0.9187 0.9706 0.0066 0.8405
Cell excluded: �H6 �H7 �H8
R2

inc 0.4708 0.4945 0.0033

Eigenvector at first principal component of E0
�HE�H (weight D 86.30%)

Cell excluded: �H1 �H2 �H3 �H4 �H5
�0.5030 �0.3241 �0.0657 0.0039 �0.0083

Cell excluded: �H6 �H7 �H8
0.02536 0.7980 0.0092

removing hidden layer cells 3 and 9. In Table IV the results are summarized. Again, only results
on hidden layer cells are reported.

Table IV, and Figures 2 and 3 show that, at least, hidden cells 4 and 8 are candidates for exclu-
sion. First hidden cells 4 and 8 are excluded (based on low factors in the principal component of
E0

�HE�H) and after an additional optimization, still three more hidden layer cells could be excluded
so finally a network with only three hidden layer cells was obtained. The results are reported in
Table V.
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Figure 2. JPUS data (scaled to [0.1,0.9]) and nn�5, 8� network output (thick dots) without hidden layer cells
1, 2, 3 and 4 respectively
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Figure 3. JPUS data (scaled to [0.1,0.9]) and nn�5, 8� network output (thick dots) without hidden layer cells
5, 6, 7 and 8 respectively

Table V. Incremental contribution in R2 and first principal component

Network �5, 3� on Data: JPUS
Network total result: R2 D 0.9965

Cell excluded: �H1 �H2 �H3
R2

inc 0.8233 0.9960 0.9159

Eigenvector at first principal component of E0
�HE�H (weight D 93.37%)

Cell excluded: �H1 �H2 �H3
�0.7074 0.0243 0.7064

Cell excluded: �I1 (yt�5) �I2 (yt�4) �I3 (yt�3) �I4 (yt�2) �I5 (yt�1)
R2

inc 0.0197 0.2584 0.9070 0.0003 0.9012

Eigenvector at first principal component of E0
�IE�I (weight D 95.35%)

Cell excluded: �I1 (yt�5) �I2 (yt�4) �I3 (yt�3) �I4 (yt�2) �I5 (yt�1)
�0.0011 0.0203 0.9858 �0.0082 0.1663

Now all hidden layer cells have a rather large contribution. The second hidden layer cell (H2) has
a small factor in the first principal component. However, in the second principal component (with a
weight of 6.58%), the second cell has a factor equal to 0.9997, so there is no reason to exclude cell
H2. However, the graphs of network output with exclusion of one hidden layer cell, respectively,
show a remarkable pattern: it seems that the contribution of cell H1 and cell H3 are based on
only very limited input values. Above all, the output of those cells seems to be ‘anti-symmetric’;
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see Figure 4 which shows the graphs of network output minus one hidden layer cell (compared
to actual data) and Figure 5 which shows the graphs of network output based on only one hidden
layer cell each.

Note also that in the principal component hidden cells H1 and H3 are present with the same
order of magnitude but with reverse sign. Based on those graphs a further reduction is applied
resulting in a network with only one hidden layer cell. After optimization the network performance
can be summarized by R2 D 0.9962 which hardly differs from the one with three hidden layer cells.

With respect to the input variables, the reduction to only one hidden cell has a remarkable effect
on the importance of the input variables. While according to Table V, the variable yt�1 has a small
factor in the first principal component (but a high contribution in R2), in the case of only hidden
layer cell only the variable yt�1 is important; all other input variables have a small contribution! To
visualize this effect, two figures are supplied: both figures show graphs of network output minus
the input of one input cell but Figure 6 applies to the case of three hidden cells while in Figure 7
the number hidden layer cells is only 1.

Therefore, in the case of only one hidden layer cell with only input cell I5 active, one is tempted
to reduce the number of input cells to 1, with variable yt�1 as input. After optimization, this one
input- and one hidden layer cell nn�1, 1� network has a performance quantified by R2 D 0.9962,
which is only slightly worse than the R2 for a nn�5, 3� network! This nn�1, 1� neural network has
as functional form:

yt D d C c

1 C e�ayt�1�b
�19�
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Figure 4. nn�5, 3� network output without one hidden layer cell (H1, H2 and H3, respectively) compared
with actual data
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Figure 5. nn�5, 3� network output of only one hidden layer cell (H1, H2 and H3 respectively) compared with
actual data
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Figure 6. nn�5, 3� network output minus input of one input layer cell (I1 to I5) compared with actual data
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Figure 7. nn�5, 1� network output minus input of one input layer cell (I1 to I5) compared with actual data

or written as switching model:

yt D d�1 � F�yt�1�� C �c C d�F�yt�1� �20�

where

F�y� D 1

1 C e�ay�b
�21�

The US dollar real exchange rates of five other currencies, namely the Canadian dollar, the
French franc, the British pound, the German (west) mark and the Dutch guilder, are fitted also by
a neural network model. In all five cases, the reduction process explained above results in a similar
neural network configuration: one input cell and one hidden layer cell.

