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Abstract

Likelihoods and posteriors of instrumental variable (IV) regression models with strong

endogeneity and/or weak instruments may exhibit rather non-elliptical contours in the parameter

space. This may seriously affect inference based on Bayesian credible sets. When approximating

posterior probabilities and marginal densities using Monte Carlo integration methods like

importance sampling or Markov chain Monte Carlo procedures the speed of the algorithm and

the quality of the results greatly depend on the choice of the importance or candidate density. Such a

density has to be ‘close’ to the target density in order to yield accurate results with numerically

efficient sampling. For this purpose we introduce neural networks which seem to be natural

importance or candidate densities, as they have a universal approximation property and are easy to

sample from. A key step in the proposed class of methods is the construction of a neural network that
see front matter r 2006 Elsevier B.V. All rights reserved.
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approximates the target density. The methods are tested on a set of illustrative IV regression models.

The results indicate the possible usefulness of the neural network approach.

r 2006 Elsevier B.V. All rights reserved.

JEL classification: C11; C15; C45

Keywords: Instrumental variables; Reduced rank; Importance sampling; Markov chain Monte Carlo; Neural

networks
1. Introduction

There exist classes of statistical and econometric models where the conditional
distribution of any parameter of interest, given the other parameters, has known
analytical properties and elliptically shaped Bayesian HPD credible sets, see e.g. Berger
(1985). However, the joint and marginal distributions of the parameters may have
unknown analytical properties and non-elliptical HPD credible sets. Then it is not trivial to
perform inference on the joint distribution. This may have strong effects on the
measurement of uncertainty of forecasts and of certain policy measures. For instance, in
labor market models it is important to know whether a certain credible set of the policy
effects of training programs has a strongly asymmetric shape. In models of international
financial markets, used for hedging currency risk, knowledge of a strongly non-elliptical
credible set is important for the specification of an optimal hedging decision under risk.
For details on econometric models we refer to e.g. Imbens and Angrist (1994) and Bos
et al. (2000) and the references cited there. A canonical statistical model is given by Gelman
and Meng (1991). A second issue is that one may have great difficulties when trying to
simulate (pseudo-) random drawings from such a class of non-elliptical joint distributions;
random drawings are required for inference on nonlinear functions of parameters of
interest such as impulse responses, see Strachan and Van Dijk (2004). Even if it is relatively
easy to simulate random drawings from the conditional distributions, multi-modality and/
or high correlations may cause the Gibbs sampler to converge extremely slowly or even
yield erroneous results.

A first contribution of this paper is to show that well-behaved conditional distributions
of parameters of interest may occur together with ill-behaved marginals for the case
of linear models with reduced rank. We focus on the class of instrumental variable
(IV) regression models with possibly endogenous regressors. This class of models may
exhibit reduced rank of the parameter matrix due to varying degrees of instrument quality
and endogeneity. Under certain weak priors the conditional posterior distributions in this
model are Student’s t, that is, at least if they are proper. In the presence of weak
instruments the joint and marginal posteriors may, however, display highly non-elliptical
contours.

A second contribution of this paper is that we introduce a class of neural network
sampling methods which allow for sampling from a target (posterior) distribution that may
be multi-modal or skew, or exhibit strong correlation among the parameters. That is, a
class of methods to sample from non-elliptical distributions. Neural network sampling
algorithms consist of two main steps. In the first step a neural network is constructed that
approximates the target density. In the second step this neural network is embedded in a
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Metropolis–Hastings (MH) or importance sampling (IS) algorithm.2 With respect to the
first step we emphasize that an important advantage of neural network functions is their
‘universal approximation property’. That is, neural network functions can provide
approximations of any square integrable function to any desired accuracy.3 In the second
step this neural network is used as an importance function in IS or as a candidate density in
MH. In a ‘standard’ case of Monte Carlo integration, the MH candidate density function
or the importance function is unimodal. If the target (posterior) distribution is multi-
modal then a second mode may be completely missed in the MH approach and some
drawings may have huge weights in the IS approach. As a consequence the convergence
behavior of these Monte Carlo integration methods is rather uncertain. Thus, an
important problem is the choice of the candidate or importance density especially when
little is known a priori about the shape of the target density.
The proposed methods are applied on a set of illustrative examples of posterior

distributions in IV regression models. Our results indicate that the neural network
approach is feasible in cases where a ‘standard’ MH, IS or Gibbs approach would fail or be
rather slow.4

The outline of the paper is as follows. In Section 2 we consider the shape of posterior
densities in a simple IV regression model for simulated data; it is shown that the shapes of
HPD credible sets depend on the quality of instruments and the level of endogeneity. In
Section 3 we discuss how to construct a neural network approximation to a density, how to
sample from a neural network density, and how to use these drawings within the IS or MH
algorithm. Section 4 illustrates the neural network approach in examples of IV regressions
with simulated data. Conclusions are given in Section 5.

2. On the shape of posterior densities and Bayesian credible sets in IV regression models with

several degrees of endogeneity and instrument quality

In this section we analyze a class of models, IV regression models with possibly
endogenous regressors, where the conditional posterior distributions of parameters of
interest have known properties but the joint does not. Consider the following possibly
overidentified IV model, also known as the incomplete simultaneous equations model
(INSEM). Following Zellner et al. (1988), let:

y1 ¼ y2bþ �, (1)

y2 ¼ Xpþ v, (2)

where y1 is a ðT � 1Þ vector of observations on the endogenous variable that is
to be explained, y2 is a ðT � 1Þ vector of observations on the explanatory endogenous
2The theory of Markov chain Monte Carlo (MCMC) methods starts with Metropolis et al. (1953) and Hastings

(1970); an important technical paper on MCMC methods is due to Tierney (1994). IS, see Hammersley and

Handscomb (1964), has been introduced in Bayesian inference by Kloek and Van Dijk (1978) and is further

developed by Van Dijk and Kloek (1980, 1984) and Geweke (1989).
3Kolmogorov (1957) and Hecht-Nielsen (1987) establish general theoretical capabilities. Proofs concerning

neural network approximations for specific configurations can be found in Gallant and White (1988), Hornik

et al. (1989) and Leshno et al. (1993).
4We are indebted to two anonymous referees who suggested to make use of more sophisticated Monte Carlo

methods like bridge sampling and to use other flexible approximating densities involving Hermite polynomials.

This is an area of further research as we indicate in our conclusions.
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variable, X is a ðT � kÞ matrix of weakly exogenous variables; b is a scalar structural
parameter of interest, p is a ðk � 1Þ vector of reduced form parameters. Assume
that the rows of the matrix of error terms ð� vÞ are independently normally distributed
with ð2� 2Þ covariance matrix S with elements sij (i; j ¼ 1; 2). A well-known example
is the stylized wage regression where y1 is the log of hourly wage and y2 denotes
education which is possibly endogenous owing to the omission of a variable
measuring (unobservable) ability. The problem is that potential instruments for y2

are hard to find as these variables must be correlated with education but uncorrelated
with unobserved ability. Angrist and Krueger (1991) suggest using quarter of birth
as an IV. Staiger and Stock (1997) show that classical inference on the rate of
return to schooling, b, can be greatly affected by the weakness of the quarter of birth
instruments.

We specify the following non-informative prior density:

pðb;p;SÞ / jSj�h=2 with h40. (3)

Given the model (1)–(3), one can easily derive the likelihood function and the posterior
density kernel of ðb;p;SÞ. Using properties of the inverted Wishart distribution, see Zellner
(1971) and Bauwens and Van Dijk (1990), in order to integrate S out of the joint posterior,
and choosing h ¼ 3 in the prior density kernel (3) leads to the following joint posterior
kernel of ðb;pÞ:

pðb;pjy1; y2;X Þ /
ðy1 � y2bÞ

0
ðy1 � y2bÞ ðy1 � y2bÞ

0
ðy2 � XpÞ

ðy2 � XpÞ0ðy1 � y2bÞ ðy2 � XpÞ0ðy2 � XpÞ

�����
�����
�T=2

. (4)

For p ¼ 0 the posterior kernel in (4) reduces to the (non-zero) constant
ððy01y1Þðy

0
2y2Þ � ðy

0
1y2Þ

2
Þ
�T=2, so that for p ¼ 0 the conditional posterior density of b is

improper. For pa0 the integral
R

pðb;pjy1; y2;X Þdb is finite; however, when p! 0 this

integral increases at a rate of ðp0X 0My2XpÞ�1=2, so that
RR

pðb; pjy1; y2;X Þdbdp is not finite.

