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We model the financing, cash holdings, and hedging policies of a firm facing financing
frictions and subject to permanent and transitory cash flow shocks. The permanent and
transitory shocks generate distinct, sometimes opposite, effects on corporate policies. We
use the model to develop a rich set of empirical predictions. In our model, correlated
permanent and transitory shocks imply less risk, lower cash savings, and a drop in the
value of credit lines. The composition of cash-flow shocks affects the cash-flow sensitivity
of cash, which can be positive or negative. Optimal hedging of permanent and transitory
shocks may involve opposite positions. (JEL G31, G32, G35)
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During the past two decades, dynamic corporate finance models have become
part of the mainstream literature in financial economics, providing insights
and quantitative guidance for investment, financing, cash management, or risk
management decisions under uncertainty. Two popular cash flow environments
have been used extensively in this literature. In one, shocks are of permanent
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Corporate Policies with Permanent and Transitory Shocks

nature and cash flows are governed by a geometric Brownian motion (i.e.,
their growth rate is normally distributed). This environment has been a
cornerstone of real-options models (see, e.g., McDonald and Siegel 1986;
Morellec and Schürhoff 2011) and dynamic capital structure models (see, e.g.,
Leland 1998; Strebulaev 2007). In the other, shocks are purely transitory
and short-term cash flows are modeled by the increments of an arithmetic
Brownian motion (i.e., cash flows are normally distributed). This has proven
useful in models of liquidity management (see, e.g., Décamps et al. 2011;
Bolton, Chen, and Wang 2011) and in models of dynamic agency (see, e.g.,
DeMarzo and Sannikov 2006; Biais et al. 2007).1

Assuming that shocks are either permanent or transitory has the effect
of dramatically simplifying dynamic models. However, corporate cash flows
cannot generally be fully described using solely transitory or permanent shocks.
Many types of firm or market shocks are transitory and do not affect long-
term prospects. Examples include temporary changes in demand, delays in
costumer payments, machine breakdowns, or supply chain disruptions. But
long-term cash flows also change over time because various firm, industry,
or macroeconomic shocks permanent in nature. Examples include changes in
technology, reductions of trade barriers, or changes in consumer preferences.

By definition, permanent shocks affect not only a firm’s immediate
productivity and cash flows but also its future productivity and cash flows.
By contrast, while purely transitory shocks affect immediate cash flows, they
are uninformative about future expected profitability. Consequently, corporate
policies are likely to respond differently to transitory shocks than to permanent
shocks, and corporate decisions are likely to vary with the relative importance
of firms’ exposure to these two sources of uncertainty.2 Our objective in this
paper is therefore twofold. First, we seek to develop a dynamic framework for
the cash holdings, external financing, payout, and risk management decisions
of a “financially constrained" firm subject to both permanent and transitory
cash flow shocks. Second, we want to use this model to shed light on existing
empirical results and generate novel testable implications.

We begin our analysis by formulating a dynamic structural model in which
a firm faces financing frictions, in that raising outside funds is costly, and is

1 See Strebulaev and Whited (2012) for a recent survey of models based on permanent shocks. See
Moreno-Bromberg and Rochet (2014) for a recent survey of liquidity models based on transitory shocks. See
Biais, Mariotti, and Rochet (2013) for a recent survey of dynamic contracting models. In a recent paper, He
(2009) develops a dynamic agency model with permanent shocks. Abel (2015) constitutes an example of a
dynamic capital structure model with purely transitory shocks only. Bolton, Wang, and Yang (2015) constitutes
an example of a real options model with only permanent shocks and financing frictions.

2 Consider, for example, a firm facing a positive demand shock. If the shock is purely transitory and the marginal
cost of production is increasing, the firm is likely to use its inventory to meet this increase in demand, and,
therefore, the effect of this transitory increase in demand can be spread at the production stage over several
periods. This, in turn, implies that neither the output price nor the quantity produced adjusts by much. If, instead,
the shock is permanent in nature, a high demand today implies a high demand in the future, and the shock cannot
be smoothed as much. In this case, both output and price (because the marginal cost of production will be high
in the future as well) will adjust more.
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subject to both permanent and transitory cash flow shocks. To account for the
fundamentally different nature of these shocks, we model the firm cash flows in
the following way. First, cash flows are subject to profitability shocks that are
permanent in nature and governed by a geometric Brownian motion, as in real
options and dynamic capital structure models. Second, for any given level of
profitability, cash flows are also subject to short-term shocks that expose the firm
to potential losses. These short-term cash flow shocks may be purely transitory
but they may also be correlated with permanent shocks. In the model, the losses
due to short-term shocks can be covered either using cash holdings or by raising
outside funds at a cost. The firm may also hedge its exposure to permanent
and transitory shocks by investing in financial derivatives or by changing
its exposure to these shocks via asset substitution. When making liquidity,
financing, and hedging decisions, management maximizes shareholder value.

Using this model, we generate two sorts of implications. First, we show that
a combination of transitory and permanent shocks can lead to policy choices
that are in stark contrast with those in models based on a single source of risk.
Second, our analysis demonstrates that transitory and permanent risks have
different, often opposing, implications for corporate policies. Combining them
produces implications that are consistent with a number of stylized facts and
allows us to generate a rich set of testable predictions.

We highlight the main empirical implications. As in standard liquidity
management models in which firms are solely exposed to transitory shocks,
financing frictions generate a precautionary demand for cash in our model,
since raising external capital to absorb potential losses and avoid inefficient
closure is costly. A key difference with prior models, however, is that the value
of the firm depends not only on its cash holdings, but also on the value of the
permanent shock. Notably, a unique feature of our model is that the ratio of
cash holdings over profitability (firm size) is the state variable of the firm’s
problem. This is consistent with the approach taken in the empirical literature
(see, e.g., Opler et al. 1999), but it has not been clearly motivated by theory.

Given that the empirical literature uses a related proxy, it may not seem a
notable observation that “effective cash = cash/profitability”. However, this
observation implies that more profitable firms hold more cash. That is, as the
long-term prospects of the firm improve following positive permanent shocks,
the firm becomes more valuable and finds it optimal to hoard more cash. This
observation also implies that a positive permanent shock has two effects. First,
it affects the denominator of the state variable. Future cash flows go up in
expectation so that, holding the cash balance fixed, the firm is now more
constrained. The second effect of a positive permanent shock is on the cash
flow today as it affects the numerator of the state variable, making the firm
richer. Intuitively, the negative effect is more important when the denominator
is smaller, that is, when the firm has more cash. By contrast, a transitory shock
only affects the numerator of the state variable, so that a positive transitory
shock makes the firm richer and less constrained.
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We show in the paper that this relation between permanent shocks and target
cash holdings has numerous implications. A first implication is that target cash
holdings should decrease in correlation between short-term and permanent
shocks. This is not immediately expected because two correlated shocks
of transitory nature would allow for diversification if correlation decreased.
So cash savings would increase in correlation between transitory shocks.
Intuitively, the firm benefits from increased correlation between short-term
and permanent shocks because it is then able to generate cash flows when they
are needed to maintain scaled cash holdings after positive permanent shocks. A
related implication is that an increase in the volatility of permanent cash flow
shocks can also decrease target cash holdings. This effect is due to the fact
that volatility in permanent cash flow shocks can help manage liquidity when
short-term shocks are positively correlated with permanent shocks. Our model
also predicts that when this correlation is negative, cash savings should increase
with the volatilities of both permanent and transitory cash flow shocks.

Another unique prediction of our model is that target cash holdings should
decrease with the growth rate of transitory shocks but increase with the growth
rate of permanent shock, as an increase in the latter (respectively former) makes
it more (respectively less) likely that the firm will be constrained in the future.
We also find that permanent shocks have large quantitative effects on firm value
and optimal policies. With our baseline parameters, for example, permanent
shocks increase both firm value and target cash holdings by 44%.

A second set of results concerns the cash-flow sensitivity of cash. In
corporate-liquidity models based solely on purely transitory shocks, the cash-
flow sensitivity of cash is either zero (at the target level of cash reserves)
or one (away from the target). In contrast, our model predicts that firms
demonstrate a nontrivial and realistic cash-flow sensitivity of cash, due to
the effects of permanent shocks on target cash holdings. In our model, this
sensitivity increases with financing frictions, consistent with the available
evidence. In addition, it is positive when short-term and permanent shocks
are positively correlated, consistent with Almeida, Campello, and Weisbach
(2004), but negative when this correlation is negative, consistent with
Riddick and Whited (2009).

Turning to risk management, we show that derivatives usage should depend
on whether the risk stems from transitory or permanent shocks. Specifically,
if futures prices and the firm’s risk are positively correlated, then hedging
transitory shocks involves a short futures position while hedging permanent
shocks may involve a long futures position. That is, hedging permanent shocks
may involve a position not contrary but aligned to the exposure. In these
instances, the firm prefers to increase cash flow volatility to benefit from the
increase cash flow correlation to permanent profitability shocks.

We also show that managing risk either by derivatives or by directly selecting
the riskiness of assets (i.e., asset substitution) leads to the same outcome if the
risk is due to purely transitory shocks. However, hedging with derivatives and
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asset substitution are not equivalent when managing the risk from permanent
shocks. This is because asset substitution does not generate immediate cash
flows, whereas derivatives do. This may not matter for an unconstrained firm,
but it is a fundamental difference for a financially constrained firm. One
prediction of the model is thus that a firm in distress would engage asset
substitution with respect to permanent shocks, but not in derivatives hedging.

Another way for firms to manage their risks is to acquire financial flexibility
via a credit line. Our model shows that the availability of a credit line leads
to both a significant decrease in target cash holdings and a significant increase
in firm value, but has little effect on equity issues. Interestingly, because the
correlation between permanent and short-term shocks reduces firm risk, we
also find that the firms or industries that benefit most from credit lines are those
in which permanent and short-term cash flow shocks are negatively correlated.

Lastly, we show that the relation between permanent shocks and target cash
holdings also implies that when firms raise outside funds, the size of equity
issues is not constant, but depends on the firm’s profitability. Notably, a unique
prediction of our model is that more profitable firms should raise more funds
when accessing financial markets.

In the last section of the paper, we consider the option to invest in our
constrained firm and show that the combination of financing frictions and
transitory shocks delays investment. This delay is due to two separate effects.
First, the cost of external finance increases the cost of investment, making the
investment opportunity less attractive and leading to an increase in the prof-
itability level required for investment. Second, the combination of transitory
shocks and financing frictions reduces the value of the firm after investment,
further delaying investment. That is, the threat of future cash shortfalls increases
future financing costs and reduces the value of the asset underlying the growth
option, thereby leading to late exercise of the investment opportunity. We show
that the effect can be quantitatively important. In our base-case environment,
for example, investment is triggered for a profitability level that is 10% higher
than in models without transitory shocks and financing frictions.3

Our work advances the strand of research that incorporates financing frictions
into dynamic models of corporate financial decisions. Recent contributions in
this literature include Bolton, Chen, and Wang (2011, 2013), Décamps et al.
(2011), Gryglewicz (2011), and Hugonnier, Malamud, and Morellec (2015).
A key simplifying assumption in these models is that cash flows are only
subject to purely transitory shocks. That is, none of these papers has permanent
shocks together with transitory shocks. We show in this paper that incorporating
permanent shocks in models with financing frictions leads to a richer set of
empirical predictions and helps explain corporate behavior.

3 See the early paper of McDonald and Siegel (1986) or the recent contributions of Carlson, Fisher, and Giammarino
(2004, 2010), Lambrecht (2004), Manso (2008), Grenadier and Malenko (2010), or Grenadier and Malenko
(2011). Dixit and Pindyck (1994) and Stokey (2009) provide excellent surveys of this literature.
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As relevant as it is to analyze an integrated framework combining both
transitory and permanent shocks, there are surprisingly only a few attempts
in the literature addressing this problem. Gorbenko and Strebulaev (2010)
consider a dynamic model without financing frictions, in which firm cash
flows are subject to both permanent and transitory shocks. Their study focuses
on leverage choices. Our paper instead analyzes liquidity, refinancing, risk
management, and investment policies. Another important difference between
the two papers is that we model transitory shocks with a Brownian process
instead of a Poisson process, which allows us to get a lot of tractability.
Grenadier and Malenko (2010) build a real options model in which firms are
uncertain about the permanence of past shocks and have the option to learn
before investing. In their model, there are no financing frictions and, as a result,
no role for cash holdings and no need to optimize financing decisions.

Lastly, our paper relates to the large literature that examines the distinct
effects of permanent and transitory shocks on economic outcomes. While the
decomposition of shocks between transitory and permanent components has
been used productively over the years in many areas of economics, it has
received little attention in corporate finance.4 In a recent empirical study,
Chang et al. (2014) decompose corporate cash flows into a transitory and
a permanent component and show that this decomposition helps understand
how firms allocate cash flows and whether financial constraints matter in this
allocation decision. Lee and Rui (2007) show that such a decomposition also
allows determining whether share repurchases are used to pay out cash flows
that are potentially transitory, thus preserving financial flexibility relative to
dividends. Guiso, Pistaferri, and Schivardi (2005) examine the allocation of
risk between firms and their workers and show that firms absorb transitory
shocks fully but insure workers against permanent shocks only partially. Finally,
Byun, Polkovnichenko, and Rebello (2016) examine the separate effects of
persistent and transitory shocks on corporate savings and investment decisions.
Our analysis demonstrates that the distinction between transitory and permanent
shocks is relevant for the larger set of policies that are of interest to financial
economists, namely investment, financing, payout, cash holdings, and risk
management policies.

4 A number of asset pricing papers (see, e.g., Cochrane 1994; Cohen, Gompers, and Vuolteenaho 2002;
Bansal, Dittmar, and Kiku 2008, Garleanu, Kogan, and Panageas 2012; Garleanu, Panageas, and Yu 2012) use
such a decomposition to analyze stock returns and risk premia on stocks. This decomposition is
also used in market microstructure to analyze price efficiency (see, e.g., Glosten and Harris 1988;
Brennan and Subrahmanyam 1996; Boehmer and Wu 2013). The literature on income processes also often seeks
to decompose shocks into permanent and transitory components (see, e.g., Blundell, Pistaferri, and Preston 2008;
Meghir and Pistaferri 2004; Gottschalk and Moffitt 2009). The decomposition of income shocks between
permanent and transitory components has found interesting applications in the life-cycle portfolio choice literature
(see, e.g., Cocco, Gomes, and Maenhout 2005). In the time-series literature, the permanent-transitory model is
known as the unobserved component decomposition, in which the permanent part is the trend and the transitory
component is named the cyclical innovation (see Hamilton 1994, chapter 17).
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1. Model

1.1 Assumptions
Throughout the paper, agents are risk neutral and discount cash flows at a
constant rate r >0. Time is continuous, and uncertainty is modeled by a
probability space (Ω,F,F,P ) with the filtration F= {Ft : t ≥0} satisfying the
usual conditions.

