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Abstract

Trends and cyclical components in economic time series are modeled in a Bayesian framework.

This enables prior notions about the duration of cycles to be used, while the generalized class of

stochastic cycles employed allows the possibility of relatively smooth cycles being extracted. The

posterior distributions of such underlying cycles can be very informative for policy makers,

particularly with regard to the size and direction of the output gap and potential turning points.

From the technical point of view a contribution is made in investigating the most appropriate prior

distributions for the parameters in the cyclical components and in developing Markov chain Monte

Carlo methods for both univariate and multivariate models. Applications to US macroeconomic

series are presented.
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1. Introduction

Decomposing time series into trends and cycles is fundamental to a good deal of
macroeconomic analysis. Key features of the ‘business’ cycle, such as length and turning
points, are of great interest to policy makers in industry and government. Similarly,
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potential output trends and their deviations from the actual level of output yield important
signals on the performance of an economy.

Trends and cycles may be modeled1 directly as unobserved components within the
framework of structural time series models (STMs); see Harvey and Jaeger
(1993). The statistical treatment is based on the state space form with the components
in a linear model extracted by the Kalman filter and associated smoother. For a
Gaussian model, the likelihood function is obtained from the innovations produced
by the Kalman filter and maximized numerically with respect to the unknown
parameters. This classical procedure is implemented in the STAMP package of
Koopman et al. (2000). However, fitting the standard trend plus cycle plus irregular
model to time series of gross domestic product (GDP) often results in the irregular
component disappearing with the result that the cycle is quite noisy. More generally,
maximum likelihood (ML) can sometimes produce implausible parameter values,
resulting perhaps in trends that are too inflexible or cycles that have too long a period.
The higher order stochastic cycles introduced recently by Harvey and Trimbur (2003)
tend to produce smoother extracted cycles, but problems of implausible estimates
still remain. This provides one of the motivations for investigating a Bayesian
approach.

A key parameter in the stochastic cycle is the period around which most of the power of
the spectrum is concentrated. In building models to capture business cycles, it is not
unreasonable to take on board prior notions about the period. These may be incorporated
into the model in a flexible way; we do this here using a beta prior distribution. Previous
work on using Bayesian methods for STMs, such as Durbin and Koopman (2002) and
Koop and Van Dijk (2000), has not dealt with cycles. Huerta and West (1999a, b) study
cyclical behavior indirectly using autoregressive models, but we would argue that our
formulation is a more natural one for taking on board prior notions of periodicity and
smoothness.

We present a Markov chain Monte Carlo (MCMC) algorithm in order to compute
posterior results on parameters, model probabilities and unobserved components. The
treatment of cycles introduces a number of new issues that need to be addressed. With the
aid of state space modeling techniques, we set out an efficient procedure for computing the
joint posterior density of parameters and components based on Gibbs sampling. In doing
so we draw on earlier work on the efficient smoothing of unobserved components by,
amongst others, Carter and Kohn (1994), Frühwirth-Schnatter (1994), De Jong and
Shephard (1995) and Durbin and Koopman (2002).

While one of the potential advantages of a Bayesian approach is that it is able
to avoid fitting implausible models, another is that it can yield more informative
results. For example, many of the parameters in STMs are variances. The small sample
behavior of ML estimators of such parameters is not easy to pin down, but it is
certainly the case that distributions can be very far from normality. When the true
value of a variance is zero, the asymptotic theory is nonstandard. One response to gauging
1Our concern here is with a model-based approach. Although detrending methods such as the Hodrick–Prescott

filter are popular in macroeconomics, they can be misleading when used inappropriately, as argued in Harvey and

Jaeger (1993) and Cogley and Nason (1995). The same is true of the more recent band-pass filter of Baxter and

King (1999); see Harvey and Trimbur (2003) and Murray (2003). Furthermore, model-based approaches have the

advantage that measures of uncertainty can be attached to the output.
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the significance2 of estimated variances is to use the bootstrap as documented in Stoffer
and Wall (2004). The Bayesian approach provides another, possibly more attractive, line
of attack by offering the opportunity to examine posterior distributions.
Another motive for investigating a Bayesian approach is that it allows for parameter

uncertainty in the posterior distributions of components. This is important in the present
context since one of our concerns is to present information on the size of the output gap as
represented by the cycle. It is also straightforward to compute statistics such as the
probability that the cycle, or its rate of change, is negative. Of course, a Bayesian treatment
also allows for parameter uncertainty in the predictive distributions of future observations.
Applications are based on quarterly US macroeconomic time series from 1947 onwards.

Univariate methods are illustrated using real GDP and features of the cycle such as its
duration, turning points and time-varying amplitude are analyzed. We also demonstrate
on-line analysis of the size and direction of the output gap. A multivariate model is then
fitted to consumption, investment and GDP, so providing a contrast with the well-known
study of King et al. (1991). Finally, a bivariate model of inflation and output, developed
from the ideas of Kuttner (1994), is used to estimate the output gap by exploiting the
Phillips curve relationship.
The paper is arranged as follows. Section 2 reviews the extension of the class of STMs to

include higher order cyclical components and discusses ways of capturing their features
and assessing the size and direction of the output gap. The Bayesian treatment is developed
in Section 3, while Section 4 applies the methods to US GDP. The multivariate
applications are in Section 4.4 and Section 5 concludes. Technical details on the state space
form and MCMC algorithms are laid out in an Appendix.
2. STM for trends and cycles

Define the N � 1 vector of observations yt, where yt ¼ ðy
1
t ; . . ., yN

t Þ
0. The class of

multivariate STMs under consideration consists of trend, cycle and irregular components,
denoted by N � 1 vectors ltwn;t and et, respectively. Thus

yt ¼ lt þ wn;t þ et; et�NIDð0;R�Þ; t ¼ 1; . . . ;T , (1)

where NIDð0;R�Þ denotes that the vector is serially independent and normally distributed
with zero mean vector and N �N positive semi-definite covariance matrix, R�. The
stochastic trend is a multivariate integrated random walk

lt ¼ lt�1 þ bt�1,

bt ¼ bt�1 þ ft; ft�NIDð0;RfÞ, ð2Þ

where bt is the vector of slopes. A seasonal component can easily be added if appropriate.
The vector wn;t is a generalization of the similar cycle model of Harvey and Koopman

(1997). The aim of the generalization, originally proposed by Harvey and Trimbur (2003),
is to include higher order models that tend to produce smoother extracted cycles.
2Valid tests of the null hypothesis that the variance is zero can be carried out, but this usually requires that the

restricted model be estimated; see Harvey (2001).
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2.1. Generalized stochastic cycles

An nth-order univariate cycle is defined by

c1;t

c�1;t
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" #
þ
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c�i�1;t�1

" #
; i ¼ 2; . . . ; n. (4)

The parameter lc denotes frequency in radians while r is a damping factor lying between
zero and one; if it is equal to one, the cycle is nonstationary. The disturbances, kt and k�t ,
are assumed to be uncorrelated with each other and with the disturbances driving the other
components. Harvey and Trimbur (2003) show that as n increases the signal extraction
filter for a cycle plus noise model tends toward a band-pass filter as in Baxter and King
(1999). General expressions for the variance, autocovariances and spectrum are given in
Trimbur (2006).

