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Howmuch of a loan should a lender retain, and how do loan sales affect loan performance?
We address these questions in a model in which a lender originates loans that it can sell to
investors. The lender reduces default risk through screening at origination and monitoring
after origination, but is subject to moral hazard. The optimal lender-investor contract can be
implemented by requiring the lender to initially retain a share of the loan that it gradually
sells to investors, rationalizing loan sales after origination. The model generates novel
predictions linking loan and lender characteristics to initial retention, sales dynamics, and
loan performance. (JEL G21, G32)
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Banks provide unique services in the form of publicly unobservable screening
and monitoring of borrowers. A central result in banking theory is that for
banks to have the incentive to provide an efficient level of these services, it
is necessary for them to retain part of the loans they originate (Gorton and
Pennacchi 1995). Lenders who sell loans to investors will bear fewer costs in
the event of default and therefore may have less incentive to screen or monitor
borrowers.
The view that banks have significant skin in the game and therefore provide

an efficient level of these services has been challenged by recent developments
in the market for corporate loans. Indeed, the emergence of an active and
liquid secondary market for corporate loans (Saunders et al. 2021) has given
banks the possibility to reduce their exposure to borrowers’ default risk by
selling their stake over the loan’s life (Drucker and Puri 2009; Nadauld and
Weisbach 2012; Irani et al. 2021). As further shown by Blickle et al. (2022),
in the syndicated loan market,1 lead banks sell their entire share shortly
after origination for a significant fraction of the loans they syndicate. Several
important questions naturally arise in this context. First, what determines
optimal initial retention for loan originators, as well as retention dynamics and
loan sales after origination? Second, how do loan sales affect moral hazard in
screening and monitoring, and therefore loan performance and value?
This paper attempts to answer these questions by developing a tractable,

unifying framework of loan origination and sales under moral hazard in
screening and monitoring. Our model applies to corporate loans, and in
particular to syndicated corporate loans, but is sufficiently general to apply to
other credit markets, such as mortgage loans and their securitization.2 We then
use this framework to characterize the dynamically optimal originator share
and its relation tomoral hazard and loan performance. This allows us to (a) shed
light on recent empirical findings and (b) generate new predictions regarding
optimal retention by loan originators, the dynamics of loan sales by originators,
their relation to loan characteristics, and their effects on loan performance and
value.
We start our analysis by formulating a dynamic agency model in which a

lender—the lead bank in a loan syndicate—originates a loan and sells this loan
to competitive investors—other banks in the syndicate or nonbank financial
intermediaries. The loan generates coupon payments at a constant rate until
default or maturity. The lender may undertake a costly screening effort at

1 Syndicated loans are loans jointly issued to a borrower by multiple financial institutions under one contract. The
syndicated loan market is one of the most important sources of private debt for corporations (see, e.g. Sufi 2007;
Saunders et al. 2021).

2 As documented in, for instance, Benmelech, Dlugosz, and Ivashina (2012), the securitization of corporate
loans—most commonly structured as collateralized loan obligations (CLOs)—is fundamentally different from
the securitization of other asset classes. Corporate loans are significantly larger than mortgages and are typically
syndicated. The bank that originated the loan generally retains a fraction of the loan on its balance sheet. The
fractions of the same underlying loan are held simultaneously by CLOs as well as by other institutional investors
and banks. Furthermore, each loan included in CLOs is rated.
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origination that results in a lower expected default rate at all future times. It
may also monitor the loan at a cost afterward to further reduce default risk.
The loan default intensity is thus endogenous and decreases with screening
and monitoring efforts. Because screening and monitoring are not observable,
there is moral hazard and the lender’s incentives pin down the respective effort
levels. The lender has a lower valuation for the loan than investors due to a
higher discount rate arising from, for example, regulatory or capital constraints.
There are therefore gains from selling (part of) the loan to investors. However,
loan sales reduce the lender’s exposure to loan performance and undermine its
incentives to screen and monitor, thereby increasing credit risk and reducing
loan value.
We derive the optimal contract between the lender (loan originator) and

outside investors that implements costly screening and monitoring, while
respecting the limited liability of the lender and investors. Incentive provision
requires exposing the lender to loan performance. As the lender is protected
by limited liability, this is achieved by delaying its payouts so that the lender
loses its expected future payouts upon default. However, delaying payouts is
costly due to the lender’s higher discount rate. Based on this trade-off, the
paper derives an incentive compatible contract that maximizes total surplus.
This contract takes a simple form: The lender retains a share of the loan at
origination that it gradually sells over time. Under the optimal contract, the
sell-off speed decreases over time, so most loan sales occur relatively shortly
after origination, in line with observed practice.
The structure of the optimal contract reflects the fact that screening only

occurs at origination, so that the contract front-loads incentives. Therefore, the
lender’s exposure to loan performance and incentives to monitor are especially
strong at origination and decrease over time. To achieve this reduction in
skin-in-the-game and incentives, the optimal contract mandates smooth, time-
decreasing payments to the agent. Therefore, the optimal contract can be
implemented by requiring the lender to initially retain a share of the loan
that it gradually sells to investors. Retention and sell-off dynamics thus reflect
the underlying moral hazard in screening and monitoring, and vice versa, in
line with recent empirical findings. In particular, the underlying moral hazard
problem shapes retention and sell-off dynamics, consistent with the evidence
in Chen et al. (2023), Haque, Mayer, and Wang (2023), and Jiang, Kundu, and
Xu (2023) that reduced moral hazard in loan syndication is associated with
lower retention by the lead arranger and more loan sales.3 And, conversely,
monitoring increases with the loan share of the lender, as documented in

3 Exploiting plausibly exogenous shocks to the severity of moral hazard in loan origination, Chen et al. (2023) and
Jiang, Kundu, andXu (2023) show that, as the lender’s (lead arranger’s) moral hazard in screening andmonitoring
is alleviated, the lender retains a lower loan share and sells more of the loan to nonbank intermediaries. Haque,
Mayer, and Wang (2023) show for U.S. syndicated loans that the presence and actions of private equity (PE)
sponsors reduce the necessity of bank monitoring for PE-backed loans, thus allowing the lead arranger to retain
a lower loan share and to sell more loan shares to nonbank intermediaries.
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Gustafson, Ivanov, and Meisenzahl (2021), and decreases as the lender sells
its share.
Our model generates initial retention levels and loan sale dynamics that are

consistent with those documented in the empirical literature. For example,
in line with the evidence in Blickle et al. (2022), (a) most loan sales occur
relatively shortly after origination, and (b) the lender may sell the entire loan
in finite time, that is, before maturity. As we also show analytically, the latter
scenario prevails when the benefits of monitoring (relative to its costs) are
limited or the lender’s cost of capital is high, generating large gains from
trade. Interestingly, our findings reveal that when the lender’s cost of capital
is sufficiently high, the lender may sell the entire loan before maturity, while
exerting significant screening and monitoring efforts that lead to a sizeable
reduction in credit risk. That is, the fact that the lender sells the entire loan
before maturity does not necessarily imply that the lender adds little value
through its screening and monitoring. Indeed, the opposite can be true.
The model also allows us to examine the effects of loan and lender

characteristics, such as loan maturity, borrower quality, or lender cost of
capital, on retention dynamics. Higher intrinsic (prescreening) credit risk
implies earlier default and thus both a shorter time period over which the
lender is exposed to the loan and a lower intrinsic loan value. As such, higher
intrinsic credit risk makes it both more difficult and less interesting financially
to incentivize screening and monitoring, leading to lower initial retention
by the lender and faster loan sales after origination as part of the optimal
contract. Thus, while Ivashina (2009)—respectively, Wang and Xia (2014)
and Gustafson, Ivanov, and Meisenzahl (2021)—document a negative relation
between screening—respectivelymonitoring—and credit risk, our results point
to a two-way causality. Screening and monitoring reduce credit risk, and
intrinsic credit risk also dampens monitoring and screening efforts. Through
this mechanism, our model provides a rationale for the segmentation observed
in credit markets, whereby lenders (such as banks) that exert high screening
and monitoring typically finance high-quality borrowers.
We also show that a higher cost of capital for the lender implies greater gains

from trade, so that the lender retains a lower share in the loan, sells it faster and
is more likely to sell the entire loan, in line with the empirical findings of Irani
and Meisenzahl (2017) and Irani et al. (2021). Lastly, shorter loan maturity
reduces the amount of time that the lender is exposed to loan performance (but
without reducing intrinsic loan value), which weakens its incentives to screen
and increases credit risk. To counteract this effect, the optimal contract front-
loads incentives by increasing initial retention. Therefore, the model predicts
that short maturity debt should feature higher initial retention and monitoring
incentives, but also higher sell-off speed and lower screening, relative to long
maturity debt.
An important question for empirical research is whether the share of the

loan originator can proxy for screening or monitoring incentives and therefore
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predict loan performance. We show that while initial originator retention is
monotonic in the cost of screening and the level of screening effort, it is
nonmonotonic in the cost of monitoring and the level of monitoring effort.
This suggests that the initial share of the originator can serve as a proxy
for screening, but not for monitoring effort because subsequent loan sales
undo monitoring incentives. Empirical measures for monitoring should take
into account the sell-off dynamics after origination. In particular, monitoring
incentives should increase with the incentives of the lead bank, as captured by
the contemporaneous lead share, in line with evidence in Gustafson, Ivanov,
and Meisenzahl (2021). We additionally show that while sell-off speed is
monotonic in the level of monitoring effort, it is nonmonotonic in the level of
screening effort. The nonmonotonic relationships between sell-off speed and
screening as well as between initial retention and monitoring imply that neither
initial retention nor a measure of sell-off speed can (on their own) proxy for
both screening and monitoring.
Next, we study various extensions of our baseline model. First, we consider

that the lender originates a portfolio of two loans. Instead of retaining shares
in each of the individual loans, the lender optimally creates tranches of the
loan portfolio, akin to securitization. The loan portfolio is tranched into an
equity (junior) tranche, which is wiped out after the first loan defaults, and a
senior tranche, which only takes losses when the entire loan portfolio defaults.
Optimal screening and monitoring incentives are provided by having the lender
retain a share of the equity tranche that is gradually sold after origination, a
pattern empirically observed for mortgage loans (Begley and Purnanandam
2016).
Second, we consider repeated lender-investor interactions where the process

by which the lender makes a loan and sells it to investors is repeated. While
our baseline analysis solves for the optimal retention dynamics under full
commitment, we show that repeated lender-investor interactions can generate
such commitment. Intuitively, originating the loan and selling it to outside
investors is profitable for the lender. If these gains are sufficiently large and
deviating from the retention path stipulated in the contract implementation
hampers future loan sales, the lender will have sufficient incentives to comply
with the prescribed retention path. We also examine retention dynamics when
the originator cannot commit to a specific retention level.We show that the sell-
off dynamics and how they are affected by model parameters are qualitatively
similar in the zero- and full-commitment solution, so that our analysis allows us
to draw robust inferences on how loan and lender characteristics shape sell-off
dynamics under moral hazard.
Third, in some applications of credit securitization (e.g., mortgages),

screening and monitoring of loans are generally undertaken by separate
entities: An originator responsible for screening and a servicing company in
charge of monitoring (Demiroglu and James 2012). In other settings (e.g.,
corporate loans), they are undertaken by the same entity. To understand
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the consequences of separation, we consider a model variant in which two
otherwise identical agents, respectively, screen and monitor loans and, to have
adequate incentives, retain a stake in the loan. However, raising one agent’s
incentives and stake in the loan necessarily limits the other agent’s stake and
incentives, leading to negative spillovers between screening and monitoring
incentives. On the contrary, when screening and monitoring are undertaken by
the same agent, there are positive spillovers between screening and monitoring
incentives, making it optimal to bundle the two tasks to reduce credit risk.
The model predicts relatively low levels of screening and monitoring in credit
markets where these two tasks are separated, as is common for mortgages,
relative to markets where these two tasks are bundled and undertaken by the
same entity, as is common for syndicated loans.
Our paper relates to the extensive banking literature on screening and

monitoring. Most models in this literature are static (see, e.g., Diamond
1984; Gorton and Pennacchi 1995; Holmstrom 1989; Parlour and Plantin
2008). As a result, they do not distinguish between monitoring after loan
origination and screening at origination and cannot investigate the dynamics
of incentives and loan sales and their effects on credit risk and loan value.
Following early contributions by Sufi (2007) and Ivashina (2009), a growing
empirical literature examines the effects of the share of the lead arranger in
syndicated loans on screening and monitoring (see, e.g., Benmelech, Dlugosz,
and Ivashina 2012; Wang and Xia 2014; Bord and Santos 2015). Most of these
studies proxy skin in the game by initial retention. This literature has recently
focused on loan sales after origination and their effects on incentives and credit
risk (Lee, Liu, and Stebunovs 2022; Blickle et al. 2022; Chen et al. 2023).
Our paper contributes to this literature mainly in two ways. First, we

highlight the key role of the originator’s contemporaneous loan share for
screening andmonitoring incentives, and rationalize loan sales after origination
as part of an optimal contract between loan originators and outside investors.
Second, we shed light on the complex relationship between screening and
monitoring and the originator’s skin in the game. In particular, we demonstrate
that both initial retention and sell-off speed determine incentives and that
incentives are best captured by the share of the agent when they exert
effort both for screening—initial originator share—and for monitoring—
contemporaneous originator share.
From a modeling perspective, our paper builds on the literature that studies

dynamic contracts in continuous time, starting with DeMarzo and Sannikov
(2006) and Biais et al. (2007). In this literature, Piskorski and Westerfield
(2016), Malenko (2019), Orlov (2022), and Gryglewicz and Mayer (2022)
analyze incentive provision with optimal dynamic contracts and monitoring.
Halac and Prat (2016), Varas, Marinovic, and Skrzypacz (2020), and Hu and
Varas (2021) characterize optimal monitoring in dynamic settings but do not
focus on optimal contracts. In a related paper, Hartman-Glaser, Piskorski, and
Tchistyi (2012) study optimal securitization and screening of mortgages under
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moral hazard. In their model, the optimal contract features a single payout to the
agent when sufficient time has elapsed after the origination.Malamud, Rui, and
Whinston (2013) and Hoffmann, Inderst, and Opp (2021) generalize Hartman-
Glaser, Piskorski, and Tchistyi (2012) by allowing formore general preferences
and sources of uncertainty, respectively. Hoffmann, Inderst, and Opp (2022)
study optimal regulation of compensation in a similar framework.
Our paper advances this literature in several ways. First, while corporate

loans are both screened and monitored in practice, our paper is the first to
model screening and monitoring in a unifying framework. We show that the
combination of screening andmonitoringmoral hazard implies that the optimal
contract between the lender and investors can be implemented by requiring the
lender to retain a time decreasing share of the loan. Notably, unlike Hartman-
Glaser, Piskorski, and Tchistyi (2012) or Hoffmann, Inderst, and Opp (2021,
2022), our model generates retention and sell-off dynamics that mirror the
patterns documented in recent empirical studies. Second, the model allows us
to examine the effects of loan and lender characteristics on retention dynamics.
This allows us to rationalize recent findings and to generate new predictions
regarding optimal retention, loan sales dynamics, and their effects on loan
performance.

1. Model Setup

Time t is continuous and defined over [0,∞). A lender (the agent) originates a
loan that can be sold to competitive outside investors (the principal). In the
model’s key application, namely, syndicated lending, the lender represents
the lead arranger, while investors represent other banks in the syndicate or
institutional investors (e.g., CLOs or loan market mutual funds) who buy loans
in the secondary market. In the baseline model, the loan has infinite maturity.
An equivalent interpretation is that the loan has finite maturity, but is rolled over
every time it matures until default. Section 4.3 shows that the implications of
the model are not affected if loans have finite maturity and are not rolled over.