We consider a firm that owns an option to invest in a risky project. The
firm has full flexibility in the timing of investment but the decision to invest
is irreversible. I >0, the direct cost of investment, is constant. The project,
once completed, produces a continuous stream of cash flows subject to both
permanent and transitory shocks. Permanent shocks change the long-term
prospects of the firm and influence cash flows permanently by affecting the
productivity of assets and firm size. A=(At )t≥0 denotes the productivity of
assets, and we assume that it is governed by a geometric Brownian motion:

dAt =μAtdt +σAAtdWP
t , (1)

where μ and σA >0 are constant parameters and WP =(WP
t )t≥0 is a standard

Brownian motion. In addition to these permanent shocks, cash flows are subject
to short-term shocks that do not necessarily affect long-term prospects. Notably,
we consider that operating cash flows dXt after investment are proportional to
At but uncertain and governed by

dXt =αAtdt +σXAtdWX
t , (2)

where α and σX are strictly positive constants and WX =(WX
t )t≥0 is a standard

Brownian motion. WX is allowed to be correlated with WP with correlation
coefficient ρ, in that

E[dWP
t dWX

t ]=ρdt, with ρ ∈ [−1,1]. (3)

The dynamics of cash flows can then be rewritten as

dXt =αAtdt +σXAt (ρdWP
t +

√
1−ρ2dWT

t ), (4)

where WT =(WT
t )t≥0 is a Brownian motion independent from WP . This

decomposition implies that short-term cash flow shocks dWX
t consist of

transitory shocks dWT
t and permanent shocks dWP

t .5 In what follows, we
refer to σX as the volatility of short-term shocks or, when it does not cause
confusion, as the volatility of transitory cash flow shocks.

5 One may also interpret WT as a shock to cash flow and WP as a shock to asset value. In our model, a pure cash
flow shock (cash windfall) makes the firm richer, but does not make the firm’s assets better. A pure shock to
assets (e.g., discovery of oil reserves) improves the value of the firm’s assets but does not make the firm richer
today. We thank Andrey Malenko for suggesting this interpretation.
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The permanent nature of innovations in A implies that a unit increase or
decrease in A increases or decreases the expected value of each future cash
flow. To illustrate this property, we consider an environment in which the firm
has a frictionless access to capital markets, as in, for example, Leland (1998) or
McDonald and Siegel (1986). In this case, the value of the firm after investment
V FB is simply the present value of all future cash flows:

V FB(a)=Ea

[∫ ∞

0
e−rt dXt

]
=

αa

r−μ
. (5)

Equation (5) shows that a shock that changes At via dWP
t is permanent in the

sense that a unit increase inAt increases all future expected levels of profitability
by that unit. A shock to WT

t is transitory because, keeping everything else
constant, it has no impact on future cash flows. That is, when cash flow shocks
are not correlated, that is, when ρ =0, short-term cash flow shocks are purely
transitory and do not affect future cash flows. When cash flows shocks are
perfectly correlated, that is, when ρ =1, any cash flow shock impact all future
cash flows. More generally, cash flow shocks are a combination of transitory
and permanent shocks and the long-run response of cash flows to a current
shock depends on the relative size of the two shocks.

The modeling of cash flows in (1) and (2) encompasses two popular
frameworks as special cases. If μ=σA =0, we obtain the stationary framework
of dynamic agency models (see DeMarzo and Sannikov 2006; DeMarzo
et al. 2012) and liquidity management models (see Décamps et al. 2011;
Bolton, Chen, and Wang 2011; Hugonnier, Malamud, and Morellec 2015). In
these models, cash flow shocks are purely transitory. Adding permanent shocks
in these models gives rise to two sources of dynamic uncertainty that makes
corporate policies intrinsically richer.

If σX =0, we obtain the model with time-varying profitability applied
extensively in dynamic capital structure models (see Goldstein, Ju, and Leland
2001; Hackbarth, Miao, and Morellec 2006; Strebulaev 2007) and real-options
models (see Abel and Eberly 1994; Carlson, Fisher, and Giammarino 2006;
Morellec and Schürhoff 2011). Our model with transitory and permanent shocks
differs from the latter in that earnings and asset volatilities differ and innovations
in current cash flows are imperfectly correlated with those in asset values. As
discussed in Gorbenko and Strebulaev (2010), these features are consistent
with empirical stylized facts. Another distinguishing feature is that while the
return on invested capital is constant in these models, in that dXt

At
=αdt, this

is not the case in our model in which it is subject to uncertainty, in that
dXt

At
=αdt +σXdWX

t .
Lastly, our model with permanent and transitory shocks is also related to the

asset pricing models of Schwartz and Smith (2000), Garleanu, Panageas, and
Yu (2012), and Kogan and Papanikolaou (2013, 2014). Notably, Kogan and
Papanikolaou (2013, 2014) build models in which any firm’s output flow is the
product of an aggregate productivity shock that follows a geometric Brownian
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motion and of firm-specific shocks governed by (square root) stationary
processes. Garleanu, Panageas, and Yu (2012) develop a general equilibrium
model in which aggregate consumption is the product of a geometric Brownian
motion that captures aggregate productivity growth (embodied technological
progress) and a transitory shock that captures recurrent cyclical components
of technological innovations. Schwartz and Smith (2000) develop a model for
commodity prices in which the equilibrium commodity price level evolves
according to a geometric Brownian motion and in which short-term deviations
from this equilibrium price revert toward zero following a mean-reverting
stationary process.6 Our model differs from these studies in that cash flows
can be negative in our setup (whereas prices have to remain positive in their
setups), consistent with the available evidence.

1.2 Shareholders’ optimization problem
In the absence of short-term shocks, the cash flows of an active firm are given by
αAtdt and are always positive because A is always positive. Short-term shocks
expose the firm to potential losses, that can be covered using cash reserves or
by raising outside funds.

Specifically, we allow management to retain earnings inside the firm and
denote by Mt the firm’s cash holdings at any time t >0. We consider that cash
reserves earn a rate of return r−λ inside the firm, where λ>0 is a cost of holding
liquidity. We also allow the firm to increase its cash holdings or cover operating
losses by raising funds in the capital markets. When raising outside funds at
time t , the firm has to pay a proportional cost p>1 and a fixed cost φAt >0
so that if the firm raises some amount et from investors, it gets et/p−φAt . As
in Bolton, Chen, and Wang (2011), the fixed cost scales with firm size so that
the firm does not grow out from the fixed cost.7 The net proceeds from equity

6 As shown by Schwartz and Smith (2000), empirical models of commodity prices with transitory
and permanent factors outperform single-factor models with only short-term or long-term effects. See
also Mirantes, Poblacion, and Serna (2015) for evidence on alternative exhaustible resource markets. Both
Schwartz and Smith (2000) and Mirantes, Poblacion, and Serna (2015) use Kalman filter techniques to estimate
the unobservable parameters entering the dynamics of the state variables or factors from the time series of
derivatives prices. Because of the lower frequency of the data, the empirical corporate finance papers discussed
in the introduction do not rely on Kalman filter techniques. Both Chang et al. (2014) and Lee and Rui (2007)
employ the approach of Beveridge and Nelson (1981) to decompose cash flows into a transitory and a permanent
component. Like the Kalman filter techniques, the Beveridge-Nelson decomposition allows evaluating the
volatilities of permanent and transitory shocks, as well as their correlation. Guiso, Pistaferri, and Schivardi
(2005) and Byun, Polkovnichenko, and Rebello (2016) use different empirical frameworks that impose zero
correlation between permanent and transitory shocks. Our paper demonstrates that this correlation is a key driver
of the corporate response to permanent and transitory shocks.

7 The scaling of the fixed refinancing cost can be motivated by modeling this cost as in
Hugonnier, Malamud, and Morellec (2015). Suppose that new investors have some bargaining power in the
division of the surplus created at refinancing. A Nash-bargaining solution would allocate a share of this surplus
to new investors. As will become clear in Section 2, the total surplus at refinancing is linear in profitability At .
This approach would generate a fixed refinancing cost φAt with an endogenous φ.
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issues are then stored in the cash reserve, whose dynamics evolve as

dMt =(r−λ)Mtdt +αAtdt +σXAt (ρdWP
t +

√
1−ρ2dWT

t )+
dEt

p
−d�t −dLt ,

(6)
where Lt , Et , and �t are nondecreasing processes that respectively represent
the cumulative dividend paid to shareholders, the cumulative gross external
financing raised from outside investors, and the cumulative fixed cost of
financing.

Equation (6) is an accounting identity that indicates that cash reserves
increase with the interest earned on cash holdings (first term on the right-
hand side), the firm’s earnings (second and third terms), and outside financing
(fourth term), and decrease with financing costs (fifth term) and dividends (last
term). In this equation, the cumulative gross financing raised from investors Et

and the cumulative fixed cost of financing �t are defined as Et =
∑∞

n=1en1τn≤t

and �t =
∑∞

n=1φAτn1τn≤t , for some increasing sequence of stopping times
(τn)∞n=1 that represent the dates at which the firm raises external funds and
some sequence of nonnegative random variables (en)∞n=1 that represent the gross
financing amounts.8

The firm can abandon its assets at any time after investment by distributing
all of its cash to shareholders.Alternatively, it can be liquidated if its cash buffer
reaches zero following a series of negative shocks and raising outside funds to
cover the shortfall is too costly. We consider that the liquidation value of assets
represents a fraction ω<1 of their unconstrained value V FB(a) plus current
cash holdings. The liquidation time is then defined by τ0 ≡{t ≥0|Mt =0}. If
τ0 =∞, the firm never chooses to liquidate.

The objective of management in an active firm is to choose the dividend,
financing, and default policies that maximize shareholder value. (We also
analyze risk management in Section 4 and the initial investment decision in
Section 6.) There are two state variables for shareholders’optimization problem
after investment: profitability At and the cash balance Mt . We can thus write
this problem as

V (a,m)= sup
L,(τn)n≥0,

(en)n≥1

Ea,m

[∫ τ0

0
e−rt (dLt −dEt )+e−rτ0

(
ωαAτ0

r−μ
+Mτ0

)]
. (7)

The first term on the right-hand side of Equation (7) represents the present
value of payments to incumbent shareholders until the liquidation time τ0, net
of the claim of new investors on future cash flows. The second term represents
the firm’s discounted liquidation value.

8 Technically, ((τn)n≥1,(en)n≥1,L) belongs to the set A of admissible policies if and only if (τn)n≥1 is a
nondecreasing sequence of F-adapted stopping times, (en)n≥1 is a sequence of nonnegative (Fτn )n≥1-adapted
random variables, and L is a nondecreasing F-adapted and right-continuous process with L0 ≥0.
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2. Model Solution

In this section, we base our analysis of shareholders’ problem (7) on heuristic
arguments. These arguments are formalized in the Appendix.

To solve problem (7) and find the value of an active firm facing financing
frictions, we need to determine the financing, payout, and liquidation policies
that maximize shareholder value after investment. Consider first financing and
liquidation decisions. Because of the fixed cost of financing, it is natural to
conjecture that it is optimal for shareholders to delay equity issues as much as
possible. That is, if any issuance activity takes place, this must be when cash
holdings drop down to zero, so as to avoid liquidation. At this point, the firm
either issues shares if the fixed cost of financing is not too high or it liquidates.
Next, consider payout decisions. In the model, cash reserves allow the firm to
reduce refinancing costs or the risk of inefficient liquidation. As a result, the
benefit of an additional dollar retained in the firm is decreasing in cash reserves.
Since keeping cash inside the firm entails a constant opportunity cost λ on any
dollar saved, we conjecture that the optimal payout policy is characterized by
a profitability-dependent target cash level m∗(a), where the marginal cost and
benefit of cash holdings are equalized and it is optimal to start paying dividends.

To verify this conjecture and solve for firm value, we first consider the region
(0,m∗(a)) over which it is optimal to retain earnings. In this region, the firm
does not deliver any cash flow to shareholders and equity value satisfies

rV (a,m)=μaVa(a,m)+(αa+(r−λ)m)Vm(a,m)

+
1

2
a2
(
σ 2

AVaa(a,m)+2ρσAσXVam(a,m)+σ 2
XVmm(a,m)

)
, (8)

where Vx denote the first-order derivative of the function V with respect to
x and Vxy denotes the second-order partial derivative of V with respect to
x and y. The left-hand side of this equation represents the required rate of
return for investing in the firm’s equity. The right-hand side is the expected
change in equity value in the region where the firm retains earnings. The first
two terms capture the effects of changes in profitability (μa) and cash savings
(αa+(r−λ)m) on equity value. The last term captures the effects of volatility
in cash flows and productivity. In our model with permanent and transitory
shocks, changes in productivity affect not only the value of the firm but also
the value of cash reserves to shareholders in that Vam(a,m) �=0.