For details, see Propositions 3 and 4. So, the joint density of b and p is improper on Rkþ1.
Although improper on Rkþ1, the posterior in (4) can be made proper by restricting b and/or
p to a certain area. In that case it depends on the data y1, y2 and X, whether the behavior for
p ¼ 0 still dominates the analysis.

For illustrative purposes, the posterior kernel in (4) is calculated for simulated
data sets from (1) to (2) with k ¼ 1, T ¼ 100, b ¼ 0, s11 ¼ s22 ¼ 1 for nine cases. In each
case we use the same vector of instruments denoted by x, where the elements of x are i.i.d.
N(0,1) drawings. Three different cases of identification (or quality of instruments)
are considered: non-identification/irrelevant instruments (p ¼ 0); weak identification/
weak instruments (p ¼ 0:1); strong identification/strong instruments (p ¼ 1). These cases
are combined with three cases of endogeneity, i.e. three different values of the correlation
r � s12=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
s11s22
p

between the error terms � and v: strong (r ¼ 0:99), medium (r ¼ 0:5) and
no (r ¼ 0) degree of endogeneity. Fig. 1 shows contour plots of the joint posterior
kernel of b and p in (4) for our nine simulated data sets; the posterior kernels are
normalized over the displayed range. The contour plots reveal that there are three typical
shapes of the graph of the joint posterior of b and p: bell-shape, bimodality and elongated
ridges. Table 1 gives an overview of the possible shapes of the joint posterior kernel of b
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Fig. 1. Contour plots in the p� b plane: joint posterior kernel of p and b in (4) in IV model for nine simulated

data sets; three cases of identification (p ¼ 0; 0:1; 1 corresponding to no, weak, strong identification) are

combined with three levels of endogeneity (r ¼ 0:99; 0:5; 0 corresponding to strong, medium, no endogeneity).
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and p in this simple IV regression model with k ¼ 1 instrument for different cases of
simulated data.5

Note that in the three cases of simulated data sets with strong instruments (p ¼ 1), the
contour plots do not show a high-level ridge at p ¼ 0; the value of the joint posterior kernel
5We have repeated the experiment 10 times with different seeds of the random number generator. In five of the

nine cases bimodality showed up in the contour plot in two simulations; this is indicated as ‘possibly bimodality’.

Repeating the simulation with a different value of b yields the same shapes. For some related graphs we refer to

Van Dijk (2003).
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Table 1

Shape of the posterior density kernel of b and p in the IV regression model (1)–(2) with one instrument and weak

prior (3) for nine situations

Degree of endogeneity

Strong Medium No

Level of identification/

quality of instruments

No Ridges and possibly

bimodality

Ridges and possibly

bimodality

Ridges and possibly

bimodality

Weak Ridges and

bimodality

Ridges and possibly

bimodality

Ridges and possibly

bimodality

Strong Nearly elliptical Elliptical Elliptical
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for p ¼ 0 is relatively very small as compared to the value of the joint posterior kernel at its
mode. In the just identified model (with k ¼ 1) the mode is given by (b̂2SLS ¼ y01x=
y02x; p̂OLS ¼ y02x=x0x), and the ratio between the posterior kernel in (4) for p ¼ 0 (and
arbitrary b) and the value at its mode ðb̂2SLS; p̂OLSÞ is

pðb; p ¼ 0jy1; y2;X Þ

pðb̂2SLS; p̂OLSjy1; y2;X Þ
¼ 1�

r2y2;x þ r2y1;x � 2ry1;xry2;xry1;y2

1� r2y1;y2

" #T=2

, (5)

where ry2;x � y02x=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y02y2 x0x

p
, etc. In the three cases of strong instruments (with large r2y2;x)

as well as in the case of weak instruments and strong endogeneity (with r2y1;y2 close to one)
the ratio (5) is small (o10�9). Also in the case of irrelevant instruments and strong
endogeneity 1� r2y1;y2 is small; however, as ry1;x and ry2;x are both small and ry1;x � ry2;x, the
numerator on the right-hand side of (5) is even much smaller, so that in this case the
contour plot displays a high-level ridge at p ¼ 0.

If we consider the contour plot of the posterior kernel (4) raised to the power 1
20
, so that

the contour plot also shows the contours for much lower values of the posterior kernel, we
observe also in the case of strong identification the presence of bimodality or an elongated
ridge around the line p ¼ 0; see Fig. 2. The origin of these hyperbolic contour lines
becomes intuitively clear if we consider the fact that the structural form (1)–(2) is
equivalent with the orthogonal structural form (see Zellner et al., 1988):

y1 ¼ y2bþ vfþ Z, (6)

y2 ¼ Xpþ v, (7)

where f ¼ s12=s22; Z and v are mutually independent, i.i.d. Gaussian error terms. Eq. (6) is
equivalent with

y1 ¼ y2g1 þ Xg2 þ Z, (8)

where g1 ¼ bþ f, g2 ¼ �pf, so that g2 ¼ pðb� g1Þ, and in the case of k ¼ 1 instrument
b ¼ g1 þ g2=p. In the just identified model the set of points ðb; pÞ for which the posterior
kernel in (4) scaled by the value at its mode, pðb̂2SLS; p̂OLSjy1; y2;X Þ, has a certain value
C 2 ð0; 1� is given by

fb ¼ ĝ1 þ ĝ2=p�
ffiffiffiffiffiffiffiffiffiffiffiffi
pCðpÞ

p
=p; pCðpÞX0;pa0g, (9)
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Fig. 2. Contour plots in the p� b plane: joint posterior kernel of b and p in (4) raised to the power 1/20 in IV

model for three simulated data sets; the case of strong identification (p ¼ 1) combined with three levels of

endogeneity (r ¼ 0:99; 0:5; 0 corresponding to strong, medium, no endogeneity).
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where ðĝ1; ĝ2Þ are the OLS estimators in (8), and pCðpÞ is a polynomial of degree 2 that is

non-negative on the interval with bounds p̂OLS � ðsy2=sxÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� r2y2;xÞðC

�2=T � 1Þ
q

with

sy2 �
ffiffiffiffiffiffiffiffiffi
y02y2

p
, which includes p ¼ 0 for C small enough. In the three cases of a strong

instrument p̂OLS is far from zero (with t-value of p̂OLS larger than 10), resulting in
(nearly) elliptical shapes far away from p ¼ 0. In the cases of no/weak identification
p̂OLS is small (with t-value smaller than 1). In these cases the shapes depend on ĝ2: if
(the t-value of) ĝ2 is close to zero, the contour plot shows connected ridges around p ¼ 0;
otherwise it displays two disconnected ridges on both sides of p ¼ 0 (and on both sides of
b ¼ ĝ1where ĝ1 � 1 in the presence of strong endogeneity). The squared t-value of ĝ2 is
equal to

t2ĝ2 ¼ ðT � 2Þ
ð1� r2y1;y2 Þð1� r2y2;xÞ

ðry1;x � ry2;xry1;y2 Þ
2
� 1

 !�1
,

which is large in the case of weak identification and strong endogeneity as ð1� r2y1;y2Þ is

small and the weak influence of x on y2 causes a certain difference between ry1;x and ry2;x.
As can be seen from Fig. 2 and formula (9), even in the presence of strong instruments

and no/medium endogeneity the contours are, strictly speaking, not elliptical. However, if
one restricts the region of integration to a certain bounded area the influence of these tiny
ridges on inference is negligible; then one may for practical purposes consider the joint
posterior distribution of b and p as elliptical.
So, the posterior density kernel of b and p may show highly non-elliptical shapes if

instruments are weak. Drèze (1976, 1977) and Kleibergen and Van Dijk (1994b, 1998)
present theoretical results on the conditional and marginal distributions of b and p
corresponding to this joint density kernel. We reformulate, extend and illustrate their
results for the simple IV regression model (1)–(3).
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2.1. Weak and strong structural inference

In Drèze (1976, 1977) the conditional posterior density of b given p and the marginal
posterior density of b are derived. We summarize and reformulate his results in two
propositions:

Proposition 1 (Conditional posterior of b given p). In the IV regression model (1)–(2) with

prior (3) the conditional posterior density of b given p (with pa0) is a Student’s t density with

mode b̂ � ðy02Mvy2Þ
�1
ðy02Mvy1Þ, scale s2

b̂
ðy02Mvy2Þ

�1 and ðT � 1Þ degrees of freedom:

pðbjp; y1; y2;X Þ ¼
cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2
b̂
ðy02Mvy2Þ

�1
q 1þ

1

T � 1

ðb� b̂Þ2

s2
b̂
ðy02Mvy2Þ

�1

2
4

3
5
�T=2

, (10)

where ðT � 1Þs2
b̂
� ðy1 � y2b̂Þ

0Mvðy1 � y2b̂Þ and c is a constant that only depends on T;
Mv � I � vðv0vÞ�1v0 with v � y2 � Xp, i.e. v is a function of the parameter p (and the data y2,
X) instead of the vector of simulated error terms.