The resulting networks are simple to be analysed. The number of fixpoints for system equa-
tion (19) is in all but one case equal to 1. Those fixpoints are stable and even globally attracting:
for all starting points, the solution of system equation (19) will tend to that fixpoint. Only the
model for the JPUS -data has three fixedpoints: two stable ones (0.2910 and 1.2684) and one unsta-
ble (0.9773). Note that those values refer to data scaled between 0.1 and 0.9. Hence for all relevant
starting points between 0.1 and 0.9, the solution will tend to 0.2910. In Table VI the fixedpoints
are summarized.
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Table VI. Fixedpoints of model equation (19)

Currency
(scaled to
[0.1,0.9])

Fixedpoint Fixedpoint Fixedpoint

British pound 0.2891
Dutch guilder 0.3219
French franc 0.2959
German mark 0.2926
Japanese Yen 0.2919 0.9773 1.2684

A first exercise is to analyse the transient behaviour of the nn�1, 1� neural network model. This
is done by generating dynamic forecast data Oyt, called orbits. Those data are generated in the
following way:

Oyt D nn� Oyt�1� �22�

where nn is the relevant nn�1, 1� neural network function, and will tend for every initial value Oy1

to the fixpoint of the model.
The orbits (together with the actual data) are depicted in Figure 8. The initial value y1 is taken

from actual data (except for orbit FRUS where the starting value is equal to y12). The graphs
indicate that in all cases a non-linear trend is a probable model. We conclude that our analysis can
be interpreted as a first step to a more detailed analysis of the parametric form of a time series
model for real exchanges as, for instance, a threshold model; see Granger and Teräsvirta (1993).

The performance of neural network models compared to ARIMA models
The resulting network nn�1, 1� is compared to a linear ARMA�p, q� model

yt D a C b1yt�1 C Ð Ð Ð C bpyt�p C ut �23�

ut D εt C �1εt�1 C Ð Ð Ð C �qεt�q �24�

For the JPUS data, the results are summarized in Table VII. The R2 and SIC, the Schwartz Infor-
mation Criterion, are computed for the actual data and the root mean squared errors (RMSE) are
computed using dynamical forecasts (orbit-data).

The two classes of models do not differ much with respect to their fit to the actual data, see R2 and
SIC -values. However, the neural network model outperforms the ARMA models on sample forecast
behaviour with approximately 20%. We note that the use of higher-order ARMA specifications did
not improve the results. Moreover, the neural network model shows clearly the transition to a new
equilibrium state which is not present in any of the linear models; see Figure 9 and the results
presented in the next subsection.

Long-term equilibrium values of exchange rates and the EMU parities
The stable fixedpoints represent long-term equilibrium values of real exchange rates. It is tempting
to compare some of those equilibrium values (after rescaling and converting to nominal exchanges
rates) with the mutual fixed nominal exchange rates of EMU-currencies and US dollar exchange
rate with respect to the Euro as introduced 1 January 1999. In Table VIII the nominal US-dollar
exchange rates for all currencies present in the used data set are given based on Consumer Price
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Figure 8. Logarithm of US real exchange rates (Japan, Canada, France, British, Germany (West), Netherlands);
real data (scaled to [0.1,0.9]) and neural network nn�1, 1� orbit (thick lines) 1957–1998

Indices (CPI) of 1998. Column 2 of Table VIII gives the real exchange rates calculated from the
equilibrium values (fixpoints) of the relevant neural network model; column 3 gives Consumer
Price Indices for 1998 with base year 1990 at 100. Using a US Consumer Price Index of 124.5,
the nominal exchange rates are calculated; see column 4 of Table VIII.