In a similar cycle model r and lc are the same across all series. Therefore, the cycles have
the same dynamic properties in the sense that their autocorrelation functions and spectral
densities are identical. However, the cycles themselves are not, in general, identical. The
similar cycle model, originally formulated for n ¼ 1, may be extended to higher order
cycles by defining a 2nN � 1 state vector

wt ¼ ½c
1
n;t; . . . ;c

N
n;t;c

1�
n;t; . . . ;c

N�
n;t ; . . .c

1
1;t; . . . ;c

N
1;t;c

1�
1;t; . . . ;c

N�
1;t �
0, (5)

where the sub-vector wn;t ¼ ½c
1
n;t; . . . ;c

N
n;t�
0 appears in (1). Define the matrix

Tn ¼ In � Tþ Sn � I2, (6)

where

T ¼ r
cos lc sin lc

� sin lc cos lc

" #
(7)

and Sn is n� n with ones on the off-diagonal strip that lies adjacent to the main diagonal
on the right-hand side and zeros everywhere else; that is, the row i, column i þ 1 element of
Sn equals 1 for i ¼ 1; . . . ; n� 1, and all other elements equal 0. Define cn to be an n� 1
vector with one in the last position and zeros elsewhere. Then

wt ¼ ðTn � INÞwt�1 þ cn �
jt

j�t

" #
, (8)

where the assumptions on the N � 1 vectors of Gaussian disturbance, jt and j�t , are

EðjtÞ ¼ 0; Eðjtj
0
tÞ ¼ Eðj�t j

�0

t Þ ¼ Rk; Eðjsj
0
tÞ ¼ O for sat

with Rk an N �N covariance matrix and Eðjsj
�0

t Þ ¼ O for all s; t ¼ 1; . . . ;T .
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2.2. The changing output gap and turning points in the cycle

The trend in GDP is often regarded as a permanent component, while the cycle is
transitory, but serially correlated; see, for example, Blanchard and Fischer (1989). The
STM makes the concept operational in that the trend is the component that yields the
long-run forecasts; see Harvey (1989, pp. 284–286). This avoids the ad hoc nature of a
trend based on the Hodrick–Prescott or band-pass filter. In what follows we will associate
the trend with potential output and the cycle with the output gap.
Having fitted a model, we are interested in studying the characteristics of the cycle from

the smoothed estimates. For example, although the expected value of the square of the
amplitude is Eðc2

t þ c�2t Þ ¼ 2s2c, it may be of interest to plot estimates of the amplitude
through time to see if it is changing in any way. Of course, the full distribution of the
output gap at any time may be of prime interest and we may wish to use this to produce
statistics such as the probability that the economy is below potential output.
One characteristic of a cyclical series is its turning points. (For instance, the change from

top to bottom in a downturn of the cycle gives a measure of the severity of the contraction,
but to measure this we clearly need to know the top and bottom). Here turning points are
identified from the extracted cycle rather than from the application of a criterion directly to
the series itself. A fairly straightforward approach is to follow Zellner et al. (1990) in
labeling a time point t as a peak, or downturn, ifbcn;t�b; bcn;t�bþ1; . . . ; bcn;t�2; bcn;t�1obcn;t4bcn;tþ1; bcn;tþ2; . . . ; bcn;tþa, (9)

where a and b are positive integers, and defining a trough, or upturn, in an analogous
fashion. The smoother is the extracted cycle, bcn;t, the easier it should be to identify
meaningful turning points.
The NBER turning points are defined with respect to the level of the series. Harding and

Pagan (2002) show that a rather simple dating rule applied to the differences in GDP
reproduces the NBER peaks and troughs quite closely. A trough at time t is defined by
fD2yto0, Dyto0, Dytþ140, D2ytþ240g where D2ytþ2 ¼ ytþ2 � yt ¼ Dytþ2 þ Dytþ1, and a
peak similarly. Expansions and contractions are defined from these peaks and troughs and
used as the basis for recognizing a cycle and measuring its characteristics. The same
criterion could be applied to the extracted level and cycle components by looking at
changes in the estimates of mt þ cn;t.
Information on the rate of change of the cycle is contained in the estimated state sub-

vector (5). It is shown in Appendix A that the discrete time analogue of the expected
incremental change of a continuous time first-order cycle is given by

Dct ¼ ðlog rÞct þ lcc
�
t . (10)

The second-order case is more complicated but it is argued in Appendix A that for the
discrete time model formulated in the previous sub-section an appropriate measure of
change is

Dc2;t ¼ ðlog rÞc2;t þ lcc
�
2;t þ r�1ðc1;t cos lc � c�1;t sin lcÞ. (11)

This formula can also be used for higher order cycles with the subscripts 2 and 1 replaced
by n and n� 1, respectively. Plotting an estimate of Dc2;t should be highly informative. So
too should the series on the probability that Dc2;t is negative (positive), this being the
probability that the cycle is moving down (up).
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Turning points could be associated with points at which the estimate of Dc2;t changes
sign. However, it transpires that Dc2;t is too variable for this to be useful. One might, of
course, question the whole notion of the identification of turning points and the associated
binary classification into expansions and recessions. After all, the series of estimates of c2;t

and Dc2;t contain more information as they measure the size and direction of the output
gap at all points in time. Even more information is contained in the full posterior
distributions.

On-line tracking of components is of considerable importance for policy makers. With a
model-based approach, information on the current cycle is obtained by filtering, but more
accurate information is given by smoothing as new observations become available. The
availability of posterior distributions allows the user to be fully aware of the uncertainty
attached to any estimates; see the discussion in Orphanides and Van Norden (2002).

3. Bayesian treatment

For convenience, we present the univariate case in this section and refer to the Appendix
for the multivariate case. The three variance parameters and two cyclical parameters are
arranged in the vector h ¼ fs2z ; s

2
k;s

2
� ;r; lcg. The goal is to analyze the posterior

distribution, pðhjyÞ, where y ¼ fy1; . . . ; yT g denotes the observations. The joint posterior
of the trend and cycle components is produced as a by-product of the MCMC routine.

3.1. Priors

The direct interpretation of the cycle parameters in the STM makes it straightforward to
design priors that reflect knowledge of the business cycle. Thus, for quarterly data we
consider priors for frequency, lc, based on beta distributions with a mode at 2p=20,
corresponding to a period of five years. Fig. 1 shows three such priors, labeled wide,
intermediate and sharp. For technical details see Appendix B.

The parameter r is linked to the order of the cycle. In the first-order case r is the rate of
decay of the cycle, but for higher orders the interpretation of r changes somewhat so that
different values are appropriate. Although it seems, on the basis of empirical work, that r
falls as n increases, it is difficult to be precise about the form of the relationship so we use a
uniform prior on r over the interval ½0; 1�.

For the variance parameters independent flat priors on ½0;1� are assumed. The use of
flat priors has the same advantage as inverted gammas of allowing one to sample directly,
but in applications where expectations on the values of variance parameters are rather
vague, a flat prior ensures that the likelihood surface is not distorted near zero.3

3.2. Posterior

The posterior distribution is obtained as

pðhjyÞ ¼ Lðh; yÞpðhÞ,
3The unobserved components models we consider in this paper have essentially the same fundamental structure

as hierarchical models for studying group effects. As Gelman (2006) notes for the case of a basic hierarchical

model, any noninformative prior on the group-level variance gives a proper posterior when sufficient data are

available, as is the case here.
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Fig. 1. Beta-based priors on lc, with mode equal to 2p=20 (five-year period for quarterly data).
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where the likelihood function, Lðh; yÞ, is evaluated using the Kalman filter; see, for
example, Harvey (1989, p. 126). The posterior is difficult to work with directly as the
constant of proportionality is not available analytically. A strategy is therefore needed for
analyzing its properties. In the applications that follow we deal with up to 20-dimensional
parameter vectors and MCMC methods offer an efficient way to sample (pseudo-random)
parameter drawings from the posterior. This also allows us to produce drawings of regular
functions of the parameters, such as periods of cycles and signal–noise ratios, and to
compare finite sample results on posterior moments with ML estimates.
The parameter space is extended to include the components and associated auxiliary

processes in (1), which together form the state vector, at, for the model, taken over all
observation times t ¼ 1; . . . ;T . The state space form is discussed in Appendix C. OurMCMC
routine uses the simulation smoother for drawing from the conditional density of the state
vector, as in De Jong and Shephard (1995), and, more recently, Durbin and Koopman (2002).