For p! 0 the conditional posterior variance of b tends to1 as in this case y02Mvy2 ! 0
(if p ¼ 0 then v � y2 � xp ¼ y2). For p ¼ 0 the conditional posterior density of b is
improper. For pa0 conditional HPD credible sets of b are elliptical; in this case
the conditional mean is equal to the OLS estimator of b in the orthogonal structural
form Eq. (6).

Proposition 2 (Marginal posterior of b). In the IV regression model (1)–(2) with prior (3) the

marginal posterior density of b is proportional to the ratio of two Student’s t kernels:

pðbjy1; y2;X Þ /
½ðy1 � y2bÞ

0
ðy1 � y2bÞ�

�ðT�1Þ=2

½ðy1 � y2bÞ
0MX ðy1 � y2bÞ�

�ðT�k�1Þ=2
, (11)

known as the 1–1 ratio or poly t density.

Structural inference on b depends on the level of identification. Moments exist up to the
order of overidentification (k � 1). The marginal posterior of b tends to a bell-shaped
function as long as the number of instruments k becomes large enough, which seems to be
a paradoxical result: the presence of many (possibly irrelevant) instruments gives a bell-
shaped function. In other words, even if the quality of the instruments is poor, a large
number of instruments still yields a bell-shaped marginal posterior of b. This result
appeared in an informal way in Maddala (1976), commenting on Drèze (1976).

Fig. 3 shows the marginal posterior of b in (11) for our nine simulated data sets; the
posterior kernels are normalized over the displayed range. Notice that the graphs display
fat tails in the cases of no identification, combined with a sharp peak in the case of strong
endogeneity; in these cases the kernel (11) is approximately equal to ½ðy1 � y2bÞ

0
ðy1 �

y2bÞ�
�k=2 as MX y1 � y1;MX y2 � y2. Also note the bimodality in the case of the weak

instrument and strong endogeneity; this results from the term

ðy1 � y2bÞ
0MX ðy1 � y2bÞ

ðy1 � y2bÞ
0
ðy1 � y2bÞ

� �ðT�k�1Þ=2

¼ 1�
y02PX y2 ðb� b̂2SLSÞ

2

y01My2y1 þ y02y2ðb� b̂OLSÞ
2

" #ðT�k�1Þ=2

(12)
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Fig. 3. Marginal posterior kernel of b in (11) in IV model for nine simulated data sets; three cases of identification

(p ¼ 0; 0:1; 1 corresponding to no, weak, strong identification) are combined with three levels of endogeneity

(r ¼ 0:99; 0:5; 0 corresponding to strong, medium, no endogeneity).
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with PX � X ðX 0X Þ�1X 0, which is equal to

1�
r2y0

2
x

b�b̂2SLS
sy1
=sy2

� �2
1� r2y1;y2 þ

b�b̂OLS

sy1
=sy2

� �2
2
64

3
75
ðT�2Þ=2

(13)
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with syi
�

ffiffiffiffiffiffiffiffi
y0iyi

p
(i ¼ 1; 2) in the case of k ¼ 1 instrument. In the case of one weak

instrument and strong endogeneity b̂2SLS and b̂OLS are in general far apart, while r2y2;x is
small and r2y1;y2 is close to one, so that (13) takes very small values near b ¼ b̂OLS � 1,
whereas on both sides of b̂OLS there is an interval where (13) is not negligible. In the cases
with a strong instrument the graphs show a bell shape; in these cases the term (13),
converging to the very small constant ð1� r2y2;xÞ

ðT�2Þ=2 when b becomes large (in absolute
sense), makes the graph seem to be bell-shaped; also in these cases (13) is very small near
b ¼ b̂OLS if b̂2SLS and b̂OLS are far apart, but the large value of r2y2;x causes (13) to be only
large on one relatively small interval around b ¼ b̂2SLS, so that the graphs do not display
bimodality. For a more detailed analysis comparing Bayesian and classical inference in an
IV regression model, we refer to Kleibergen and Zivot (2003).

In Fig. 4 the marginal posterior kernel of b is shown where independent series of
standard Gaussian noise are added to the set of instruments. Clearly, the graph of the
marginal posterior kernel tends to a bell shape if many irrelevant instruments are added.
However, notice that the location of the bell shape in the case of many irrelevant
instruments is different from the case of a strong instrument: many irrelevant instruments
yield a bell shape around b̂OLS, which is far away from the true value of b ¼ 0 in this case
of strong endogeneity, whereas a strong instrument yields a bell shape in the neighborhood
of b ¼ 0.

2.2. Impossible restricted reduced form inference

In Kleibergen and Van Dijk (1994b, 1998) the conditional posterior density of p given b
and the marginal posterior density kernel of p are derived. We summarize their results in
two propositions:

Proposition 3 (Conditional posterior of p given b). In the IV regression model (1)–(2) with

prior (3) the conditional posterior density of p given b is a Student’s t density with mode

p̂ � ðX 0M�X Þ
�1
ðX 0M�y2Þ, scale s2p̂ðX

0M�X Þ
�1 and ðT � kÞ degrees of freedom:

pðpjb; y1; y2;X Þ ¼ c2js
2
p̂ðX

0M�X Þ
�1
j�1=2

� 1þ
1

T � k
ðp� p̂Þ0ðs2p̂ðX

0M�X Þ
�1
Þ
�1
ðp� p̂Þ

� ��T=2

, ð14Þ
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where ðT � kÞs2p̂ � ðy2 � X p̂Þ0M�ðy2 � X p̂Þ and c2 is a scaling constant that only depends on

T and k; M� � I � �ð�0�Þ�1�0, with � � y1 � y2b.

For all values of b this density exists. HPD credible sets are elliptical.

Proposition 4 (Marginal posterior of p). In the IV regression model (1)–(2) with prior (3) the

marginal posterior density of p is proportional to the ratio of a product of two Student’s t

kernels in the numerator and one Student’s t kernel in the denominator:

pðpjy1; y2;X Þ /
½ðy2 � XpÞ0ðy2 � XpÞ��ðT�1Þ=2ðp0X 0M ½y1y2�XpÞ�ðT�1Þ=2

ðp0X 0My2XpÞ�ðT�2Þ=2
ð15Þ

¼ ½ðy2 � XpÞ0ðy2 � XpÞ��ðT�1Þ=2

�ðp0X 0My2XpÞ�1=2
p0X 0My2Xp

p0X 0M ½y1y2�Xp

� 	ðT�1Þ=2
, ð16Þ

known as the 2–1 poly t density.