1.1 Screening, monitoring, and default risk
The loan promises a constant flow payoff (coupon payment) normalized to 1
up to its default, which occurs at random time τ . The liquidation value of the
loan at default is normalized to zero for simplicity, as, for example, DeMarzo
and He (2021). The default time τ arrives according to a jump process d Nt ∈

{0,1} with endogenous intensity λt >0 at time t , where τ := inf{t ≥0:d Nt =1}.
That is, over a short period of time [t,t +dt), the loan defaults with probability
Ed Nt =λt dt . The default rate λt depends on the agent’s screening effort q at
time t =0 and monitoring effort at at time t ≥0, in that

λt =3−q −at . (1)

In this equation, 3>0 captures the intrinsic quality (default intensity) of the
loan. Screening effort q captures the lender’s due diligence and screening of the
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borrower prior to loan origination, where a higher q corresponds, for example,
to more information collected and processed during the due diligence process
and, thus, to lower levels of default risk.4

Monitoring effort (at )t≥0 captures the lender’s post-origination due diligence
and monitoring, which can take various forms (for direct evidence on bank
monitoring, see, e.g., Gustafson, Ivanov, and Meisenzahl 2021; Heitz, Martin,
and Ufier 2022). For instance, monitoring could capture a lender’s on-site
inspections of the borrower, third-party appraisals (a third party is hired
by the lender to conduct an audit/inspection of the borrower), the active
request and verification of the borrower’s financial or collateral information,
or the monitoring and enforcement of loan covenants. The lender’s monitoring
effort may in practice curb borrower moral hazard, prevent borrower risk-
taking, and more generally improve the likelihood that the lender is repaid.
In the following, we assume that monitoring effort at reduces the default
intensity λt . This modeling assumption is in line with the evidence in Heitz,
Martin, and Ufier (2022) that active monitoring by the lender (e.g., via on-site
inspections) reduces default risk and in Blickle, Parlatore, and Saunders (2023)
that both preorigination screening and post-origination monitoring improve
loan performance (i.e., reduce default risk).
Screening and monitoring efforts are bounded in that q ∈ [0,q̄] and at ∈

[0,ā] with 3> ā+ q̄ . The bounds ā and q̄ are necessary to ensure that
the instantaneous default probability λt is well-defined and positive. Unless
otherwise mentioned, we focus on parameter configurations that lead to
optimal efforts at ∈ [0,ā) and q ∈ [0,q̄), so that the upper bounds do not bind
and the model solution, as well as contract dynamics, do not depend on the
exact values of ā and q̄ . We discuss formally binding upper bounds in Internet
Appendix B.7.
Screening entails a cost 1

2κq2 at time zero. Monitoring entails a flow cost
1
2φa2

t at time t ≥0. Screening and monitoring efforts are unobservable and are
not contractible, giving rise to moral hazard. We do not impose any restrictions
on the relation between screening andmonitoring. In particular, we do notmake
any assumptions about whether screening andmonitoring efforts are substitutes
or complements. According to Equation (1) screening andmonitoring affect the
instantaneous default rate λt in a symmetric and independent way.5 If the lender
decides to shirk on either task, the loan will have a higher default rate. Although

4 To make our baseline analysis tractable, we model the impact of screening effort on default risk λt in reduced
form as in Hartman-Glaser, Piskorski, and Tchistyi (2012), Malamud, Rui, andWhinston (2013), and Hoffmann,
Inderst, and Opp (2021). Internet Appendix B.6 provides a micro-foundation of the loan origination process and
the impact of screening effort on default risk in which screening effort allows the lender to distinguish good
from bad borrowers, thereby reducing the loan’s default risk. The model solution and analysis are similar, but
less tractable.

5 We can allow screening and monitoring to be complements or substitutes in reducing default risk with little
effect on the model solution and analysis by assuming, for example, that λt =3−q −at −αqat . See Internet
Appendix B.1 for a theoretical analysis of this model variant, Internet Appendix B.6 for its micro-foundation,
and Section 2.2.4 for a numerical analysis.
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both reduce the risk of default, it is important to note that screening occurs only
once, when the loan is originated at time t =0, whereas monitoring occurs at
any point in time t ≥0 up to default. Furthermore, the effect of screening is
more persistent than that of monitoring, where we consider for tractability that
the impact of monitoring is purely transitory.

1.2 Gains from trade and loan sales
Both the principal and the agent are risk neutral.6 The principal discounts
cash flows at rate r ≥0. The agent is more impatient and discounts cash flows
at rate γ >r . The difference in discount rates may reflect regulatory capital
requirements, as in DeMarzo and Duffie (1999), or differences in financial
constraints or risk aversion, as in DeMarzo and Sannikov (2006).
Because of the discount rate differential γ −r >0, there are gains from

selling the loan—or a security whose payoff depends on loan performance—
to outside investors, a process that works as follows. At inception, the lender
designs a long-term contract or, equivalently, a security C that is sold to
competitive investors at price P0. The contract C = {dCt ,ât ,q̂} represents a
claim on the loan originated by the lender and sets out a profit-sharing rule
for the loan payments 1dt , so that the lender receives dCt and investors receive
1dt −dCt dollars over each time interval [t,t +dt]. The contract C also specifies
the monitoring effort ât (for all t ≥0) and the screening effort q̂ . We focus
on incentive compatible contracts that induce actual monitoring and screening
efforts to coincide with contracted monitoring and screening efforts, that is,
ât =at and q̂ =q. Unless necessary, we do not explicitly distinguish between
contracted and actual effort levels.
Both the principal and the agent are protected by limited liability. That is, the

continuation payoff of the principal and the agent under the contract C must at
any time exceed their outside option, which we normalize to zero. The principal
and the agent are able to fully commit to the transfer rule (dCt )t≥0 stipulated
by the optimal contract as long as it meets their limited liability constraint.7

We do not impose explicit constraints on the transfers dCt after time zero, but
show later that optimal transfers satisfy dCt ≥0 for t >0.

1.3 Contracting problem
In what follows, we write t =0− as the time just before the screening effort is
chosen, and t =0 denotes the time just after the screening effort is chosen. At
time t =0−, the principal and the agent sign a contract C. Given the contract
C, the agent chooses screening effort q and monitoring effort {at } to maximize

6 Alternatively, one can interpret payoffs and probabilities as evaluated under the risk-neutral measure, in which
case the default probability λt can be seen as the risk-neutral or “risk-adjusted” default probability.

7 Section 4.4.1 shows how commitment can arise through repeated originator-investor relations.
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the expected present value of private profits

W0− = max
q,(at )t≥0

E
[∫

∞

0
e−γ t

(
dCt −

φa2
t

2
dt
)]

−
κq2

2
, (2)

where the subscript 0− denotes values before screening effort is chosen.
When buying the security from the lender (loan originator), outside investors
have rational expectations regarding the lender’s incentives to exert screening
and monitoring efforts. Once the loan defaults at time τ , there are no more
coupon payments and the game ends, so both the principal’s and the agent’s
continuation payoff fall to zero.8 Thus, dCt =0 for t ≥τ . We additionally
conjecture (and later verify) that after time t =0−, payouts to the lender are
smooth in that dCt =ct dt for a compensation stream ct at time t >0.
The price that competitive investors pay for a contract C at time t =0− is

given by P0− = P0 where the time-t price of the security is

Pt =Et

[∫ τ

t
e−r (s−t)(1−cs)ds

]
=
∫

∞

t
e−r (s−t)−

∫ s
t λu du(1−cs)ds. (3)

In Equation (3), the second equality integrates the default intensity λs over the
relevant time interval. The lender receives P0 dollars at time t =0− from selling
the security to investors, in that dC0− = P0. Under the contract C, the agent’s
continuation payoff Wt at time t ≥0 is given by the present value of the future
payments adjusted for the cost of effort:

Wt :=E
[∫ τ

t
e−γ (s−t)

(
cs −

φa2
s

2

)
ds
]
=
∫

∞

t
e−γ (s−t)−

∫ s
t λu du

(
cs −

φa2
s

2

)
ds.

(4)
Wt captures the value of the lender’s stake in the loan. The limited liability
constraints of the lender and investors are then formally defined as Wt ≥0 and
Pt ≥0 for any t ≥0.9

As investors are competitive, the lender can extract all the surplus and
therefore chooses the security that maximizes total surplus F0− :=W0− +P0 at
time t =0−. That is, the lender solves

max
C

F0− , (5)

taking into account its own moral hazard problem (i.e., incentive compatibility
constraints) and the limited liability constraints Wt ,Pt ≥0 for any t ≥0.

8 After default at time τ , the loan is worth zero and so is the sum of agent’s and principal’s payoff. Due to limited
liability, neither the agent nor the principal can have negative payoffs and, because their payoffs add to zero, it
follows that dCt =0 for t >τ .

9 That is, if Wt <0 or Pt <0, the lender or investor would be better off leaving the contractual relationship and
enjoying their outside option (normalized to zero). At time t =0−, the limited liability constraint for the lender

implies W0− =W0−
κq2
2 ≥0, that is, the expression for the agent payoff in (2) is positive.
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The Dynamics of Loan Sales and Lender Incentives

Because Pt in Equation (3) and Wt in Equation (4) can be expressed
as deterministic integrals after integrating out the random default event and
because the optimal contract dynamically maximizes total surplus Ft =Wt +Pt ,
the dynamic optimization problem (5) can be formulated as a deterministic
problem. Unless otherwise mentioned, we adopt the deterministic formulation
of problem (5).

2. Model Solution

2.1 Incentives for screening and monitoring
We now turn to characterize the lender’s incentives for screening and
monitoring, and hence the resultant effort levels q and (at )t≥0. To begin with, let
us fix screening effort at q and analyze monitoring incentives given q . Because
of limited liability, the agent only loses its claim to future payments, that is,
its continuation payoff Wt , at the time of default. With its monitoring activity,
the agent controls the probability of default or, equivalently, the probability
of losing future payments Wt over the next instant, which is given by λt dt =
(3−at −q)dt . Thus, the agent’s optimal monitoring effort is

at =arg max
a∈[0,ā]

(
−(3−a−q)Wt −

φa2

2

)
=arg max

a∈[0,ā]

(
aWt −

φa2

2

)
.

As we focus on monitoring effort satisfying at ∈ [0,ā) and Wt ≥0 (limited
liability), the lender’s optimal monitoring effort is

at =
Wt

φ
. (6)

The incentive constraint for monitoring effort (6) shows that incentive
compatibility requires ât =at =

Wt
φ

for all t ≥0. Granting the lender a higher
stake Wt increases its exposure to default risk and monitoring incentives, but
is costly because of its relative impatience (γ >r ).

While monitoring at affects the default intensity λt at a single point in time
t , screening q affects all future default intensities (λt )t≥0 and thus the entire
sequence of expected payments, encapsulated in W0=W0(q). Note that we now
explicitly recognize the dependence of W0 on the screening effort q chosen at
time t =0−. The agent chooses q to maximize W0− which is the value of its

claim after screening is chosen, W0(q), net of the screening effort cost, κq2

2 :

max
q∈[0,q̄]

(
W0(q)−

κq2

2

)
. (7)

Vt denotes the agent’s gain from a marginal increase in q measured from time
t onward:

Vt =
∂

∂q
Wt (q). (8)
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We can use V0 to write the first-order condition solving (7) for the optimal
screening effort:

q =
V0

κ
. (9)

Vt captures the agent’s screening incentives at time t and, because screening
effort is chosen at time t =0−, V0 determines the amount of screening q exerted
by the agent. Lemma 1 below derives a condition such that the first-order
approach is valid. Under that condition, the Equation (9) describes incentive
compatibility for the screening effort, in that q = q̂ = V0

κ
.

While V0 determines screening effort, the optimal contract will depend on
the whole path of Vt beyond t =0. Notably, we show later that Vt becomes
a state variable for the dynamic optimization problem of the lender because
the optimal long-term contract takes into account how time-t incentives affect
screening incentives at time t =0. To characterize Vt and V0, we differentiate
the integral representation of Wt in (4) under optimal at to obtain:10

Vt =
∫

∞

t
(s−t)e−γ (s−t)−

∫ s
t λu du

(
cs −

φa2
s

2

)
ds =

∫
∞

t
e−γ (s−t)−

∫ s
t λu du Wsds.

(10)
Note that both screening and monitoring incentives are provided by exposing
the agent to loan performance via Wt >0. Higher Wt exposes the agent
more strongly to loan performance and, therefore, motivates screening.
Furthermore, a higher Wt increases monitoring at , which delays default
and strengthens screening incentives measured by Vt . Equation (10) reveals
a simple interpretation of Vt and of screening incentives in our model.
Specifically, as a derivative of the lender’s continuation value with respect to
q , which is a persistent component of the discount rate, Vt is closely related
to the notion of duration. To obtain the duration of the lender’s exposure to
the loan, one needs to scale Vt by the value of the exposure. That is, the
duration measured in units of time is equal to Dt =

Vt
Wt
. It follows that screening

incentives Vt are equal to the product of the duration and value of the lender’s
exposure, that is, Vt =Dt Wt . This decomposition captures the intuition that
screening incentives are the strongest if the exposure Wt to the loan is large
and has a high duration Dt . This creates a trade-off as late payments increase
duration but decrease value. The determination of screening incentives must,
therefore, resolve the tension between duration and value.
Next, we characterize the dynamics of the agent’s monitoring and screening

incentives Wt and Vt . We can differentiate (4) with respect to time and obtain

Ẇt :=
dWt

dt
=(γ +λt )Wt +

φa2
t

2
−ct . (11)

10 When differentiating Wt , we can ignore the effect on at because of the envelope theorem. Also, because screening
effort q is neither observable nor contractible, an unobserved change in q cannot affect the contracted flow
payments ct . A derivation of (10) is provided in the proof of Proposition 2.
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The Dynamics of Loan Sales and Lender Incentives

Similarly, differentiating Vt in (10) with respect to time t , we obtain the
dynamics of Vt :

V̇t :=
dVt

dt
=(γ +λt )Vt −Wt . (12)

We close this section by stating some regularity conditions that we impose
on the problem.

Lemma 1. Suppose that the model parameters satisfy

κ >
2

(r +3− ā− q̄)(γ +3− ā− q̄)2
+

1

φ(r +3− ā− q̄)2(γ +3− ā− q̄)3
. (13)

Incentive conditions (6) and (9) hold and uniquely pin down monitoring and
screening efforts. Incentive conditions (6) and (9) are sufficient and the first-
order approach is valid.

Throughout the paper, we assume that condition (13) is met and that

κ >
φā

q̄(γ +3− ā− q̄)
, (14)

which is needed in the proof of Proposition 2.

2.2 Optimal contract
2.2.1 Benchmark: Observable and contractible screening. To highlight
the differences between monitoring and screening incentives more thoroughly,
we start by studying the “second-best” benchmark in which screening is not
subject to moral hazard, in that q is publicly observable and contractible. To
solve the model under this benchmark, we first fix screening q . Note that with
observable q , unobservable actions at have immediate rather than persistent
effects. Additionally, absent default, our environment remains constant over
time. We thus conjecture (and verify) that the optimal contract is stationary and
features constant flow payments to the manager ct =c=cB(q)>0 until default,
so that Ẇt = ȧt =0, Wt =W =W B(q), and at =aB(q) for all t . Inserting Ẇt =0
into (11) yields

c=(γ +3−a−q)W +
φa2

2
. (15)

Given screening q and monitoring a, the default rate is constant and equal to
3−a−q, and the price of the security paying flow payouts 1−c to investors
becomes

P B(q)=
1−c

r +3−a−q
. (16)

Equation (15) implies a one-to-one mapping between c and W . As a result,
controlling c is equivalent to controlling W and we can treat W as a choice
variable instead of c. Next, note that given q, optimal monitoring effort a
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(and equivalently optimal deferred compensation W =φa) is chosen to
maximize total surplus after screening, F B(q)= P B(q)+W . Using Equations
(15) and (16), we thus get that the lender solves

F B(q)= max
W∈[0,F B (q)]

(
1

r +3−a−q︸ ︷︷ ︸
Market value

−
(γ −r )W

r +3−a−q︸ ︷︷ ︸
Agency cost

−

φa2

2

r +3−a−q︸ ︷︷ ︸
Monitoring cost

)
, (17)

subject to a=W/φ (incentive compatibility) and W ∈ [0,F B(q)] (limited
liability). Equation (17) shows that the surplus F B(q) consists of the present
value of the loan payments minus agency and direct cost of monitoring.
Because the lender is subject to moral hazard, it must retain a stake W , which
generates agency costs due to its relative impatience, γ >r . The maximization
problem in (17) yields optimal levels of monitoring effort

aB(q)=max

{
F B(q)−(γ −r )φ

φ
,0

}
, (18)

and W B(q)=φaB(q)< F B(q), given a level of screening q. Using (10), we can
also calculate

V B(q)=
W B(q)

γ +3−aB(q)−q
. (19)

Equation (19) characterizes the agent’s screening incentives under the second-
best solution and plays an important role in the solution with noncontractible
screening. Finally, we optimize F B(q) over q to determine optimal screening in

this second-best benchmark: q B =argmaxq∈[0,q̄]

(
F B(q)− κq2

2

)
. We summarize

our findings in the following proposition.

Proposition 1 (No moral hazard over screening). Suppose that screening
effort q is contractible so that there is nomoral hazardwith respect to screening.
At the optimum, monitoring effort aB(q), payouts cB(q), and deferred payouts
W B(q) (< F B(q)) are constant over time and jointly characterized by (6),
(15), and (17) for any choice of q. Optimal monitoring effort aB(q) increases
with q . Optimal screening effort q B maximizes F B(q)− κq2

2 .