3.3. Signal extraction on characteristics of cyclical and trend components

The MCMC scheme produces draws from the joint posterior of the trend and cyclical
components. The estimated component series are obtained by averaging over the J state
draws, for example bmt ¼

PJ
j¼1m

ðjÞ
t =J, where mðjÞt denotes the jth draw for the trend at time t.

Higher order moments can be similarly constructed, while the amplitude of the cycle is
given by

At ¼
1

J

XJ

j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibc2ðjÞ
n;t þ

bc�2ðjÞn;t

q
; t ¼ 1; . . . ;T . (12)
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The probabilities that the cycle and its change, (11), are negative are straightforward to
estimate.

In keeping with state space terminology we will refer to posterior means computed over
the whole sample as smoothed estimates while the corresponding estimates based only on
current and past observations will be called filtered estimates.

3.4. Model evaluation

The marginal likelihood is

MðyÞ ¼

Z
Lðh; yÞpðhÞdh. (13)

Bayes factors are computed as the ratio of marginal likelihoods for different model
specifications {Lðh; yÞ, pðhÞg. Posterior odds may be formed by multiplying Bayes factors
by prior probability ratios that give the relative preference, ex ante, for the various
likelihood-prior model structures; see Kass and Raftery (1995). The method we use for
estimating marginal likelihoods is set out in Appendix C.

4. US GDP

In this section we fit univariate models, with different orders for the cycle component, to
the logarithm of quarterly real GDP from 1947Q1 to 2004Q4 (source: Bureau of Economic
Analysis, US Department of Commerce). The aim of the analysis is to present results on
the mapping from prior to posterior of model parameters including a sensitivity analysis
with respect to the choice of the prior on the frequency as shown in Fig. 1. The MCMC
routine was written in the Ox language of Doornik (1999) with use being made of the state
space algorithms in the SsfPack set of routines developed by Koopman et al. (1999). The
properties of extracted cycles are analyzed by looking at turning points and changes in
amplitude, as well as size and direction. Table 1 summarizes the results of fitting models in
terms of posterior means and marginal likelihoods. Note that 2p=lc is the period
(in quarters), s2c is the variance of the cycle and q, defined as s2z=ðs

2
c þ s2� Þ, is the ratio of

the variance of the noise driving the trend to the variance of the stationary component. All
variance parameters are multiplied by 107 while the estimated logarithm of the marginal
likelihood is denoted by mðyÞ.

4.1. Priors and posteriors

Marginal posterior densities for n ¼ 1, with the wide prior on lc, are shown in Figs. 2
and 3, along with 95% HPD (highest posterior density) regions. Each estimated density
function from the MCMC routine represents a standard approximation based on local
Gaussian kernels, as implemented in Doornik (1999). The 95% HPD region is defined as
the interval of minimum length that contains 95% of the probability mass for which the
upper and lower boundary have equal density. The HPD regions resemble classical
confidence intervals, but have a different interpretation in that they represent a direct
probability statement about the value of an uncertain parameter or hidden component.

Fig. 2 shows that the marginal posteriors of both the irregular variance, s2� , and the slope
variance, s2z , are skewed, but while the density of s2� is concentrated near zero, that of s2z
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Table 1

Posterior means of parameters estimated for series on logarithms of quarterly US real GDP from 1947Q1 to

2004Q4 for cycles of order n ¼ 1–4 with different priors on lc

n Prior s2z s2k s2� r lc 2p=lc s2c q mðyÞ

1 Wide 46.1 466 32 0.884 0.409 16.02 2336 0.0276 698.1

Intermediate 28.3 539 23 0.894 0.341 18.66 2911 0.0117 698.4

Sharp 24.5 561 21 0.898 0.320 19.69 3110 0.0092 698.4

2 Wide 17.1 363 111 0.697 0.272 24.62 4603 0.0058 704.0

Intermediate 20.2 322 117 0.695 0.308 20.71 3854 0.0068 704.1

Sharp 20.5 314 118 0.694 0.313 20.09 3706 0.0070 704.0

3 Wide 26.5 218 148 0.560 0.291 23.29 4097 0.0115 703.5

Intermediate 26.9 199 150 0.562 0.311 20.54 3723 0.0112 703.7

Sharp 26.6 196 151 0.563 0.314 20.05 3648 0.0108 703.8

4 Wide 43.0 159 157 0.461 0.310 22.13 3804 0.0287 702.3

Intermediate 37.8 151 159 0.467 0.314 20.36 3759 0.0202 702.8

Sharp 37.5 150 159 0.468 0.314 20.04 3728 0.0206 702.9
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Fig. 2. Marginal posterior densities of r, s2k, s
2
z , and s2� for n ¼ 1, with least informative prior on lc, for US GDP.

The dashed lines indicate 95% highest posterior density (HPD) intervals.
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displays a clear peak away from zero, giving clear evidence for stochastic variation in the
trend. As regards the cycle parameters, the marginal posterior for r, which is based on a
uniform prior on ½0; 1�, peaks near 0.9, while the density of the cyclical error variance s2k
appears symmetric. The prior and posterior densities for the frequency, lc, and period,
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Fig. 3. (Top) Marginal posterior densities of lc and 2p=lc for n ¼ 1 with wide informative prior on lc. (Bottom)

Marginal posterior densities of the slope and cyclical components, bt;T and ct;T , for 2003Q1.
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2p=lc, appear in Fig. 3. The posteriors indicate a clear peak around a four- to five-year
period even with a relatively noninformative prior. These results suggest that the likelihood
surface in the first-order model has a more or less regular shape so that it is relatively
straightforward to pick out a business cycle component.

The underlying growth rate (slope of the trend) and the cycle, estimated as described in
Section 3.3, are displayed in Figs. 4 and 5. The shaded regions in Fig. 5 denote recessions
as identified by the NBER. The marginal posterior densities of the slope and cycle at
2003Q1 are shown in the lower panels of Fig. 3 both appear to be more or less symmetric.
The cycle will be analyzed in the next sub-section. Fig. 4 suggests the intriguing possibility
of a cycle in the growth rate but this idea will not be pursued further in this paper.