The density kernel is not integrable over neighborhoods around zero (because of the
term ðp0X 0My2XpÞ�1=2), so that this is not a proper density. Given this non-integrability,
reduced form inference on p is not possible. This result does not depend on the quality or
quantity of the instruments nor on the endogeneity in the data. Only if the restriction that
y2 is not an endogenous regressor, s12 ¼ 0, is imposed on the model beforehand we obtain a
proper marginal density of p. For example, specifying pðb; p;s11;s22Þ / s�1=211 s�1=222 and
integrating out s11 and s22 using properties of the inverted Gamma distribution (see
Zellner, 1971) yields the joint posterior of b and p given by pðb;pjy1; y2;X Þ / ½ðy1�

y2bÞ
0
ðy1 � y2bÞ�

�T=2½ðy2 � XpÞ0ðy2 � XpÞ��T=2, i.e. b and p have independent Student’s t

distributions with T � 1 and T � k degrees of freedom, respectively.
So, in model (1)–(3) forecasting future values of y2 using posterior moments of p is not

possible if one uses the restricted reduced form, unless the region of integration of p is
truncated, the effect of which is not known a priori. However, it may occur that the data
are such that the asymptote will not be noticed in the computations; this may happen if the
mode of the joint posterior of ðb;pÞ occurs far away from p ¼ 0. Fig. 5 shows the marginal
posterior density kernel of p in (16) for our nine simulated data sets. Note that each plot
reveals an asymptote at p ¼ 0; however, for the cases of strong identification the spike near
p ¼ 0 is very narrow and relatively far away from the bell-shaped part of the graph around
p ¼ p̂OLS (� 0:9 for this simulated data set).
It may seem paradoxical that if Eq. (1) is excluded from the model, forecasting based on

(2) is standard, whereas adding the extra information in Eq. (1), y1 ¼ y2bþ � with �
possibly correlated with v, makes this impossible. However, as Kleibergen and Van Dijk
(1994a) and Chao and Phillips (1998) point out, the flat prior for ðb;pÞ implies a highly
informative prior for the parameters ðp1;pÞ of the restricted reduced form

y1 ¼ Xp1 þ v1, (17)

y2 ¼ Xpþ v, (18)

where p1 ¼ pb and v1 ¼ vbþ �; in the just identified model (k ¼ 1) there exists a 1–1
relationship between ðb;pÞ and ðp1;pÞ, so that in that case it is easily derived that
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Fig. 5. Marginal posterior kernel of p in (15) in IV model for nine simulated data sets; three cases of identification

(p ¼ 0; 0:1; 1 corresponding to no, weak, strong identification) are combined with three levels of endogeneity

(r ¼ 0:99; 0:5; 0 corresponding to strong, medium, no endogeneity). An asymptote at p ¼ 0 occurs in each figure.
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pðp1; pÞ / pðb;pÞjqðb;pÞ=qðp1;pÞj ¼ jpj�1: the prior for ðp1; pÞ is far from non-informative
for p, as it gives infinite density to the point p ¼ 0.
3. Approximating with and sampling from neural networks

Consider a certain distribution, for example a posterior distribution, with density kernel
pðyÞ with y 2 Rn. In the case of the IV regression model in the previous section we
considered y ¼ ðb;p0Þ0. Suppose the aim is to investigate some of the characteristics of pðyÞ,
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for example the mean and/or covariance matrix of a random vector y�pðyÞ. The approach
followed in this paper consists of the following steps:
1.
 Find a neural network approximation nn : Rn ! R to the target density kernel pðyÞ.

2.
 Obtain a sample of drawings from the density (kernel) nnðyÞ.

3.
 Perform IS or the (independence chain) MH algorithm using this sample in order to

obtain estimates of the characteristics of pðyÞ.
Consider a 4-layer feed-forward neural network with functional form:

nnðyÞ ¼ eG2 CG1ðAyþ bÞ þ dð Þ þ f ; y 2 Rn, (19)

where A is H1 � n, b is H1 � 1, C is H2 �H1, d is H2 � 1, e is 1�H2 and f 2 R. The
integers H1 and H2 are interpreted as the numbers of cells in the first and second hidden
layer of the neural network, respectively. The functions G1 : R

H1 ! RH1 and G2 : R
H2 !

RH2 are defined by

G1ðvÞ ¼ ðg1ðv1Þ; . . . ; g1ðvH1
ÞÞ
0; G2ðzÞ ¼ ðg2ðz1Þ; . . . ; g2ðzH2

ÞÞ
0; v 2 RH1 ; z 2 RH2 ,

(20)

where g1 : R! R and g2 : R! R are the activation functions.
The following three specifications of (19) allow for easy sampling (when this neural

network function is considered as a density kernel):
Type 1 neural network: A standard three-layer feed-forward neural network (in the

notation of (19): H2 ¼ 1, e ¼ 1, f ¼ 0 and g2 is the identity g2ðxÞ ¼ x, x 2 R). As
activation function g1 in (20) we take the scaled arctangent function:

g1ðxÞ ¼
1

p
arctan ðxÞ þ

1

2
; x 2 R. (21)

The reason for choosing the arctangent function is that it can be analytically integrated
infinitely many times. We show in Section 3.2, that this property makes the neural
network, in the role of a density kernel on a bounded region, easy to sample from. The
scaling is merely done because it is common practice to use activation functions that take
values in the unit interval.

Type 2 neural network: A simplified four-layer network with the second hidden layer
consisting of only one cell (H2 ¼ 1, e ¼ 1, f ¼ 0), g2 the exponential function and
activation function g1 in (20) equal to the following piecewise-linear function plin:

plinðxÞ ¼

0; xo� 1=2;

xþ 1=2; �1=2pxp1=2;

1; x41=2;

8><
>: x 2 R. (22)

We show in Section 3.2 that these activation functions make Gibbs sampling (see Geman
and Geman, 1984) possible. To allow for easy sampling it is sufficient to specify a function
g2 which is positive valued and has an analytical expression for its primitive that is
analytically invertible; see Section 3.2. Another example of such a function is the logistic
function.
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Type 3 neural network: A mixture of Student’s t distributions:

nnðyÞ ¼
XH
h¼1

phtðyjmh;Sh; nÞ, (23)

where ph (h ¼ 1; . . . ;H) are the probabilities of the Student’s t components and where
tðyjmh;Sh; nÞ is a multivariate t density with mode vector mh, scaling matrix Sh, and n
degrees of freedom:

tðyjmh;Sh; nÞ ¼
Gððnþ nÞ=2Þ

Gðn=2ÞðpnÞn=2
Shj j
�1=2 1þ

ðy� mhÞ
0S�1h ðy� mhÞ

n

� 	�ðnþnÞ=2

. (24)

Note that this mixture of t densities is a four-layer feed-forward neural network (with
parameter restrictions) in which we have, in the notation of (19), H2 ¼ H (the number of t

densities), H1 ¼ Hn, activation functions

g1ðxÞ ¼ x2 and g2ðxÞ ¼ x�ðnþnÞ=2 Gððnþ nÞ=2Þ

Gðn=2ÞðpnÞn=2
; x 2 R,

and weights eh ¼ ph jShj
�1=2 (h ¼ 1; . . . ;H), f ¼ 0 and:

A ¼

S�1=21

..

.

S�1=2H

0
BBB@

1
CCCA; b ¼

�S�1=21 m1

..

.

�S�1=2H mH

0
BBB@

1
CCCA; C ¼

i0n=n 0 	 	 	 0

0 i0n=n
..
.

..

. . .
.

0

0 	 	 	 0 i0n=n

0
BBBBBB@

1
CCCCCCA
; d ¼ iH ,

where ik denotes a k � 1 vector of ones. Notice that ðy� mhÞ
0S�1h ðy� mhÞ is the sum of the

squared elements of S�1=2h ðy� mhÞ. The reason for this choice is that a mixture of t

distributions is easy to sample from, and that the Student’s t distribution has fatter tails
than the normal distribution. Note that the ph ðh ¼ 1; . . . ;HÞ in (23) have to satisfyPH

h¼1 ph ¼ 1. Because of this restriction the approximation capabilities do not directly
follow from the references cited in footnote 3. However, Zeevi and Meir (1997) show that
under certain conditions any density function may be approximated to arbitrary accuracy
by a convex combination of ‘basis’ densities; the mixture of Student’s t densities in (23)
falls within their framework.

Throughout this paper we use the term ‘neural network’ to denote the classes of
functions described above; it should be mentioned here that in part of the literature, see
e.g. Hastie et al. (2001), such methods are termed ‘adaptive basis function methods’ or
‘dictionary methods’. A key ingredient of these methods is a search mechanism that
constructs a linear combination of (nonlinear) basis functions that are chosen from a
(possibly infinite) set or ‘dictionary’ of candidate basis functions.