2.2.2 Moral hazard over screening and monitoring. We now assume that
q is unobservable to investors and consider the full contracting problem with
moral hazard over both screening andmonitoring.We solve this problem in two
steps. We first fix screening q and solve the continuation problem for t ≥0. We
then determine optimal screening q =q∗, taking into account the solution to the
continuation problem.
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The Dynamics of Loan Sales and Lender Incentives

Given monitoring a and screening q , we can write the total surplus at time t
as11

Ft =
∫

∞

t
e−r (s−t)−

∫ s
t λu du(1−cs)ds︸ ︷︷ ︸
=Pt

+
∫

∞

t
e−γ (s−t)−

∫ s
t λu du

(
cs −

φa2
s

2

)
ds︸ ︷︷ ︸

=Wt

=
∫

∞

t
e−r (s−t)−

∫ s
t λu du

(
1−

φa2
s

2
−(γ −r )Ws

)
ds, (20)

with Wt =φat . The time-0− optimization can then be written via the
Lagrangian:

L0− =F0− +ℓ(κq −V0),

where ℓ is the Lagrange multiplier for the screening incentive constraint κq =
V0. Maximizing the Lagrangian for each time t while taking into account the
monitoring incentive constraint (6) yields that optimal effort at , if interior,
satisfies the first order condition:

e−r t (Ft −(γ −r )φ−φat )−ℓe−γ t (φ+Vt )=0.

Therefore, we have that when at is interior

at =

Reduction of
default risk︷︸︸︷

Ft −

Agency
costs︷ ︸︸ ︷

(γ −r )φ

Screening
incentives︷ ︸︸ ︷

−ℓe−(γ−r )t (Vt +φ)

φ︸︷︷︸
Direct cost

∧
Ft

φ
, (21)

where min{x,y}= x ∧ y and where we account for the possibility that the
principal’s limited liability constraint binds (in which case Wt =φat =Ft ). See
Appendix A.3.3 for a derivation of this result. The intuition for (21) is that
monitoring reduces the probability of default but comes at additional direct and
agency costs. In addition, in a long-term contract, the optimal choice of effort
at time t >0 takes into account its effect on screening incentives at origination,
as captured by −ℓe−(γ−r )t (Vt +φ), which distorts optimal monitoring away
from the benchmark level with contractible screening in (18). As the agent
is relatively more impatient and γ >r , this effect, however, vanishes over time.
Thus, optimal monitoring at and, consequently, Vt ,Wt , and Ft approach the

11 For a derivation, take Ft = Pt +Wt in the first line of (20) and take the derivative with respect to t :

Ḟt =(r +λt )Pt −1+ct +(γ +λt )Wt −ct +
φa2t
2

=(r +3t )(Pt +Wt︸ ︷︷ ︸
=Ft

)−1+
φa2t
2

−(γ −r )Wt .

This expression can be integrated over time, t , to arrive at the second line of (20).
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respective levels of the benchmark with observable screening as time t tends
to ∞, in that

lim
t→∞

(at ,Wt ,Vt ,Ft )=(aB(q),W B(q),V B(q),F B(q)).

For times t <∞, Vt affects the optimal choice of monitoring effort in (21),
and thus becomes a relevant state variable in the dynamic optimization of total
surplus.
As Vt and Wt characterize the agent’s incentives and there is no other source

of uncertainty than the arrival of the loan default time τ , the state variables Vt

and Wt summarize all payoff-relevant information. Thus, we can express the
total surplus as a function of Vt and Wt , in that Ft =F(Vt ,Wt ). In what follows,
we omit time subscripts, unless necessary. The integral expression (20) implies
that the total surplus F(V,W ) solves:

r F(V,W )=max
a,c

{
1−

φa2

2
−(γ −r )W −λF(V,W ) (22)

+FV (V,W )((γ +λ)V −W )+FW (V,W )

(
(γ +λ)W +

φa2

2
−c
)}

,

where FV (V,W )= ∂ F(V,W )
∂V and FW (V,W )= ∂ F(V,W )

∂W , and where we have used
the dynamics of W and V given in (11) and (12).12 Equation (22) is solved
subject to the incentive condition (6), the limited liability constraints, and the
conjecture that payouts to the lender are smooth, in that dC =cdt . Note that it
is always possible to stipulate that the lender receives an incremental payout
of 1 dollars,13 which leaves V unchanged but changes W by −1 dollars. That
is, controlling payouts to the lender is equivalent to controlling W . As a result,
we can formulate the dynamic optimization problem of the lender such that
W instead of c enters (22) as a control variable. Optimal payouts to the lender
are then defined as the residual that implements the optimal W , as we show in
Section 3.1.
As we do not impose any constraints on the payout rate c and it is always

possible to increase or decrease c, the optimality of payouts c requires the first-
order condition

∂ F(V,W )

∂c
=−FW (V,W )=0

12 For a derivation, conjecture that Ft =F(Vt ,Wt ), so Ḟt =FV (Vt ,Wt )V̇t +FW (Vt ,Wt )Ẇt . Differentiate (20)

with respect to time to get Ḟt =(r +λt )Ft −1+
φa2t
2 −(γ −r )Wt , which becomes (22) after inserting Ḟt =

FV (Vt ,Wt )V̇t +FW (Vt ,Wt )Ẇt and Ft =F(Vt ,Wt ).

13 If payouts to the lender are not smooth, then it follows similar to (11) that dWt =(γ +λt )Wt dt +
φa2t
2 dt −dCt , so

a payout of dC =1 dollars reduces W by 1, that is, dW =−1.
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to hold. Substituting FW (V,W )=0 back into (22) yields

r F(V )= max
a∈[0,ā],W

{
1−

φa2

2
−(γ −r )W −λF(V )+F ′(V )

(
(γ +λ)V −W

)}
,

(23)
where (with a slight abuse of notation) F(·) is a function of V only and W
is a control. Equation (23) is solved subject to the incentive condition for
monitoring effort (6), that is, W =φa, and the principal’s and the agent’s limited
liability conditions, that is, W ∈ [0,F(V )].
As t →∞, the state variable Vt approaches V B(q) which is defined in (19).

Expressed in terms of the state variable V , Equation (23) is solved subject to
the boundary condition

lim
V →V B (q)

F(V )=F B(q). (24)

We assume that a unique, continuously differentiable solution F(V ) to (23)
subject to (24) exists. We show in the appendix that κq =V0>V B(q) in
optimum. Over time, V drifts down to V B(q), in that V̇t <0 with limt→∞ V̇t =0.
Thus, the state space can be characterized by the interval (V B(q),V0]. The value
function is downward sloping, with F ′(V )<0 for V ∈ (V B(q),V0]. We also
show that the value function is strictly concave.
Having characterized the model solution for t ≥0 and given q , we are now

in a position to endogenize screening effort. Optimal screening effort q =q∗

maximizes the initial value of surplus net of the screening cost while satisfying
the incentive compatibility condition (9):

q∗=arg max
q∈[0,q̄]

(
F(V0)−

κq2

2

)
s.t. V0=κq. (25)

The following proposition summarizes the properties of the optimal contract.

Proposition 2 (Moral hazard over screening andmonitoring). In optimum,
the state variables Wt and Vt are characterized in (4) and (10) respectively, and
have dynamics given by (11) and (12) respectively. Furthermore, the following
holds:

1. For any given q , total surplus at time t is a function of V only, in that
Ft =F(Vt ). The value function F(V ) solves (23) subject to boundary
condition (24).

2. Optimal monitoring is characterized by themaximization in (23) subject
to (6). Optimal screening effort q =q∗ is characterized in (25).

3. When q =q∗ >0, it holds that κq =V0>V B(q), and V drifts down (i.e.,
V̇t <0) to V B(q), but never reaches V B(q) (i.e., Vt >V B(q)).

4. The value function F(V ) strictly decreases in V on [V B(q),V0) with
limV →V B (q) F ′(V )≤0, so that F ′(V )<0 for V >V B(q). The value
function is strictly concave

5. Payouts to the agent are smooth and positive.
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Figure 1
Total surplus F(V ), monitoring a(V ), and the agent’s flow payouts c(V )
In the upper panels, the vertical dashed red line represents V0. In the lower panels, the horizontal dotted red line
represents the benchmark levels that are attained in the limit t →∞.

Finally, note that the optimal contract is designed to maximize the total surplus
for the lender and investors, given that the loan is originated. As such, the
optimal contract would not change if we modeled the initial decision to
extend a loan of size K to the borrower. In that case, the optimal contract

would be designed to maximize F0− −K =F0−
κq2

2 −K . While the exact value
of K would affect the initial surplus, subject to the participation constraint
F0− −K ≥0, it would not affect the contract dynamics.14

2.2.3 Contract dynamics. Figure 1 provides a numerical example of the
optimal contract. For the numerical analysis, we normalize r =0 and 3=1
so that, without monitoring and screening, the expected time to default is
1/3=1 year and the loan has a pre-effort (or intrinsic) value 1/(3+r )=1.15

In addition, we set γ =0.1 and φ=κ =9 to generate the desired trade-offs.
Lastly, we pick ā=0.125 and q̄ =0.24 to satisfy conditions (13) and (14). Our
parameter choices imply that the constraints at ≤ ā and q ≤ q̄ never bind. The
model’s qualitative outcomes are robust to the choice of these parameters.
The three upper panels of Figure 1 plot total surplus F(V ), monitoring

a(V ), and the agent’s flow payouts c(V ) as functions of the state variable V .
The contract starts at V =V0 and V decreases with time. Observe that flow
payouts c(V ) to the agent are always positive and increase with V , that is,
decrease over time since V̇ <0. As Vt is a deterministic function of time (before
default), we can represent the evolution of the contract quantities over time.

14 See also Section B.6.8 in the Internet Appendix.

15 3 need not be interpreted as the actual rate of default (absent screening and monitoring), but can rather be seen
as risk-adjusted default intensity (i.e., the default intensity under the risk-neutral measure).
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This is done in the lower three panels depicting screening incentives Vt , total
surplus Ft , and monitoring effort at as functions of time t (for t <τ ). (As Wt

is proportional to at by Wt =φat , we do not plot it separately.) Observe that
Vt , Wt , and at decrease over time with a decreasing speed. In contrast, total
surplus Ft increases over time. These dynamics of the value function Ft =F(Vt )
and monitoring effort at =a(Vt ) are shaped by the optimal incentive provision
for screening. As screening only occurs at time t =0, screening incentives
and, therefore, the agent’s exposure to loan performance are front-loaded,
thereby inducing a monitoring effort that exceeds the benchmark level aB(q∗).
Intuitively, the provision of screening incentives distorts monitoring incentives
upward, which is costly and curbs total surplus. Over time, these distortions
taper off, improving total (continuation) surplus Ft , which approaches the
second-best level F B(q∗) in the long run.

2.2.4 Determinants of incentives. We now study the determinants of
incentives by performing a comparative static analysis of monitoring and
screening efforts with respect to exogenous model parameters. The key
finding of this section is that due to moral hazard, screening and monitoring
endogenously arise as complements. To underscore the robustness of this
result, we consider a generalization of our baseline model in which the loan
default intensity is given by:

λt =3−at −q −αat q.

When α>0 (α<0), screening and monitoring are complements (substitutes)
in reducing default risk. In the baseline model, we have α=0. That is, we do
not make any assumptions on whether screening and monitoring efforts are
substitutes or complements. The solution for this model variant is analogous
to that of the baseline model as shown in Internet Appendix B.1. A micro-
foundation of this default intensity can be found in Internet Appendix B.6.
Figure 2 plots initial monitoring a0 (which proxies for overall monitoring)

and screening q as functions of the cost of screening κ , the cost of monitoring
φ, intrinsic credit risk 3, and lender cost of capital γ for α=0, α=−1,
and α=−2. Panels A, B, E, and F of Figure 2 show that monitoring effort
at and screening effort q decrease with both the costs of monitoring and
screening, φ and κ . That is, screening and monitoring efforts are complements.
The underlying mechanism is that screening and monitoring incentives are
determined and linked by the agent’s deferred compensation. The provision of
strong screening incentives implies and requires strong monitoring incentives,
while strong monitoring incentives boost the agent’s screening incentives. As
a result, when the cost of screening κ increases, it becomes optimal to reduce
contracted screening effort, leading to lower screening incentives and, as such,
to lower monitoring (incentives). Likewise, when the cost of monitoring φ
increases, it becomes optimal to curb monitoring (incentives), leading to lower
screening (incentives). Notably, screening and monitoring endogenously arise
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Figure 2
Comparative statics
This figure plots themonitoring effort a0 for α=0 (solid black line) and screening effort q∗ against the parameters
φ,κ , and 3 for α=−1 (dotted red line) and α=−2 (dashed yellow line). We use our baseline parameters.

as complements for incentive purposes even for negative values of α, that is,
when assuming that screening and monitoring are substitutes in reducing credit
risk and absent moral hazard.16

Panels C and G of Figure 2 illustrate that a decrease in the intrinsic quality
of the loan, as reflected by the higher baseline default intensity 3, leads to a
decrease in monitoring and screening. That is, our paper suggests a two-way
relation between credit risk and lenders’ screening and monitoring. Notably,
a lower credit quality leads to laxer monitoring and screening, which in turn
exacerbates credit risk. Indeed, a higher rate of default 3 implies a lower
expected duration for the loan and the agent’s payments, which in turn makes
it more costly to provide screening incentives. Thus, for larger values of 3, it
becomes optimal to reduce screening incentives which also leads to a reduction
of monitoring incentives.
Finally, panels D and H of Figure 2 show that screening and monitoring

efforts decrease with γ , as it becomesmore costly to delay payouts to the lender
and to provide incentives.17

3. Dynamic Retention and Loan Sales

3.1 Contract implementation via dynamic retention
This section shows that the optimal contract can be implemented by having
the lender keep a time-decreasing share of the loan. At origination, the lender

16 The complementarity of screening and monitoring may vanish for sufficiently large negative values of α.
Obviously, the complementarity is stronger for positive values of α.

17 This is consistent with the evidence in Purnanandam (2011) that securitization reduces screening and
performance in mortgage markets and that this effect is more pronounced for more capital-constrained banks.
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retains a fraction β0 of the loan and sells a fraction 1−β0 to outside investors.
After origination (for t ≥0), the lender (progressively) sells off its stake so that
βt decreases over time. That is, the agent owns a fraction βt of the loan at time
t , where βt is adjusted to provide appropriate incentives Wt .

A per-unit claim on the loan pays the loan rate 1 up to default at time τ and
therefore has a competitive price

L t =
∫

∞

t
e−r (s−t)−

∫ s
t λu du1ds, (26)

at any time t ≥0 where credit risk is captured via the instantaneous default
intensities (λs)s≥t . Over a short period of time [t,t +dt], the agent receives
βt1dt in coupon payments from the loan. In addition, selling the loan at rate
−dβt yields trading revenues −dβt L t . Therefore, matching the payoffs to the
payouts ct dt of the optimal contract requires that

βt dt −dβt L t =ct dt. (27)

We can solve (11) to get

ct =(γ +λt )Wt +
φa2

t

2
−Ẇt >0. (28)

As payouts to the lender are smooth and positive for t >0, retention will be
smooth too, so dβt = β̇t dt . Equations (28) and (27) then imply the ODE:

βt −β̇t L t =(γ +λt )Wt +
φa2

t

2
−Ẇt . (29)

This equation is solved subject to limt→∞βt =cB =cB(q∗), where cB(q) is
the constant payout level in the limit t →∞ (or, equivalently, Vt →V B(q))
characterized in Proposition 1 under optimal screening q =q∗ (see also
Appendix A.4).

Proposition 3 (Implementation). The optimal contract can be implemented
as follows. The agent retains a fraction βt of the originated loan at time t ,
whereby a unit stake pays out a flow payoff of 1 dollars until liquidation at
time τ and has a competitive time-t price given by (26). Over time, the agent
sells its stake according to (29).

It is instructive to discuss the implementation of the optimal contract when
there is only one type of moral hazard, that is, either over screening or
monitoring, but not both.When there is onlymoral hazard overmonitoring (i.e.,
q is observable and contractible), the solution is characterized in Section 2.2.1,
and the optimal contract is stationary with constant monitoring aB(q)=
W B(q)/φ and constant payouts cB(q) up to default. The contract can then be
implemented by having the agent retain a constant share of the loans βB(q)=
cB(q).
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In the limit φ→∞,18 monitoring is prohibitively costly, so both contracted
and actual monitoring equal zero and, mechanically, there is no moral hazard
over monitoring.19 Thus, the default intensity equals3−q and is constant over
time. Without moral hazard over monitoring, the optimal contract stipulates
constant payouts ct =1 up to time τ 0 (finite and endogenous). At time τ 0, the
agent receives, in addition, a lumpy payout dCτ0 >0. This contract maximizes
the agent’s exposure to loan performance before time τ0, while respecting the
principal’s limited liability. The implementation of the optimal contract then
requires the lender to retain the entire loan until time τ 0, at which point it
fully sells the loan to investors. As an alternative to the limit argument, Internet
Appendix B.8 solves the model when there is no moral hazard over monitoring
(at is observable and contractible) but φ<∞, and shows that the outcomes
in this model variant are similar, that is, the agent retains the entire loan at
origination and does not sell up to some time τ 0. We thus have that:

Proposition 4. The following holds:

1. When there is no moral hazard over screening, the optimal contract
stipulates after time t =0 constant payouts up to default at rate cB .
The optimal contract can be implemented by having the agent retain
a constant fraction of the loan βB =cB .