Using fixed Euro/EMU currency nominal exchange rates one can calculate for all three EMU
countries their mutual nominal exchange rates. For instance the German mark/French franc exchange
rate is calculated as 1.9558/6.5596 D 0.2981. In the right half of Table IX, between the vertical
lines, in bold, the results of those calculations are summarized.
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Table VII. Overview of nn�1, 1� and ARMA
specification (data scaled to [0.1, 0.9])

Model Fit actual data Dynamical
forecasts
RMSE

R2 SIC

nn(1,1) 0.9962 �5.6691 0.0814
ARMA(1,0) 0.9962 �5.6821 0.0993
ARMA(1,1) 0.9962 �5.6811 0.1022
ARMA(2,0) 0.9962 �5.6811 0.1022
ARMA(2,1) 0.9962 �5.6666 0.1027
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Figure 9. JPUS data (scaled, dotted curve), Neural network prediction (dashed curve), and ARMA(1,0) pre-
diction (line)

Table VIII. nn�1, 1� model equilibria US-dollar exchange
rates

Currency real CPI (1998) nominal

British pound 0.8571 127.5 0.8778
Canadian dollar 1.4480 116.2 1.3515
Dutch guilder 1.7599 121.5 1.7176
French franc 5.5342 115.9 5.1520
German mark 1.5994 119.2 1.5313
Japanese Yen 130.88 109.6 115.22
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Table IX. Mutual nominal exchange rates based on fixed Euro conversion rates (bold) and on model
US dollar nominal exchange rates

Currency Euro US Euro/US Dutch French German

Dutch guilder 2.2037 1.7176 1.2830 0.3360 1.1269
French franc 6.5596 5.1520 1.2732 0.3334 0.2981
German mark 1.9558 1.5312 1.2773 1.1217 0.2972

However, instead of using the fixed Euro exchange rates, one can also use the equilibrium values
of column 4 in Table VIII (repeated in column 3 of Table IX); e.g. the German mark/French franc
exchange rate is now calculated as 1.5312/5.1520 D 0.2972. The results of those calculations are
in the lower-left part of columns 5 and 6 of Table IX.

For the three EMU currencies involved, the neural network gives mutual nominal exchange rates
which are comparable with results based on the fixed Euro exchange rates.

The column Euro/US gives Euro/US dollar exchange rates based on the fixed Euro/EMU cur-
rency nominal exchange rates, column 2 in Table IX, and the EMU-currency/US dollar nominal
equilibrium exchange rates, column 3 of the same table.

Compared to the Euro/US dollar exchange rate of 1.1595 at 1 January 1999, the results in column
4 give a 10% higher rate. We emphasize that this result may heavily depend on the choice of the US
Consumer Price Index. In the case of EMU currencies only the relative value of EMU countries’
price indices play a role.

CONCLUSIONS

In this paper the number of cells in a neural network is reduced by applying some basic descriptive
procedures. The incremental contribution of hidden layer cells and input layer cells is computed
using R2. Another descriptive measure, the principal component analysis of residuals with one cell
omitted, confirms the inclusion or exclusion reasoning based on incremental contributions. The
advantage of our proposed principal component procedure is that at one stroke two quantities, i.e.
the first and last principal component, are obtained which both give evidence which cells can be
excluded. Those two quantities are supplemented by graphical analysis of network performance
with hidden and/or input cells excluded.

The pruning method is descriptive. As an expert tool it appears to give good results in the sense
that the predictive performance and the long-term dynamic properties of the resulting neural network
model compare favourably with ARIMA models. For a statistical procedure, such as testing for
significance of cells, we refer the reader to White (2000).

We determine the varying trend, the stability and the long-term equilibrium values of several
exchange rates. Our results indicate that within the EMU countries the exchange rates were at 1
January 1999 ‘properly fixed’ at their long term values. For the Euro/US dollar exchange rate we
find evidence that at 1 January 1999 the value of the Euro compared to the US dollar was fixed at
a rate which is 10% lower than the long-term equilibrium value.

We end with listing some topics for further research. An extension of the pruning procedure
would be to consider not only the incremental contribution of single cells but of pairs of cells to
catch so-called ‘anti-symmetric’ output of cells. At this stage, in principal, only graphical analy-
sis reveals such behaviour. Also, economic structural interpretation of the empirical results may
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lead to more restrictions that can be used to reduce the size of the network further. In particular,
common non-linear patterns in different countries need to be investigated. Further, descriptive
analysis may be used for determining a class of models which is more parsimonious in the
number of parameters and still gives a good description of the observed data; see e.g. Granger
and Teräsvirta (1993). Finally, more research in econometric methodology, either Classical or
Bayesian, may lead to insights on the statistical properties of the proposed procedures; see e.g.
White (2000).
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