Equation (9) is solved subject to the following boundary conditions. First,
when cash holdings exceed the target level m∗(a), the firm places no premium
on internal funds and it is optimal to make a lump sum payment m−m∗(a) to
shareholders. As a result, we have

V (a,m)=V (a,m∗(a))+m−m∗(a), (9)

for all m≥m∗(a). Substracting V (a,m∗(a)) from both sides of this equation,
dividing by m−m∗(a), and taking the limit as m tends to m∗(a) yields the
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condition
Vm(a,m∗(a))=1. (10)

As V is assumed to be C2 across the boundary function m∗(a), condition (10),
in turn, implies the high-contact condition (see Dumas 1992):

Vmm(a,m∗(a))=0, (11)

that determines the location of the optimal dividend boundary function.
When the fixed cost of external finance φ is not too large, the firm raises

funds every time its cash buffer is depleted. In this case, the value-matching
condition at zero is

V (a,0)=V (a,m(a))−pm(a)−pφa, (12)

so that the value of shareholders’ claim when raising outside financing is equal
to the continuation value of equity (first term on the right-hand side) net of the
claim of new investors on future cash flows (second term) and issuance costs
(third term). The value-maximizing issue size m(a) is then determined by the
first-order condition:

Vm(a,m(a))=p, (13)

which ensures that the marginal cost of outside funds is equal to the marginal
benefits of cash holdings at the post-issuance level of cash reserves. An
important implication of Equation (13) is that the optimal size of equity issues is
not constant as in previous contributions, but depends on the firm’s productivity.
Lastly, when the fixed cost of financing makes an equity issue unattractive,
liquidation is optimal at m=0 and we have:

V (a,0)=
ωαa

r−μ
. (14)

While there are two state variables for shareholders’ optimization problem
(9)-(14), this problem is homogeneous of degree one in a and m. We can thus
write

V (a,m)=aV (1,m/a)≡aF (c), (15)

where c≡ m
a

represents the scaled cash holdings of the firm and F (c) is the
scaled value function. Using this observation, the boundary conditions can be
rewritten in terms of the scaled value function F as a standard free boundary
problem with only one state variable, the scaled cash holdings of the firm c

that evolve between the liquidation/refinancing trigger located at zero and the
payout trigger c∗.

Importantly, this scaling feature of the model also permits a better
understanding of the distinct effects of permanent and transitory shocks on
optimal policies and firm value. Notably, an application of Girsanov’s theorem
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and Itô’s formula implies that the dynamics of scaled cash holdings are given
by (see the Appendix):

dCt =(α+Ct (r−λ−μ))dt

+σX

√
1−ρ2dWT

t +(ρσX −CtσA)dW̃
P

t +
dEt

pAt

− d�t +dLt

At

. (16)

Consistent with Equations (1), (2), and (6), Equation (16) shows that the average
scaled cash flow per unit of time is αdt and that the rate of return earned on
scaled cash reserves per unit of time is (r−λ−μ)dt, where μ represents the
expected growth rate of the scaling factor. The term

�(c)=σ 2
X(1−ρ2)+(ρσX −CtσA)2, (17)

represents the squared volatility of scaled cash holdings. The first term on the
right-hand side of (17) is constant and reflects the impact of transitory shocks.
The second term is a function of c and reflects the impact of permanent shocks.
In models with transitory shocks only, the volatility of cash holdings is constant
and coincides with the volatility σX of cash flows (this corresponds to the case
σA =μ=ρ =0). Incorporating permanent shocks in these models leads to an
endogenous volatility that depends on the level of scaled cash holdings c and
the correlation coefficient ρ between short-term and permanent shocks.

The key observation is that a permanent shock has two, possibly opposing,
effects on scaled cash holdings. Specifically, a positive permanent shock

(dW̃
P

t >0) moves the firm’s cash reserves closer to the target cash level c∗

when ρ >0 (ρσXdW̃
P

t >0) and away from c∗ when ρ <0 (ρσXdW̃
P

t <0). At
the same time, a positive permanent shock makes assets more valuable, leading
to an increase in the precautionary demand for cash and to a greater distance

between current cash reserves and the target level (−cσAdW̃
P

t <0 ). This latter
effect is the strongest when the positive permanent shock has little effect on
the cash flow today (low ρ) and if the firm is relatively cash rich (high c). The
two effects of permanent shocks imply a potentially nonmonotonic behavior
of the volatility of scaled cash holdings with respect to the deep parameters
of the model ρ,σX, and σA. As we show below, this observation leads to new
comparative statics results on target cash holdings (see Section 3) and has
important consequences for risk management (see Section 4) and the value
of credit lines (see Section 5). Lastly, as in previous models with financing
frictions, positive transitory shocks (i.e., dWT

t >0) have no effects on future
cash flows and unambiguously bring the firm closer to the target level of cash
reserves c∗, making the firm richer and less constrained.

We can now follow the same steps as above to derive shareholders’ modified
optimization problem after investment. Using Equation (15), we have that
Vm(a,m)=F ′(c), Vmm(a,m)= 1

a
F ′′(c), Va(a,m)=F (c)−cF ′(c), Vaa(a,m)=

c2

a
F ′′(c), and Vam(a,m)=− c

a
F ′′(c). Plugging these expressions in Equation (8)
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shows that the scaled value function F (c) satisfies

(r−μ)F (c)= (α+c(r−λ−μ))F ′(c)+
1

2
(σ 2

Ac2 −2ρσAσXc+σ 2
X)F ′′(c), (18)

in the earnings retention region (0,c∗). The left-hand side of this equation
represents the rate of return required by shareholders for investing in the firm.
The right-hand side represents the expected change in the scaled value function
in the region where the firm retains earnings. Consistent with Equation (16),
the expression α+c(r−μ−λ) in front of F ′(c) corresponds to the sum of the
mean cash flow rate α and the instantaneous return on cash holdings per unit
of invested capital c(r−μ−λ). The expression in front of F

′′
(c) corresponds

to the squared volatility �(c) of the scaled cash holdings process Ct , defined
in Equation (17).

Equation (18) is solved subject to the following boundary conditions. First,
in the payout region c>c∗, the firm pays out any cash in excess of c∗, and we
have

F (c)=F (c∗)+c−c∗. (19)

Subtracting F (c∗) from both sides of this equation, dividing by c−c∗, and
taking the limit as c tends to c∗ shows that F (c) satisfies the following value-
matching and high-contact conditions at the optimal payout trigger c∗:

F ′(c∗) = 1, (20)

F ′′(c∗) = 0. (21)

Additionally, when the firm runs out of cash, shareholders can either refinance
or liquidate assets. As a result, the scaled value function satisfies

F (0)=max

(
max

c∈[0,∞)
(F (c)−p(c+φ)); ωα

r−μ

)
. (22)

When refinancing at zero is optimal, scaled cash holdings after refinancing c

are given by the solution to the first-order condition:

F ′(c)=p. (23)

Before solving shareholders’ problem, we can plug the value-matching and
high-contact conditions (20)-(21) in Equation (18) to determine the value of
the firm at the target level of scaled cash holdings c∗. This shows that equity
value satisfies

V (a,m∗(a))=aF (c∗)=
αa

r−μ
+

(
1− λ

r−μ

)
m∗(a). (24)

Together with Equation (5), Equation (24) implies that equity value in a
constrained firm holding m∗(a) units of cash is equal to the first best equity
value minus the cost of holding liquidity, which is the product of the target
level of cash holdings m∗(a) and the present value of the unit cost of holding
cash λ

r−μ
.

The following proposition summarizes these results and characterizes
shareholders’ optimal policies and value function after investment.
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Proposition 1. Consider a firm facing financing frictions (φ>0, p>1), costs
of carrying cash (λ>0), and imperfectly correlated permanent and short-term
cash flow shocks (ρ <1).

1. The value of the firm, V (m,a) solving problem (7), satisfies the relation
V (m,a)=aF ( m

a
), where (F,c∗) is the unique solution to the system

(18)–(23).

2. The function F (c), where c≡ m
a

, is increasing and concave over (0,∞).
F ′(c) is greater than one in the earnings retention region (0,c∗), where
c∗ ≡ inf {c>0|F ′(c)=1}, and equal to 1 in the payout region c∈ [c∗,∞).

3. If financing frictions are large, it is never optimal to issue new shares
after investment, F (0)= ωα

r−μ
, and the firm is liquidated as soon as it runs

out of cash.

4. If financing frictions are low, F (0)> ωα
r−μ

and it is optimal to raise a
dollar amount e∗

n =p(c+φ)Aτn at each time τn at which the firm runs out
of cash, where c≡ (F ′)−1(p).

5. When m∈ (0,m∗(a)), the marginal value of cash is increasing in
profitability. Any cash held in excess of the dividend boundary
function m∗(a)=c∗a is paid out to shareholders. Payments are made
to shareholders at each time τ satisfying Mτ =c∗Aτ .

Proposition 1 delivers several results. First, as in previous dynamic models
with financing frictions (such as Bolton, Chen, and Wang 2011; Décamps et al.
2011), firm value is concave in cash reserves. This implies that it is never
optimal for shareholders to increase the risk of (scaled) cash reserves. Indeed,
if the firm incurs a series of shocks that deplete its cash reserves, it incurs some
cost to raising external funds. To avoid these costs and preserve equity value,
the firm behaves in a risk-averse fashion.

Second, Proposition 1 shows that when the cost of external funds is not too
high, it is optimal for shareholders to refinance when the firm’s cash reserves
are depleted. In addition, the optimal issue size depends on the profitability of
assets at the time τn of the equity issue and is given by e∗

n =p(c+φ)Aτn . Thus,
a unique feature of our model is that the size of equity issues is not constant.
Rather, more profitable firms make larger equity issues.

Third, prior research has shown that the marginal value of cash should be
decreasing in cash reserves and increasing in financing frictions (see, e.g.,
Décamps et al. 2011). Proposition 1 shows that the marginal value of cash
should also be increasing in profitability (firm size), in that Vam >0. We show
below that this result has important consequences for optimal cash holdings
and risk management policies.

Fourth, Proposition 1 shows that cash reserves are optimally reflected down
at m∗(a)=c∗a. When cash reserves exceed m∗(a), the firm is fully capitalized
and places no premium on internal funds, so that it is optimal to make a lump
sum payment m−m∗(a) to shareholders. As we show in Section 3.1 below, the
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desired level of reserves results from the trade-off between the cost of raising
funds and the cost of holding liquid reserves and reflects the firm’s exposure to
permanent and transitory cash flow shocks.

3. Model Analysis

3.1 Optimal cash holdings and the value of a constrained firm
Do transitory and permanent shocks have qualitatively the same effects on firm
value and optimal policies? To answer this question, we examine in this section
the effects of the parameters driving the dynamics of transitory and permanent
shocks on the value of a constrained firm F (c) and target cash holdings c∗.

The following lemma derives comparative statics with respect to an
exogenous parameter θ ∈{σX,σA,ρ,φ,p,α,μ}, on which we will base our
empirical predictions. To make the dependence of F and c∗ on θ explicit,
we write F =F (.,θ ) and c∗ =c∗(θ ). Focusing on the refinancing case (results
for the liquidation case are in the Appendix), we have that

Proposition 2. The following holds:

1. Firm value satisfies

∂F

∂p
(c,p)<0,

∂F

∂φ
(c,φ)<0,

∂F

∂μ
(c,μ)>0,

∂F

∂α
(c,α)>0,

and
∂F

∂ρ
(c,ρ)>0.

2. Target cash reserves satisfy

dc∗(p)

dp
>0,

dc∗(φ)

dφ
>0,

dc∗(μ)

dμ
>0,

dc∗(α)

dα
<0, and

dc∗(ρ)

dρ
<0.

Several results follow from Proposition 2. First, firm value decreases and
the target level of cash reserves increases with financing frictions (p and φ),
as in models with purely transitory shocks only (see, e.g., Décamps et al.
2011; Hugonnier, Malamud, and Morellec 2015). Second, both the growth
rate of profitability μ and the mean cash flow rate α increase firm value.
Interestingly, however, while target cash reserves increase with the growth rate
of the permanent shock μ, they decrease with the mean cash flow rate α. To
understand these effects, we recall that the trend in the dynamics of scaled cash
holdings (α+Ct (r−λ−μ)) is increasing α and decreasing μ. When the mean
cash flow rate α increases, it becomes less likely that scaled cash holdings fall
to zero and the firm optimally decreases its target cash level. However, when
the growth rate μ of permanent shocks increases, scaled cash holdings decrease
and it becomes more likely that they will reach zero, implying an increase of
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optimal scaled cash holdings. This, in turn, implies that our model has opposite
predictions for the effects of an increase in the mean of transitory and permanent
shocks on target cash holdings.

Third, Proposition 2 shows that the effect of correlation between short-
term and permanent shocks ρ on firm value is unambiguously positive. It is
not immediately expected that firm value increases in ρ. Indeed, if the firm
faced two shocks of transitory nature, the result would be opposite. Lower
correlation of two transitory shocks would allow for diversification and firm
value would decrease in correlation between transitory shocks. Our result shows
that correlation between short-term and permanent shocks works differently.

To understand why firm value increases with the correlation between short-
term and permanent shocks ρ, think about a firm hit by a positive permanent
shock. Its expected size increases and, in order to maintain scaled cash holdings,
the firm needs to increase (unscaled) cash holdings. If short-term shocks
are positively correlated with permanent shocks, in expectation cash flows
temporarily increase and the firm has the means to increase cash holdings.9

If short-term shocks are not correlated with permanent shocks, the firm may
not be able to do so and its value will benefit less from the positive permanent
shock. It is also interesting to observe that an increase in the correlation between
shocks decreases target cash holdings. The intuition for the negative effect of
the correlation between short-term and permanent shocks is that with higher
correlation the firm gets positive cash flows shocks when they are needed to
maintain scaled cash holdings, so that target cash holdings can be lower. This
prediction is unique to our model.