2. When there is no moral hazard over screening, there exists a finite time
τ 0

∈ (0,∞) such that the optimal contract stipulates smooth payouts
at rate ct =1 for all times t ∈ (0,τ 0). At time τ 0, the optimal contract
stipulates a (strictly positive) lumpy payout dCτ0 >0 to the agent. The
optimal contract can be implemented by requiring the lender to retain
the entire loan until time τ 0, at which point it fully sells the loan to
investors.

3.2 Application to syndicated loans
While our model applies to credit markets broadly, we focus in what follows
on the market for syndicated loans in which loan sales are common, as shown,
for example, by Drucker and Puri (2009) and Irani et al. (2021).20 We start
this section with a brief discussion of some of the institutional details of the
syndication process and how they relate to our model.

18 Likewise, one could consider the case φ=0 so that at = ā without moral hazard. This leads to default intensity
3− ā−q. The model with φ=0 is isomorphic to the limit φ→∞ upon replacing 3 with 3− ā.

19 An increase in φ relaxes the parameter condition (13) but tightens (14) (which, in fact, cannot hold in the limit).
We, therefore, can stipulate ā= χ̄/φ for appropriate constant χ̄ >0 (large enough to ensure effort is interior)
so that (14) is met in the limit φ→∞. This is merely a technical assumption and does not affect any of the
conclusions, as at tends to zero regardless for φ→∞.

20 Loan sales and securitization are common in other markets too and affect lender incentives. For instance,
Purnanandam (2011) and Keys et al. (2010) find that securitization and the originate-to-distribute model have
led to reduced screening in the market for mortgages prior to the subprime crisis.
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The syndication process, which is described in greater detail in Bruche,
Malherbe, and Meisenzahl (2020), consists broadly of three stages. In the
first stage (“origination stage”), the lead lender—also referred to as the lead
bank or lead arranger—matches with a borrower and conducts due diligence
(screening). Provided the outcome of the screening process is positive, the
lead lender and coinvestors (other banks in the syndicate) jointly commit the
loan to the borrower, with loan terms being determined based on the screening
outcome.21

In the second stage (“book running” or “primary market”), the deal is
marketed to outside investors, which can be other banks or institutional
investors (e.g., CLOs or loan market mutual funds). During this stage—which
lasts on average 46 days (Bruche, Malherbe, and Meisenzahl 2020)—outside
investors may buy loan shares right away or commit to buying loan shares
in the secondary market.22 That is, during the primary market stage, the lead
arranger gradually reduces its exposure to the loan by engaging in loan sales
or, alternatively, precommitted loan sales (akin to a forward sale of the loan).
During this primary market stage, the lead arranger is exposed to pipeline risk,
that is, the risk that it cannot sell the loan if investor demand dwindles, for
example, because of bad news about the borrower (not necessarily limited
to actual default).23 Broadly interpreted, the Poisson process d Nt captures
such bad news. In the third stage (“secondary market”), the secondary market
opens. Outside investors can then buy the loan and precommitted sales can be
executed.
In our model, the first stage runs from time t =0− to time t =0 and β0 can

be seen as the lead arranger’s initial share of total credit commitment. Then,
times t >0 represent the second and third stages (i.e., primary and secondary
markets), during which the lender gradually reduces its exposure to the loan.
Crucially, the implementation of the optimal contract via the lender’s time-
varying retention βt allows us to map our model to the data. In particular,
the empirical analog for βt is the lead arranger’s share which is reported at
origination in the DealScan database and over time in the Shared National
Credit Registry.
Figure 3 plots the lender’s share βt against time t , both under our baseline

parameters (panel A) and when φ and γ are larger (panel B). As time passes,
the agent sells its stake βt . Thus, our model generates optimal loan sales by
the (lead) lender as part of the optimal lender-investor contract. Notably, as we

21 While loan terms can be changed during the syndication process (e.g., because of a lack of investor demand), it
is very uncommon that the lenders renege the loan commitment.

22 Typically and as discussed in Blickle et al. (2022), CLOs precommit to buy loan shares in the secondary market
for tax reasons, instead of directly participating in the syndicate.

23 Part of the pipeline risk is also borne by the borrower, as loan terms may be adjusted in response to weak demand
from investors. Bad news may also annul precommitted loan sales.
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Figure 3
Implementation of the optimal contract and per unit value of the loan
Panel A uses our baseline parameters, and panel B sets γ =0.18 and φ=11.

argue next, the retention and loan sales dynamics qualitatively resemble the
patterns observed in the data.
First, observe that the sell-off speed, as captured by −β̇t in Figure 3,

decreases with time t since origination. That is, in panel A, βt is convex and
decreasing in t approaching βB in the limit (the sell-off speed tends to zero
as t →∞), while in panel B the sell-off speed becomes zero at some point.
The interpretation is that most of the loan sales occur (relatively) shortly after
origination, consistent with the findings in Blickle et al. (2022) or Lee, Liu, and
Stebunovs (2022). In fact, under certain parameter conditions, the lender sells
off its entire stake in finite time, capturing the sell-off dynamics reported in
Blickle et al. (2022) that in some cases (especially for Term B loans) the lender
sells its entire stake relatively shortly after origination. Panel B of Figure 3 plots
the retained share when lender’s discount rate and the cost of monitoring are
larger than in the baseline. The lender retains initially β0≈20% of the loan—in
line with the initial retention level reported in Sufi (2007)—and sells its entire
stake in finite time in about 1 unit of time (i.e., one year corresponding to the
median sell-off time for term B loans reported in Blickle et al. 2022).
More generally, Corollary 1 shows analytically that when the lender’s cost of

capital γ or the cost of monitoring φ are sufficiently large, the lender sells the
loan in finite time. Thus, our results reveal that lenders retain loans that have a
low holding cost γ or to which they can add value through monitoring (because
of low φ), while selling loans for which the holding cost is high relative to the
potential value added through monitoring.

Corollary 1. Under the implementation from Proposition 3, we have that

1. When the cost of monitoring φ or the cost of capital γ are sufficiently
high in that

φ>max

{
1

(r +3− q̄)(γ −r )
,

1

(r +3− q̄ − ā)(γ +3)

}
, (30)

the lender sells off its entire stake in finite time. In this case, β0>0 and
there exists time T ∈ (0,∞) such that βt =0 and Wt =0 for t ≥T .

2. When the cost of monitoring φ or cost of capital γ are sufficiently low in
that φ< 1

(r+3−q)(γ−r ) ≤
1

(r+3)(γ−r ) , the lender never sells its entire stake,

24

D
ow

nloaded from
 https://academ

ic.oup.com
/rfs/advance-article/doi/10.1093/rfs/hhae021/7681881 by Erasm

us U
niversity R

otterdam
 user on 25 June 2024



The Dynamics of Loan Sales and Lender Incentives

that is, βt >0 and Wt >0 for all t ≥0. Thus, φ≥
1

(r+3−q)(γ−r ) ≥
1

(r+3)(γ−r )
is a necessary condition for sell-off in finite time.

Importantly, the sufficient condition (30) for full sell-off does not depend on
the cost of screening κ . Thus, holding 3, r , and γ fixed, it is not possible to
rule out that the loans that are sold off in finite timemay perform systematically
better than loans that are not sold off. This would happen if the former types
of loans are characterized by high φ and low κ , while the latter ones have low
φ but high κ . Therefore, a regression with a measure of loan performance as
the dependent variable and a measure of sell-off (i.e., whether the entire loan
is sold in finite time) as an independent variable, as in Blickle et al. (2022),
may yield that loans which are sold in finite time perform better. This result
would, for instance, arise if the cross-sectional correlation between φ and κ is
strongly negative and, as a consequence, that the loans sold by originators are
characterized by high screening (i.e., low κ) and low monitoring (i.e., high φ).

We now provide a comparison of our model to alternatives in how they
can generate retention and loan sales dynamics that are qualitatively similar
to those observed in the data. Note that our model is able to generate retention
and loan sales dynamics that are qualitatively similar to those observed in the
data only when we model both screening and monitoring. Indeed, as discussed
above, when there is no monitoring task—as in, for example, Hartman-Glaser,
Piskorski, and Tchistyi (2012)—the lender retains the entire loan up to a time
τ 0 and then sells its entire stake. In this case, retention is either zero or one,
which is at odds with the evidence on themarket for syndicated corporate loans.
When there is no screening, the implementation stipulates a constant retention
level and no loan sales after origination, a pattern that is also inconsistent with
the evidence.
Likewise, existing dynamic asymmetric information models of asset trade,

such as Daley and Green (2012) or Adelino, Gerardi, and Hartman-Glaser
(2019), feature lumpy sales, that is, the seller (the analog of the lender in
our model) either holds the asset to be sold or sells it entirely and there is no
partial retention. More recently, Gottardi, Moreira, and Fuchs (2022) develop a
dynamic model of adverse selection in which privately informed sellers decide
on how much to sell/retain of an asset when trades can take place continuously
over time. They show that delay of trade dominates fractional trade as a device
to achieve separation, so that in equilibrium each type trades all of its assets at
a unique point in time.24

Finally, we would like to highlight that evidence points toward moral hazard
as an important driver of loan sale dynamics and vice versa. Gustafson, Ivanov,
and Meisenzahl (2021) document that the extent of active monitoring crucially

24 While delay of trade always weakly dominates fractional trade as signaling device, this relationship is strict only
under limited commitment in their setup.
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Figure 4
Retention and dynamics
Initial retention and sell-off speed as functions of the costs of screening and monitoring κ and φ, intrinsic credit
quality 3, and the lender’s cost of capital γ .

depends on the lead arranger’s retained share and loan sales. Chen et al. (2023)
and Haque, Mayer, and Wang (2023) empirically show that changes in the
severity of the lender’s moral hazard problem shape loan sales.

3.3 Loan characteristics and retention dynamics
The optimal contract between the loan originator and outside investors can be
implemented by having the loan originator retain a time-decreasing stake in
the loan. As a result, both the initial retention level and the speed at which
the lender sells its stake determine the strength of dynamic screening and
monitoring incentives. We now study how intrinsic credit risk, the costs of
monitoring and screening, and the originator’s cost of capital affect initial
retention and sell-off dynamics. To this end, the upper-four panels of Figure 4
plot the lender’s retention level βt for t =0 (solid black line), t =3 (dotted red
line), and t →∞ (dashed yellow line) against κ , φ, 3, and γ . The lower four
panels of Figure 4 plot a measure of the sell-off speed, 1−βt/β0, against κ , φ,
3, and γ . Note that 1−βt/β0 is the fraction of its initial stake that the lender
sells up to time T . Thus, if 1−βt/β0 is high (low), the lender sells off its initial
stake quickly (slowly).
Figure 4 reveals that retention decreases and sell-off speed increases as

intrinsic credit risk 3 or the lender’s discount rate γ increase (see panels C,
D, G, and H), so that the lender’s incentives to screen and monitor decrease, in
line with Figure 2. The model, thus, predicts that the originator initially retains
a lower fraction of the loan and sells its stake faster when ex ante credit risk
(3) is high or when it is more capital-constrained. These results are in line
with the findings in Blickle et al. (2022) that lead share sales are positively
correlated with the ex ante riskiness of the loan and the lead arranger’s capital
constraints, the finding in Irani and Meisenzahl (2017) and Irani et al. (2021)
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that less-capitalized banks reduce loan retention, and the finding in Adelino,
Gerardi, and Hartman-Glaser (2019) that mortgage quality is positively related
to the time to sale for securitized mortgages.
Panels A and E present the effects of the cost of screening κ on retention

and sell-off speed. Initial retention decreases with κ . However, the sell-
off speed is hump-shaped in κ .25 As κ increases, contracted screening and
monitoring efforts decrease (see Figure 2), leading to a decrease in incentives
and initial retention. To get some intuition for why sell-off speed is the
highest for intermediate κ , note that when κ is sufficiently low, moral hazard
over screening becomes negligible and the optimal contract only needs to
incentivize monitoring. Thus, the contract comes close to that in the benchmark
with only monitoring moral hazard and a constant level of retention, that is,
a zero sell-off speed (see Proposition 4). When κ is sufficiently large and
screening is prohibitively costly, there is effectively no moral hazard over
screening either as the agent’s choice of screening effort tends to zero. Again,
in this case, the contract comes close to that in the benchmark with only
monitoring moral hazard and a zero sell-off speed. Consequently, screening
effort, which is monotonically decreasing in κ , can be either increasing or
decreasing in sell-off speed.
Panels B and F of Figure 4 show the relation between the cost of monitoring

φ and the levels of retention and sell-off speed. Remarkably, in contrast to the
effect of κ , initial retention is nonmonotonic in φ. The intuition for why initial
retention is the lowest for intermediate φ is related to the observation that when
the cost of monitoring φ is sufficiently low or prohibitively high, moral hazard
over monitoring becomes negligible, and the optimal contract only needs to
incentivize screening. According to Proposition 4, when the cost of monitoring
φ is sufficiently large, initial retention equals one, and sell-off occurs only
after sufficient time has elapsed. As a consequence, monitoring effort, which is
monotonically decreasing in φ, can be either increasing or decreasing in initial
retention.
These results have important implications for empirical research on

incentives and loan performance. Indeed, our model implies that moral hazard
in loan screening and monitoring does not generate a simple relation between
loan performance and initial retention or sell-off speed. As noted above,
monitoring effort is nonmonotonic in initial retention and screening effort is
nonmonotonic in sell-off speed. Because loan performance depends on both
screening and monitoring, these nonmonotonic relations help rationalize the
finding of Blickle et al. (2022) that initial retention or sell-off speed may not
predict loan performance.
Instead, the model suggests that screening and monitoring are distinct

and that screening and monitoring levels can be separately matched with

25 These results are robust for a larger range of κ and across different parameter values.
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observables. Notably, while initial retention proxies for screening incentives
and effort, it does not proxy monitoring incentives and effort. The intuition
for this finding is that initial retention is more relevant for screening than for
monitoring because screening occurs at origination, while monitoring occurs
after origination and, thus, potentially after the loan originator has sold some of
its stake. High initial retention, while stimulating screening, may come along
with low monitoring incentives when the originator quickly sells off its share.
Monitoring incentives after time t depend only on the retention level βt at time
t and sell-off dynamics after time t , but not directly on β0 or the loan sales up
to time t . In line with our theory, Gustafson, Ivanov, and Meisenzahl (2021)
find that monitoring in a given year is positively related to the lead share in the
same year.

3.4 Loan sales and the effects of screening and monitoring
What do loan sales imply for the value of screening and monitoring? Does
the fact that the lead arranger sells the entire loan before maturity mean that
screening and monitoring have little or no effect on credit risk? Interestingly,
we can use Corollary 1 to derive an upper bound on the effect of monitoring
(and screening) on credit risk. A loan sale in finite time implies the (necessary)
condition φ≥

1
(r+3−q)(γ−r ) under the optimal level of screening q . We know that

at any point time Wt <
1

r+3−q , so that at <
1

(r+3−q)φ . Combining these conditions

yields γ −r >aMax :=maxt≥0at . Monitoring reduces total credit risk captured
by the default intensity 3−at −q at time t maximally by aMax in absolute
terms, as absent monitoring, the default intensity would be 3−q . In addition,
as 1

3−q−aMax −
1

3−q =
aMax

(3−q)2
+o(aMax )2, we have

1

3−q −aMax
−

1

3−q
≈

aMax

(3−q)2
.

Monitoring therefore maximally decreases the expected time to default by
aMax

(3−q)2
in absolute terms and by aMax

3−q in relative terms. We have shown that

γ −r >aMax . Clearly, we also have 1
3−q ≤τ because additional monitoring

increases the expected time to default τ . As a result, when a loan is sold off
in finite time, our model implies

(γ −r )τ >
aMax

3−q
.