3.1. Constructing a neural network approximation to a density

3.1.1. Type 1 (3-layer) or Type 2 (4-layer) neural network approximation

We suggest the following procedure to obtain a Type 1 or Type 2 neural network
approximation to a certain target density kernel pðyÞ. First, obtain a set of drawings
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yi
ði ¼ 1; . . . ;NÞ from the uniform distribution on the bounded region to which we restrict

the random variable y 2 Rn to take its values. Then approximate the target density kernel
pðyÞ with a neural network by minimizing the sum of squared residuals:

SSRðA; b; c; dÞ ¼
XN

i¼1

ðpðyi
Þ � nnðyi

jA; b; c; dÞÞ2, (25)

where the notation c instead of C is used, since in our Type 1 and 2 networks this is a
(1�H1) vector. We choose the most parsimonious neural network, i.e. the one with the
least hidden cells, that still gives a ‘good’ approximation to the target distribution. One
could define a ‘good’ approximation as one with a high enough squared correlation, R2,
between p and nn at the points yi

ði ¼ 1; . . . ;NÞ.
Next, check the squared correlation R2 between nn and p for a larger set of points than

the ‘estimation set’. If this R2 is also high enough, then we may conclude that the network
does not only provide a good approximation to p in the points yi

ði ¼ 1; . . . ;NÞ but also in
between, so that the approximation is really accurate. Otherwise, increase the number of
points N and start all over again; for example, make the set twice as large. This process
continues until the set is large enough to allow the neural network to ‘feel’ the shape of the
target density accurately.
In the case of a Type 1 (three-layer) neural network, we also have to deal with

the problem that the neural network function is not automatically non-negative
for each y. In order to establish this a penalty term is added to (25), for example
�M

PN
i¼1Ifnn ðyi

Þo0gnnðyi
Þ where M is a constant large enough to make nn positive

(or only slightly negative) in all points yi
ði ¼ 1; . . . ;NÞ. Notice that if the minimum of

nnðyÞ is an (in absolute sense) very small negative value, one can simply subtract
this negative value from the network’s constant d, so that nnðyÞ becomes non-negative
for each y. It should be mentioned that, since a neural network can have a surface
that looks like a bed of nails, one should be very careful when checking the non-
negativity. For example, one can look for the (global) minimum of nnðyÞ by running a
minimization procedure starting with several initial values. In our Type 2 (simplified four-
layer) neural network the exponential function implies that non-negativity is automatically
taken care of.

3.1.2. Type 3 (mixture of t) neural network approximation

We suggest the following procedure to obtain a Type 3 neural network approximation—
an adaptive mixture of t densities (AdMit)—to a certain target density kernel pðyÞ.
First, compute the mode m1 and scale S1 of the first Student’s t distribution in the

mixture as m1 ¼ argmaxy pðyÞ, the mode of the target distribution, and S1 as minus the
inverse Hessian of log pðyÞ evaluated at its mode m1. Then draw a set of points yi

ði ¼

1; . . . ;NÞ from the ‘first stage neural network’ nnðyÞ ¼ tðyjm1;S1; nÞ, with small n to allow
for fat tails.6 After that add components to the mixture, iteratively, by performing the
following steps:
6Throughout this paper we use Student’s t distributions with n ¼ 1. There are two reasons for this. First, it

enables the methods to deal with fat-tailed target (posterior) distributions. Second, it makes it easier for the

iterative procedure by which the Type 3 neural network approximation is constructed to detect modes that are far

apart. One could also choose to optimize the degree of freedom of the Student’s t distributions and/or allow for

different degrees of freedom in different Student’s t distributions. This is a topic for further research.
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Step 1: Compute the IS weights wðyi
Þ ¼ pðyi

Þ=nnðyi
Þ ði ¼ 1; . . . ;NÞ. In order to determine

the number of components H of the mixture we make use of a simple diagnostic criterion:
the coefficient of variation, i.e. the standard deviation divided by the mean, of the IS
weights wðyi

Þ ði ¼ 1; . . . ;NÞ. If the relative decrease in the coefficient of variation of
the IS weights caused by adding one new Student’s t component to the candidate mixture is
small, e.g. less than 10%, then stop: the current nnðyÞ is the Type 3 neural network
approximation.7 Otherwise, go to step 2.

Step 2: Add another Student’s t distribution with density tðyjmh;Sh; nÞ to the mixture
with mh ¼ argmaxy wðyÞ ¼ argmaxyfpðyÞ=nnðyÞg and Sh equal to minus the inverse Hessian
of logwðyÞ ¼ log pðyÞ � log nnðyÞ evaluated at its mode mh. Here, nnðyÞ denotes the mixture
of ðh� 1Þ Student’s t densities obtained in the previous iteration of the procedure. An
obvious initial value for the maximization procedure for computing mh ¼ argmaxy wðyÞ is
the point yi with the highest weight wðyi

Þ in the sample fyi
ji ¼ 1; . . . ;Ng. The idea behind

this choice of mh and Sh is that the new t component should ‘cover’ a region where the
weights wðyÞ are relatively large: the point where the weight function wðyÞ attains its
maximum is an obvious choice for the mode mh, while the scale Sh is the covariance matrix
of the local normal approximation to the distribution with density kernel wðyÞ around the
point mh.

If the region of integration of the parameters y is bounded, it may occur that wðyÞ attains
its maximum at the boundary of the integration region; in this case minus the inverse
Hessian of logwðyÞ evaluated at its mode mh may be a very poor scale matrix; in fact this
matrix may not even be positive definite. In that case mh and Sh are obtained as estimates of
the mean and covariance matrix of a certain ‘residual distribution’ with density kernel:

resðyÞ ¼ maxfpðyÞ � ~c nnðyÞ; 0g, (26)

where ~c is a constant; we take maxf:; 0g to make it a (non-negative) density kernel. These
estimates of the mean and covariance matrix of the ‘residual distribution’ are easily
obtained by IS with the current nnðyÞ as the candidate density, using the sample yi

ði ¼

1; . . . ;NÞ from nnðyÞ that we already have. The weights wresðy
i
Þ and scaled weights ~wresðy

i
Þ

ði ¼ 1; . . . ;NÞ are:

wresðy
i
Þ ¼

resðyi
Þ

nnðyi
Þ
¼ maxfwðyi

Þ � ~c; 0g and ~wresðy
i
Þ ¼

wresðy
i
ÞPN

i¼1wresðy
i
Þ
, (27)

and mh and Sh are obtained as:

mh ¼
XN

i¼1

~wresðy
i
Þyi; Sh ¼

XN

i¼1

~wresðy
i
Þðyi
� mhÞðy

i
� mhÞ

0. (28)

There are two issues relevant for the choice of ~c in (26) and (27). First, the new t density
should appear exactly at places where nnðyÞ is too small (relative to pðyÞ), i.e. the scale
should not be too large. Second, there should be enough points yi with wðyi

Þ4~c in order to
make Sh non-singular. A procedure is to calculate Sh for ~c equal to 100 times the average
value of wðyi

Þ (i ¼ 1; . . . ;N); if Sh in (28) is non-singular, accept ~c; otherwise lower ~c.
7Notice that nnðyÞ is a proper density, whereas pðyÞ is merely a density kernel. So, the Type 3 neural network

does not provide an approximation to the target density kernel pðyÞ in the sense that nnðyÞ � pðyÞ, but nnðyÞ
provides an approximation to the density of which pðyÞ is a kernel in the sense that the ratio pðyÞ=nnðyÞ has
relatively little variation.
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Step 3: Choose the probabilities ph ðh ¼ 1; . . . ;HÞ in the mixture nnðyÞ ¼
PH

h¼1phtðyjmh;
Sh; nÞ by minimizing the (squared) coefficient of variation of the IS weights. First,
draw N points yi

h from each component tðyjmh;Sh; nÞ (h ¼ 1; . . . ;H). Then minimize
E½wðyÞ2�=E½wðyÞ�2, where:

E½wðyÞk� ¼
1

N

XN

i¼1

XH
h¼1

phwðyi
hÞ

k
ðk ¼ 1; 2Þ; wðyi

hÞ ¼
pðyi

hÞPH
l¼1pltðy

i
hjml ;Sl ; nÞ

. (29)

Step 4: Draw a sample of N points yi (i ¼ 1; . . . ;N) from our new mixture of t

distributions, nnðyÞ ¼
PH

h¼1phtðyjmh;Sh; nÞ, and go to step 1; in order to draw a point
from the density nnðyÞ first use a drawing from the Uð0; 1Þ distribution to determine which
component tðyjmh;Sh; nÞ is chosen, and then draw from this multivariate t distribution.
It may occur that one is dissatisfied with diagnostics like the coefficient of variation of

the IS weights corresponding to the final candidate density resulting from the procedure
above. In that case one may start all over again with a larger number of points N. The idea
behind this is that the larger N is, the easier it is for the method to ‘feel’ the shape of the
target density kernel, and to specify the t distributions of the mixture adequately.
Note that an advantage of the Type 3 network, as compared to the Type 1 and 2

networks, is that its construction does not require the specification of a certain bounded
region where the random variable y 2 Rn takes its values.