For n ¼ 1 a flat prior on lc gives nearly the same results as for the wide prior, since the
likelihood surface with respect to lc has a clear peak. For higher order cycles, the results
are more sensitive to the prior. With a flat prior the posterior of lc for n ¼ 2 has most of its
probability mass at very low values, with no clearly discernible peak.4 A corresponding
problem arises in computing ML estimates; Harvey and Trimbur (2003) had to resort to
fixing lc in this case. Using an informative prior addresses the issue in a more flexible way.
The results in Table 1 indicate that the differences between the outcomes for wide,
intermediate and sharp priors are not great and so it is probably safest to stick to the wide
prior.
4This figure is not shown here, but like others referred to in the text it was included in an Appendix to an earlier

version of the paper and is available on request.
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Fig. 6 shows marginal posteriors of the cycle parameters for n ¼ 2 with the wide prior.
The posterior means are now around six years. The posteriors of s2� and the cycle variance,
s2c, indicate

5 that more high-frequency movement is consigned to the irregular. Fig. 7 also
shows the posterior distribution of the signal–noise ratio q ¼ s2z=ðs

2
c þ s2� Þ. This measures

the relative variation in the nonstationary and stationary parts of the model. The density in
Fig. 7 is skewed with a 95% HPD region that extends up to 0.02.
Similar analysis could be carried out for n ¼ 3 and 4. However, the main contrast is

between n ¼ 2 and the standard first-order case. Furthermore, the marginal likelihood
shows the second-order cycle to be the preferred one.6 The analysis in the next two sub-
sections is based on the second-order cycle with a wide informative prior on the frequency.
4.2. Characteristics of the cycle

The relative smoothness of the second-order cycle shown in Fig. 8 makes it easier to
identify peaks and troughs. We show the turning points evaluated from definition (9), with
5The posterior of s2c was obtained by computing the cycle variance for each set of draws {rðjÞ; lðjÞc ;s
2
kg.

6There is tricky theoretical issue here because of the use of diffuse priors on certain parameters. However, it is

generally accepted that comparisons are valid so long as the parameters in question are not restricted and occur in

all models; see Gelman (2006). In the present context our preference for n ¼ 2 is supported by the plausibility of

posterior moments, the properties of the extracted cycles and forecasting performance.
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b ¼ 10 and a ¼ 8. The peaks occur a little before the start of an NBER recession (shaded
on the graph) while the troughs tend to match the end. However, as was observed in
Section 2.2, focussing on the binary labeling of business cycle phases means that one loses
sight of the finer detail offered by the extracted cycle. For example, the smoothed cycle in
Fig. 8 shows clearly that some recessions are deeper than others. A plot of the changing
amplitude of the cycle, using formula (12), allows one to see how the intensity of business
cycles has changed over the last half-century. Fig. 9 displays the evolving amplitude. The
strength of the cycle has been more moderate, as well as less volatile, since the mid-1980s.
However, it shows a slight upturn in recent years, indicating that, contrary to the view of
some economists, the business cycle is still relevant.

Fig. 10 shows a plot of the posterior mean of Dc2;t together with a corresponding
estimate based on ðDct þ Dctþ1Þ=2. This second estimate yields a series very close to Dc2;t,
though the averaging makes it slightly less volatile. The attraction of Dc2;t is that it can be
calculated at time t, rather than at tþ 1, and this is important at the end of the sample.

The bottom-right graph of Fig. 7 shows the marginal posterior of the change in the
cycle, Dc2;t, for 1973Q4. As is clear from Fig. 8 this quarter marks the onset of the deep
recession induced by the first oil price shock of the 1970s.

Table 2 shows the probability that Dc2;t is negative over the four-year period
surrounding this recession.
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Fig. 9. Estimated amplitude of the cycle in quarterly US real GDP for n ¼ 2 and a wide informative prior on lc,

shown with 95% HPD bands.
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Fig. 10. Dc2;t and average of adjacent differences.

Table 2

Probability that the rate of change in the cycle is negative for the period 1972Q1 to 1975Q4

Date PrðDc2;to0Þ Date PrðDc2;to0Þ

1972Q1 0.0124 1974Q1 0.8536

1972Q2 0.1689 1974Q2 0.9924

1972Q3 0.0252 1974Q3 0.9954

1972Q4 0.0002 1974Q4 1.000

1973Q1 0.0438 1975Q1 0.8734

1973Q2 0.8114 1975Q2 0.1330

1973Q3 0.5200 1975Q3 0.0796

1973Q4 0.9426 1975Q4 0.0068
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4.3. On line tracking of the output gap

While smoothed estimates for the whole series provide a historical perspective, what is
most important for policy makers is real-time estimates of the current state of the
economy. Fig. 11 tracks the filtered cycle from the first quarter of 1999 to the end of 2004.
An associated series of the probability of the cycle being negative could also be produced.
Fig. 12 shows the estimated on-line change in the cycle based on filtered estimates of

Dc2;t, while Fig. 13 shows the estimated probability that Dc2;t is negative. As in Fig. 12,
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these series clearly show the slowdown prior to the 2001 recession identified by the NBER;
in particular, Fig. 13 indicates that the probability that the cycle is heading downwards
in 2002 is between 0.65 and 0.70. An even more interesting feature of these graphs
is that they show how Dc2;t anticipates changes in the direction of the cycle. Thus,
in 2002Q1 the cycle is still moving down but Dc2;t is positive: in the next period the
output gap has narrowed. Similar behavior can be seen in 2000Q3, 2002Q4 and
2003Q2.

Fig. 14 shows the filtered marginal posterior for the cycle at 2001Q4 together with some
of the subsequent (smoothed) posteriors. The idea is to show how the uncertainty is
reduced with the arrival of new data. The posterior is already much tighter after two
periods. One year later, there is a sizeable gain in precision and by the end of 2003 the
distribution is relatively compact and symmetric with a peak close to �0:01.

4.4. Multivariate models

In this section we investigate whether modeling GDP jointly with other US
macroeconomic series can help to give a more accurate picture of the business cycle.
The first sub-section fits a model of the form (1) to consumption, investment and GDP.
Although most of the benefit to business cycle analysis is likely to come from the inclusion
of investment, it is interesting to fit the model to the three series, firstly, to make a
comparison with the well-known study of King et al. (1991) and secondly, to see whether
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there are technical difficulties in applying our method in the trivariate case. The second
sub-section reports an extension of the modeling framework in which lagged cyclical
components are included in an inflation equation.

4.5. C– I– Y for the US economy

The data consist of quarterly series, expressed as real quantities with base year 2000, on
personal consumption expenditures, gross private domestic investment, and GDP from
1947Q1 to 2004Q4 (source: Bureau of Economic Analysis). The similar cycle assumption
of a common period is perfectly sensible, and it may lead to efficiency gains. Details of the
extension of the MCMC routine to the general multivariate model, (1), are set out in the
Appendix.
To demonstrate the effectiveness of pooling the data, we first assumed a flat prior on lc.

(The uniform prior on ½0; 1� is again used for r.) To avoid potential distortions of the
multivariate likelihood surface due to the influence of the inverted Wishart prior, we used
flat priors on the variance matrices. The posterior density for lc with n ¼ 2 reached a clear
peak where the implied period is about 21 quarters.
If we use an informative prior for n ¼ 2 there seems little point in going beyond the wide

prior given the results of the previous paragraph—in any case the wide prior seemed to be
adequate even in the univariate case. Table 3 shows posterior means of the variance
parameters (�107Þ, correlations between the components across different series (u) and
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shared cyclical parameters, r and lc. Random drawings for the correlations are directly
constructed from the draws for the variance matrices.

The estimated second-order cycle in GDP is similar to the one produced by the
univariate case. However, the HPD bands are approximately 25% smaller than the
univariate band during the 1990s. The filtered estimates corresponding to those reported at
the end of the previous section will likewise be more accurate.

Instead of looking at recent filtered estimates, as in the previous section, we examine
forecasting performance. Fig. 15 shows the multistep predictions7 for the cycle made at the
end of 2002 for the subsequent two-year period. The forecast function indicates an upturn
in the cycle and this is consistent with the smoothed estimates made at the end of 2004 (the
corresponding univariate estimates shown in Fig. 8 are similar).