The left-hand side is the product of the lender’s effective cost of capital (relative
to the risk-free rate) and the expected time to default (at origination). The
right-hand-side proxies for the maximum reduction in credit risk stemming
from monitoring (i.e., monitoring reduces credit risk by 100·

aMax

3−q percentage
points). The values of γ , r , and τ , therefore, imply an upper boundary on the
relative change in the expected time to default through monitoring. As such,
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Figure 5
Loan sales and the effects of screening and monitoring
The parameters are r =0.05, γ =0.25, 3=0.3, δ=0.25, φ=κ =40, and 1/δ=3.33. The vertical dotted red line
depicts the point at which time to sell-off T S equals one. The parameter δ is formally introduced in Section 4.3,
where we analyze finite maturity.

the fact that a loan is sold in a finite time necessarily suggests, in line with our
previous findings, that monitoring has a limited impact on reducing credit risk
or that the lender’s cost of capital and the gains from trade are relatively large.
However, as the cost of capital of the lender can indeed be large, a loan sale
in finite time does not imply that monitoring, let alone screening, has a low
quantitative impact on credit risk.
To illustrate this point, Figure 5 presents a numerical example with a high

lender cost of capital, in which the loan sale occurs in a finite time before
maturity, but screening and monitoring have significant effects on credit risk.
For this figure, we set r =0.05, 3=0.3, γ =0.25, and φ=κ =40; we interpret
one unit of time as one year. In addition, we introduce a finite maturity of 3.33
years in line with the average maturity reported in Sufi (2007). (Section 4.3
generalizes our model to discuss the effects of loan maturity). This parameter
choice leads to the sell-off of the entire loan before maturity, which we view
as a corner case of our model and requires assuming sufficiently large gains
from trade γ −r =0.2 as shown formally in Corollary 1. Note that the lender’s
large(r) discount rate γ may reflect not only capital or financial constraints
but also preferences (e.g., risk aversion) or an outside option that delivers high
returns.
The upper three panels of Figure 5 present comparative statics in φ for

φ∈ [38,65] while the lower three panels present comparative statics in γ for
γ ∈ [0.24,0.29]. Panels A and D plot the time to sell-off (in years) defined as
T S =inf{t ≥0:βt =0}. Observe that the expected time to sell-off ranges from
about 0.4 to 1.8, and equals about one year for intermediate parameter values,
in line with the median time to sell-off for term B loans reported in Blickle,
Parlatore, and Saunders (2023) (with a time to sell-off for the average, not
necessarily term B, loan being likely significantly larger). The vertical dotted
red line shows the point at which time to sell-off equals one year. Panels B and E
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plot the total relative increase in expected time to default τ due to screening and
monitoring, which is 1Credit := τ−1/3

1/3 =3τ −1, noting that absent screening
and monitoring the expected time to default is 1/3. The expected time to
default is defined as τ =

∫
∞

0 e−
∫ t
0 λu dudt and serves as a measure of credit risk,

with a lower (higher) expected time to default corresponding to higher (lower)
credit risk. Panels C and F plot the increase in the expected time to default due
to monitoring, that is, 1Credit

Mon := τ−1/(3−q)
1/(3−q) =(3−q)τ −1, noting that absent

monitoring and given q the expected time to default is 1/(3−q).26

Observe that, as expected, the lender’s propensity to sell its entire stake
increases as φ or γ increases and thus T S decreases (see panels A and D), in
line with our previous findings. At the same time, the middle and right panels
illustrate that the reduction in credit risk, because of either monitoring alone or
screening and monitoring jointly, decreases with φ and γ . Thus, our analysis
reveals that, indeed, screening and monitoring have a lower impact on credit
risk when the lender sells its entire stake relatively quickly after origination.
However, as can be seen from the middle and right panels of Figure 5, a sell-

off in finite time does not imply that the effects of screening and monitoring
on credit risk are quantitatively small. In panel B, the reduction in credit risk
due to screening and monitoring exceeds 10% in all scenarios considered, even
when φ=65 and sell-off occurs in about 0.7 years. When the time to sell-off
equals one year at the dotted red line, screening and monitoring reduce credit
risk by more than 15%, while monitoring alone reduces credit risk by about 4%
(see panel C). Likewise, in the lower three panels, when sell-off occurs within
one year at the dotted red line, screening and monitoring reduce credit by about
15% and monitoring reduces credit risk alone by about 4%. That is, screening
and monitoring can have significant effects on credit risk despite the sell-off
before maturity.

4. Extensions and Model Variants

4.1 Loan portfolios
Loan originators often hold a portfolio of loans. In this section, we investigate
whether there are advantages in structuring lender compensation based on the
performance of the overall portfolio by relaxing the loan-level limited liability.
To do so, we consider two identical and independent loans i =1,2 that require
separate screening and monitoring. Each loan i pays coupons at rate 1 up to its
time of default τ i . Each loan i defaults with the time-varying intensity

λi
t =3−q i

−ai
t ,

where q i is the lender’s screening of loan i at time t =0− and ai
t is the

lender’s monitoring of loan i at time t . The two loans’ random default

26 Admittedly,1Credit
Mon is a conservative lower bound on the effect of monitoring on credit risk, as its determination

takes the level of screening q as given and does not take into account the complementarity between screening and
monitoring.With lower or nomonitoring, the level of screening would be lower, too, due to this complementarity.
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Figure 6
Time dynamics and loan portfolios
This figure plots screening incentives Vt , monitoring effort (per individual loan) at , and value function (per
individual loan) against time t . We use our baseline parameters but consider a higher cost of screening and
monitoring (i.e., φ=κ =11 and ā=0.2) to ensure optimal efforts are interior also when considering portfolios.

times are independent, conditional on the lender-investor contract C. The
detailed description and solution of this model variant can be found in Internet
Appendix B.2.
One possibility to incentivize loan origination for two identical loans is

to write separate contracts for each loan with the lender. In this case, the
baseline contract applies to each individual loan and—in the proposed contract
implementation—the lender retains a time-decreasing share of each loan. The
performance of one loan does not affect the value of the lender’s stake in the
other loan. For instance, if loan i =2 defaults, the agent’s stake in this loan
becomesworthless, but the value of its stake in loan i =1 is not directly affected.
The lender is in effect protected by loan-level limited liability, that is, the
punishment the lender incurs upon default of loan i is no larger than the loss
of her stake in loan i .
We show in Internet Appendix B.2 that such an arrangement is generally

not optimal. Instead, it is optimal to relax loan-level limited liability and
replace it with portfolio-level limited liability, in that the agent loses its entire
stake—instead of only its stake in loan i—upon default of loan i . Structuring
the lender’s compensation on the portfolio level facilitates a more efficient
incentive provision for screening and monitoring. As we show in Internet
Appendix B.2, the optimal contract for loan portfolios leads then to higher
screening and monitoring, which reduces default risk and increases total
surplus from origination.
Figure 6 illustrates the dynamics of incentives and payoffs both in our model

variant with loan portfolios (solid black line) and the baseline (dotted red
line). On a high level, the dynamics of incentives are similar in both model
variants, leading to time-decreasing incentives and lender stake akin to loan
sales. Panel A plots the lender’s screening incentives and shows that, in both
instances, screening incentives decrease over time.27 In addition, monitoring
efforts at , which are proportional to the lender’s stake Wt , decrease over time

27 Note that in the model variant with portfolios, the lender exerts the same monitoring and screening efforts for
both loans, as the loans are symmetric. Further, we plot the outcomes prior to any default event.

31

D
ow

nloaded from
 https://academ

ic.oup.com
/rfs/advance-article/doi/10.1093/rfs/hhae021/7681881 by Erasm

us U
niversity R

otterdam
 user on 25 June 2024

https://academic.oup.com/rfs/article-lookup/doi/10.1093/rfs/hhae021#supplementary-data
https://academic.oup.com/rfs/article-lookup/doi/10.1093/rfs/hhae021#supplementary-data
https://academic.oup.com/rfs/article-lookup/doi/10.1093/rfs/hhae021#supplementary-data
https://academic.oup.com/rfs/article-lookup/doi/10.1093/rfs/hhae021#supplementary-data
https://academic.oup.com/rfs/article-lookup/doi/10.1093/rfs/hhae021#supplementary-data
https://academic.oup.com/rfs/article-lookup/doi/10.1093/rfs/hhae021#supplementary-data


The Review of Financial Studies / v 00 n 0 2024

too (see panel B). And, just as in Figure 1, the value function per loan (i.e.,
we divide the total value function by two in the loan portfolio case, as there
are two loans) increases over time t in both scenarios but is significantly larger
when a portfolio is originated. In both scenarios, screening and monitoring
incentives decrease over time because the lender gradually reduces its stake
in the loan, akin to gradual loan sales and time-decreasing retention. This
suggests that also when the lender originates a portfolio of loans, it gradually
reduces its stake and incentives. Although the lender has stronger overall
incentives when it originates a portfolio of loans, the underlying moral hazard
problem still persists and shapes the contract and loan sale dynamics, leading
to time-decreasing lender stake and incentives.
We also propose an intuitive and practically relevant implementation of the

optimal contract. In this implementation, the loan portfolio is divided into
different tranches, namely, a junior/equity tranche and a senior tranche. The
junior tranche is riskier and fully wiped out upon the first default event, while
the senior tranche maintains its value past the first default event and absorbs
only the second default event. The lender is provided incentives by retaining
the junior tranche of the loan portfolio—an outcome empirically observed
in the mortgage loans market (see, e.g., Begley and Purnanandam 2016)—
while investors hold the senior tranche. As a result, the value of the lender’s
stake drops drastically if one loan defaults, which in turn provides the lender
incentives to screen and monitor.

4.2 The effects of credit ratings and CLOs
Many loans are rated before they are sold to investors. For instance, in the
market for syndicated loans, institutional investors (e.g., CLOs or loan market
mutual funds) typically buy Term B loans which are most of the time rated.
We now analyze how credit ratings affect the lender’s incentives, retention,
and loan sale dynamics. A key finding of this section is that for rated loans
(e.g., Term B loans sold to institutional investors), the lender retains less of the
loan and may sell its entire share shortly after origination.
In this section, we assume that with a credit rating at origination, screening

effort becomes publicly observable and contractible, which removes the moral
hazard over screening at origination. A micro-foundation of this assumption is
provided in Internet Appendix B.6. The intuition underlying this assumption is
that the credit rating at origination reveals loan quality and generates screening
incentives, as lax screening would lead to a low rating. Because the credit rating
cannot be conditioned on the actual levels of monitoring that are chosen after
the rating, it does not directly affect the originator’s monitoring incentives after
the time of the rating. As a result, the benchmark model without moral hazard
over screening described in Section 2.2.1 can be seen as a model with credit
ratings. Proposition 1 characterizes optimal screening and monitoring in this
model.
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Figure 7
The effects of credit ratings
1y denotes the percentage change in the initial value of the outcome variable y caused by a credit rating, where
y ∈{a0,q∗,β0}. Outcome variables are plotted as functions of the cost of monitoring κ , the cost of screening φ,
the raw default intensity 3, and the lender’s discount rate γ .

Figure 7 illustrates the effects of credit ratings on outcome variables by
plotting the percentage change in monitoring effort (first row), screening effort
(second row), and initial retention (third row) at t =0 due to a credit rating.
The credit rating increases screening at origination but reduces monitoring
a0. The reason is that the credit rating increases the lender’s incentives to
screen loans at origination without requiring increasing its skin in the game.
The lender, therefore, retains a lower share in the loan β0, leading to lower
monitoring incentives W0=φa0. In the market for syndicated loans, Term B
loans are typically rated and sold to institutional investors, such as CLOs or loan
market mutual funds. Our findings on the effects of credit ratings imply that
such loans are subject tomore screening at origination and less monitoring after
origination. Finally, our model predicts that the share retained by the originator
should be lower when the originator sells rated loans to CLOs. The bottom row
in Figure 7 indicates that the retention of rated loans is particularly low when
φ or γ are large.

4.3 The effects of loan maturity
Our baseline model features infinite maturity loans or finite maturity loans that
are rolled over up to default. We now consider finite maturity loans that are
not rolled over. The extension is important for two reasons. First, we want to
show that our main results do not hinge on a specific modeling of maturity.
Second, as screening and monitoring efforts have effects of different duration,
loan maturity—which affects a loan’s duration—could have different effects
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on these two tasks, with important implications for how loan maturity shapes
the lender’s dynamic retention and loan sales.
To model finite maturity, we follow Chen, Xu, and Yang (2021) and consider

that the loan randomly matures with Poisson intensity δ>0. That is, ignoring
default, the expected loan maturity is 1/δ. Up to its maturity date, the loan
makes coupon payments at rate 1. When the loan matures, the firm pays back
the face value, which is the joint terminal payoff of the lender and outside
investors. The baseline setting corresponds to the case δ=0.

The model with a finite maturity and its solution are described in Internet
Appendix B.3.With finite maturity loans, the contracting problem is essentially
the same as in the baseline model, except that one needs to take into account the
impact of finite maturity on the value function and state variables. The contract
dynamics in the model with finite maturity are qualitatively similar to those
in the baseline model, and the contract can be implemented by requiring the
originator to hold a time-decreasing share of the loan. As we show in Internet
Appendix B.3, the agent’s screening incentives at time t =0 read

V0=
∫

∞

0
e−(γ+δ)t−

∫ t
0 λs ds Wt dt, (31)

which is the product of the value and the duration of the lender’s exposure.
At maturity, the lender exits and is no longer exposed to default risk, so
its screening incentives fall to zero; thus, the difference between (10) and
(31) is that δ augments the discount rate, which reduces screening incentives.
That is, keeping the value of the lender’s claim constant, a shorter maturity
reduces the duration of the claim and thus the lender’s long-run exposure
to loan performance, thereby undermining screening incentives. In contrast,
loan maturity has no direct effect on monitoring incentives, as the impact of
monitoring is short-lived.
The total effect of finite maturity also depends on its impact on the value

of the lender’s claim. Figure 8 plots the initial monitoring effort (panel A)
and screening effort q∗ (panel D) for varying loan maturities. Short maturity
undermines screening incentives by shortening the duration of the lender’s
claim. To counteract this adverse effect, the optimal contract stipulates a higher
value of the lender’s initial exposure W0 which leads to high monitoring
effort a0 for short maturity loans (panel A). Despite high initial exposure, the
duration effect dominates, and so screening effort decreases for short-maturity
loans (panel D). Therefore, our model predicts relatively low screening but
high initial monitoring for loans with a short maturity. Implementing these
incentives for short-maturity loans requires a higher initial retention level β0

(panel C) and a relatively quick sell-off (panel D) after origination.
The effects of debt maturity on screening and monitoring feed back into

default risk. Notably, panel E of Figure 8 shows that because monitoring has
less persistent effects than screening and the initially high-powered monitoring
incentives taper off over time as the lender sells off her stake, loans with shorter
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Figure 8
The effects of debt maturity
We use our baseline parameters and set T =3 for sell-off speed. The dotted red line depicts the outcomes with
infinite debt maturity.

maturity have higher default risk.28 Panel B of Figure 8 shows that total surplus
increases with debt maturity due to lower agency costs.

4.4 Commitment
4.4.1 Commitment through repeated loan origination. Repeated lender-
borrower and lender-investor interactions are common in credit markets, in
particular in syndicated lending.Internet Appendix B.4 solves a model variant
in which the lender originates a new and identical loan to a new borrower
when the current loan matures so that the lender has to rescreen and exert
costly screening effort when a new loan is originated. Internet Appendix B.4
derives two main findings. First, the going-concern value from repeated loan
origination and sale serves as an incentive mechanism for screening and
monitoring, which substitutes for loan retention (as found in Gopalan, Nanda,
and Yerramilli 2011).29 Thus, with repeated interactions, the lender retains a
lower share or sells the loan faster.
Second, repeated interactions facilitate lender commitment to a spe-

cific retention path stipulated in the contract implementation. Recall from
Section 3.1 that the optimal contract can be implemented by having the lender

28 To compare credit risk across different loan maturities on a fair basis, we calculate the expected time to default
(at time t =0) conditional on the loans not maturing. That is, we use the (inverse) measure of credit risk

τ :=
∫

∞

0
e−
∫ t
0 λu du dt

which eliminates the effect of maturity on the duration over which the loan is exposed to credit risk.

29 Hartman-Glaser (2017) obtains a similar result in amodel of repeated asset sales under adverse selection, showing
that reputation concerns can substitute for retention in signaling.
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retain a time-decreasing share of the loan, thus inducing optimal loan sales as
part of the optimal full-commitment contract. Because the lender has a higher
cost of capital and thus values the loan less than investors, the lender might be
tempted to deviate from the recommended retention schedule and sell a larger
share of the loan to investors. In Internet Appendix B.4, we consider that if
the lender were to deviate by selling more than recommended, investors would
cut the relationship, thereby precluding further loan origination by the lender.
That is, investors play a grim-trigger strategy. We then show that, provided the
lender expects sufficiently large payoffs from future loan origination, the lender
indeed finds it optimal not to deviate from the contracted retention path, even
when it cannot commit.

4.4.2 Loan sale dynamics absent commitment. What happens then in the
absence of a commitment mechanism? In Internet Appendix B.9, we present
a model variant in which the originator cannot commit to a specific retention
level. In this variant, the originator’s share of the loan at time t is denoted by
βt ∈ [0,1], with β0=1. The issuer can trade its stake at its own discretion by
choosing dβt without commitment at any point in time t (before default). In
addition, the issuer chooses, at any point in time, optimal monitoring at ∈ [0,ā]
and, at time t =0−, screening q ∈ [0,q̄].
As we show in Internet Appendix B.9, the lender’s optimal trading strategy

may involve both smooth and lumpy trading. Notably, we show that there exists
an endogenous threshold β so that the lender sells its share smoothly for β >β
at an endogenous rate β̇ <0, that is, dβ = β̇dt . Once β reaches β from above,
the lender randomizes at an endogenous rate between selling its entire stake
at once or not trading at all, so β remains constant at β until it jumps to zero.
That is, for β =β, we get dβ =−βd N where d N ∈{0,1} is a jump process with
endogenous intensityE[d N ]=ξdt . Last, when β <β, the lender optimally sells
its entire stake at once at price L , that is, dβ =−β. As we show, β can lie above
1, in which case the lender sells the entire loan at origination, leading to zero
screening and monitoring.
A key object characterizing the dynamics of loan sales in this model variant

is the threshold β, which captures the lender’s propensity to sell the (entire)
loan. We show that β =2φ (γ −r )(3+r −q) so that this threshold increases
with the cost of monitoring φ, the lender’s cost of capital γ −r , the intrinsic
credit risk 3, and decreases with the level of screening q. That is, as in the
optimal full-commitment contract, the lender is more likely to sell its entire
stake when monitoring adds relatively little value and φ is large, when holding
the loan on the book is costly, or when the loan is risky and 3 is high. In
addition, a higher cost of screening κ reduces the screening level q =q∗ and
thus boosts loan sales. Similar conclusions arise from an analysis of the state-
dependent trading rate.
Different from the optimal contracting solution, monitoring and screening

might not be feasible absent commitment, as the lender may sell the entire
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loan at origination, which will happen when β >1. Then, clearly, the lack of
commitment increases credit risk. Instead, when β <1, the sell-off dynamics
and how they are affected by model parameters are qualitatively similar in
both the zero- and full-commitment solution so that our analysis allows us to
draw robust inferences on how loan and lender characteristics shape sell-off
dynamics under moral hazard.