3.2. Sampling from a neural network density

3.2.1. Type 1 (3-layer) neural network density

Suppose the joint density kernel of a certain y 2 Rn is given by our Type 1 neural
network:

nnðyÞ ¼
XH
h¼1

ch

p
arctan ða0hyþ bhÞ þ

1

2

XH
h¼1

ch þ d, (30)

where each element yj is restricted to a certain finite interval ½yj ; ȳj� (j ¼ 1; . . . ; n). The
arctangent is analytically integrable infinitely many times; its integrals are given by
Theorem 1:

Theorem 1. The nth integral JnðxÞ ðn ¼ 1; 2; . . .Þ of the arctangent function, JnðxÞ �R
	 	 	
R
arctan ðxÞdx 	 	 	 dx with x 2 R, is given by

JnðxÞ ¼ pnðxÞ arctan ðxÞ þ qnðxÞ lnð1þ x2Þ þ rnðxÞ; x 2 R, (31)

where pn and qn are polynomials of degree n and n� 1, respectively:

pnðxÞ ¼ pn;0 þ pn;1xþ 	 	 	 þ pn;n�1 xn�1 þ pn;n xn,

qnðxÞ ¼ qn;0 þ qn;1xþ 	 	 	 þ qn;n�1 xn�1

with coefficients pn;k (k ¼ 0; 1; . . . ; n) and qn;k (k ¼ 0; 1; . . . ; n� 1) given by

pn;k ¼

ð�1Þðn�kÞ=2

ðn� kÞ!k!
if n� k is even;

0 if n� k is odd ;

8><
>: qn;k ¼

ð�1Þðn�kþ1Þ=2

2ðn� kÞ!k!
if n� k is odd ;

0 if n� k is even:

8><
>:

The polynomial rn (of degree at most n� 1) plays the role of the integration constant.
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Proof. By induction; see Hoogerheide et al. (2004).8

A kernel of the cumulative distribution function of y�nnðyÞ with nn in (30) is given by

CDFyðy1; . . . ; ynÞ ¼
1

2

XH
h¼1

ch þ d

 !
ðy1 � y1Þ . . . ðyn � ynÞ

þ
XH
h¼1

ch

pah1ah2 . . . ahn

X1
D1¼0

. . .
X1
Dn¼0

ð�1ÞD1þ			þDn Jn

Xn

j¼1

ahjyj;Dj
þ bh

 !
,

ð32Þ

where we define yj;0 ¼ yj and yj;1 ¼ yj (j ¼ 1; 2; . . . ; n), the upper and lower bounds of the
integration intervals; the primitive Jnð	Þ is given by (31) in Theorem 1.

The marginal distribution functions CDFyj
ðyjÞ (j ¼ 1; . . . ; n) are now obtained by taking

yl ¼ ȳl 8l ¼ 1; . . . ; n; laj in (32). The conditional density kernel of ðy1; . . . ; yjÞ given
ðyjþ1; . . . ; ynÞ is simply obtained by substituting the values yjþ1; . . . ; yn into (30); a kernel of
the conditional CDF is given by (32) with

Pn
l¼jþ1ahlyl þ bh instead of bh (and j instead

of n).
Sampling a random vector y from the density kernel nnðyÞ is easily done by drawing

Uð0; 1Þ variables and numerically inverting the distribution functions; it seems that taking
a few steps of the bisection method followed by the Newton–Raphson method works well
in practice.

3.2.2. Type 2 (4-layer) neural network density

Suppose the joint density kernel of a certain y 2 Rn is given by the Type 2 neural
network:

nnðyÞ ¼ exp
XH
h¼1

ch plinða0hyþ bhÞ þ d

 !
, (33)

where each element yj is restricted to a certain finite interval ½yj ; ȳj� (j ¼ 1; . . . ; n). It is easy
to perform Gibbs sampling from this distribution, as one can divide the domain of each yj

(j ¼ 1; . . . ; n) into a finite number of intervals on which the conditional neural network
density is just the exponent of a linear function; the obvious reason for this is that a linear
combination of piecewise-linear functions of yj is itself a piecewise-linear function of yj .
Therefore, we can analytically integrate the conditional neural network density, and draw
from it by analytically inverting the conditional CDF. Note that the three properties of g2

mentioned below formula (22) are used here explicitly. A more detailed description of this
procedure can be found in Hoogerheide et al. (2004).

Another possible method to draw from the Type 2 neural network density is auxiliary
variable Gibbs sampling, which is a Gibbs sampling technique developed by Damien et al.
(1999). The method is based on work of Edwards and Sokal (1988). In this method a
vector of latent variables u is introduced in an artificial way in order to facilitate drawing
from the full set of conditional distributions of yj ðj ¼ 1; . . . ; nÞ. In the case of our Type 2
neural network the vector of latent variables u is ðH � 1Þ where conditionally on y the
8For a particular value of n the validity of Theorem 1 can also be verified by the online Mathematica integration

program of Wolfram Research, Inc. on http://integrals.wolfram.com.

http://integrals.wolfram.com
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uh ðh ¼ 1; . . . ;HÞ are independently drawn from uniform distributions:

uhjy�U 0; exp ch plin
Xn

j¼1

ahjyj þ bh

 !" # !
; h ¼ 1; . . . ;H. (34)

The elements yj (j ¼ 1; . . . ; n) are drawn conditionally on u and y�j, the set of all other
elements of y, from the uniform distribution on the interval ½yj;LBðu; y�jÞ; yj;UBðu; y�jÞ�,
where:

yj;LBðu; y�jÞ ¼ max yj ; max
1phpH

1

ahj

logðuhÞ

ch

�
1

2
�

Xn

l¼1;laj

ahlyl þ bh

 ! !�����
((

chahj40; 0o
logðuhÞ

ch

o1




, ð35Þ

yj;UBðu; y�jÞ ¼ min ȳj ; min
1phpH

1

ahj

logðuhÞ

ch

�
1

2
�

Xn

l¼1;laj

ahlyl þ bh

 ! !�����
((

chahjo0; 0o
logðuhÞ

ch

o1




. ð36Þ

The derivations of these conditional distributions are given in Hoogerheide et al. (2004).
Using auxiliary variable Gibbs sampling, we do not have to restrict ourselves to the
piecewise-linear function plin when specifying the activation function g1; it allows for well-
known activation functions such as the logistic and scaled arctangent functions.

3.2.3. Type 3 (mixture of t) neural network approximation

As we already remarked in the previous subsection, sampling from a Type 3 network, a
mixture of t densities, only requires a drawing from the Uð0; 1Þ distribution to determine
which component is chosen, and a drawing from the chosen multivariate t distribution.

3.3. IS and the MH algorithm

Once we have obtained a sample of random drawings from the neural network density
nnðyÞ, we use this sample in order to estimate those characteristics of the target density pðyÞ
that we are interested in. Two methods that we can use for this purpose are IS and the MH
algorithm, see footnote 2. We note that in the case of the Type 2 neural network the Gibbs
sampler is used to obtain drawings; this case can be dealt with using a MH within Gibbs
algorithm in which a MH step is considered after each time an element yj is drawn from its
conditional neural network distribution.