4.6. Inflation and the output gap

Kuttner (1994) and Planas and Rossi (2004) argue that the link between inflation and the
output gap, as reflected in the Phillips curve, may be exploited to produce more reliable
estimates of the output gap. Thus, an unobserved components model for GDP is combined
with an equation in which inflation depends on lagged values of the output gap, as
measured by the cycle in GDP.
7The subsequent observations are not being used to construct a series of one-step ahead predictions.
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Table 3

Posterior means for a trivariate model for US GDP, consumption, and investment from 1947Q1 to 2004Q4 using

flat priors on the variance matrices and a wide prior on lc

Consumption Investment GDP

n s2z s2k s2� s2z s2k s2� s2z s2k s2�

1 70.1 96.3 167 1640 7890 4430 106 279 82.1

2 40.5 99.6 193 338 7170 6160 51.8 260 137

3 39.4 64 208 296 4650 7221 66.6 168 169

4 40.9 33 218 300 1999 8220 86.5 75 191

Correlations and shared cyclical parameters

n r lc 2p=lc uz u� uk mðyÞ

1 0.886 0.545 11.6 0.927 �0.679 0.654 �1842.9

2 0.705 0.334 20.3 0.732 �0.493 0.824 �1724.9

3 0.603 0.266 34.6 0.709 �0.388 0.851 �1680.0

4 0.554 0.281 31.5 0.620 �0.345 0.895 �1663.1
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Fig. 14. Marginal posterior densities of c2;t (with a wide informative prior on lc) for 2001Q4 using data up to

2001Q4 and then using more observations. HPD regions are shown for the filtered estimate (at 2001Q4) and the

smoothed estimate at the end of the series (2003Q4).
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Fig. 15. Forecast of cyclical component, with 95% HPD bands, of US GDP for the two-year period

2003Q1–2004Q4, based on the trivariate C–I–Y model with n ¼ 2 using a wide prior on lc. Also shown from

1990Q1 to 2002Q4 is the smoothed cycle.
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where yt is the logarithm of quarterly real US GDP, pt is the CPI rate of inflation and

pt ¼ c1c
y
t�1 þ c2c

y
t�2

denotes the price pressure due to recent output gap levels. Note that a simple
transformation of the vector ðcp

t , c
y
t Þ
0 allows cp

t to be broken down into two independent
parts, one of which depends on the GDP cycle, that is cp

t ¼ ccy
t þ cþt . Putting the model

into state space form is straightforward. Posterior results for cycle orders from 1 to 4 are
shown in Table 4.

The above inflation equation is somewhat different from the ones in Kuttner (1994) and
Planas and Rossi (2004) in that we drop the lagged growth rate of GDP and include a
stochastic trend. The reason for including the stochastic trend is that it is difficult to
find a stable relationship between inflation and output without it. Fig. 16 shows the
trend and cycles obtained by a model of the form (1) with n ¼ 2. Plotting the cycles on
the same graph, Fig. 17, provides an indication that GDP leads inflation, particularly in
the 1970s.

In moving from first- to second-order cycles, the marginal likelihood rises markedly, and
the coefficients that relate the response of inflation to lagged output gap increase. The
posterior distributions for c1 and c2 appear more or less symmetric with the 95% HPD
bounds being ½0:144; 1:380� and ½�0:486; 0:470�, respectively. Furthermore the correlation
between the cycle disturbances is close to zero, implying a coefficient of only 0.027 on the
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Table 4

Posterior means for a bivariate model of quarterly US CPI inflation and real GDP from 1947Q2 to 2004Q4 using

flat priors on the variance matrices and a wide prior on the central frequency lc

Inflation GDP

n s2z s2k s2� s2z s2k s2�

1 5.97 337 5241 44.4 497 39.6

2 3.77 112 5875 25.8 272 140

3 4.76 39.3 6315 62.6 131 173

4 4.25 19.3 6594 96.1 82 180

Correlations (u), shared cyclical parameters (r and lc) and inflation response coefficients (c1 and c2Þ

n r lc 2p=lc uz u� uk c1 c2 mðyÞ

1 0.902 0.349 18.25 0.045 �0.008 0.016 0.710 0.061 �1136.0

2 0.725 0.295 22.36 �0.221 �0.028 0.040 0.723 0.018 �974.1

3 0.596 0.302 22.09 �0.081 �0.029 0.168 0.876 0.098 �948.2

4 0.501 0.313 21.54 0.105 �0.023 0.243 1.01 0.155 �944.5

All variance parameters are multiplied by 107.
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Fig. 16. Estimated trends and cycles in quarterly CPI inflation and US real GDP (logarithms) for n ¼ 2 with wide

prior on lc.
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current cycle if the model is reparametrized in the way indicated earlier. The conclusion is
that an increase in the output gap of one percent of GDP is expected to foreshadow a rise
of about 0.7 of a percentage point in the rate of inflation in the next quarter. Including a
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second lag, as is done by Planas and Rossi (2004) but not by Kuttner (1994), is probably
not necessary.

The GDP cycle resembles corresponding series from the univariate model, but the HPD
bands are narrower. Of course, it would be even more useful if one had an equation that
featured leads in the cycle rather than lags. Nevertheless given that it takes two or three
periods to recognize a turning point, a one period lag is not entirely useless. Of course, the
model might also be useful for forecasting inflation.
5. Conclusion

This article further extends the model-based methodology for the estimation of trends
and cycles in macroeconomic time series. The preferred models use the second-order cycles
introduced recently by Harvey and Trimbur (2003) since these tend to be smoother than
first-order cycles, with relatively more noise consigned to the irregular component. We
suggest various ways in which the information obtained by fitting such models can be used
to describe past movements of the cycle and to focus attention on such features such as
changing volatility and turning points. Handling several cycles, such as minor inventory
(Abramovitz) cycles, construction cycles or Kondratieff long swings, is also possible within
our framework.8
8There is an illustrative example (concerned with rainfall) in the STAMP manual of Koopman et al. (2000, pp.

55–56, see also exercise 5, p. 57), see also Harvey et al. (2005).
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There are two main attractions to a Bayesian approach. Firstly, flexible restrictions can
be placed on key parameters, such as the frequency parameter in the stochastic cycle, and
this avoids fitting implausible models. Secondly, parameter uncertainty is taken account of
in providing information about extracted components and their forecasts. The
disadvantage is that the computational requirements are heavier than for ML. However,
although Bayesian estimation typically requires several minutes,9 as opposed to a few
seconds, this hardly renders it infeasible. The MCMC routines we describe should be of
value for future research, particularly for multivariate series where the computations are
nontrivial.
Cycles were successfully extracted from US GDP using a univariate model. Such cycles

have a simple interpretation in terms of the percentage by which they exceed or fall below
the long-term level of potential output. Associated measures track the size and direction of
the cycle. The posterior distributions clearly indicate the degree of uncertainty that arises
from signal extraction and the fact that the parameters are unknown. Fitting multivariate
models offers the possibility of reducing this uncertainty. Used on-line, measures such as
the probability that the output gap is increasing or decreasing may be of considerable
practical value.
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Appendix A. Rate of change in the cycle

A first-order cycle in continuous time is written as

dwðtÞ ¼ AwðtÞdtþ dWkðtÞ,

where wðtÞ ¼ ðcðtÞ c�ðtÞÞ0;WkðtÞ is a 2� 1 vector of Brownian motion and

A ¼
log r lc

�lc log r

" #
.

9Univariate: 5000 iterations takes about 40 s for n ¼ 2 and about 80 s for n ¼ 4. Output gap/bivariate: 5000

iterations takes 4min for n ¼ 2. Trivariate C–I–Y: 5000 iterations takes about 5min, 45 s for n ¼ 2. Recall that

when we take 5000 draws with 10 iterations per draw and 10,000 burned there are 600,000 iterations.