The effects of volatility on firm value and cash holdings are more difficult
to characterize. Applying Proposition 7 in the Appendix, we can measure the
effect of the volatility of short-term shocks σX on the (scaled) value of an active
firm. Keeping correlation ρ constant, σX is also a measure of the volatility of
transitory shocks. Notably, we have that

∂F

∂σX

(c,σX)=Ec

[∫ τ0

0
e−(r−μ)t (−ρσACt− +σX)

∂2F

∂c2
(Ct− ,σX)dt

]
. (25)

Given that the function F (c) is concave, we have that ∂F (c)
∂σX

<0 if ρ ≤0. For ρ ∈
(0,1), the sign of ∂F (c)

∂σX
is not immediately clear. However, numerical simulations

9 In general, the correlation coefficient ρ between short-term and permanent cash flow shocks can be positive
or negative. Examples of a negative correlation include decisions to invest in R&D or to sell assets. When the
firm sells assets today, it experiences a positive cash flow shock. However, it also decreases permanently future
cash flows. Examples of positive correlation include price changes due to the exhaustion of existing supply of
a commodity or improving technology for the production and discovery of a commodity. Chang et al. (2014)
estimate that for firms listed in the Compustat Industrial Annual files between 1971 and 2011, the correlation
between short-term and permanent cash flow shocks is negative.
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suggest that the effect of increased volatility of short-term shocks on firm value
is negative, consistent with previous literature (see, e.g., Décamps et al. 2011).10

Next, consider the effect of the volatility of permanent shocks on firm value.
Applying Proposition 7 in the Appendix, we have

∂F

∂σA

(c,σA)=Ec

[∫ τ0

0
e−(r−μ)t (σACt− −ρσX)Ct−

∂2F

∂c2
(Ct− ,σA)dt

]
. (26)

Clearly, this equation shows that ∂F (c)
∂σA

<0 if ρ ≤0. When ρ ∈ (0,1), the effect
of an increase in the volatility of permanent shocks on firm value is ambiguous.
The reason is that firm value decreases in the volatility of scaled cash holdings
c, and σA may either increase or decrease this volatility. Indeed, as shown
by Equation (16), the instantaneous variance of c is σ 2

Ac2 −2ρσAσXc+σ 2
X. Its

derivative with respect to σA is 2σAc2 −2ρσXc. This, in turn, implies that the
volatility of permanent shocks may increase or decrease the volatility of scaled
cash holdings, and hence target cash holdings, depending on the level of the
cash reserve c= m

a
relative to ρ

σX

σA
. That is, because liquidity management aims

at reducing firm risk, target cash holdings increase with σA when c≥ρ
σX

σA
.

To examine the effects of volatility on target cash holdings, we can use the
relation:

dc∗(θ )

dθ
=− r−μ

λ

(
∂F

∂θ
(c∗(θ ),θ )+c∗(θ )

∂[ λ
r−μ

]

∂θ
− ∂[ α

r−μ
]

∂θ

)
. (27)

It follows from the previous discussion on the effects of σX and σA on F (c) that
∂c∗
∂σX

>0 and ∂c∗
∂σA

>0 if ρ ≤0, and ∂c∗
∂σX

>0 and ∂c∗
∂σA

≷0 if ρ ∈ (0,1). Interestingly,
Chang et al. (2014) decompose corporate cash flows into a transitory and a
permanent component and show that for firms listed in the Compustat Industrial
Annual files between 1971 and 2011, the correlation between these shocks is
negative. Using the same data, Byun, Polkovnichenko, and Rebello (2016) find
that “firms increase cash savings in response to increased uncertainty arising
from both persistent and transitory shocks.” This empirical result is consistent
with our prediction that cash holdings should increase with σA and σX when
ρ <0. It is again interesting to observe that our model predicts that if ρ was
sufficiently positive in some industries, then the relation between cash savings
and the volatility of permanent shocks σA could become negative.

For completeness, Figure 1 plots target cash holdings c∗ and the optimal issue
size c as functions of the volatilities of short-term shocks σX and permanent
shocks σA, the correlation between shocks ρ, the fixed and proportional
financing costs φ and p, and the carry cost of cash λ. These panels confirm the

10 It is clear from Equation (25) that c∗ ≤ σX
ρσA

is a sufficient condition for the negative derivative with respect

to σX when ρ >0. The inequality c∗ ≤ σX
ρσA

always holds at our baseline parameter values. Despite extensive

simulation, we were unable to find any instance of a positive effect of σX on F when ρ >0.
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Figure 1
Optimal cash holdings and issue size
Figure 1 plots target cash holdings c∗ (solid curves) and the scaled issuance size c (dashed curves) in the
refinancing case. Input parameter values are given in Table 1.

above comparative statics results. They also show that the size of equity issues
should increase with the fixed cost of financing (since the benefit of issuing
equity must exceed φ) and decrease with the proportional cost of financing
(since firm value is concave and F ′(c)=p). As in prior models, the effects of
the other parameters on the optimal size of equity issues c mirror those of these
parameters on target cash holdings.

Do permanent shocks have nontrivial quantitative effects?11 To answer this
question, we examine the predictions of the model for the firm’s financing
and cash holdings policies. We select parameters that match previous studies.
Notably, following models with transitory shocks only (e.g., Bolton, Chen, and
Wang 2013), we set the risk-free rate to r =3%, the mean cash flow rate to
α =0.18, the volatility of short-term shocks to σX =0.12, and the carry cost
of cash to λ=0.02. Financing costs are set equal to φ =0.002 and p=1.06,
implying that the firm pays a financing cost of 10.4% when issuing equity.
The parameters of the permanent shocks are set equal to μ=0.01 and σA =
0.25, consistent with Morellec, Nikolov, and Schürhoff (2012). The correlation
between transitory and permanent shocks is set to ρ =−0.21, consistent with
Chang et al. (2014).12 Lastly, we base the value of liquidation costs on Glover

11 The analysis presented here is not intended to substitute for a more detailed quantitative study, but serves to
highlight the effects of including or omitting permanent shocks in dynamic corporate finance models.

12 While the correlation coefficient ρ affects the persistence of cash flows, it should not be confused with the cash-
flow autocorrelation. We have simulated daily cash flows for 100 firms over 1,000 years using our cash flow
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Table 1
Parameter values and variables

Variable Symbol Parameter Symbol Value

Cash holdings M Growth rate of asset productivity μ 0.01
Scaled cash holdings C Mean rate of cash flows α 0.18
Asset productivity/size A Volatility of permanent shocks σA 0.25
Cumulative cash flows X Volatility of short-term shocks σX 0.12
Cumulative payout L Correlation between shocks ρ −0.21
Cumulative external financing E Riskfree rate r 0.03
Cumulative fixed financing cost � Carry cost of liquidity λ 0.02
Active firm value V Proportional financing cost p 1.06
Scaled active firm value F Fixed financing cost φ 0.002
Investment option value G Asset liquidation-value ratio ω 0.55
Payout boundary c∗ Investment cost I 10
Financing target c Credit line spread ξ 0.015
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Figure 2
The effects of permanent shocks with liquidation
Figure 2 plots firm value and target cash holdings in the liquidation case. The dashed curves represent the case
with only transitory shocks (σA =μ=0) in all the panels. The solid curves are with permanent shocks, with
μ=0.01 and σA =0 in panel A, μ=0 and σA =0.25 in panel B, and μ=0.01 and σA =0.25 in panel C. In all the
cases, the vertical lines depict the target scaled cash holdings c∗. Input parameter values are given in Table 1.

(2016) and set 1−ω=45%. Table 1 collects the parameter values used in our
numerical analysis and summarizes the key variables of the model.

Figure 2 shows the effects of introducing time-varying profitability via
permanent shocks in a dynamic model with financing frictions. To better
understand the sources of changes, separate plots are shown in which we
first introduce a positive drift only (panel A with μ=0.01 and σA =0), then
a positive volatility only (panel B with μ=0 and σA =0.25), and finally in
which we combine both drift and volatility effects (panel C with μ=0.01 and
σA =0.25). Introducing a positive growth in cash flows is similar to introducing

specification (4) and our base-case parameters and run an AR(1) regression of annual cash flows (CF (t +1)=
α+βCF (t)+ε(t +1)). The coefficient β obtained in the AR(1) regression on our simulated data is 0.6526, which
matches the empirical estimates of 0.65 obtained by Frankel and Litov (2009) for the autocorrelation of annual
cash flows for COMPUSTAT firms between 1984 and 2004. In our model, changing the correlation coefficient ρ

changes autocorrelation, but autocorrelation of cash flows is mostly driven by the scale of the permanent shock
relative to the transitory shock.
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Figure 3
The effects of permanent shocks with refinancing
Figure 3 plots firm value and target cash holdings in the refinancing case The dashed curves represent the case
with only transitory shocks (σA =μ=0) in all panels. The solid curves are with permanent shocks, with μ=0.01
and σA =0 in panel A, μ=0 and σA =0.25 in panel B, and μ=0.01 and σA =0.25 in panel C. The vertical lines
depict the scaled issue size c and target scaled cash holdings c∗. Input parameter values are as in Table 1.

a capital stock that appreciates deterministically at the rate μ. As a result of this
drift in cash flows, firm value is increased by 46% at the target level of cash
reserves. However, target (scaled) cash holdings are much less affected by the
introduction of a permanent drift (an increase by less than 5%) as risk does not
change.

By contrast, Figure 2 shows that adding volatility in A changes the target level
of scaled cash holdings significantly without having a material effect on the
value of the firm. In our base-case parametrization, for example, optimal cash
holdings rise by 34% since the volatility of scaled cash holdings is increased by

the introduction of volatility in A (in that we have
√

σ 2
Ac2 −2ρσAσXc+σ 2

X >σX

over the relevant range). As shown by the figure, the joint effect of μ and σA

is substantial on both firm value (an increase by 44% at the target) and target
cash holdings (an increase by 44%).

Figure 3 shows that similar results obtain in the refinancing case. Again, the
drift μ of permanent shocks affects mostly the value function and has little
impact on optimal policies. The volatility σA of permanent shocks significantly
affects optimal policies but has almost no impact on the value function.

3.2 Cash-flow sensitivity of cash
Corporate liquidity models featuring solely transitory shocks characterize
optimal cash holdings and dividend policies using a constant target level of
cash holdings (see, e.g., Bolton, Chen, and Wang 2011; Décamps et al. 2011;
Hugonnier, Malamud, and Morellec 2015). This generates the prediction that
firms at the target distribute all positive cash flows or, equivalently, that cash
holdings are insensitive to cash flows. As firms off the target retain all earnings,
the predicted propensity to save from cash flows is either one or zero. Our model
generates a more realistic firm behavior at the target cash level and provides
an explicit measure of the cash-flow sensitivity of cash.
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To illustrate this feature, suppose that cash holdings are at the target level
so that Mt =c∗At . For our model, this is a most relevant assumption since the
bulk of the probability mass of the stationary distribution of cash holdings is at
the target level.13 Upon the realization of a cash flow shock dXt , profitability
At changes in expectation by

E[dAt |dXt ]=μAtdt +σAAt

ρ

σXAt

(dXt −αAtdt). (28)

Target cash holdings then change to c∗(At +dAt ) and this change conditional
on dXt can be expressed as

E[c∗dAt |dXt ]=c∗
(

μ− αρσA

σX

)
Atdt +

ρσAc∗

σX

dXt . (29)

The sensitivity of target cash holdings to cash flow shocks is then captured by
ε defined by

ε =
ρσAc∗

σX

≶0. (30)

As the firm may not be able to stay at the target after a positive shock if this
sensitivity exceeds 1 and may have excess cash after a negative shock if the
sensitivity is less than 1, the sensitivity of actual cash holdings to positive shocks
is ε+ =min{ε,1} and to negative shocks is ε− =max{ε,1}. It should be stressed
that ε measures the sensitivity in expectation, as one would obtain by regressing
cash flows on cash holdings. An advantage of our bidimensional model is that
individual realizations of cash flows are not tightly linked to changes in cash
holdings whenever ρ <1, consistent with the observed behavior of firms.

When permanent and short-term shocks are positively related (i.e., ρ >0), the
sensitivity of cash holdings to cash flow shocks is driven by the positive relation
between profitability and the marginal value of cash (i.e., Vam =− c

a
F ′′(c)≥0),

which implies that the firm optimally retains a part of a positive cash flow shock
if profitability increases. For this mechanism to work, a cash flow shock needs to
be related to changes in profitability in expectation. Without permanent shocks
(i.e., σA =0) or without correlation between permanent and short-term shocks
(i.e., ρ =0), the cash-flow sensitivity of cash ε is zero. As shown by Equation
(30), the sensitivity ε directly depends on the parameters of transitory and
permanent shocks, ρ, σA, and σX, and indirectly on the other parameters of the
model via the target level of cash holdings c∗. In particular, since c∗ increases
in the cost of refinancing, the cash-flow sensitivity of cash increases in external
financing frictions, consistent with Almeida, Campello, and Weisbach (2004)
and Riddick and Whited (2009).

13 The concentration of cash holdings close to the target level arises because the optimal payout policy is to reflect
cash reserves at the target and the optimal financing policy is to go back to the target level of cash reserves
when accessing external capital markets. See also Figure 5 in Bolton, Chen, and Wang (2011). Note that in these
models we can only compute the stationary distribution of cash holdings for the refinancing case since, in the
liquidation case, the firm liquidates with probability 1.
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For firms or industries in which permanent and short-term shocks are
negatively related (i.e. ρ <0), our model predicts that the cash flow sensitivity
of cash should be negative. Interestingly, Chang et al. (2014) find that for
U.S. nonfinancial firms listed in the Compustat Industrial Annual files between
1971 and 2011, this correlation is on average negative. Using data on U.S.
nonfinancial firms between 1972 to 2006, Riddick and Whited (2009) find that
the sensitivity of saving to cash flow is negative.

3.3 Fixed issuance costs
We conclude this section with a discussion of the role of the scalability
in a in our model. Many firm variables scale up as the firm grows and
becomes more productive and profitable. We have used this observation to
motivate our assumption that the fixed refinancing cost is proportional to the
firm’s profitability a. As shown in Section 2, the ratio of cash holdings over
profitability is the unique state variable for the firm’s problem in this case and
the firm’s optimal policies can be fully characterized; see Proposition 1.

Suppose now that the fixed issuance cost is constant and does not depend
on firm profitability a, so that the average equity issuance cost is lower for
larger firms. Shareholders’optimization problem then involves a difficult mixed
control and stopping problem with two state variables, cash reserves m and
profitability a. With a constant fixed cost φ, liquidation should be optimal as
profitability a and firm value approach 0. As profitability a increases, the firm
effectively outgrows the fixed issuance cost φ and its optimal policy should
converge to that of a firm with only proportional issuance costs. Our model
gives the optimal policy with only proportional costs (φ =0 and p>1), in which
the optimal issue size is m(a)=0 and target cash reserves are m∗(a)=c∗a for
a constant c∗. Importantly, irrespective of the modeling of the fixed financing
cost, we expect that constrained firms with high profitability will build up large
liquid reserves to reduce the likelihood that a pure cash flow shock triggers
liquidation despite the high value of their assets. This suggests that, in this case
too, target cash holdings should be increasing in profitability, as established in
Proposition 1.