4. Illustrative examples

In this section we consider the posterior distributions in IV regression models in order to
compare the performance of the Type 3 (mixture of t densities) neural network sampling
method (AdMit) with some other sampling methods.9 First, consider the joint posterior of
9In the examples shown in this section the Type 1 and 2 networks performed worse than the Type 3 network.

However, it is naive to expect one sampling method to dominate in all practical cases. A comparison of the
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Fig. 6. Contour plots in the p� b plane: joint posterior of p and b in IV model for simulated data set with

p ¼ 0:1, r ¼ 0:99 (left), and its Type 3 neural network approximation (middle); scatter plot of sample obtained by

the Gibbs sampler (right).
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p and b in (4) for the data set simulated from the model (1)–(2) with p ¼ 0:1 (weak
identification) and r ¼ 0:99 (strong endogeneity), discussed in Section 2, truncated to the
region

fðp;bÞj � 0:25ppp0:25;�10pbp10g. (37)

The left panel of Fig. 6 shows its contour plot on this region (37). The contour plot of the
Type 3 neural network approximation10 is given by the middle panel of this figure; this
contour plot confirms that this class of neural networks is able to provide reasonable
approximations to a wide class of (possibly multi-modal) target densities. In this example
the Gibbs sampler failed: the Gibbs sequence remained in one of the two ridges for at least
100 million drawings, yielding a scatter plot like the right panel of Fig. 6. Of course, one
can draw from the other ridge by choosing a different initial value, but it is not a trivial
issue how to weight the results from the two ridges, i.e. it is not trivial to determine which
part of the posterior probability mass is contained in each of both ridges.

Second, consider the joint posterior of p ¼ ðp1;p2Þ
0 and b in (4) for T ¼ 50 simulated

data points from the model (1)–(2) with b ¼ 0, s11 ¼ s22 ¼ 1, p1 ¼ p2 ¼ 0:1 (weak
identification) and r ¼ 0:99 (strong endogeneity), with k ¼ 2 vectors of instruments
consisting of i.i.d. N(0,1) drawings, truncated to the region

fðp1;p2;bÞj � 0:5ppip0:5 ði ¼ 1; 2Þ;�10pbp10g. (38)

The middle panel of Fig. 7 shows the shape of an HPD credible set of ðp1;p2;bÞ in the
region (38) for this simulated data set. The left and right panels of Fig. 7 display the shapes
of HPD credible sets in similar models with T ¼ 50 simulated data points from the model
(1)–(2) with p1 ¼ p2 ¼ 0 (no identification) and p1 ¼ p2 ¼ 1 (strong identification). Note
that the same shapes that showed up in the two-dimensional distributions (ridges,
bimodality and nearly elliptical shapes) also occur in these three-dimensional distributions.
(footnote continued)

performance of the neural network sampling methods will be reported in Hoogerheide and Van Dijk (2006). Some

other examples illustrating the neural network sampling methods can be found in Hoogerheide et al. (2004).
10We constructed a mixture of 8 Student’s t distributions with a sample of 50 000 IS weights with coefficient of

variation of 2.1.



ARTICLE IN PRESS

-4

-2

0

2

4

β

-4

-2

0

2

4

β
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

β

0.6

0.6
0.80.8 11 1.2

1.2
1.4

1.4 π2π2 π1π1

0
00.1 0.1

-0.10.2
0.2

0.3

0.3

π2π1 -0.2 0-0.4
0

-0.5

0.5
0.2 0.4

Fig. 7. Credible sets for parameters p1, p2, b in IV model (1)–(2) for simulated data sets from this model with

strong endogeneity (r ¼ 0:99) combined with either no (p1 ¼ p2 ¼ 0), weak (p1 ¼ p2 ¼ 0:1) or strong

(p1 ¼ p2 ¼ 1) identification, respectively.

L.F. Hoogerheide et al. / Journal of Econometrics 139 (2007) 154–180174
We use our AdMit procedure to construct a Type 3 neural network approximation, a
mixture of 15 Student’s t distributions, and use 1 000 000 drawings from it in IS
and MH; see Table 2. The reported computing times correspond to an AMD AthlonTM

1.4GHz processor. We have repeated the algorithms 20 times; Table 2 shows the
standard deviations of the 20 estimates of Eðp1Þ, Eðp2Þ and EðbÞ. The table also
shows numerical standard errors and the corresponding relative numerical efficiency
(RNE), see Geweke (1989). The numerical standard errors are estimates of the
standard deviations of the IS estimators of Eðp1Þ, Eðp2Þ and EðbÞ. The RNE is the ratio
between (an estimate of) the variance of an estimator based on direct sampling and the IS
estimator’s estimated variance (with the same number of drawings). The RNE is an
indicator of the efficiency of the chosen importance function; if target and importance
density coincide the RNE equals one, whereas a very poor importance density will have
an RNE close to zero.
The performance of AdMit-IS (in the same computing time) is compared with IS using a

unimodal importance density, the Student’s t distribution with n ¼ 1 degree of freedom. In
order to give the unimodal density a fair chance, the mode and scale are first iteratively
updated four times as the estimated mean and covariance matrix of the target distribution
in the previous step. The results are in Table 2. AdMit-IS gives standard deviations of the
20 estimates of Eðp1Þ, Eðp2Þ, EðbÞ that are 2:3; 2:0; 2:2 times as small, respectively, while
the numerical standard errors are 1:9; 1:9; 3:4 times as small for AdMit-IS. Also notice the
huge differences between the RNEs (especially for the estimate of EðbÞ), the total weights
of the 5% most influential points and the coefficients of variation of the weights in the two
IS methods.
We compare the performance of AdMit-MH with the independence chain MH

algorithm using a Student’s t distribution with n ¼ 1 degree of freedom, and with the
random walk (RW) MH algorithm with candidate steps from a t1 distribution. The scale
(and mode) are first iteratively updated 4 times as the estimated covariance matrix (and
mean) of the target distribution in the previous step. The results are in Table 2. AdMit-MH
yields standard deviations of the 20 estimates of Eðp1Þ, Eðp2Þ, EðbÞ that are 1:9; 1:9; 3:6
times smaller than t1 (independence chain) MH, and 1:6; 1:5; 1:3 times smaller than RW
MH. Also note that AdMit-MH has much higher acceptance rate and lower (first order)
serial correlations in the MH chain.
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Table 2

Sampling results for the non-elliptically shaped posterior distribution in the IV regression (1)–(2) with k ¼ 2

instruments for simulated data with p ¼ ð0:1; 0:1Þ0 (weak identification), r ¼ 0:99 (strong endogeneity)

True AdMit AdMit Adaptive Adaptive Adaptive

values IS MH t1 IS t1 MH RW MH

Eðp1Þ 0.0199 0.0200 0.0195 0.0203 0.0193 0.0206

(st.dev. 20�) (1:2� 10�4) (1:9� 10�4) (2:8� 10�4) (3:7� 10�4) (2:9� 10�4)

(num. std. error) (1:6� 10�4) (3:1� 10�4)

[RNE] [0.3622] [0.0032]

Eðp2Þ 0.0157 0.0158 0.0153 0.0161 0.0152 0.0165

(st.dev. 20�) (1:4� 10�4) (2:0� 10�4) (2:8� 10�4) (3:7� 10�4) (3:0� 10�4)

(num. std. error) (1:6� 10�4) (2:9� 10�4)

[RNE] [0.3586] [0.0034]

EðbÞ 0.6404 0.6357 0.6531 0.6327 0.6291 0.6121

(st.dev. 20�) (0.0070) (0.0110) (0.0154) (0.0394) (0.0141)

(num. std. error) (0.0065) (0.0220)

[RNE] [0.2211] [0.0006]

sðp1Þ 0.0946 0.0945 0.0943 0.0946 0.0945 0.0946

sðp2Þ 0.0935 0.0934 0.0934 0.0935 0.0938 0.0935

sðbÞ 3.0643 3.0745 3.0713 3.0682 3.0447 3.0816

Total time (s) 927 927 1067 1160 1138

Time construction NN (s) 598 598

Time adapting scale (s) 88 106 83

Time sampling (s) 329 329 979 1054 1055

Drawings 1� 106 1� 106 30� 106 30� 106 50� 106

Time/drawing (ms) 0.33 0.33 0.03 0.04 0.02

Coeff. var. IS weights 1.47 21.6

5% largest IS weights (%) 27.3 99.999

Acceptance rate MH (%) 32.5 0.4 2.3

Serial corr. p1 0.66 0.995 0.994

Serial corr. p2 0.66 0.995 0.994

Serial corr. b 0.72 0.996 0.996
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Comparing the standard deviations of the estimates of Eðp1Þ, Eðp2Þ, EðbÞ in the five
algorithms, AdMit-IS performs best: its standard deviations are about 1.5 times smaller
than those of AdMit-MH, and at least twice as small as IS/MH with a t1 importance/
candidate density or the RW MH algorithm.