Microprocessor of computer is Pentium 4 (2.26GHz).
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The expected incremental change in cðtÞ is

dcðtÞ ¼ ðlog rÞcðtÞdtþ lcc
�
ðtÞdt

and the discrete time model is as in (3); see Harvey (1989, p. 487). The discrete time expression
corresponding to dcðtÞ is therefore as in (10). There is a slight complication with flow variables
in that the discrete time model has correlated measurement and transition equation noise; see
Harvey (1989, p. 494). However, we would still suggest using (10) as an approximation.

The second-order cycle is

dw2ðtÞ ¼ Aw2ðtÞdtþ w1ðtÞdt,

dw1ðtÞ ¼ Aw1ðtÞdtþ dWkðtÞ

with expected incremental change

dc2ðtÞ ¼ ðlog rÞc2ðtÞdtþ lcc
�
2ðtÞdtþ c1ðtÞdt. (14)

The model in (4), that is

w2;t ¼ Tw2;t�1 þ w1;t�1, (15)

w1;t ¼ Tw1;t�1 þ jt; jt�NIDð0;s2kIÞ (16)

with T as in (7) and w1;t ¼ Tw
y

1;t, where w
y

1;t corresponds to the continuous time variable
w1ðtÞ, is an approximation to the discrete time formulation as there will be a disturbance,
correlated with jt, attached to the first equation and, for a flow, both disturbances will be
correlated with the measurement equation disturbance. If the approximation to the
continuous time model is accepted, the appropriate formula for change is as in (11) because
of the transformation from w

y

1;t to w1;t.

Appendix B. Priors

The informative priors on lc are constructed from the class of beta distributions. This gives
a compact and flexible way to specify expectations of business cycle periods and their associated
uncertainty. For details on the beta probability distribution, we refer to Poirier (1995).

A mode of 2p=20 is used for quarterly US macroeconomic data. This can be easily
adjusted to implement alternative expectations. In the current application, the mode of
2p=20 reflects a central business cycle period of five years. Further, the prior is constrained
to lie on the interval [p=20;p=4]; this preempts average periods greater than ten years and
less than two years. Concentrating on the mode ensures that the prior probability density is
maximum in the desired region.

The prior design makes it easy to adjust the implied uncertainty in the expectations.
The dispersion of the prior is controlled by the beta-distribution parameters, that
may be set to yield the appropriate standard deviation. The three priors in Fig. 1 range
from weakly to highly informative. For the widest prior the standard deviation is
sl ¼ 2p=50 and the proportional spread is sl=bml ¼ 40%. For the intermediate prior
sl ¼ 2p=150;sl=bml ¼ 13%, and for the sharpest prior 2p=400; sl=bml ¼ 5%.

The flat priors on the variance parameters s2z ;s
2
k;s

2
� ensure that the posterior is

unaffected by the prior shape around zero. As shown below, the variance parameters have
independent inverted gamma conditional posteriors when independent flat priors are used,
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so direct simulation is possible, which enhances the efficiency of the algorithm. For details
on the inverted gamma family we refer to Poirier (1995).
Another possibility would be to use inverted gamma densities. These are natural

conjugate priors so the conditional posteriors would again be inverted gamma. This would
allow for informative priors on the variance parameters. However, the use of inverted
gamma densities with very low shape and scale, to represent vague prior notions, can lead
to problems in estimation and an inaccurate assessment. Specifically, the posterior may be
significantly influenced by the steep descent of the prior around zero; the net effect depends
on the behavior of the likelihood function near the origin. For parameters that tend to take
on small values, such as the variance of the slope disturbance in the stochastic trend, the
use of the flat prior is recommended to avoid distortions. The exact choice of the interval
is, in our analysis, less important as it can be set relatively large to include any plausible
prior value. For a similar argument in favor of uniform priors we refer to Gelman (2006).
Similarly, in the multivariate case, we work with flat priors defined over an arbitrarily

large N-dimensional region. An alternative would be to use natural conjugate inverted
Wishart priors. These are the generalization of the inverted gamma to the multivariate
setting; see Zellner (1971), for instance. However, the use of a limiting inverted Wishart
density to represent a noninformative prior on a variance matrix involves the same
difficulties as in the univariate setting, and the possible distortions in the likelihood surface
may be more complex (the number of implicit variance and covariance parameters
increases rapidly with the number of series being modeled). Of course, an informative
inverted Wishart could be used, but even when there are expectations about correlations
across series, it is unclear how to express such prior knowledge in the formulation of the
inverted Wishart density. In any case, in using flat priors on the variance matrices
Sk;Sz;S�, the inverted Wishart form for the conditional posteriors continues to hold.
Appendix C. MCMC routine

This appendix describes the algorithm used for posterior analysis of the class of models
(1). The MCMC routine, constructed a ‘Metropolis–Hastings within Gibbs’ sampling
algorithm, has a design that can be naturally extended to handle other model structures.
The algorithm generates pseudo-random drawings from the combined posterior density of
the components and parameter vector; by taking suitable transformations, properties of
marginal and joint densities are studied and summary measures estimated. We set out the
algorithm in the general multivariate case and then comment on the special case of a
univariate model and on the use of variance priors.
The joint posterior pðh; ajyÞ is the target density. We consider the state matrix a as a

single block and sub-divide the parameter vector h into the set of variance parameters,
along with r and lc taken individually. This gives a total of four blocks in the Gibbs
sampler. The corresponding steps at each iteration of the sampling algorithm are described
below.
After choosing a set of initial values hð0Þ, the MCMC routine produces a sequence of

draws {hðiÞ; aðiÞ}, i ¼ 1; 2; . . ., according to the following four steps:
1.
 aðiÞ is drawn from pðajhði�1Þ; yÞ.

2.
 RðiÞk ;R

ðiÞ
z ;R

ðiÞ
� are collectively sampled from pðRk;Rz;R�jrði�1Þ; l

ði�1Þ
c ; aðiÞ; yÞ.
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3.
 rðiÞ is drawn from pðrjRðiÞk ;R
ðiÞ
z ;R

ðiÞ
� ; l

ði�1Þ
c ; aðiÞ; yÞ.

ðiÞ

4.
 lðiÞc is drawn from pðlcjR

ðiÞ
k ;Rz ;R

ðiÞ
� ;r

ðiÞ; aðiÞ; yÞ.
We now describe how the draw from the conditional density is obtained at each step.
For details on the matrix calculus used in certain parts of the proof, we refer to Magnus
and Neudecker (1999).

1. pðajhði�1Þ; yÞ: Eqs. (1)–(4) express the observed process as a sum of unobserved
components. The state space form of the model is set out in Trimbur (2006). There are
(2þ 2nÞN elements in the state vector, including the trend, the cycle, and the processes
used in their definition:

at ¼ ½l
0
t;b
0
t;w
0
t�
0, (17)

wt ¼ ½wn;t w�n;t . . . w1;t w�1;t�
0. (18)

This gives a partition of the state vector into the components linked to the stochastic trend,
lt, and the components linked to the stochastic cycle, wn;t. The vector of length (2þ 2nÞNT

formed by stacking the complete set of state vectors over the sample period is denoted as
a ¼ ½a01; . . . ; a

0
T �
0. The measurement equation in the state space form can be written as

yt ¼ ztat þ et; t ¼ 1; . . . ;T ,

where zt is the appropriate selection matrix of ones and zeros.
Given the most recent iterate of the parameter vector hði�1Þ, the general simulation

smoother of Durbin and Koopman (2002) is applied to generate a draw aðiÞ from
pðajhði�1Þ; yÞ.