4. Risk Management

In our model, financing frictions imply that firm value is concave and that
management may wish to reduce risk by engaging in hedging strategies. In
addition, because firm cash flows are subject to permanent and transitory
shocks that have different effects on the volatility of scaled cash holdings, the
management of these two sources of risk may imply substantially different
hedging strategies. To investigate these issues, we assume that the firm
manages its risk exposure using derivatives such as futures contracts as in
Bolton, Chen, andWang (2011) and Hugonnier, Malamud, and Morellec (2015).
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Notably, we consider futures contracts with price Yt governed by

dYt =σY YtdZt , (31)

where σY is a positive constant and Z =(Zt )t≥0 is a standard Brownian motion.
ht denotes the firm’s position in the futures contracts (measured in dollar).

The dynamics of cash reserves with futures hedging are then given by

dMt =(r−λ)Mtdt +dXt +
dEt

p
−d�t −dLt +htσY dZt . (32)

Equation (32) shows that an important aspect of hedging with derivatives
contracts is that it produces additional short-term cash flows (htσY dZt ). Asset
substitution does not have this feature. As a result, cash holdings and financing
frictions will be important in determining whether firms manage their risks by
using derivatives contracts or by changing asset exposure to permanent and
transitory shocks.

4.1 Risk management with derivatives
We start our analysis by considering an environment in which hedging is
costless (or unconstrained) in that there are no requirements of maintaining
a margin account. Suppose first that the firm manages only transitory shocks
using futures contracts (by the firm’s choice or because only futures correlated
with transitory shocks are available). Let χT denote the correlation between Zt

and WT
t (Zt and WP

t are uncorrelated here). We use the same steps as above and
show that the value of an active firm that engages in risk management satisfies
in the earnings retention region:

rV (a,m)=μaVa (a,m)+(αa+(r−λ)m)Vm (a,m)

+
1

2
a2
(
σ 2

AVaa (a,m)+2ρσAσXVam (a,m)+σ 2
XVmm (a,m)

)

+max
h

1

2

{
h2σ 2

Y Vmm (a,m)+2χT

√
1−ρ2hσY σXaVmm (a,m)

}
.

(33)

Defining shareholders’ scaled value function as F (c)≡ V (a,m)
a

, we have that F

satisfies

(r−μ)F (c)= (α+c(r−λ−μ))F ′(c)+
1

2
(σ 2

Ac2 −2ρσAσXc+σ 2
X)F

′′
(c)

+max
g

{
1

2
(σ 2

Y g2 +2χT σXσY

√
1−ρ2g)F

′′
(c)

}
, (34)
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where g = h
a

is the hedge ratio.14 The first-order condition associated with (34)
yields

g∗
T =−

(
χT

σY

)
σX

√
1−ρ2. (35)

Substituting (35) in (34) then yields

(r−μ)F (c)= (α+c(r−λ−μ))F ′(c)+
1

2
�(c)F

′′
(c), (36)

with �(c)=σ 2
Ac2 −2ρσAσXc+σ 2

X −χ2
T σ 2

X(1−ρ2)>0 for ρ ∈ [−1,1), which
implies that F is concave and, in turn, that Equation (35) gives the optimal
hedge ratio.

Next, suppose that the firm manages only its exposure to permanent shocks.
Let χP denote the correlation with between Zt and WP

t (Zt and WT
t are

uncorrelated here). In this case, firm value satisfies in the earnings retention
region:

rV (a,m)=μaVa (a,m)+(αa+(r−λ)m)Vm (a,m)

+
1

2
a2
(
σ 2

AVaa (a,m)+2ρσAσXVam (a,m)+σ 2
XVmm (a,m)

)

+max
h

1

2

{
h2σ 2

Y Vmm (a,m)+2χP ρhσY σXaVmm (a,m)

+2χP hσY σAaVam (a,m)
}
. (37)

This, in, turn implies that the scaled value function F (c) satisfies

(r−μ)F (c)= (α+c(r−λ−μ))F ′(c)+
1

2
(σ 2

Ac2 −2ρσAσXc+σ 2
X)F

′′
(c)

+max
g

{
1

2
(σ 2

Y g2 +2σXσY χP ρg−2cσAσY χP g)F
′′
(c)

}
. (38)

The first-order condition with respect to the hedge ratio yields

g∗
P =−

(
χT

σY

)
(ρσX −cσA). (39)

Substituting the expression for g∗
P in (38) yields

(r−μ)F (c)= (α+c(r−λ−μ))F ′(c)+
1

2
�(c)F

′′
(c),

where �(c)=σ 2
Ac2 −2ρσAσXc+σ 2

X −χ2
P (σAc−σXρ)2 >0 for ρ ∈ [−1,1),

which implies that F is concave and, in turn, that Equation (39) defines the
optimal dynamic hedging.

14 The firm in our model hedges cash flows with expected profitability At , so this denominator of a hedge ratio
follows the usual practice in risk management literature (see, e.g., Tufano 1996).
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Equations (35) and (39) show that the signs of the hedge ratios are opposite
to the signs of the volatilities associated to transitory and permanent shocks in
the dynamics of scaled cash holdings (see Equation (16)). The optimal hedging
policy with respect to transitory shocks is expected and known; see, for example
Bolton, Chen, and Wang (2011). The hedge ratio with respect to transitory
shocks is constant. The firm takes a position in future contracts that is opposite
to its core risk exposure and eliminates all the correlated risk.

The optimal hedging policy with respect to permanent shocks is new and
more surprising. Substituting the expression for h∗

P ≡ag∗
P in (32) shows that

optimal hedging of permanent shocks adds two terms to the dynamics of cash
reserves. The first one, −χP ρσXAtdZt , serves to remove the correlated risk
from firm cash flows. The second one, χP σAMtdZt , is specific to hedging of
permanent shocks and has a double impact. First, it increases the volatility of
cash flows. Second, it increases the correlation of cash flow shocks. In other
words, the two opposing effects of a positive permanent shock discussed in
Section 2 are again at work. Consequently, risk management of permanent
shocks may imply long or short positions in derivatives depending on the level
of the cash reserve c= m

a
relative to ρ

σX

σA
. Specifically, when χP >0 the short

position dominates for c<ρ
σX

σA
, while the long position dominates for c>ρ

σX

σA
.

The long position dominates in particular if the correlation between short-term
and permanent cash flow shocks ρ is low and if the firm is relatively cash rich
(high c). Therefore, despite the concavity of the scaled value function, risk
management of permanent shocks with derivatives may imply a position that is
not opposed but aligned with the exposure. This is due to the fact that hedging
increases both cash flow volatility and the correlation of cash flow shocks. As
discussed above, the firm benefits from the correlation between shocks, that is,
from generating liquidity when long-term prospects improve.15

In summary, hedging policies with respect to transitory and permanent shocks
are markedly different. The hedge ratio with respect to transitory shocks is
constant while the hedge ratio with respect to permanent shocks is linear in
scaled cash holdings c. Furthermore, the signs of the optimal hedge ratiosg∗

T and
g∗

P can be opposite. Our analysis has focused for clarity on hedging positions
with respect to one source of risk. If the futures price is correlated with both
WT and WP , as is likely to be the case, the optimal hedge ratio is simply g∗ =
g∗

T +g∗
P . Consider, for example, a primary commodity producer. The literature

stresses that commodity prices are subject to transitory and permanent shocks
and emphasizes the importance of precautionary savings and hedging in the
primary commodity producing sector (see, for instance, Reinhart and Wickham
1994). Our study suggests that hedging policies in commodities markets should

15 The positive sign in g∗
P

stems from the positive sign of Vam =− c
a F ′′ as opposed to the negative signs of Vaa

and Vmm. This positive sign implies that the marginal value of cash increases in profitability. Note also that it
is misleading to call the firm’s risk management policy to permanent shocks as “speculation”, since taking a
position not contrary to the exposure reduces risk.
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vary with the relative importance of firms’exposure to permanent and transitory
shocks, that is, with the nature of the shocks affecting these commodity prices.

How does hedging affect optimal policies? To answer this question, we solve
our model with and without hedging and compare optimal policies. If perfect
hedging is possible, in that χT =χP =1, then the firm can decrease target cash
holdings by as much as 89.1% with hedging of transitory shocks and by 8.5%
with hedging of permanent shocks. The optimal size of equity issues decreases
by 85.2% with hedging of transitory shocks and by 3.2% with hedging of
permanent risk. That is, if the availability of futures contracts is symmetric for
the two types of shocks, hedging of transitory shocks has a more significant
effect on other firm policies than hedging of permanent shocks. If futures are
less perfectly correlated with cash flows, the effects are naturally smaller but the
pattern remains the same. Taking more realistic correlations of χT =χP =0.7,
target cash holdings decrease by 34.2% (resp. 4.2%) with hedging of transitory
(resp. permanent) shocks. Equity issuance size decreases now by 28.7% (resp.
1.5%) with hedging of transitory (resp. permanent) shocks.

Lastly, suppose that hedging positions are not unbounded but are instead
constrained by the requirement of maintaining a margin account. Specifically,
assume that the firm’s net futures position cannot exceed the amount on the
margin account by more than a factor π . Assuming that the margin account
earns the same interest as the common cash account, all cash holdings can be
moved to the margin account if needed, so that the margin-account constraint
is equivalent to limiting the futures position to a π multiple of cash holdings,
or |ht |≤πMt . In terms of hedge ratio, the constraint can then be written as
|gt |≤πCt . In such environments, constrained firms (i.e., firms with low c)
hedge less due to difficulties with meeting margin requirements, consistent
with the evidence in Rampini, Sufi, and Viswanathan (2014) that collateral
constraints play a major role in risk management.

4.2 Hedging using derivatives versus asset substitution
An alternative to risk management using derivatives is to change the firm’s
assets to achieve a different exposure to transitory or permanent shocks. This is a
version of asset substitution.An important difference between asset substitution
and hedging with derivatives is that the former does not generate cash flows.
Whether risk management generates cash flows or not is not important in models
with unconstrained financing (like Leland 1998), but this is relevant in a model
with financing frictions like ours (see also Mello and Parsons 2000).

Suppose that the firm can manage costlessly its asset risk via unconstrained
selection of volatilities of short-term or permanent shocks, σX and σA. Consider
first short-term shocks. The discussion below Equation (25) suggests that the
usual effect of σX on (scaled) firm value is negative and so the optimal policy is
to set σX =0. This shows that the outcome of derivative hedging and asset risk
management are the same: The firm aims at removing all exposure to short-term
shocks, and the two methods are equivalent.
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Next, consider permanent shocks. Using (26), we have that the first-order
derivative of firm value with respect to σA is always negative if ρ ≤0. In these
instances, it is optimal to set σA =0. If instead ρ >0, the optimal exposure σA

to the permanent shock WP satisfies:

σA =ρσX/c. (40)

Plugging the expression for σA in the volatility of scaled cash holdings, we
get a resulting volatility given by σX

√
1−ρ2. Two observations are in order.

First, the firm is willing to maintain a positive volatility of permanent shocks.
In essence, this happens because volatility of scaled cash holding c is not the
lowest at σA =0 but when σA is at a right proportion to σX, ρ, and c such that
(40) holds. Second, the optimal volatility of permanent shocks is large when
c is small. A high σA contributes to the volatility of c positively and directly
by changing the volatility of permanent shocks, via σ 2

Ac2, and indirectly via
the covariance term, 2ρσAσXc. If c is low, the direct volatility effect, being
quadratic in c, is dwarfed by the covariance term. By selecting a high exposure
to permanent shocks σA, the firm can benefit from the increased covariance
with little cost of increased variance.

Managing permanent risk with either derivatives or asset substitution
typically increases beneficial correlation at the cost of an increased volatility.
The difference between derivatives and asset risk management is that the former
manipulates short-term cash flow volatility and the latter affects long-term
asset-profitability volatility. This implies that the two strategies have different
incentives with varying c for a financially constrained firm. For example,
derivative hedging looses some of its potential when a firm is financially weaker,
that is, when c is low. A firm with little cash, cannot afford to generate cash flow
shocks to benefit from an increased covariance between cash flow shocks, as
this would put it at risk of running out of cash quickly. By contrast, a distressed
firm would have strong incentives to engage in asset substitution to increase
σA. That is, we predict that if a firm was mostly exposed to permanent shocks,
this firm should decrease its derivatives usage and potentially increase its asset
risk as it approaches distress, that is, as its liquid reserves decrease.

5. Credit Lines

Another way for firms to manage their risks is to acquire financial flexibility
via a credit line. Suppose that the firm has access to a credit line that allows
it to borrow from creditors up to some collateral constraint. In our model, the
value of the firm’s assets at any time t >0 is given by At . It is thus natural to
consider a constraint of the type Mt ≥−κAt for some positive constant κ , as
in Bolton, Chen, and Wang (2011). The logic behind this assumption is that
the firm must be able to post collateral to secure a credit line. We may thus
interpret κAt as the firm’s short-term debt capacity. For simplicity, we treat κ

as exogenous.
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Introducing financial leverage and collateral constraints in the model implies
an important additional effect of permanent shocks. Notably, a positive
permanent shock increases the value of assets and therefore relaxes the
collateral constraint, allowing the firm to cope with larger transitory shocks.
This effect works in the opposite direction from the effect described in Section 2
above, in which a permanent shock made the firm more constrained.16

Assuming that the firm pays a spread ξ >0 over the risk-free rate to access
credit, it will optimally avoid using its credit line before exhausting internal
funds. When running out of cash, the firm will first use its credit line and, as
long as the spread ξ is not too high, it will exhaust the credit line before raising
equity.17 Since the collateral constraint scales with At , similar derivations as
above show that when the credit line is the marginal source of financing (i.e.,
when c<0), the scaled value function F (c) satisfies:

(r−μ)F (c)= (α+c(r +ξ −μ))F ′(c)+
1

2
(σ 2

Ac2 −2ρσAσXc+σ 2
X)F ′′(c), (41)

which is solved subject to

F (−κ)=max

(
max

c∈[−κ,∞)
(F (c)−p(c+κ +φ)); ωα

r−μ
−κ

)
, (42)

when the firm exhausts the credit line. When refinancing at c=−κ is optimal,
scaled cash holdings after refinancing cL are given by the solution to F ′(cL)=p.
In the earnings retention region (0,c∗

L), the scaled value function satisfies
(18), which is solved subject to (20) and (21). Also, since cash flows
are (piecewise) continuous, the scaled value function F (c) is continuous
and smooth everywhere, including at c=0, implying that limc↓0F (c)=
limc↑0F (c), and limc↓0F

′(c)= limc↑0F
′(c). Lastly, in the region c≥c∗

L, the
firm pays out any cash in excess of c∗

L and we have F (c)=F (c∗
L)+c−c∗

L.
Figure 4 describes the effects of a credit line by varying κ in an environment

characterized by the same parameter values as in Table 1 and in which ξ =1.5%,
consistent with Sufi (2009). The figure shows that an increase in the size of the
credit line κ leads to a significant decrease in the target level of cash holdings

16 Note that if in addition to this credit line the firm had some debt outstanding, a positive permanent shock would
not only increase the firm’s debt capacity via the credit line but also make the firm less levered. We thank an
anonymous referee for making this point and encouraging us to write this section.