4.5 Is it optimal to bundle monitoring and screening?
We have so far assumed that the loan originator is responsible for both
screening and monitoring. In practice, screening and monitoring may be
undertaken by separate entities. Some securitized loans are serviced by a
third-party servicing company and, depending on the specific arrangements,
servicing can subsume monitoring activities. In these cases, the originator
is in charge of screening, and the servicer is in charge of monitoring. The
important question is, therefore, whether bundling screening and monitoring
affects incentives and credit risk.
To address this question, we consider a setting in which monitoring

and screening are conducted by two different agents (called the monitor
and screener). To make the comparison with the baseline model sensible,
we assume that the monitor and the screener have identical preferences;
monitoring effort (screening effort) is only and privately observed by the
monitor (screener). Internet Appendix B.5 provides a detailed description and
solution of the model with separated screening and monitoring tasks. Below,
we describe the intuition for the optimal contract, its dynamics, and present
numerical results related to key outcome variables.
Screening and monitoring incentives are provided by having the screener

and monitor retain a share of the loan. The screener’s and monitor’s shares
add up to one until sufficient time has elapsed and the screener sells off its
entire stake at once to investors; the monitor continues to maintain (time-
varying) exposure to the loans. Notably, monitoring incentives (provided to the
monitor) have two opposing effects on screening incentives. On the one hand,
monitoring reduces the likelihood of default, leading to a longer-lasting impact
of screening and, therefore, to stronger screening incentives. On the other hand,
stronger monitoring incentives require raising the monitor’s stake, which, in
turn, requires lowering the screener’s stake as their shares add up to one. This
second effect leads to negative spillovers between monitoring and screening
incentives. In contrast, when one agent is responsible for both monitoring and
screening, monitoring unambiguously boosts screening incentives, leading to
positive spillovers between monitoring and screening incentives.
As a result, while bundling monitoring and screening leads to positive syn-

ergies, separating these two tasks can lead to negative synergies. Accordingly,
as we show in Internet Appendix B.5, bundling screening and monitoring leads
to higher screening and monitoring efforts, increases total surplus, and reduces
credit risk (i.e., increases the expected time to default). Our model, therefore,
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predicts relatively low levels of monitoring and screening in the mortgage
market, where screening and monitoring tasks are often separated (Demiroglu
and James 2012). The analysis also predicts that bundling is more likely to
occur in credit markets in which screening and monitoring are important for
credit risk (i.e., the effects of screening/monitoring are large relative to the
cost), such as the market for corporate and syndicated loans.

5. Conclusion

We study a dynamic moral hazard problem in which a lender (e.g., the lead
bank in a syndicate) originates a loan to sell it to investors (e.g., other financial
institutions in the syndicate). The lender controls the loan’s default risk through
screening at origination and monitoring after origination, both of which are
subject to moral hazard. Screening and monitoring incentives are provided by
exposing the lender to loan performance. As screening occurs only once at the
origination of the loan, incentives are front-loaded and stronger shortly after
origination. The optimal contract can be implemented by requiring the loan
originator to retain a time-decreasing stake in the loan so that its incentives
to monitor decrease and credit default risk increases over time. The model
implies that there are positive synergies between screening and monitoring
incentives, making screening and monitoring complements. The optimal
contract also implies that screening and monitoring decrease with intrinsic
(prescreening) credit risk, suggesting that lenders specializing in financing
high-quality borrowers (such as banks) exert higher levels of screening and
monitoring.
The unique and novel feature of our paper is that it allows us to analyze

how loan and originator characteristics affect initial retention and subsequent
loan sales, thereby rationalizing a number of empirical findings and providing
new testable empirical hypotheses. For instance, we show that initial retention
decreases while the sell-off speed increases with borrowers’ intrinsic credit
risk, the lender’s cost of capital, or loan maturity. Moreover, our model
implies that while initial retention increases with the cost of screening, which
maps one-to-one to hidden screening effort, it is nonmonotonic in the cost of
monitoring, which maps one-to-one to hidden monitoring effort. In contrast,
the speed at which the lender sells off its stake in the loan increases with the
cost of screening, but is nonmonotonic in the cost of monitoring. Our model,
therefore, suggests that the originator’s initial retention can serve as a proxy
for screening, but not for monitoring incentives, whereas the sell-off speed can
serve as a proxy for monitoring, but not screening incentives.
Our model is simple and general enough that it can be used to analyze a

wide range of credit markets. For example, we extend our model to analyze
the provision of incentives when screening and monitoring are performed
by separate entities, which is often the case for mortgages: an originator
selects loans initially, and a servicer monitors them later. We show that such
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a separation of monitoring and screening tasks reduces both monitoring and
screening efforts, thereby increasing credit risk.
Finally, the moral hazard problem we study also has applications in contexts

other than credit securitization and syndicated lending. In particular, screening
before funding an investment and monitoring afterward is also common in
venture capital financing (see Bernstein, Giroud, and Townsend (2016) for
evidence on monitoring and Abuzov (2023) for evidence on screening). Our
theory could be easily modified to study venture capital financing with moral
hazard over screening and monitoring. We leave this for future research.

Code Availability: The replication code is available in the Harvard Dataverse
at doi.org/10.7910/DVN/HKZ2XA.

Appendix

A. Proofs

A.1 Proof of Lemma 1
We first characterize the agent’s monitoring incentives. By the dynamic programming principle
and the arguments presented in the main text, the agent chooses monitoring effort at to solve

max
at ∈[0,ā]

(
at Wt −

φa2
t

2

)
, (A1)

which yields

at =min

{
Wt

φ
,ā
}

.

Observe that when optimalmonitoring effort is interior and at < ā, the above condition simplifies to
(6), that is, at =

Wt
φ , which is the first-order condition to (A1). The second-order condition to (A1),

that is, ∂2

∂a2t

(
at Wt −

φa2t
2

)
=−φ<0, is satisfied. Thus, the contracted effort level in an incentive-

compatible contract satisfies ât =Wt/φ.
Second, we characterize the agent’s screening incentives. Note that the agent chooses screening

effort to solve

max
q∈[0,q̄]

(
W0(q)−

κq2

2

)
, (A2)

where we make the dependence of W0 on q explicit. Define

V0(q)=
∂

∂q
W0(q).

The integral expression (10) and the fact that Wt ≥0 (with strict inequality on a set with positive
measure) imply that V0(0)>0. Thus, the solution q to (A2) satisfies q >0.

Now observe that

q =min

{
V0(q)

κ
,q̄
}

(A3)

is the unique solution to (A2) if

∂2

∂q2

(
W0(q)−

κq2

2

)
=

∂

∂q
V0(q)−κ <0 (A4)

holds for any q ∈ [0,q̄], in which case the objective in (A2) is strictly concave over the entire interval
[0,q̄] and the first-order approach is valid.When optimal screening effort is interior, condition (A3)
simplifies to (9), that is, q =V0/κ , which is the first-order condition to (A2).
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In what follows, we provide a sufficient condition for (A4) to hold for all q ∈ [0,q̄], which
concludes the proof. Define

Yt (q)=
∂

∂q
Vt (q),

and note that (A4) can be rewritten as Y0(q)<κ . Next, insert at =Wt (q)/φ into (12) to obtain

V̇t =
dVt (q)

dt
=

(
γ +3−

Wt (q)
φ

−q
)

Vt (q)−Wt (q), (A5)

bearing in mind λt =3−Wt (q)/φ−q . We now differentiate (A5) with respect to q to obtain

Ẏt =
dYt (q)

dt
=(γ +λt )Yt (q)−2Vt (q)−

(Vt (q))2

φ
.

We can integrate the above ODE over time to obtain

Yt (q)=
∫

∞

t
e−γ (s−t)−

∫ s
t λu du

(
2Vs (q)+

(Vs (q))2

φ

)
ds (A6)

for all t ≥0. In addition, (10) implies

Vt (q)=
∫

∞

t
e−γ (s−t)−

∫ s
t λu du Ws (q)ds (A7)

for all t ≥0. Note now that (owing to at ≤ ā and q ≤ q̄)

λt =3−at −q ≥3− ā− q̄. (A8)

Next, observe that the agent’s continuation value is bounded from above by

Wt ≤ Ft =
∫

∞

t
e−r (s−t)−

∫ s
t λu du

(
1−

φa2
s

2
−(γ −r )Ws

)
ds

<

∫
∞

t
e−(r+3−ā−q̄)(s−t)1ds =

1

r +3− ā− q̄
=:W max (A9)

where the first inequality follows from outside investors’ limited liability, that is, Pt =Ft −Wt ≥0.
Using these two relations (A8) and (A9) as well as (A7), we obtain that

Vt (q)<
∫

∞

t
e−γ (s−t)−

∫ s
t λu du W max ds ≤

∫
∞

t
e−(γ+3−ā−q̄)(s−t)W max ds

≤
W max

γ +3− ā− q̄
<

1

(r +3− ā− q̄)(γ +3− ā− q̄)
(A10)

Using this inequality (A10) and the integral representation in (A6), we obtain that

Yt (q)=
∫

∞

t
e−γ (s−t)−

∫ s
t λu du

(
2Vs (q)+

(Vs (q))2

φ

)
ds

≤

∫
∞

t
e−(γ+3−ā−q̄)(s−t)

(
2Vs (q)+

(Vs (q))2

φ

)
ds

<
1

(γ +3− ā− q̄)

(
2

(r +3− ā− q̄)(γ +3− ā− q̄)
+

1

φ(r +3− ā− q̄)2(γ +3− ā− q̄)2

)
.

As a result, a sufficient condition for (A4), that is, for

Y0(q)<κ,

to hold for any q ∈ [0,q̄] is given by

κ >
2

(r +3− ā− q̄)(γ +3− ā− q̄)2
+

1

φ(r +3− ā− q̄)2(γ +3− ā− q̄)3
. (A11)

That is, when (A11) holds, the first-order approach is valid and (A3) or, equivalently, (9) (due to
q < q̄) pins down screening effort. Note that (A11) is equivalent to condition (13) (Lemma 1). Also,
notice that (13) is sufficient, but not necessary per se.

40

D
ow

nloaded from
 https://academ

ic.oup.com
/rfs/advance-article/doi/10.1093/rfs/hhae021/7681881 by Erasm

us U
niversity R

otterdam
 user on 25 June 2024



The Dynamics of Loan Sales and Lender Incentives

A.2 Proof of Proposition 1
To characterize the model solution when screening q is observable and contractible, we proceed in
several steps. We first fix q and solve the continuation problem for times t >0. We then determine
optimal screening effort, q =q B .

At any time t >0, total surplus, Ft = Pt +Wt , can be written as

Ft =
∫

∞

t
e−r (s−t)−

∫ s
t λu du (1ds−dCs )︸ ︷︷ ︸
=Pt

+
∫

∞

t
e−γ (s−t)−

∫ s
t λu du

(
dCs −

φa2
s

2
ds
)

︸ ︷︷ ︸
=Wt

,

where

Pt =
∫

∞

t
e−r (s−t)−

∫ s
t λu du (1ds−dCs )

is the principal’s continuation payoff and

Wt =
∫

∞

t
e−γ (s−t)−

∫ s
t λu du

(
dCs −

φa2
s

2
ds
)

is the agent’s continuation payoff from time t onward. We can differentiate the expressions for Wt
and Pt with respect to time, t , to get

d Pt =(r +λt )Pt dt −1dt +dCt (A12)

dWt =(γ +λt )Wt dt +
φa2

t

2
dt −dCt . (A13)

As a result, the dynamics of total surplus are given by

d Ft =d Pt +dWt (A14)

=(r +λt )Pt dt −1dt +dCt +(γ +λt )Wt dt −dCt +
φa2

t

2
dt

=(r +λt )(Pt +Wt︸ ︷︷ ︸
=Ft

)dt −1dt +
φa2

t

2
dt −(γ −r )Wt dt. (A15)

We can integrate (A14) over time, t , to get

Ft =
∫

∞

t
e−r (s−t)−

∫ s
t λu du

(
1−

φa2
s

2
−(γ −r )Ws

)
ds, (A16)

which is (20) from the main text.
Recall that the agent chooses the payout agreement C to maximize total surplus at time zero

F0−
κq2

2
, (A17)

where F0 is characterized in (A16). Note that it is always possible to stipulate payouts dCt to the
agent, which decreases Wt by some amount dCt . As such, controlling payouts to the agent dCt is
equivalent to controlling the agent’s continuation payoff Wt . In the following, we take Wt rather
than dCt as the control variable for the dynamic optimization, and we drop the control variable
dCt .

By the dynamic programming principle, total surplus Ft must solve at any time t >0 the HJB
equation

r Ft = max
Wt ∈[0,Ft ],at ≥0

(
1−

φa2
t

2
−(γ −r )Wt + Ḟt −λt Ft

)
,

which is solved subject to the monitoring incentive condition (6) and where Ḟt =
d Ft
dt . As default

is the only source of uncertainty and as there are no relevant state variables for this dynamic
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optimization problem, the solution is stationary, so that Ḟt =0, and we can omit time subscripts
(i.e., we write Ft =F B (q)). In turn, the HJB equation simplifies to

r F B (q)= max
W∈[0,F B (q)],a∈[0,ā]

(
1−

φa2

2
−(γ −r )W −λF B (q)

)
(A18)

subject to the monitoring incentive constraint (6), which can be rewritten as (17).
The maximization in the above HJB equation yields that, if interior, optimal monitoring effort

reads

aB (q)=
F B (q)−φ(γ −r )

φ
, (A19)

and the optimal lender continuation value is W B (q)=φaB (q), due to (6). With a slight abuse of
notation, if the above expression for aB (q) is negative, then optimal monitoring effort aB (q) is
zero. If the above expression for aB (q) exceeds ā, then optimal monitoring effort aB (q) is ā. Note
that the first-order condition (A19) implies φaB (q)=W B (q)< F B (q), so the principal’s limited
liability constraint does not bind in optimum. Since, clearly, F B (q) increases with q , it follows
that aB (q) increases with q , that is, ∂

∂q aB (q)≥0.

Optimal monitoring effort implies the instantaneous default probability λ=λB (q)=3−q −

aB (q). The law of motion (A12) and dWt =0 imply then that payouts to the agent take the form
dCt =cB (q)dt with

cB (q)=(γ +λB (q))W B (q)+
φ(aB (q)2

2
. (A20)

That is, payouts to the agent are smooth and positive.
The objective (A17) can be rewritten as

max
q∈[0,q̄]

(
F B (q)−

κq2

2

)
. (A21)

At time t =0, the agent chooses screening effort q ∈ [0,q̄] to maximize (A21), leading to optimal
screening effort q B .

A.3 Proof of Proposition 2
A.3.1 Preliminaries. To begin, we derive the dynamics of Wt , that is, (11), the dynamics of
Vt (defined in (8)), and the integral expression (10). Now, recall the definition of Wt in (4) and
differentiate (4) with respect to time, t , to obtain

Ẇt :=
dWt

dt
=(γ +λt )Wt +

φa2
t

2
−ct ,

which is (11). Using (11), we can write the intermediary’s optimization with respect to monitoring
effort at at time t as

γ Wt = max
at ∈[0,ā]

(
−(3−at −q)︸ ︷︷ ︸

=λt

Wt −
φa2

t

2
+ct +Ẇt

)
, (A22)

which yields optimal at =min
{

Wt
φ ,a

}
(as in (6)) and, as we focus on interior levels, at =Wt/φ.

Next, note that because screening effort q is neither observable nor contractible, an unobserved
change in screening effort q cannot affect contracted flow payments ct . We now use the envelope
theorem to differentiate both sides of (A22) under optimal at with respect to q so that

γ Vt =Wt −λt Vt + V̇t ⇐⇒ V̇t =(γ +λt )Vt −Wt ,
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which is (12) as desired. Note that we used ∂
∂q Ẇt = ∂

∂q
d
dt Wt = d

dt
∂
∂q Wt =

dVt
dt = V̇t aswell as ∂

∂q
∂Wt
∂at

=

0 (envelope theorem) and ∂ct
∂q =0.30 We can integrate V̇t =(γ +λt )Vt −Wt over time t to obtain the

integral expression (10), that is, Vt =
∫

∞

t e−γ (s−t)−
∫ s
t λu du Wsds.