2. pðRk;Rz;R�jrði�1Þ; l
ði�1Þ
c ; aðiÞ; yÞ. With independent priors,

pðRk;Rz;R�jr; lc; a; yÞ / pðyja; hÞpðajhÞpðRkÞpðRzÞpðR�Þ. (19)

The joint density of the set of state vectors, given the parameters, is

pðajhÞ ¼ pða1jhÞ
YT
t¼2

pðatjat�1; hÞ. (20)

The above expression involves the initial distribution pða1jhÞ ¼ pðl01;b
0
1;w
0
1jhÞ ¼

pðl01; b
0
1jhÞ � pðw01jhÞ. Following standard practice, it is assumed that pðl01;b

0
1jhÞ is diffuse.

Specifically, it is a mean-zero Gaussian density with varð½l01;b
0
1�
0Þ ¼ s2�I2N , where s2� ! 1.

The exact initial conditions for the cyclical state w01 are given in Trimbur (2006).
While some elements of at are deterministic functions of at�1, the conditional density of

at given at�1 depends only on the stochastic elements. To focus on the relevant subset of
the state space, we define the reduced state vector, transition matrix, and covariance matrix
as follows:

a�t ¼

bt

w1;t

w�1;t

264
375; T� ¼

IN O

O T� IN

" #
; X� ¼

Rz O

0 I2 � Rk

" #
.

The one-step ahead density is

pðatjat�1; hÞ ¼ jX
�
j�1=2 exp �1

2
ða�t � T�a�t�1Þ

0X��1ða�t � T�a�t�1Þ
� �

.
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Denoting the variance matrix of the cyclical state vector as C ¼ varðwtÞ, we have

pðajhÞ / jCj�1=2jX�j�ðT�1Þ=2

� exp �
1

2
w01C

�1w1 �
1

2

XT

t¼2

ða�t � T�a�t�1Þ
0X��1ða�t � T�a�t�1Þ

( )
.

This can be rewritten as

pðajRz;Rk; r; lcÞ / jCj
�1=2jI2 � Rkj

�ðT�1Þ=2jRzj
�ðT�1Þ=2

� exp �
1

2
w1C

�1w1 �
1

2

XT

t¼2

c0tðI2 � RkÞ
�1ct

( )

� exp �
1

2

XT

t¼2

ðbt � bt�1Þ
0R�1z ðbt � bt�1Þ

( )
, ð21Þ

where ct ¼ ½w
0
1;t;w

�0

1;t�
0 � ðT� IN Þ½w

0
1;t�1;w

�0

1;t�1�
0 with w1;t ¼ ½c

1
1;t; . . . ;c

N
1;t�
0, w�1;t ¼ ½c

1�
1;t;

. . . ;cN�
1;t �
0.

The summation in the cyclical part is

XT

t¼2

c0tðI2 � RkÞ
�1ct ¼

XT

t¼2

tr½ðI2 � R�1k Þctc
0
t�

¼ trðR�1k c1;tc
0
1;tÞ þ trðR�1k c2;tc

0
2;tÞ,

where c0t ¼ ½c
0
1;t c

0
2;t�. For this partition of ct, the upper half c1;t corresponds to the N first-

order cycles ½c1
1;t; . . . ;c

N
1;t�
0, and the lower half c2;t to the auxiliaries, ½c�11;t; . . . ;c

�N
1;t �
0.

Further, it is shown in Trimbur (2006) that the unconditional variance matrix has the form
C ¼ C� � Rk. Therefore, in the conditional density of a, the cyclical part of the model gives
the factor

jC� � Rkj
�1=2jI2 � Rkj

�ðT�1Þ=2 � exp �1
2
w01½C

� � Rk�
�1w1 �

1
2
trðR�1k GÞ

� �
,

where

G ¼
XT

t¼2

ðc1;tc
0
1;t þ c2;tc

0
2;tÞ.

Since

jC� � Rkj ¼ jC
�jN jRkj

2n

and jI2 � Rkj ¼ jRkj
2, it follows that

jC� � Rkj
�1=2jI2 � Rkj

�ðT�1Þ=2 ¼ jC�j�N=2jRkj
�ðnþT�1Þ.

Let the elements of block i; j of C� be denoted by

fC�gi;j ¼
C�i;j C�i;j�
C�i�;j C�i�;j�

" #
.
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The complete cyclical state vector at each t is partitioned as

wt ¼ ½c
1
n;t; . . . ;c

N
n;t;c

1�
n;t; . . . ;c

N�
n;t ; . . .c

1
1;t; . . . ;c

N
1;t;c

1�
1;t; . . . ;c

N�
1;t ; �

0

¼ ½w0n;t;w
�0

n;t;w
0
n�1;t;w

�0

n�1;t; . . . ;w
0
1;t;w

�0

1;t�
0.

The term involving the initial state vector in the exponent may be written as

w01½C
� � Rk�

�1w1 ¼
1
2
trðR�1k HÞ, (22)

where the (N �NÞ matrix H is given by

H ¼
Xn

i¼1

Xn

j¼1

C��1i;j wj;1w
0
i;1 þ

Xn

j¼1

C��1i;j� w�j;1w
0
i;1

 !

þ
Xn

i¼1

Xn

j¼1

C��1i�;j wj;1w
�0

i;1 þ
Xn

j¼1

C��1i�;j�w
�
j;1w
�0

i;1

 !
.

This expression is derived by first noting that

½C� � Rk�
�1 ¼ tr½ðC��1 � R�1k Þw1w

0
1�.

Once the Kronecker product and multiplication are applied, the sum of the diagonal
elements gives (22).

The summation for the trend part of the conditional density can similarly be written asXT

t¼2

ðbt � bt�1Þ
0R�1z ðbt � bt�1Þ ¼

XT

t¼2

tr½R�1z ðbt � bt�1Þðbt � bt�1Þ
0
�.

The conditional density of a is therefore

pðajRz;Rk;r; lcÞ / jC
�j�N=2jRkj

�ðnþT�1Þ exp �1
2
trðR�1k ½GþH�Þ

� �
�jRzj

�ðT�1Þ=2 exp �
1

2
tr R�1z

XT

t¼2

ðbt � bt�1Þðbt � bt�1Þ
0

" # !( )
.

ð23Þ

The joint density of the observations given the hyperparameters and a is

pðyja; hÞ / jR�j
�T=2 exp �

1

2

XT

t¼1

tr½R�1� ðyt � ztatÞðyt � ztatÞ
0
�

( )
.

The use of a flat prior for Rk means that pðRkÞ is proportional to a small, positive
constant on its domain. The domain for Rk covers the region of permissible values, which
includes symmetric, positive semi-definite matrices of dimension N. Naturally, a flat prior
covering the unbounded space of all permissible covariance matrices can only be defined as
a limiting case. However, in practice it is sufficient to define the prior on an arbitrary finite
sub-space; one can then choose a sub-space large enough to include all viable Rk. A similar
assumption is made in the design of pðRzÞ and pðR�Þ. In this framework, the conditional
posterior in (19) is then proportional to the product of the conditional densities of a and y

shown above.
It follows that (19) factors into three distinct kernels of the inverted Wishart form.

Therefore, in Step 2 of the Gibbs sampler, the conditional posterior for the variance
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matrices Rz, Rk, R� consists of three independent inverted Wishart distributions. The shape
parameter is constant for each density, as indicated below, while the scale matrix is
updated at each iteration:

Rz : c�z ¼ cz þ ðT � 1Þ; Sz ¼
XT

t¼2

ðbt � bt�1Þðbt � bt�1Þ
0,

Rk : c�k ¼ ck þ 2ðnþ T � 1Þ; Sk ¼ GðiÞ þHðiÞ,

R� : c�� ¼ c� þ T ; S� ¼
XT

t¼1

ðyt � zta
ðiÞ
t Þðyt � zta

ðiÞ
t Þ
0.