17 To see why the firm always first relies on the credit line, assume for simplicity that there is no fixed cost of raising
equity so that φ =0. Given a sufficiently deep credit line, when is it optimal to issue equity? The firm issues
equity only when c≤0 and at the optimal threshold c, it holds that F ′(c)=p and F ′′(c)=0. Suppose now that it
is optimal to issue equity at c=0 rather than use the credit line so that c=0. The above two conditions then imply
F (0)=pα/(r−μ)>F FB(0), which cannot be. Another question that naturally arises is whether it is optimal for
the firm to use all of its credit line before issuing equity. For any set of parameters, we can find a (nonpositive)
threshold c such that the firm optimally issues equity whenever c<c irrespective of the limit of the credit line. At
the optimal c, firm value satisfies value-matching and smooth-pasting conditions: F (c)=F (c)−p(c−c+φ) and
F ′(c)=p, where we have assumed that φ>0. If the level of indebtedness that triggers optimal equity issuance
(−c) exceeds the limit of the credit line (κ), the firm uses all of its credit line before raising equity. Otherwise, it
issues equity before exhausting the credit line. For the parameter values used in this section, we find that −c>κ .
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Figure 4
Credit lines and cash flow correlation
The left panel plots target cash holdings c∗

L
(solid curve) and the scaled issuance size cL +κ (dashed curve) in the

refinancing case. The right panel plots a change in firm value at c=0 for four values of the correlation between
permanent and transitory shocks (ρ =0.7 dashed-dotted, ρ =0.21 dashed, ρ =−0.21 solid, and ρ =−0.7 dotted).
Parameter values are given in Table 1.

but has little effect on the optimal size of equity issues. Figure 4 also shows
that a credit line increases firm value by reducing refinancing costs. Notably,
even when the credit line is not drawn, an increase in the credit limit κ may
increase firm value by an amount close to that limit.

Interestingly, we also find that a firm with a credit line may respond differently
to permanent shocks than a firm relying exclusively on cash reserves to absorb
negative cash flow shocks. This is due to the fact that the marginal value
of cash increases in a if c>0, in that Vam =− c

a
F ′′(c)>0, but it decreases

in a if c<0, in that Vam =− c
a
F ′′(c)<0.18 That is, cash-financed firms value

additional cash more when asset productivity increases while credit-financed
firms value additional cash more when productivity decreases. This, in turn,
suggests that firms that benefit most from credit lines are those whose permanent
and transitory cash flow shocks are negatively correlated. The right panel of
Figure 4 presents an example in which we plot the benefit of a credit line
(measured by the change in firm value at c=0 due to the credit line) for various
values of ρ. The effects are large: a credit line of 0.2 is worth 0.163 when
ρ =−0.7 while the same credit line is worth only 0.106 when ρ =0.7. Thus our
model predicts that credit lines should be more prevalent in firms and industries
in which permanent and transitory cash flow shocks are negatively correlated.

6. Investing in Financially Constrained Firms

Consider now the initial decision to invest in the firm. In the presence of
transitory shocks and financing frictions, the firm finds it optimal to hold cash
after investment. Thus, solving shareholders’ problem entails finding both the

18 The scaled value function is concave for all c∈ (κ,c∗) for the parameter values used in this section.
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optimal time to invest τ as well as the optimal initial level of cash reserves
m0. Denote the value of the investment opportunity by G(a). Shareholders’
optimization problem before investment can be written as:

G(a)= sup
τ,m0≥0

Ea

[
e−rτ (V (Aτ ,m0)−p(I +m0 +φAτ ))

]
. (43)

Following the literature on investment decisions under uncertainty (see Dixit
and Pindyck (1994)), it is natural to conjecture that the optimal investment
strategy is to invest when the value of the active firm exceeds the cost of
investment by a sufficiently large margin. In models without financing frictions,
this margin reflects the value of postponing investment until more information
about asset productivity is available. In addition to this effect arising from
the irreversibility of the investment decision, our model incorporates a second
friction: Operating the asset may create temporary losses and financing these
losses is costly.

Specifically, for any initial level of reserves, the investment policy takes a
form of a barrier policy whereby the firm invests as soon as asset productivity
reaches some endogenous upper barrier. Denote the optimal barrier by a∗.
Investment is then undertaken the first time that At is at or above a∗. For any
investment time τ , the optimal initial level of cash reserves m0, if positive,
must satisfy the first-order condition in problem (43). That is, we must have:

Vm(Aτ ,m0)=p. (44)

This is the same condition as the one used in Equation (13) for optimal cash
reserves after refinancing. Thus, the initial level of cash reserves, if positive, is
given by m0 =ca∗.

Since the firm does not deliver any cash flow before investment, standard
arguments imply that the value of the investment opportunity G(a) satisfies for
any a∈ (0,a∗):

rG(a)=μaG′(a)+
1

2
σ 2

Aa2G′′(a). (45)

At the investment threshold, the value of the option to invest G(a) must equal
the value of an active firm minus the cost of acquiring the assets and the costs of
raising the initial cash. This requirement, together with m0 =m(a)=ca, yields
the value-matching condition:

G(a∗)=a∗F (c)−pI −p(ca∗ +φa∗). (46)

Optimality of a∗ further requires that the slopes of the pre- and post-investment
values are equal when a =a∗. That is, G(a) satisfies the smooth-pasting
condition:

G′(a∗)=F (c)−p(c+φ). (47)

Solving shareholders’ optimization problem yields the following result.
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Proposition 3. The following holds:

1. Suppose that the costs of external finance are low, in that F (0)>ωα/

(r−μ). In this case, the value of the option to invest is given by

G(a)=

{ (
a
a∗
)ξ

(a∗F (0)−pI ), ∀a∈ (0,a∗),
aF (0)−pI, ∀a≥a∗,

(48)

where the value-maximizing investment threshold satisfies

a∗ =
ξ

ξ −1

pI

F (0)
, (49)

with

ξ =g(σA,μ)+
√

[g(σA,μ)]2 +2r/σ 2
P >1, (50)

where g(σA,μ)= 1
2σ 2

A

(σ 2
A−2μ). Investment is undertaken the first time

that At ≥a∗ and the firm’s cash reserves at the time of investment are
given by m0 =ca∗.

2. Suppose that the costs of external finance are high, in that F (0)=ωα/

(r−μ).

(a) If ωα/(r−μ)>pφ, the value of the option to invest is given by

G(a)=

{ (
a
a∗
)ξ

(a∗(ωα/(r−μ)−pφ)−pI ), ∀a∈ (0,a∗),
a(ωα/(r−μ)−pφ)−pI, ∀a≥a∗,

(51)
where the value-maximizing investment threshold satisfies

a∗ =
ξ

ξ −1

pI

ωα/(r−μ)−pφ
, (52)

and ξ is defined in (50). Investment is undertaken the first time
that At ≥a∗. No cash is raised in addition to I and it is optimal
to liquidate right after investment.

(b) If ωα/(r−μ)≤pφ, the firm never invests and G(a)=0,∀a>0.

As in standard real options models, Proposition 3 shows that, the value of the
option to invest is the product of two terms: The net present value of the project
at the time of investment, given by a∗F (0)−pI or a∗(ωα/(r−μ)−pφ)−pI ,
and the present value of $1 to be obtained at the time of investment, given by(

a
a∗
)ξ

. When issuance costs are high, it is either optimal to liquidate right after
investment or to refrain from investing altogether.

Focusing on the more interesting case in which the costs of external finance
are low, one can note that when p=1 and the firm cash flows are not subject to
transitory shocks (σX =0), the optimal investment threshold becomes

a∗
FB =

ξ

ξ −1

I

F FB
, (53)

where F FB = V FB(a)
a

= α
r−μ

. Equation (53) recovers the well-known investment
threshold of real options models (see, e.g., Dixit and Pindyck 1994). Except for
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Table 2
Financing constraints and investment delay

Delay in investment % of the delay due to
Parameters due to financing constraints at-investment

(as % of a∗
FB) constraints

1. σX =0.12, λ=0.02 8.0% 75.9%
2. σX =0.15, λ=0.03 9.6% 63.7%
3. σX =0.09, λ=0.01 6.8% 88.7%

Table 2 presents the quantitative effects of financing constraints on the investment threshold and their
decomposition. Input parameter values are given in Table 1.

two special cases (p=1 and σX =0 or p=1 and φ =0), F (0) is strictly lower than
F FB, so that the investment threshold of Proposition 3 is strictly higher than the
standard real options threshold. Our results are therefore very different from
those in prior studies, such as Boyle and Guthrie (2003), in which firms face
financing constraints when seeking to invest in new projects. In such models,
potential future financing constraints feed back in current policy choices and
encourage early investment. Our analysis highlights another way by which
financing frictions can distort investment behavior: The threat of future cash
shortfalls increases future financing costs and reduces the value of the asset
underlying the firm’s growth option, thereby leading to late exercise of the
investment opportunity.

More generally, financing frictions have two separate effects on the timing
of investment in our model. First, they increase the cost of investment, thereby
delaying investment. Second, they reduce the value of an active firm, further
delaying investment. Table 2 shows how these two effects vary with input
parameter values. In our base-case environment, Case 1 in the table, financing
frictions increase the investment threshold by 8.0% and three quarters of the
delay in investment is due to financing frictions at the time of investment. As
shown by the table, a firm with a higher volatility of transitory cash flow shocks
(σX =0.15) and higher costs of holding cash (λ=0.03) optimally invests at yet
a higher threshold relative the first-best, with more than one-third of the delay
coming from the post-investment financing frictions. A firm with a relatively
low cash flow volatility and low costs of holding cash (Case 3 in the table)
invests at a lower threshold, but still much above the first-best threshold. In this
case, the bulk of the delay is due to financing frictions at investment.

7. Conclusion

Our paper contributes to the literature on the effects of financing frictions on
corporate policies. Previous studies focused on the uncertainty of cash flows as
one of the important determinants of liquidity and risk management policies.
We demonstrate that these policies can be better understood as arising from two
separate types of shocks: permanent and transitory shocks to cash flows. The
main distinction between permanent and transitory shocks is that permanent
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shocks affect not only a firm’s immediate productivity and cash flows but also
its future productivity and cash flows. By contrast, while transitory shocks
affect immediate cash flows, they are uninformative about future expected
profitability. To illustrate the differential effects of these two types of shocks
on corporate policies, we construct a dynamic model of a firm facing financing
frictions and subject to transitory and permanent cash flow shocks. We use this
model to show that combining permanent and transitory shocks helps explain
corporate behavior and produces several novel implications about the level of
cash savings and optimal financing and risk management policies.

In our model, both permanent and transitory cash flow shocks induce the firm
to save. Optimal cash savings decrease with the correlation between permanent
and transitory shocks. This correlation is also a key driver of the cash-flow
sensitivity of cash, which can be positive or negative. In addition, when firms
access capital markets to raise funds, the size of equity issues is not constant as
in prior models, but reflects the level and dynamics of permanent shocks. We
also show that introducing permanent shocks in models with financing frictions
leads to richer risk management policies, that depend on the nature of the cash
flow shocks. In particular, we show that if the firm’s risk and futures prices are
positively correlated, then hedging transitory shocks involves a short futures
position, while hedging permanent shocks may require a long futures position.
We also show that managing risk either by derivatives or by directly selecting
the riskiness of assets via asset substitution leads to the same outcome if the risk
is due to transitory shocks. However, derivatives and asset substitution are not
equivalent when managing permanent shocks. Lastly, because the correlation
between permanent and transitory cash flow shocks reduces firm risk, we also
find that firms in which these shocks are negatively correlated benefit most
from credit lines.

Appendix A. Proof of Proposition 1

The proof goes through three steps. Step 1 shows that problem (7) can be
rewritten as a one-dimensional control problem. Step two solves the variational
system (18), (19), (22). Step 3 shows that the solution to (18), (19), (22)
coincides with the solution of the one-dimensional control problem and derives
the optimal dividend and issuance policies. Throughout the proof, V ∗ and F ∗
denote the value functions of the control problems, and V and F denote the
solution to the variational systems.

Step 1. Let P̃ be the probability defined by(
dP

dP̃

)
|Ft

=Zt ≡exp{−1

2
σ 2

At +σAWP
t }, ∀t ≥0, (A.1)

on (Ω,F). By Girsanov’s Theorem, (W̃
P

t ,WT
t )t≥0 with W̃

P

t =−σAt +WP
t , is a

bidimensional Brownian motion under the probability P̃. We have:
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Proposition 4. The value function V ∗ of problem (7) satisfies

V ∗(a,m)=aF ∗
(m

a

)
. (A.2)

The function F ∗ is defined on [0,∞) by

F ∗(c)= sup
((τn)n≥1,(en)n≥1,L)∈A

f (c;(τn)n≥1,(en)n≥1,L), (A.3)

with

f (c;(τn)n≥1,(en)n≥1,L)=E
P̃

c

[∫ τ0

0
e−(r−μ)t (dL̃t −dẼt )+e−(r−μ)τ0

ωα

r−μ

]
(A.4)

and C0 =c with

dCt =(α+Ct (r−λ−μ))dt+
√

σ 2
AC2

t −2ρσXσACt +σ 2
XdWC

t +
dẼt

p
−d�̃t −dL̃t ,

(A.5)
where WC =(WC

t )t≥0 is a standard Brownian motion under P̃,

�̃t =
∑
n≥1

φ11{τn≤t}, (A.6)

Ẽt =
∑
n≥1

ẽn11{τn<t} with ẽn =enAτn, (A.7)

L̃t =
∫ t

0

1

As

dLs, (A.8)

and the liquidation time τ0 is defined by

τ0 = inf {t ≥0|Ct =0}. (A.9)

Proof of Proposition 4. Applying Itô’s formula to
(
e−r(t∧τ0)Mt∧τ0

)
t≥0 and

letting t go to ∞ yields

E

[∫ τ0

0
e−rt (dLt −dEt )

]
=m+E

[∫ τ0

0
e−rt (−λMt +αAt )dt

]

−E

[∫ τ0

0
e−rt (

p−1

p
dEt +d�t )

]
,
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which we rewrite under the form

1

a
E

[∫ τ0

0
e−rt (dLt −dEt )

]
=

m

a
+E

[∫ τ0

0
e−(r−μ)tZt (−λ

Mt

At

+α)dt

]

−E

[∫ τ0

0
e−(r−μ)tZt (

p−1

p

dEt

At

+
d�t

At

)

]
.