The remainder of the proof is split in six parts. Part I characterizes total surplus as a function
of the agent’s screening incentives Vt =V and shows that in optimum, total surplus (i.e., the value
function F(V )) solves the HJB equation (23). Part II demonstrates that limt→∞ Vt =V B (q). Part
III characterizes the agent’s initial choice of optimal screening effort q =q∗. Part IV verifies that
κq∗ =V0>V B (q∗), and shows that V̇t <0 at all times t ≥0. Part V proves that total surplus (i.e., the
value function) decreases in V and is concave. Part VI shows that payouts to the agent are smooth
and positive. Unless otherwise mentioned, we focus on optimal interior effort levels, at ∈ (0,ā)
and q ∈ (0,q̄). As in the main text, we characterize the solution for t ≥0 given screening effort q ,
and then determine the optimal screening effort q =q∗; unless necessary, we do not distinguish
notation-wise between q and the optimally chosen screening effort q∗.

Wemake the following regularity assumption. Throughout, we assume that there exists a unique
solution F(V ) to the HJB equation (23), which is continuously differentiable. Further, we assume
that the second derivative F ′′(V ) exists almost everywhere in the state space (V B (q),V0) (i.e., the
set of points at which F ′(V ) is not differentiable is not dense).

A.3.2 Part I. Our aim is to characterize the model solution when screening effort q is neither
observable nor contractible. As in the proof of Proposition 1, we first fix the choice of q made at
time t =0 and solve the continuation problem for times t >0. Recall that according to Lemma 1,
the incentive condition (9) holds at time t =0 so that V0 =κq .

The optimal contract maximizes total surplus characterized in (A16):

Ft =
∫

∞

t
e−r (s−t)−

∫ s
t λu du

(
1−

φa2
s

2
−(γ −r )Ws

)
ds.

Note that it is always possible to stipulate payouts dCt to the agent, which decreases Wt by some
amount dCt and leaves Vt unchanged. As such, controlling payouts to the agent dCt is equivalent
to controlling the agent’s continuation payoff Wt . In the following, we take Wt rather than dCt as
the control variable. Thus, the agent’s optimization problem only depends on the state variable Vt
summarizing the agent’s screening incentives. As a consequence, we can express total surplus as
a function of Vt , in that Ft =F(Vt ). In what follows, we omit time subscripts whenever possible.

Recall that screening incentives V evolve according to (12), that is, V̇ =(γ +λ)V −W. By the
dynamic programming principle, total surplus F(V ) solves in any state V the HJB equation

r F(V )= max
W∈[0,F(V )],a∈[0,ā]

{(
1−

φa2

2
−(γ −r )W

)
−λF(V )+F ′(V )((γ +λ)V −W )

}
,

30 In more detail, note that
d

dq
Wt =

∂Wt
∂q

+
∂Wt
∂at

∂at
∂q

+
∂Wt
∂ct

∂ct
∂q

=
∂

∂q
Wt ,

as ∂Wt
∂at

=0 and ∂ct
∂q =0. An alternative derivation (not relying explicitly on envelope theorem) simply rewrites

(11) by inserting monitoring incentive compatibility, at =Wt /φ, to obtain

Ẇt =

(
γ +3−

Wt
φ

−q
)

Wt +
W2

t
2φ

−ct .

Differentiating both sides with respect to q and using ∂ct
∂q =0, we obtain

V̇t =(γ +λt )Vt −Wt −
Vt Wt

φ
+

Vt Wt
φ

,

which simplifies to (12), as desired.
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which is solved subject to the monitoring incentive constraint (6). Recall that both the principal
and the agent are subject to limited liability so that W ∈ [0,F(V )] and the principal’s payoff
F(V )−W satisfies F(V )−W ∈ [0,F(V )] too. The above HJB equation coincides with (23). The
maximization in the above HJB equation yields that, if interior, optimal monitoring effort is

a(V )=
F(V )− F ′(V )(V +φ)−(γ −r )φ

φ
∧

F(V )

φ
. (A23)

With slight abuse of notation, when the above expression is negative, then a(V )=0. Under the
benchmark solution from Proposition 1 (for given q), all model quantities are constant, monitoring
is aB (q), and the agent’s continuation value is W B (q)=φaB (q). As such, screening incentives
are constant at level V B (q) and by inserting V̇ =0 and the optimal levels of effort aB (q) and
continuation value W B (q)=φaB (q) into (12), we can solve for

V B (q)=
W B (q)

γ +3−aB (q)−q
. (A24)

It follows that when V =V B (q), the continuation surplus is F B (q). That is, the surplus function
F(V ) satisfies

F(V B (q))=F B (q). (A25)

Also note that optimal effort a(V ) satisfies a(V B (q))=aB (q). In the next Part (i.e., Part II) of the
proof, we show that limt→∞ Vt =V B (q), which then—together with (A25)—implies

lim
V →V B (q)

F(V )=F B (q),

as well as limV →V B (q)a(V )=aB (q).

A.3.3 Part II. In this part, we prove that limt→∞ Vt =V B (q). To do so, we set up the Lagrangian
for the total surplus maximization at time t =0

L=
∫

∞

0
e−r t−

∫ t
0 λu du

(
1−(γ −r )Wt −

φa2
t

2

)
dt︸ ︷︷ ︸

=F0

+ℓ
(
κq −

∫
∞

0
e−γ t−

∫ t
0 λu du Wt dt︸ ︷︷ ︸

=V0

)

=F0+ℓ(κq −V0). (A26)

where ℓ is the Lagrange multiplier with respect to the screening incentive constraint (9) and Wt =
φat is the effort incentive constraint which we directly insert into the objective function.

Next, we rewrite (A14) as

d Ft =r Ft dt −1dt +(γ −r )Wt dt −
φa2

t

2
dt +λFt dt,

which can be integrated over time to obtain

Ft =
∫

∞

t
e−r (s−t)

(
1−

φa2
s

2
−(γ −r )Ws −λs Fs

)
ds. (A27)

Likewise, we can rewrite (12) as

dVt =γ Vt dt −Wt dt +λt Vt dt,

which can be integrated over time to get

Vt =
∫

∞

t
e−γ (s−t) (Ws −λs Vs )ds. (A28)
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Using (A27) and (A28), we can rewrite the Lagrangian (A26) as

L=
∫

∞

0
e−r t

(
1−(γ −r )Wt −

φa2
t

2
−λt Ft

)
dt +ℓ

(
κq −

∫
∞

0
e−γ t (Wt −λt Vt )dt

)
. (A29)

We can maximize the Lagrangian point-wise (that is, for each time t) with respect to at , taking
into account the monitoring incentive constraint (6), that is, at =Wt/φ. If interior, optimal effort at
satisfies the first-order condition:

e−r t (Ft −(γ −r )φ−φat )−ℓe−γ t (φ+Vt )=0 (A30)

Multiplying both sides of (A30) by er t , we obtain

Ft −(γ −r )φ−φat −ℓe−(γ−r )t (φ+Vt )=0. (A31)

Accounting for limited liability Wt =φat ≤ Ft and at ≥0, we can solve (A31) for

at =max

{
0,

Ft −(γ −r )φ−ℓe−(γ−r )t (Vt +φ)

φ

}
∧

Ft

φ
. (A32)

Taking the limit t →∞ in (A32) upon noticing that limt→∞ Wt < limt→∞ Ft leads to

lim
t→∞

at = lim
t→∞

(
Ft −(γ −r )φ

φ

)
< lim

t→∞

Ft

φ
, (A33)

as Vt is bounded (see inequality (A10) in the proof of Lemma 1 and note that by definition, Vt ≥0).
We conjecture (and verify) that, in the limit t →∞, the solution becomes stationary, and Ft and

at become constant, in that
lim

t→∞
Ft = F̂ and lim

t→∞
at = â

for (endogenous) constants F̂ and â.31 Note that by (A33),

â=max

{
0,

F̂ −(γ −r )φ
φ

}
. (A34)

Using that Wt →φâ and λt →3− â−q as t →∞, we can use (20) to calculate that

F̂ =
1−(γ −r )φâ−

φâ2
2

r +3− â−q
, (A35)

which confirms that limt→∞ Ft = F̂ . As

â=arg max
a∈[0,ā]

1−(γ −r )φa−
φa2
2

r +3−a−q

, (A36)

it follows that optimal effort satisfies limt→∞at = â for an endogenous constant â.
Recall the definition of F B (q) from (A18). Now note that (A34) and (A35) as well as (A36)

jointly imply that F̂ =F B (q) and â=aB (q), so that Ŵ =W B (q). As a result, it also follows that

lim
t→∞

Vt = lim
t→∞

∫
∞

t
e−γ (s−t)−

∫ s
t λu du Wsds =

φâ
γ +3− â−q

=V B (q) and lim
t→∞

V̇t =0. (A37)

As Vt is the only relevant state variable for the dynamic optimization problem, it follows that Vt
cannot have a stationary point Vt ̸=V B (q) with V̇t =0, as otherwise (A37) would not hold.

31 Equivalently,
lim

t→∞
Ḟt =0 and lim

t→∞
ȧt =0.
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That is, when V0 =κq >V B (q), it follows that V̇t <0, with convergence according to (A37).
Likewise, when V0 =κq <V B (q), it follows that V̇t >0, with convergence according to (A37). In
the knife-edge case V0 =κq =V B (q), it holds that Vt =V B (q) and V̇t =0.

Last, we characterize the limit limV →V B (q) F ′(V ). Note that due to (A25), that is, F(V B (q))=

F B (q), and limt→∞ Vt =V B (q), it follows that limV →V B (q) F(V )=F B (q) and limV →V B (q)a(V )=

aB (q). We know from Proposition 1 that W B (q)< F B (q), so that limV →V B (q)W (V )<

limV →V B (q) F(V ). Thus, for V close to V B (q), the principal’s limited liability constraint does

not bind. Using (A23), limV →V B (q)a(V )=aB (q) becomes equivalent to

lim
V →V B (q)

F ′(V )=0, (A38)

when aB (q)>0. In the case that aB (q)=V B (q)=0, we have

lim
V →V B (q)

F ′(V )=
F B (q)−(γ −r )φ

φ
≤0, (A39)

so that a(V ) from (A23) converges to aB (q)=0 as V →V B (q)=0.

A.3.4 Part III. At time t =0, initial screening incentive V0 pins down screening effort q by
means of the screening incentive constraint (9). The agent picks the amount of initial screening
incentives V0 to maximize

max
q∈[0,q̄]

(
F(V0)−

κq2

2

)
s.t. V0 =κq. (A40)

Even if optimal screening is not interior and satisfies q∗ = q̄ , it would be optimal to set V0 =κq∗,
as F(V ) decreases in V >V B (q) and the screening incentive condition (9) is optimally tight.

The first-order condition to (A40) is

∂ F(V0)

∂q
|q=q∗ +F ′(V0)κ =κq∗, (A41)

which holds if q =q∗
∈ (0,q̄).

A.3.5 Part IV. We now explicitly distinguish between q∗ (optimal screening level) and q
(potentially different screening). This part of the proof shows that in optimum (i.e., for q =q∗),
we have κq∗ =V0>V B (q∗). Because limt→∞ Vt =V B (q∗) and because there is no stationary point
with V̇t =0, V0>V B (q∗) implies V̇t <0 whenever Vt >V B (q∗). It suffices to consider q∗ >0 and
aB (q∗)>0.

Suppose to the contrary that

κq∗ =V0≤V B (q∗)=
W B (q∗)

γ +3−aB (q∗)−q∗
, (A42)

where the last equality follows (A24). Note that Wt ≤ Ft at all times t ≥0 and, in particular,
W B (q∗)≤ F B (q∗). We then obtain

κq∗ =V0≤
W B (q∗)

γ +3−aB (q∗)−q∗
<

F B (q∗)

r +3−aB (q∗)−q∗
, (A43)

where the first inequality follows (A42) and the second inequality uses γ >r and W B (q∗)≤
F B (q∗).
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Next, define the following (continuous) function (of q):

G(q) :=F B (q)−
κq2

2
.

For any screening effort q ∈ (0,q̄), recall the HJB equation for V =V B (q), that is, (A18) or

r F B (q)= max
W∈[0,F B (q)],a∈[0,ā]

(
1−

φa2

2
−(γ −r )W −λF B (q)

)
.

We can use the envelope theorem and differentiate both sides of (A18) with respect to q to obtain
under the optimal controls (W B (q),aB (q)):

(r +λ)
∂ F B (q)

∂q
=F B (q) ⇐⇒

∂ F B (q)
∂q

=
F B (q)

r +3−aB (q)−q
>0. (A44)

As aB (q) increases with q (see Proposition 1), above relation implies that ∂2F B (q)
∂q2

>0 and

∂3F B (q)
∂q3

>0.32 Using (A44), we obtain

G ′(q)=
F B (q)

r +3−aB (q)−q
−κq. (A45)

We also calculate

G ′′(q)=
∂2

∂q2
F B (q)−κ and G ′′′(q)=

∂3

∂q3
F B (q)>0.

Because of G ′′′(q)>0, the function G(q) is either concave on the entire interval [0,q̄] or concave
on an interval [0,q ′] and convex on the interval [q ′,q̄] for q ′ < q̄ . This observation implies that
G(q) has at most one local maximum on [0,q̄].

We focus on interior optimal levels of q . Therefore, the maximum of G(q) on the interval [0,q̄]
is denoted by

q B =arg max
q∈[0,q̄]

G(q)=arg max
q∈[0,q̄]

(
F B (q)−

κq2

2

)
,

and satisfies G ′(q B )=0 (first-order condition) as well as G ′′(q B )<0 (second-order condition).
Thus, q B < q̄ holds by assumption, and q =q B is the unique maximum of G(q) on [0,q̄]. Hence,
on [0,q B ), G ′(q) ̸=0, and G ′(q B )=0. As G ′′(q B )<0 and G ′′′(q)>0, it follows that G ′′(q)<0
on the interval [0,q B ). Furthermore, G(q) must strictly increase on the interval [0,q B ), in that
G ′(q)>0 and G ′′(q)<0 for q ∈ [0,q B ).

32 To see this, note that ∂aB (q)
∂q = ∂ F B (q)

∂q
1
φ . Thus, differentiating (A44) with respect to q:

(r +λ)
∂2F B (q)

∂q2
=

∂ F B (q)
∂q

+
1

φ

(
∂ F B (q)

∂q

)2
>0.

Differentiating this relationship with respect to q:

(r +λ)
∂3F B (q)

∂q3
=

∂2F B (q)

∂q2
+
2

φ

∂ F B (q)
∂q

∂2F B (q)

∂q2
+

∂aB (q)
∂q

∂2F B (q)

∂q2
>0.
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Next, define the (continuous) function of q:

K (q) :=V B (q)−κq, (A46)

with V B (q) from (A24), that is,

V B (q)=
W B (q)

γ +3−aB (q)−q
=

φaB (q)
γ +3−aB (q)−q

.

Recall that aB (q) and W B (q)=φaB (q) increase with q (see Proposition 1). Thus, the function
V B (q) is strictly convex, implying that K (q) is strictly convex too. Observe that

K (q)=V B (q)−κq =
W B (q)

γ +3−aB (q)−q
−κq <

F B (q)
r +3−aB (q)−q

−κq =G ′(q), (A47)

where the first inequality uses that r <γ and W B (q)≤ F B (q) and the last equality uses (A45).
Because i) G ′(q) has a unique root on [0,q B ], ii) because K (q)<G ′(q), iii) because K (q) is
convex, and iv) because K (0)≥0, K (q) has a unique root q̂ <q B on [0,q B ] so that K (q̂)=0,
K (q)>0 for q < q̂ , and K (q)<0 for q ∈ (q̂,q B ]. If K (q) had a second root q2 with q B

≥q2>

q̂ , then it must be due to convexity that K ′(q)>0 for q ≥q2 and thus K (q B )≥G ′(q B )=0, a
contradiction to (A47).

Next, note that for q = q̄:

K (q̄)=
W B (q̄)

γ +3−aB (q̄)− q̄
−κq̄ =

aB (q̄)φ
γ +3−aB (q̄)− q̄

−κq̄ ≤
āφ

γ +3− ā− q̄
−κq̄ <0,

where the second equality uses (6) and that the incentive constraint for monitoring effort binds, the
first inequality uses aB (q̄)≤ ā, and the second inequality uses parameter condition (14). Because
K (q) is strictly convex on [0,q̄], K (q) has precisely one root on [0,q̄), which is denoted by q̂ and
satisfies q̂ <q B . Suppose now κq∗ =V0<V B (q∗), which implies K (q∗)>0. Because K (q) has a
unique root on [0,q̄], denoted by q̂ , it follows that q∗ < q̂ <q B .