The superscript in GðiÞ means that the quantity is computed from the state vector drawn in
the previous step of the same iteration, together with the cycle parameters from the
previous iteration. At iteration i, the collective draw {RðiÞz ;R

ðiÞ
k ;R

ðiÞ
� g is generated by

separately drawing from each inverted Wishart density.
3. pðrjRðiÞz ;R

ðiÞ
k ;R

ðiÞ
� ; l

ði�1Þ
c ; aðiÞ; yÞ: The parameter r controls the persistence of cyclical

shocks and how they are dampened over time. We use a uniform prior on ½0; 1� to ensure
that the model produces a well-defined cycle. Using Bayes theorem for densities,

pðrjRz;Rk;R�; lc; a; yÞ / pðrÞpðyja; hÞpðajhÞ / pðrÞpðajhÞ.

Recall that pðajhÞ depends on r. The form of the dependence is complex; the expression
above gives a nonstandard kernel. However, since the expression, which is proportional to
the actual density function, can be evaluated for any 0oro1, this suggests the use of a
Metropolis–Hastings step to generate draws.
A simple random walk is used as the proposal density. See Chib and Greenberg (1996)

and Koop and Van Dijk (2000) for related applications of the M–H algorithm. The details
are as follows. At iteration i, the candidate r� is chosen as r� ¼ rði�1Þ þ ut, where ut is
mean-zero Gaussian with variance determined by the assumed scale. The ratio
R ¼ pðr�j�Þ=pðrði�1Þj�Þ is computed. If Rp1, then rðiÞ is set equal to r� with probability
R and to rði�1Þ with probability 1� R. Otherwise, if R41, then rðiÞ is set to r� with
certainty.
To summarize, in Step 3, the ith draw rðiÞ is produced by first, generating a candidate

draw, and second, accepting it or rejecting it (and instead repeating the previous draw)
based on a comparison of the kernel pðrjRðiÞz ;R

ðiÞ
k ;R

ðiÞ
� ; l

ði�1Þ
c ; aðiÞ; yÞ at candidate and

previous r. In this way, the M–H step is embedded in the Gibbs sampler. For each model,
prior, and data set, the scale of the proposal density for r was calibrated to give an
acceptance probability of about 35%. Calibration of the scale was done to improve the
efficiency and performance of the simulations.
4. pðlcjR

ðiÞ
z ;R

ðiÞ
k ;R

ðiÞ
� ;r

ðiÞ; aðiÞ; yÞ: The conditional posterior is

pðlcjRz;Rk;R�;r; a; yÞ / pðlcÞpðyja; hÞpðajhÞ / pðlcÞpðajhÞ. (24)

The kernel is clearly nonstandard in the frequency parameter: the informative beta
priors pðlcÞ combine with the factor pðajhÞ, which involves an exponential of trigonometric
functions of lc. However, the quantity proportional to the density function can again be
evaluated. A second M–H step is used to compute the successive draws lðiÞc from
pðlcjR

ðiÞ
z ;R

ðiÞ
k ;R

ðiÞ
� ;r

ðiÞ; aðiÞ; yÞ. The treatment is analogous to Step 3, and the proposal density
was calibrated for each application in the same way.
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There are various strategies available for estimating the marginal likelihood from the
simulation output. Kass and Raftery (1995) and DiCiccio et al. (1997) discuss compu-
tational approaches based on the Laplace method. This method relies on a multivariate
Gaussian approximating density and has the advantage of simplicity. In our applications
of MCMC, the calibration of M–H steps and the discarding of multiple iterations between
recorded draws were used to improve the efficiency of the posterior sample. In cases of
unusual posterior shapes, for instance, if it were multimodal in a high-density region, then
the approximation is likely to break down; see, for instance, Kleijn and Van Dijk (2006).
However, the results in our case suggest more or less well-behaved posteriors, at least for
the univariate case. Caution may be warranted when making comparisons among
multivariate models since in this case the higher-dimensional posteriors involve a more
extensive set of relationships between components and parameters.

The MCMC algorithm for the special case of a univariate model has the same form. The
primary difference is that the treatment of the variance parameters is now simpler. With
each variance matrix now a single variance parameter, in Step 2 of the Gibbs sampler, the
joint conditional posterior reduces to a product of three inverted gamma densities.

The use of flat priors on the variance parameters helped avoid distortion of the posterior
shape. This was especially important for estimation of the variance of the slope
disturbance—this tends to be low when a relatively smooth trend is present in the series.
Our experience with simulations showed that the use of an inverted gamma prior density,
with shape and scale set to very low values in an attempt to mimic an ‘effectively
noninformative’ prior, could result in distortions in posterior estimates. The marginal
posterior of s2z became artificially concentrated in a region near zero, due to the shape of the
‘effectively noninformative’ IG prior in this region—specifically, its sharp rise in the
immediate vicinity of s2z ¼ 0. The use of a flat prior enabled a direct picture of the likelihood
surface and so gave a clearer indication of the trend variation evident in the data.

For simplicity, the discussion of variance priors has been framed in the univariate
context. For multivariate models, a prior on a variance matrix contains information about
the covariances between different elements. A correlation structure is implicitly assumed in
using the prior. This raises the possibility of more complex effects from the use
of ‘effectively noninformative’ IW priors. In using flat priors for the variance matrices
in the applications, the goal is to better preserve the shape of the multivariate
likelihood.

The last set of drawings {hðjÞ, aðjÞ}, j ¼ 1; . . . ; J, used in the final posterior sample was a
subset of the fhðiÞ, aðiÞg produced by the MCMC routine. To reduce correlations between
successive posterior draws, multiple iterations were run to produce each draw, and a
number of initial iterations were burned. For instance, in the univariate case, 20 iterations
were used to produce each draw, and the first 5000 iterations were burned. In the final
posterior sample, the autocorrelations for consecutive parameter draws typically fell to
near zero after less than 10 lags.
References

Baxter, M., King, R.G., 1999. Measuring business cycles: approximate band-pass filters for economic time series.

Review of Economics and Statistics 81, 575–593.

Blanchard, O.J., Fischer, S., 1989. Lectures in Macroeconomics. MIT Press, Cambridge, MA.

Carter, C.K., Kohn, R., 1994. On Gibbs sampling for state space models. Biometrika 81, 541–553.



ARTICLE IN PRESS
A.C. Harvey et al. / Journal of Econometrics 140 (2007) 618–649648
Chib, S., Greenberg, E., 1996. Markov chain Monte Carlo simulation methods in econometrics. Econometric

Theory 12, 409–431.

Cogley, T., Nason, J.M., 1995. Effects of the Hodrick–Prescott filter on trend and difference stationary time

series: implications for business cycle research. Journal of Economic Dynamics and Control 19, 253–278.

De Jong, P., Shephard, N., 1995. The simulation smoother for time series models. Biometrika 82, 339–350.

DiCiccio, T., Kass, R., Raftery, A., Wasserman, L., 1997. Computing Bayes factors by combining simulation and

asymptotic approximations. Journal of the American Statistical Association 92, 903–915.

Doornik, J.A., 1999. Ox: An Object-Oriented Matrix Programming Language. Timberlake Consultants Ltd,

London.

Durbin, J., Koopman, S.J., 2002. A simple and efficient simulation smoother. Biometrika 89, 603–616.
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