The change of probability measure (A.1) yields

1

a
E

[∫ τ0

0
e−rt (dLt −dEt )

]
=

m

a
+E

P̃

[∫ τ0

0
e−(r−μ)t (−λ

Mt

At

+α)dt

]

−E
P̃

[∫ τ0

0
e−(r−μ)t (

p−1

p

dEt

At

+
d�t

At

)

]
.

(A.10)

Then, applying Itô’s formula to ( Mt

At
)t≥0 yields

M0

A0
=

m

a
, d

(
Mt

At

)
=

(
α+

Mt

At

(r−λ−μ)

)
dt +

(
σXρ− Mt

At

σA

)
dW̃

P

t

+σX

√
1−ρ2dWT

t +
1

At

(
dEt

p
−d�t −dLt

)
, (A.11)

or equivalently,

M0

A0
=

m

a
, d

(
Mt

At

)
=

(
α+

Mt

At

(r−λ−μ)

)
dt

+

√
σ 2

A

(
Mt

At

)2

−2ρσXσA

Mt

At

+σ 2
X dWC

t +
1

At

(
dEt

p
−dLt

)
−d�̃t ,

where (WC
t )t≥0 is a Brownian motion under P̃. Applying Itô’s formula to(

e−r(t∧τ0) Mt∧τ0
At∧τ0

)
t≥0

, letting t go to ∞, and rearranging terms, we get

E
P̃

[∫ τ0

0
e−(r−μ)t 1

At

(dLt −dEt )

]
=

m

a
+E

P̃

[∫ τ0

0
e−(r−μ)t

(
−λ

Mt

At

+α

)
dt

]

−E
P̃

[∫ τ0

0
e−(r−μ)t

(
p−1

p

dEt

At

+d�̃t

)]
.
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Noting that E[e−rτ0 ωα
r−μ

Aτ0 ]=aE
P̃[ ωα

r−μ
e−(r−μ)τ0 ], we deduce then from (A.10)

E

[∫ τ0

0
e−rt (dLt −dEt )+e−rτ0

ωαAτ0

r−μ

]

=aE
P̃

[∫ τ0

0
e−(r−μ)t 1

At

(dLt −dEt )+e−(r−μ)τ0
ωα

r−μ

]
.

Finally, note that the problem

sup
((τn)n≥1,(en)n≥1,L)∈A

E
P̃

[∫ τ0

0
e−(r−μ)t 1

At

(dLt −dEt )+e−(r−μ)τ0
ωα

r−μ

]
,

with the admissible policies (τn)n≥1,(en)n≥1,L related by

C0 =c, dCt =(α+Ct (r−λ−μ))dt +
√

σ 2
AC2

t −2ρσXσACt +σ 2
X dWC

t

+
1

At

(
dẼt

p
−dL̃t

)
−d�t ,

together with (A.7), (A.8), is equivalent to problem (A.3)–(A.8). �

The two next steps solve problem (A.3). To this end, we first solve the
variational system (18), (19), (22) (step 2). Then, we show that its solution
coincides with the solution of problem (A.3) (step 3).

Step 2 The following holds.

Proposition 5. There exists a unique solution (F,c∗) to the variational system
(18), (19), (22) that is concave and twice continuously differentiable over
(0,∞).

The proof mimics the proof of Proposition A1 in Décamps et al. (DMRV)
(2011). The arguments must be slightly adapted because, in the ordinary
differential equation (18), the drift (α+c(r−λ−μ)) can take negative values
and�(c)≡σ 2

Ac2 −2ρσXσAc+σ 2
X is nonconstant. For completeness, we develop

below the main steps of the proof with a particular focus on the arguments that
require a slight adaptation. We refer to DMRV (2011) for more details.
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Proof of Proposition 5: We start by considering the family of ordinary
differential equations parametrized by c1 >0,

−(r−μ)F (c)+(α+c(r−λ−μ))F ′(c)+
1

2
(σ 2

Ac2 −2ρσXσAc+σ 2
X)F

′′
(c)=0,

0<c<c1; (A.12)

F ′(c1)=1; (A.13)

F
′′
(c1)=0. (A.14)

Because ρ ∈ [−1,1), �(c)≡σ 2
Ac2 −2ρσXσAc+σ 2

X >0 and (A.12)–(A.14)
admits a unique solution Fc1 over [0,c1] for any c1 >0. The next lemma
establishes the monotonicity and concavity of Fc1 .

Lemma 1. The following holds:

(i) If 0<λ≤r−μ then, for any c1 >0, F ′
c1

>1 and F
′′
c1

<0 over [0,c1).

(ii) If λ>r−μ then, for any 0<c1 < α
λ+μ−r

, F ′
c1

>1 and F
′′
c1

<0 over [0,c1).

Proof of Lemma 1: Differentiating (A.12) yields 1
2�(c1)F

′′′
c1

(c1)−λF ′
c1

(c1)=0,

which implies F
′′′
c1

(c1)>0 because λ>0. Since F ′′
c1

(c1)=0 and F ′
c1

(c1)=1, it
follows that F ′′

c1
<0 and thus F ′

c1
>1 over some interval (c1 −ε,c1), where ε>0.

Now, suppose by way of contradiction that F ′
c1

(c)≤1 for some c∈ [0,c1 −ε],
and let c̃=sup{c∈ [0,c1 −ε]|F ′

c1
(c)≤1}<c1. Then, F ′

c1
(c̃)=1 and F ′

c1
>1 over

(c̃,c1), so that Fc1 (c1)−Fc1 (c)>c1 −c for all c∈ (c̃,c1). Since Fc1 (c1)= α
r−μ

+
r−λ−μ

r−μ
c1, this implies that for any such c,

F ′′
c1

(c)=
2

�(c)

{
(r−μ)Fc1 (c)−(α+c(r−λ−μ))F ′

c1
(c)
}

<
2

�(c)
{(r−μ)(c−c1 +Fc1 (c1))−(α+(r−λ−μ)c)} (A.15)

=
2

�(c)
λ(c−c1)

<0. (A.16)

To obtain (A.15), remark that, by assumption, in each case (i) and (ii), we have
α+(r−λ−μ)c>0 for any c∈ (c̃,c1). To conclude, note that (A.16) contradicts
that F ′

c1
(c̃)=F ′

c1
(c1)=1. Therefore, F ′

c1
>1 over [0,c1), from which it follows

that F ′′
c1

<0 over [0,c1). �

If there exists a solution F to (18), (19), and (22) that is twice continuously
differentiable over (0,∞), then, by construction, F must coincide over [0,c1]
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with some Fc1 , for an appropraite choice of c1. This choice is dictated by the
boundary condition (22) that F must satisfy at zero. The next lemma studies
the behavior of Fc1 and F ′

c1
at zero as c1 varies.

Lemma 2. In each of the two cases of Lemma 1, Fc1 (0) is a strictly decreasing
and concave function of c1, whereas F ′

c1
(0) is a strictly increasing and convex

function of c1.

Proof of Lemma 2: Consider H0 and H1, the two solutions to ODE

−(r−μ)H (c)+(α+c(r−λ−μ))H ′(c)+
1

2
(σ 2

Ac2 −2ρσXσAc+σ 2
X)H

′′
(c)=0

over [0,∞) characterized by the initial conditions H0(0)=1,H ′
0(0)=0,H1(0)=

0, and H ′
1(0)=1. H ′

0 and H ′
1 are strictly positive over (0,∞). The Wronskian

WH0H1 ≡H0H
′
1 −H1H

′
0 of H0 and H1 satisfies WH0H1 (0)=1 and

W ′
H0H1

(c)=− 2

�2(c)
(α+c(r−λ−μ))WH0H1 ,

so that WH0H1 >0 which implies that for each c1 >0, Fc1 =Fc1 (0)H0 +F ′
c1

(0)H1

over [0,c1]. Using the boundary condition Fc1 (c1)= α+c1(r−λ−μ)
r−μ

and F ′
c1

(c1)=1,
we obtain that

dFc1 (0)

dc1
=− 1

WH0H1 (c1)

λ

r−μ
H ′

1(c1) < 0,

d2Fc1 (0)

d2c1
=− 1

WH0H1 (c1)

2λ

�(c1)
H1(c1) < 0,

and

dF ′
c1

(0)

dc1
=

1

WH0H1 (c1)

λ

r−μ
H ′

0(c1) > 0,

d2F ′
c1

(0)

d2c1
=

1

WH0H1 (c1)

2λ

�(c1)
H0(c1) > 0.

�
Since limc1↓0Fc1 (0)= α

r−μ
> ωα

r−μ
and limc1↓0F

′
c1

(0)=1<p, it follows from
Lemma 2 that there exists a unique ĉ1 >0 such that Fĉ1 (0)= ωα

r−μ
, and that there

exists a unique c̃1 >0 such that F ′̃
c1

(0)=p. Note that:

1. ĉ1 satisfies ĉ1 < α
λ

(1−ω). Indeed, the concavity property implies
Fc1 (0)<Fc1 (c1)−c1. A computation yields Fc1 (c1)−c1 ≤ ωα

r−μ
iff c1 ≥

α
λ

(1−ω), (in the case λ>r−μ, we have α
λ

(1−ω)< α
λ+μ−r

, and thus the
assumption of assertion (ii) of lemma 1 is satisfied).
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2. ĉ1 >c̃1 if and only if F ′
ĉ1

(0)>p. Furthermore, Lemma 1 along with
the fact that F ′

c1
(c1)=1 implies that if c1 ≥ c̃1, there exists a unique

cp(c1)∈ [0,c1) such that F ′
c1

(cp(c1))=p. This corresponds to the unique
maximum over [0,∞) in case (i) of Lemma 1, (resp. over [0,c1) in case
(ii) of Lemma 1) of the function c �→Fc1 (c)−p(c+φ). By construction,
we have that cp(c̃1)=0.

The remaining of the proof of Proposition 5 coincides with the proof of
Proposition A1 in DMRV (2011). This leads to the two cases:

1. If F ′
ĉ1

(0)≤p, then (F,c∗)= (Fĉ1 ,ĉ1) solves the variational system (18),
(19), and (22). Note that by construction F (0)= ωα

r−μ
. Issuance costs are

high.

2. If F ′
ĉ1

(0)>p, then there exists a unique c′
1 ∈ (c̃1,ĉ1) such that

Fc′
1
(0)=Fc′

1
(cp(c′

1))−p(cp(c′
1)+φ). The pair (F,c∗)= (Fc′

1
,c′

1) solves
the variational system (18), (19), (22). Lemma 2 along with c′

1 <ĉ1

implies that F (0)> ωα
r−μ

. Furthermore, as c′
1 >c̃1, the function

c �→F (c)−p(c+φ) reaches its maximum over [0,∞) at c̄≡cp(c′
1).

Issuance costs are low. �

Step 3 We now show that the functions F ∗ and F coincide. The next Lemma
states that F is an upper bound for F ∗

Lemma 3. For any admissible policy ((τn)n≥1,(en)n≥1,L), the solution F to
(18), (19), (22) satisfies

F (c)≥f (c;(τn)n≥1,(en)n≥1,L); c>0.

The proof of Lemma 3 is standard and follows from Lemma A4 in DMRV
(2011). To prove that F =F ∗, we must construct an admissible policy, the value
of which coincides with the function F . To this end, we consider the scaled
cash reserve process C∗ defined as the solution to the Skorokhod problem

C∗
t =m+

∫ t

0

(
α+C∗

s (r−λ−μ)
)
ds+

√
σ 2

AC∗2
s −2ρσXσAC∗

s +σ 2
XdWC

s

+
∑
n≥1

c1{τ∗
n ≤t}−L∗

t , (A.17)

C∗
t ≤c∗, (A.18)

L∗
t =
∫ t

0
1{C∗

s =c∗}dL∗
s , (A.19)

where the sequence of stopping times (τ ∗
n )n≥1 is recursively defined by

τ ∗
0 ≡0, τ ∗

n ≡ inf {t >τ ∗
n−1 |C∗

t− =0 and C∗
t = c̄>0}; n≥1, (A.20)

with inf ∅≡∞ by convention. Standard results on the Skorokhod problem
imply that there exists a unique solution (C∗,L∗) to (A.17)–(A.20). Condition
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(A.19) requires that cumulative scaled dividends increase only when the scaled
cash reserves reach the boundary c∗. Conditions (A.17)–(A.18) show that this
causes the scaled cash reserves to be reflected back at c∗. Two cases can arise.
If issuance costs are high, c̄=0 and the project is liquidated as soon as C∗ drops
to zero, so that τ ∗

0 = inf {t ≥0|C∗
t− =0}<∞, P̃–almost surely. If issuance costs

are low, then c̄=cp(c∗)>0, and the process C∗ discontinuously jumps to c̄ each
time it drops down to zero, so that τ ∗

0 =∞, P̃–almost surely. This corresponds
to a situation in which, for any n≥1, e∗ =F ∗(c̄)−F ∗(0)=p(c̄+φ). Drawing on
DMRV (2011), we obtain

Proposition 6. The value function F ∗ for problem (A.3) coincides with the
function F solution to (18), (19), (22) that is twice continuously differentiable
over (0,∞). The optimal issuance and dividend policies are given by
((τ ∗

n )n≥1,(e∗
n)n≥1,L

∗), where

τ ∗
n =∞, i∗n =0; n≥1

if issuance costs are high, and

τ ∗
n =inf {t >τn−1 |C∗

t− =0}, e∗
n =p(c̄+φ); n≥1

if issuance costs are low.