The Gibbs sampler failed in this example: the Gibbs sequence remained in one of the two
ridges for 25 000 000 drawings (taking 1039 s).

We conclude that in this example the AdMit approach outperforms four competing
algorithms.

Finally, consider the joint posterior of p and b in (4) for the data set simulated from the
model (1)–(2) with k ¼ 1 instrument with p ¼ 1 (strong identification) and r ¼ 0 (no
endogeneity), discussed in Section 2, truncated to the region

fðp;bÞj � 0:5ppp1:5;�10pbp10g. (39)

Fig. 1 shows its contour plot, which shows an elliptical shape. We construct a Type 3
neural network approximation, a mixture of two Student’s t distributions. Many diagnostic
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Table 3

Sampling results for the elliptically shaped posterior distribution in the IV regression (1)–(2) with k ¼ 1

instrument for simulated data with p ¼ 1 (strong identification) and r ¼ 0 (no endogeneity)

True AdMit AdMit Gibbs RW MH IS MH IS MH

values IS MH t1 t1 normal normal

EðpÞ 0.908 0.908 0.911 0.910 0.908 0.908 0.911 0.909 0.909

(num. std. error) (0.004) (0.004) (0.001)

[RNE] [0.691] [0.691] [0.910]

EðbÞ �0.028 �0.025 �0.029 �0.029 �0.029 �0.025 �0.032 �0.026 �0.027

(num. std. error) (0.004) (0.004) (0.002)

[RNE] [0.668] [0.668] [0.863]

sðpÞ 0.089 0.093 0.089 0.091 0.090 0.093 0.088 0.087 0.087

sðbÞ 0.106 0.105 0.102 0.104 0.105 0.105 0.105 0.102 0.102

corrðp;bÞ 0.017 0.041 �0.013 0.086 0.021 0.041 0.015 �0.019 �0.020

Total time (s) 20.8 20.9 0.03 0.64 0.03 0.11 0.11 0.12

Time construction NN (s) 20.7 20.7

Time sampling (s) 0.05 0.16 0.03 0.64 0.03 0.11 0.11 0.12

Drawings 1000 2500 1000 40000 1000 2500 4000 4000

Time/drawing (ms) 0.05 0.06 0.03 0.02 0.03 0.04 0.03 0.03

Coeff. var. IS weights 0.797 0.797 0.163

5% largest IS weights (%) 11.1 11.1 7.5

Acceptance rate MH (%) 58.6 39.0 60.5 93.5

Serial corr. p 0.40 �0.02 0.85 0.38 0.11

Serial corr. b 0.39 �0.04 0.85 0.36 0.14
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checks have been developed for assessing the convergence of the IS and MH methods;
see e.g. Geweke (1989) for IS and Cowles and Carlin (1996) for MCMC methods.
Here, a simple heuristic rule is used to obtain estimates of the means with (roughly) a
precision of 2 decimals: for each algorithm we construct two samples, and we say that
convergence has been achieved if the difference between the two estimates of EðpÞ
and the difference between the two estimates of EðbÞ are both less than 0.005.11 The results
are in Table 3. We compare AdMit’s performance with the Gibbs sampler, the RW MH
algorithm with candidate steps from a t1 distribution with scale matrix equal to minus
the inverse Hessian of the log-posterior kernel evaluated at its mode, and IS/MH with
a t1 or normal candidate density around the mode of the target distribution. In this case of
an elliptical target distribution the Gibbs sampler and the methods using a unimodal
candidate density all perform well. Although the neural network approach is feasible in
this example, it is slower than several competing algorithms. This emphasizes that
different sampling methods dominate in different cases; the neural network approach is
especially useful for target densities with highly non-elliptical contours. Strategies to
determine which method should be used in which situation are discussed in Hoogerheide and
Van Dijk (2006).
11The number of drawings required may depend on an initial value such as the seed of the random number

generator; for each algorithm the experiment has been repeated several times and the results are robust in the

sense that in most cases convergence had been reached after the reported number of drawings.
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5. Conclusion

We have shown that the shape of Bayesian HPD credible sets is often non-elliptical in IV
regression models with weak instruments and/or strong endogeneity. Structural inference
is possible in the overidentified model but the credible sets may indicate large uncertainty.
Unless one uses a truncated region of integration, reduced form inference is not possible
due to an improper posterior. This has important implications for forecasting and policy
analysis.

In order to accurately approximate posterior probabilities and marginal densities in
cases of distributions displaying such non-elliptical HPD credible sets we have introduced
a class of neural network sampling algorithms. In these algorithms neural network
functions are used as an importance or candidate density in IS or the MH algorithm.
Neural networks are natural importance or candidate densities, as they have a universal
approximation property and are easy to sample from. We have shown how to sample from
three types of neural networks. One can sample directly from a certain 3-layer network.
Using a 4-layer network one can, depending on the specification of the network, either use
a Gibbs sampling approach or sample directly from a mixture of distributions. A key step
in the proposed class of methods is the construction of a neural network that approximates
the target density. In an illustrative example of a bimodal posterior distribution in an IV
regression for a simulated data set the approach using a mixture of t distributions provided
(in the same computing time) more accurate results than IS with a unimodal importance
density or a RW MH algorithm, whereas the Gibbs sampler failed in this example. These
results indicate the feasibility and the possible usefulness of the neural network approach.
We emphasize that it is naive to expect one sampling method to dominate in all practical
cases. One needs to develop a strategy in which a sophisticated network is specified for
complex, non-elliptical densities, whereas in a relatively simple case of near-elliptical
contours a unimodal density or a bimodal mixture may be sufficiently accurate as a
candidate density. Clearly, more work is needed in this area and will be reported in
Hoogerheide and Van Dijk (2006).

We end this paper with some remarks on how to apply and to extend the proposed
techniques. First, one may use these results in model selection and model averaging and
investigate the effect of using accurate non-elliptical credible sets instead of naive or
asymptotic sets.

Second, one may consider other ways of specifying and estimating neural networks. An
area of further research is to consider different flexible candidate density functions
involving Hermite polynomials, see e.g. Gallant and Tauchen (1992) and the references
cited there. Also, more sophisticated Monte Carlo methods like bridge sampling, see e.g.
Meng and Wong (1996) and Frühwirth-Schnatter (2004), may be explored in combination
with neural networks. One may also, as a first step, transform the posterior density
function to a more regular shape. This line of research is recently pursued by Bauwens
et al. (2004) in a class of adaptive radial-based direction sampling methods (ARDS).
A combination of ARDS and neural network sampling may be of interest. In practice, one
encounters cases where only part of the posterior density is ill-behaved. Then one
may combine the neural network approach for the ‘difficult part’ with a Gibbs sampling
approach for the regular part of the model.

Third, more experience is needed with empirical econometric models like the models of
local average treatment effects (see Imbens and Angrist, 1994) or the business cycle models
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as specified by Hamilton (1989) and Paap and Van Dijk (2003) or stochastic volatility
models as given by Shephard (1996), and dynamic panel data models (see Pesaran and
Smith, 1995).
Finally, the neural network approximations proposed in this paper may be useful for

modelling such processes as volatility in financial series, see e.g. Donaldson and Kamstra
(1997), and for evaluating option prices, see Hutchinson et al. (1994).
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