Finally, Proposition 6 together with Proposition 4 leads to Proposition 1.

Appendix B. Comparative Statics

To make the dependence of F , c, and c∗ on θ explicit, we write F =F (·,θ ),
c=c(θ ), and c∗ =c∗(θ ). Proposition 7 below and its corollaries establish
Proposition 2.

Proposition 7. Let θ be one of the deep parameters of the model.

1. If issuance costs are high (liquidation case), then firm value satisfies

∂F

∂θ
(c,θ )=Ec

[∫ τ0

0
e−(r−μ)t

(
−∂[r−μ]

∂θ
F (C∗

t ,θ )

+
∂[α+(r−λ−μ)C∗

t ]

∂θ

∂F

∂c
(C∗

t ,θ )

+
1

2

∂[σ 2
AC∗2

t −2ρσAσXC∗
t +σ 2

X]

∂θ

∂2F

∂c2
(C∗

t ,θ )

)
dt

+e−(r−μ)τ ∂[ωα/(r−μ)]

∂θ

]
.
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2. If issuance costs are low (refinancing case), then firm value satisfies

∂F

∂θ
(c,θ )=Ec

[∫ ∞

0
e−(r−μ)t

(
−∂[r−μ]

∂θ
F (C∗

t− )

+
∂[α+(r−λ−μ)C∗

t− ]

∂θ

∂F

∂c
(C∗

t− ,θ )

+
1

2

∂[σ 2
AC∗2

t− −2ρσAσXC∗
t− +σ 2

X]

∂θ

∂2F

∂c2
(C∗

t− ,θ )

)
dt

−
(

∂F

∂θ
(c(θ ),θ )− ∂F

∂θ
(0,θ )

)∑
n≥1

e−rτ∗
n

]
.

3. In both the liquidation and refinancing cases, the target level of cash
holdings satisfies

dc∗(θ )

dθ
=− r−μ

λ

(
∂F

∂θ
(c∗(θ ),θ )+c∗(θ )

∂[ λ
r−μ

]

∂θ
− ∂[ α

r−μ
]

∂θ

)
. (B.1)

Using Proposition 7, we can measure the effects of the model parameters
on the (scaled) value of an active firm and the target level of liquid reserves.

Proof of Proposition 7: We prove case 2 (refinancing case). The proof of case 1
is similar. Applying Itô’s lemma, we obtain

e−(r−μ)T ∂F

∂θ
(C∗

T ,θ )

=
∂F

∂θ
(c,θ )+

∫ T

0
e−(r−μ)t

[
−(r−μ)

∂F

∂θ
(C∗

t− ,θ )+L∂F

∂θ
(C∗

t− ,θ )

]
dt

+
∫ T

0
e−(r−μ)t ∂2F

∂c∂θ
(C∗

t− ,θ )((σXρ−C∗
t−σA)dW̃

P

t +σX

√
1−ρ2dWT

t )

−
∫ T

0
e−(r−μ)t ∂2F

∂c∂θ
(C∗

t− ,θ )dL∗
t +

∑
t∈[0,T ]

e−(r−μ)t

(
∂F

∂θ
(C∗

t ,θ )− ∂F

∂θ
(C∗

t− ,θ )

)

(B.2)

for all T ≥0 and where the operator L is defined by

Lu(c)= (α+c(r−λ−μ))u′(c)+
1

2
(σ 2

P c2 −2ρσAσXc+σ 2
X)u′′(c).
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Let us consider each term of the right-hand side of (B.2). We deduce from (18)
that the first term of the right-hand side (RHS) of (B.2) satisfies

−(r−μ)
∂F

∂θ
(C∗

t− ,θ )+L∂F

∂θ
(C∗

t− ,θ )

=−(r−μ)
∂F

∂θ
(C∗

t− ,θ )+(α+C∗
t− (r−λ−μ))

∂2F

∂θ∂c
(C∗

t− ,θ )

+
1

2
(σ 2

AC∗2
t− −2ρσAσT C∗

t− +σ 2
X)

∂3F

∂θ∂c2
(C∗

t− ,θ )

=
∂[r−μ]

∂θ
F (C∗

t− ,θ )− ∂[α+C∗
t− (r−λ−μ)]

∂θ

∂F

∂c
(C∗

t− ,θ )

− 1

2

∂[σ 2
AC∗2

t− −2ρσAσXC∗
t− +σ 2

X]

∂θ

∂2F

∂c2
(C∗

t− ,θ ).

Because ∂2F
∂c∂θ

(·,θ ) is bounded over (0,c∗(θ )], the third term of the RHS of
(B.2) is a square integrable martingale. The fourth term is identically zero.
Indeed, differentiating ∂F

∂c
(c∗(θ ),θ )=1 with respect to θ and using the fact that

∂F 2

∂c2 (c∗(θ ),θ )=0 yields ∂F 2

∂c∂θ
(c∗(θ ),θ )=0, which, together with (A.19) implies

the result. Lastly, because C∗ has paths that are continuous except at the issuance
dates (τ ∗

n )n≥0, one has

∑
t∈[0,T ]

e−(r−μ)t

(
∂F

∂θ
(C∗

t ,θ )− ∂F

∂θ
(C∗

t− ,θ )

)

=

(
∂F

∂θ
(c(θ ),θ )− ∂F

∂θ
(0,θ )

)∑
n≥1

e−rτ∗
n 11τ∗

n ≤T .

Taking expectations in (B.2) yields

∂F

∂θ
(c,θ )=Ec

[∫ T

0
e−(r−μ)t (−∂[r−μ]

∂θ
F (C∗

t− ,θ )

+
∂[α+C∗

t− (r−λ−μ)]

∂θ

∂F

∂c
(C∗

t− ,θ )

+
1

2

∂[σ 2
AC∗2

t− −2ρσAσXC∗
t− +σ 2

X]

∂θ

∂2F

∂c2
(C∗

t− ,θ ))dt

]

−
(

∂F

∂θ
(c(θ ),θ )− ∂F

∂θ
(0,θ )

)∑
n≥1

e−rτ∗
n +E

[
e−(r−μ)T ∂F

∂θ
(C∗

T ,θ )

]
.
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To conclude, we show that limT →∞E
[
e−(r−μ)T ∂F

∂θ
(C∗

T ,θ )
]

=0. Because,
∂2F
∂c∂θ

(·,θ ) is bounded over (0,c∗(θ )], we have

e−(r−μ)T ∂F

∂θ
(C∗

T ,θ )≤e−(r−μ)T K(1+C∗
T )≤e−(r−μ)T K(1+c∗(θ ))

for all T , where K is a positive constant, and the third inequality follows from
the fact that C∗

T ≤c∗(θ ) P almost surely, thus the result.
Differentiating Equation (24) of the main text with respect to θ yields (B.1).

�

B.1. Comparative statics: Parameters σX, σA, ρ

Proposition 7 yields:

Corollary 1. For any p>1 and φ>0, for any c∈ (0,c∗),

∂F

∂σX

(c,σX)=Ec

[∫ τ0

0
e−(r−μ)t

(−ρσAC∗
t− +σX

) ∂2F

∂c2
(C∗

t− ,σX)dt

]
, (B.3)

∂F

∂σA

(c,σA)=Ec

[∫ τ0

0
e−(r−μ)t

(
σAC∗

t− −ρσX

)
C∗

t−
∂2F

∂c2
(C∗

t− ,σA)dt

]
, (B.4)

∂F

∂ρ
(c,ρ)=Ec

[∫ τ0

0
e−(r−μ)t (−σAσX)C∗

t−
∂2F

∂c2
(C∗

t− ,ρ)dt

]
>0, (B.5)

and
dc∗(θ )

dθ
=− r−μ

λ

∂F

∂θ
(c∗(θ ),θ ) for θ ∈{σX,σA,ρ}. (B.6)

Equations (B.3)–(B.6) hold in the liquidation case and the refinancing case.

Proof of Corollary 1. We recall that, in the refinancing case τ0 =∞ a.e. The
proof directly follows from Proposition 7. It remains simply to remark that, for
θ ∈{σX,σA,ρ}, we have

∂F

∂θ
(c(θ ),θ )− ∂F

∂θ
(0,θ )=0. (B.7)

Equation (B.7) results from differentiating F (0,θ )=F (c̄(θ ),θ )−p(c̄(θ )+φ)
with respect to θ and using that ∂F

∂c
(c̄(θ ),θ )=p. �

B.2. Comparative statics: Parameters p, φ

Corollary 2. The following holds (refinancing case):

1.

∂F

∂p
(c,p)=−(c̄(p)+φ)Ec

[∑
n≥1

e−rτ∗
n

]

<0,
dc∗(p)

dp
=− r−μ

λ

∂F

∂p
(c∗(p),p)>0.
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2.

∂F

∂φ
(c,φ)=−p

∑
n≥1

Ec

[
e−rτ∗

n

]
<0,

dc∗(φ)

dφ
=− r−μ

λ

∂F

∂φ
(c∗(φ),φ)>0.

Proof of Corollary 2. Direct implication of Proposition 7. �

B.3. Comparative statics: Parameters α, μ

Corollary 3. The following holds, in the refinancing case, for all c∈ [0,c∗):

1.
∂F

∂α
(c,α)=Ec

[∫ ∞

0
e−(r−μ)t ∂F

∂c
(C∗

t− ,α)dt

]
>0,

dc∗(α)

dα
=− r−μ

λ

(
∂F

∂α
(c∗(α),α)− 1

r−μ

)
<0.

2.

∂F

∂μ
(c,μ)=Ec

[∫ ∞

0
e−(r−μ)t

(
F (C∗

t− ,μ)−C∗
t−

∂F

∂c
(C∗

t− ,μ)

)
dt

]
>0,

dc∗(μ)

dμ
=− r−μ

λ

(
∂F

∂μ
(c∗(μ),μ)− λ

(r−μ)2
(
α

λ
−c∗(μ))

)
>0.

Proof of Corollary 3. Note that Equation (B.7) holds for θ ∈{α,μ}. Then
formulas for ∂F

∂θ
(c,θ ) and dc∗(θ )

dθ
with θ ∈{α,μ} follow from Proposition 7.

Let us recall that ∂F
∂c

(c,θ )>1 over [0,c∗) and C∗
t ≤c∗

P almost surely. Thus,
∂F
∂α

(c,α)>0 and, for c∈ [0,c∗), we have

∂F

∂α
(c,α)=Ec

[∫ ∞

0
e−(r−μ)t ∂F

∂c
(C∗

t− ,α)dt

]
>E

[∫ ∞

0
e−(r−μ)t dt

]
=

1

r−μ
,

which implies dc∗(α)
dα

<0. Together with the concavity of F with respect to c, it
follows also that, for all c∈ [0,c∗),

F (c,μ)−c
∂F

∂c
(c,μ)>F (c,μ)−c>0,

which leads to ∂F
∂μ

(c,μ)>0. Noting that c−→F (c,μ)−c ∂F
∂c

(c,μ) is increasing
over [0,c∗], we get

∂F

∂μ
(c,μ)=Ec

[∫ ∞

0
e−(r−μ)t

(
F (C∗

t− ,μ)−C∗
t−

∂F

∂c
(C∗

t− ,μ)

)
dt

]

<E

[∫ ∞

0
e−(r−μ)t (F (c∗,μ)−c∗))dt

]
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=E

[∫ ∞

0
e−(r−μ)t

(
α

r−μ
+(1− λ

r−μ
)c∗−c∗)

)
dt

]

=
λ

(r−μ)2

(α

λ
−c∗

)
,

which implies that dc∗(μ)
dμ

>0. �.

Corollary 4. The following holds, in the liquidation case, for all c∈ [0,c∗):

1.
∂F

∂α
(c,α)=Ec

[∫ τ0

0
e−(r−μ)t ∂F

∂c
(C∗

t ,α)dt

]
+Ec

[
e−(r−μ)τ0

ω

r−μ

]
>0.

The sign of
dc∗(α)

dα
is indeterminate.

2.
∂F

∂μ
(c,μ)=Ec

[∫ τ0

0
e−(r−μ)t

(
F (C∗

t− ,μ)−C∗
t−

∂F

∂c
(C∗

t− ,μ)

)
dt

]

+Ec

[
e−(r−μ)τ0

ωα

(r−μ)2

]
>0.

The sign of
dc∗(μ)

dμ
is indeterminate.

Proof of Corollary 4. Direct application of Proposition 7. �

Appendix C. Proof of Proposition 3

Note that

sup
m0≥0,τ∈T

E
[
e−rτ (V (Aτ ,m0)−p(m0 +I )−pφAτ )

]

= sup
τ∈T

E

[
max
m0≥0

E
[
e−rτ (V (Aτ ,m0)−p(m0 +I )−pφAτ )|Fτ

]]
. (C.1)

If issuance costs are low, then F (0)=maxc∈[0,∞)(F (c)−p(c+φ))=F (c̄)−
p(c̄+φ)> ωα

r−μ
and the mapping m−→V (At,m)−p(m+I )−pφAt reaches its

maximum at m0 = c̄At . Thus, (C.1) can be written in the form

sup
τ∈T

E
[
e−rτ (V (Aτ ,c̄Aτ )−p(c̄Aτ +I )−pφAτ )

]
= sup

τ∈T
E
[
e−rτ (F (c̄)−p(c̄+φ))Aτ −pI )

]
= sup

τ∈T
E
[
e−rτ (F (0)Aτ −pI )

]
.

Standard computations yield the result.
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If issuance costs are high, then F (0)= ωα
r−μ

and the mapping m−→
V (At,m)−p(m+I )−pφAt is decreasing. Thus, no cash is raised at the time
of investment (in addition to the investment cost I ) and (C.1) can be written in
the form

sup
τ∈T

E
[
e−rτ (V (Aτ ,0)−pI −pφAτ )

]
= sup

τ∈T
E
[
e−rτ (F (0)−pφ)Aτ −pI )

]
.

If F (0)>pφ, then standard computations leads to (51). Clearly, if F (0)≤pφ,
the option value to invest is worthless. �
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