Total initial surplus can now be written as

F0− =F0−
κ(q∗)2

2
≤ F B (q∗)−

κ(q∗)2

2
< F B (q̂)−

κ(q̂)2

2
,

where the first inequality uses F0− ≤ FB (q) (which holds for any q) and the second inequality uses

that G(q)=F B (q)− κq2
2 strictly increases on [0,q B ) as well as 0<q∗ < q̂ <q B . As a result, total

surplus is higher under a stationary contract that implements screening q̂ and Vt =V B (q̂)=κ q̂ at
all times t ≥0, which contradicts the optimality of q∗. Thus, V0<V B (q∗) cannot be optimal.

Now consider the case V0 =V B (q∗)=κq∗, so that q∗ = q̂ <q B . Take ε>0 and set qε =q∗+ε so
that qε <q B . Because of q∗ <q B , it follows that

∂

∂q∗

(
F B (q∗)−

κ(q∗)2

2

)
=G ′(q∗)>0, (A48)

where G(q∗)=F B (q∗)− κ(q∗)2

2 is total surplus under the optimal choice of q , that is, q =q∗ = q̂ .
Under the screening level qε =q∗+ε, it follows that κqε =V0>V B (qε).Write the value function

under screening level qε as F(V ). The total surplus under screening level qε is

F(V0)−
κ(qε)2

2
=F B (qε)+F ′(V B (qε))ε+o(ε2)−

κ(qε)2

2
=F B (qε)+o(ε2)−

κ(qε)2

2

=

(
F B (q∗)−

κ(q∗)2

2

)
+

∂

∂q∗

(
F B (q∗)−

κ(q∗)2

2

)
ε+o(ε2),

which — by (A48) — exceeds F B (q∗)− κ(q∗)2

2 for ε>0 sufficiently small. The second equality
uses that given screening level qε , limV →V B (qε ) F ′(V )=0 (see (A38)) which holds because of

aB (qε)>0 which in turn follows from aB (q∗)>0 by continuity for small ε. However, this
contradicts the optimality of q =q∗. Thus, V0 =κq∗ >V B (q∗) holds under the optimal choice of
q =q∗.
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A.3.6 Part V. In this part, we show F ′(V )<0 in all accessible states and, in particular, verify
our conjecture that F ′(V0)≤0.

First, consider F(V )=W (V ), in that the principal’s limited liability constraint binds. The
expression for effort a(V )=W (V )/φ in (A23) implies that F ′(V )<0, because F ′(V )≥0 would
imply a(V )< F(V )/φ and W (V )< F(V ). Next, take F(V )=W (V )=φa(V ) and insert this relation
into the HJB equation (23) to obtain

γ F(V )=1−
F(V )2

2φ
−

(
3−q −

F(V )

φ

)
F(V )+F ′(V )

[(
γ +3−q −

F(V )

φ

)
V − F(V )

]
.

At points V at which F ′(V ) is differentiable and V̇ ̸=0, we can differentiate above ODE with
respect to V to calculate

F ′′(V )=
(F ′(V ))2− F ′(V )F(V )/φ+(F ′(V ))2V/φ

(γ +λ)V − F(V )
<0,

as we have shown that V̇ =(γ +λ)V −W <0 as well as F ′(V )<0 for V >V B (q).
Second, suppose that F(V )>W (V ) and the principal’s limited liability constraint does not bind,

and consider V >V B (q) and V̇ ̸=0. To start with, note that because the principal’s limited liability
constraint does not bind, optimal effort a(V ) solves the first-order condition ∂ F(V )

∂a =0 provided
a ∈ (0,ā). For any points V at which F ′(V ) is differentiable, we can then invoke the envelope
theorem and totally differentiate the HJB equation (23) under the optimal controls with respect to
V , which yields

F ′′(V )=
−(γ −r )F ′(V )

(γ +λ)V −W
. (A49)

First, note that as shown in Part II of the proof, V̇ =(γ +λ)V −W <0 for V >V B (q). Thus, F ′′(V )
has the same sign as F ′(V ). It follows by (A49) that either F ′(V ),F ′′(V )<0 or F ′(V ),F ′′(V )≥0
must hold for all V ∈ (V B (q),V0].

Next, let us consider V =V B (q) (or the limit V →V B (q)). When aB (q)=0, then (A39) implies
limV →V B (q) F ′(V )≤0. Otherwise, when aB (q)>0, then (A38) implies F ′(V B (q))=0 and —
according to the expression for effort (A23):

a(V B (q))=
F(V B (q))−(γ −r )φ

φ
⇒ W (V B (q))< F(V B (q)),

owing to γ >r .
If it were F ′(V ),F ′′(V )≥0 in a right-neighborhood of V B (q) (i.e., for V ∈ (V B (q),V B (q)+

ϵ), then F(V )≥ F B (q) for V ∈ (V B (q),V B (q)+ϵ). However, it must be that F(V )< F B (q) for
V >V B (q), as providing higher screening incentive V >V B (q) than under the benchmark without
screening moral hazard for a given level of q necessarily reduces surplus. As a result, as F ′(V ) is
continuous, it follows that F ′(V ),F ′′(V )<0 in a right-neighbourhood of V B (q).

Note that when F ′(V ) is differentiable, then

sign(F ′′(V ))=

{
−1 if W (V )=F(V )

sign(F ′(V )) if W (V )< F(V ).

Combined with the fact that F ′(V ),F ′′(V )<0 in a right-neighbourhood of V B (q), it follows that
F ′′(V )<0 at all V ∈ (V B (q),V0) at which F ′(V ) is differentiable (and F ′′(V ) exists). As such, the
value function is strictly concave on (V B (q),V0).
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A.3.7 Part VI. In this part, we show that payouts to the agent are smooth and positive.
We can solve (11) to get the payout rate

ct =(γ +λt )Wt +
φa2

t

2
−Ẇt . (A50)

If Ft =Wt , note that according to (A14), Ḟt =(γ +λt )Ft −1+
φa2t
2 . Inserting the law of motion

Ḟt = Ẇt into (A50) yields ct =1>0. Further, provided a(V ) is differentiable, we have a′(V )=
F ′(V )/φ<0, so that ȧt =a′(Vt )V̇t >0.

Next, consider V =Vt with Wt < Ft . Then, according to (A23):

a(V )=max

{
0,

F(V )− F ′(V )[V +φ]−(γ −r )φ
φ

}
,

and, provided a(V ) is differentiable, then a′(V )= −F ′′(V )[V+φ]
φ >0, as F ′′(V )<0. Thus, ȧt =

a′(Vt )V̇t <0 and, by (6), Ẇt <0. Inserting Ẇt <0 into (A50) implies ct >0.

A.4 Proof of Proposition 3 and Details about the Implementation
The proof of Proposition 3 follows partially from the arguments presented in the main text.

Next, we provide more details for the implementation and show how to calculate βt =β(Vt ),
given the optimal contract from Proposition 2 which yields a(V ), W (V )=φa(V ), c(V ), and V̇ as
functions of V as well as optimal screening q . Recall that λt =3−at −q , where at =a(Vt ).

First, observe that

L t =
∫

∞

t
e−r (s−t)−

∫ s
t λu duds,

solves the ODE

(r +3−a(V )−q)L(V )=1+L ′(V )V̇

subject to the boundary condition

lim
V →V B (q)

L ′(V )=0 ⇐⇒ lim
V →V B (q)

L(V )=
1

r +3−aB (q)−q
,

whereby limV →V B (q) V̇ =0 and limV →vB (q)a(V )=aB (q).
Second, calculate

Ẇt =W ′(Vt )V̇t and β̇(V )=β ′(Vt )V̇t ,

where β(V ) is the agent’s retention level in state V under the proposed implementation of the
optimal contract. Third, insert these relations into (29) to obtain the following ODE in state V

β(V )−β ′(V )V̇ L(V )=(γ +3−a(V )−q)W (V )+
φa(V )2

2
−W ′(V )V̇ , (A51)

which is solved subject to

lim
V →V B (q)

β ′(V )=0 ⇐⇒ lim
V →V B (q)

β(V )=cB (q)=(γ +3−aB (q)−q)W B (q)+
φ(aB (q))2

2
.

(A52)
Noting there is a one-to-one mapping from time t to Vt =V , we thus obtain βt =β(Vt ) by solving
(A51), as desired. Throughout, we assume the existence and uniqueness of a (nonconstant) solution
to (A51) subject to (A52) on (V B (q),V0].
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Finally, we show that L t (1−βt )= Pt =Ft −Wt . For this sake, take

Pt =
∫

∞

t
e−r (s−t)−

∫ s
t λu du (1−cs )ds =

∫
∞

t
e−r (s−t)−

∫ s
t λu du (1−βs +β̇s Ls )ds

so that
Ṗt =(r +λt )Pt −(1−βt +β̇t L t ).

Next calculate
L̇ t =(r +λt )L t −1.

We start by conjecturing that Pt =(1−βt )L t , and in what follows verify this conjecture. We
calculate

Ṗt =(r +λt )Pt −(1−βt +β̇t L t )=(r +λt )(1−βt )L t −(1−βt +β̇t L t )

=(1−βt )L̇ t −β̇t L t =
d
dt

[
(1−βt )L t

]
,

where the second equality uses Pt =(1−βt )L t , the third equality uses L̇ t +1=(r +λt )L t and
simplifies, and the fourth equality collects terms. Thus, Pt =(1−βt )L t implies Ṗt = d

dt

[
(1−βt )L t

]
.

To conclude our argument we consider the limit t →∞ in which case Vt →V B (q) as
well as Wt →W B (q), Ft → F B (q), and L t → L B (q)= 1

r+λB (q)
. Then, under the optimal controls

aB (q),W B (q) and payouts cB (q)=(γ +λB (q))W B (q)+ φ(aB (q))2
2 =βB (q), we have

P B (q)=
1−cB (q)
r +λB (q)

=
(1−βB (q))
r +λB (q)

=(1−βB (q))L B (q).

Thus, in the limit t →∞, we have Pt → P B (q) as well as (1−βt )L t → P B (q), that is, limt→∞ Pt =
limt→∞(1−βt )L t . Because, in addition, Pt =(1−βt )L t implies Ṗt = d

dt

[
(1−βt )L t

]
holds, we have

Pt =(1−βt )L t at all times.

A.5 Proof of Proposition 4
The first claim follows from Proposition 1; it readily follows that the optimal contract can be
implemented by having the agent retain constant share βt =cB (q) of the loan.

We now prove the second claim about the limit case of φ→∞. For this sake, fix q . The below
arguments hold for any q , including the optimal q =q∗ determined at time t =0−. For given V and
q , we use the notation x̂ =limφ→∞ x .

To begin, recall limV →V B (q) F(V )=F B (q), limV →V B (q)a(V )=aB (q), and

limV →V B (q)W (V )=W B (q) with

F B (q)= max
a∈[0,ā]

1−0.5φa2
−(γ −r )φa

r +3−a−q
,

aB (q)=max

{
F B (q)−(γ −r )φ

φ
,0

}
,

W B (q)=φaB (q)=max
{

F B (q)−(γ −r )φ,0
}
,

and

V B (q)=
W B (q)

γ +3−aB (q)−q
.

Because F B (q) is bounded (specifically, F B (q)< 1
r+3−ā−q̄ ), it is clear that there exists φ′ >0

such that for all φ>φ′, aB (q)=W B (q)=V B (q)=0. In particular, in the limit φ→∞, we have
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âB =0 as well as Ŵ B =0 and V̂ B (q)=0. Thus, the relevant interval for the state variable V ,
(V B (q),V0], becomes (0,V0]. We restrict attention to levels of V lying in this interval.

Next, recall from (A23) that the optimal effort a(V ) solves

a(V )=
F(V )− F ′(V )(V +φ)−(γ −r )φ

φ
∧

F(V )

φ
, (A53)

Because of limV →0a(V )=aB (q) with a(V )>0 in a right-neighbourbood of zero, we have

lim
V →0

F ′(V )=

{
0 if aB (q)>0
F B (q)−(γ−r )φ

φ if aB (q)=0.

As argued above, there existsφ′ >0 such that for allφ>φ′, aB (q)=0 and therefore limV →0 F ′(V )=
F B (q)−(γ−r )φ

φ . Because the value function is strictly concave, we have

F ′(V )<
F B (q)−(γ −r )φ

φ

for all V >0. We assume that for any V ∈ (0,κq], the limit limφ→∞ F(V )= F̂(V ) exists and that
the function F̂(V ) is twice continuously differentiable and strictly concave, that is, F̂ ′′(V )<0.

Next, for V >0, we can take the limit φ→∞ to obtain:

F̂ ′(V )≤ lim
φ→∞

(
F B (q)−(γ −r )φ

φ

)
=−(γ −r ).

Because of the strict concavity of F̂(V ), that is, F̂ ′′(V )<0 for V >0, it follows that above
inequality is strict, that is, F̂ ′(V )<−(γ −r ) for V >0.

Next, using (A53), we have

W (V )=φa(V )=min{F(V )− F ′(V )(V +φ)−(γ −r )φ,F(V )}. (A54)

We can take the limit φ→∞ for optimal continuation payoff in (A54), which, conditional on
F̂ ′(V )<−(γ −r ), is Ŵ (V )= F̂(V ). It follows

lim
V →0

lim
φ→∞

W (V )= lim
V →0

Ŵ (V )= lim
V →0

F̂(V )> Ŵ (0)= lim
φ→∞

lim
V →0

W (V )= lim
φ→∞

W B =0.

As Ŵ (V ) is dis-continuous and exhibits an upward jump at V =0, it follows that Ŵ (Vt ) drops down
once Vt reaches zero (from above). Moreover,

lim
φ→∞

V̇ =(r + λ̂(V ))V −Ŵ (V )

is strictly negative in an open right-neighbourhood of V =0, so that V reaches zero in finite time
τ 0 =inf{t ≥0:Vt =0} in the limit φ→∞.

We can rewrite the continuation payoff allowing for a general payment process

Wt :=E
[∫ τ

t
e−γ (s−t)

(
dCs −

φa2
s

2
ds
)]

=
∫

∞

t
e−γ (s−t)−

∫ s
t λu du

(
dCs −

φa2
s

2
ds
)

.

Thus

dWt =(γ +λt )Wt +
φa2

t

2
−dCt ⇐⇒ dW (V )=(γ +λ(V ))W (V )+

φa(V )2

2
−dC(V ).

In the limit,
dŴ (V )=(γ + λ̂(V ))Ŵ (V )−dĈ(V ).

It follows that at time τ 0 (once Vt reaches zero), there is a lumpy payout

dĈτ0 =dĈ(0)= lim
V →0

Ŵ (V )= lim
V →0

F̂(V )=
1

r +3−q
.

Recall (20) so that d F(V )=(r +λ(V ))F(V )dt + φa(V )2

2 dt +(γ −r )W (V )dt −1dt . Before time τ 0,

that is, for V >0, we have F̂(V )= Ŵ (V ), implying

dŴ (V )=(γ + λ̂(V ))Ŵ (V )dt −dĈ(V )=d F̂(V )=(r + λ̂(V ))F̂(V )+(γ −r )Ŵ (V )dt −1dt,

which — due to F̂(V )= Ŵ (V ) implies dĈ(V )=1dt for t <τ 0.
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The implementation of the optimal contract then satisfies

β̂(V )dt −dβ̂(V )L =dĈ(V ),

where L =1/(r +3−q) is the loan’s fair market value. At time τ 0, that is, for V =0, we have
dĈt = L so that dβ̂τ0 =−1. Before time τ 0, that is, for V >0, we have dĈ(V )=1dt . Thus, the
above relationship holds for β̂(V )=1, which concludes the argument.

Finally, we verify the strict concavity of F̂(V ). For this sake, take the limit φ→∞ in the HJB
equation (23) for V >0 noticing that Ŵ (V )= F̂(V ), â(V )=φ(â(V ))2 =0 to obtain

(r + λ̂(V ))F̂(V )=1−(γ −r )Ŵ (V )+ F̂ ′(V )((γ + λ̂(V ))V −Ŵ (V )),

which—after inserting Ŵ (V )= F̂(V )—is equivalent to

(γ + λ̂(V ))F̂(V )=1+ F̂ ′(V )((γ + λ̂(V ))V − F̂(V )).

We can take the derivative with respect to V to obtain:

F̂ ′′(V )=
(F̂ ′(V ))2

(γ +λ)V − F(V )
<0.

A.6 Proof of Corollary 1
A.6.1 Part 1. A necessary condition for the lender’s stake to approach zero is that aB =
limt→∞βt =βB =cB =0. We first show that when φ is sufficiently large and satisfies the condition
presented in the Proposition, it follows that aB =cB =0.We take the (optimal) screening level q∗ =q
as given. The second part of the proof then shows that limt→∞βt =βB =cB =0 implies that the stake
βt reaches zero in finite time.

First, we recall that given q:

F B =F B (q)= max
a∈[0,ā]

(
1−(γ −r )φa−0.5φa2

r +3−a−q

)
.

Next, the first-order derivative with respect to a satisfies

∂(3+r )F B

∂a
=F B

−(γ −r )φ−φa ⇐⇒
∂ F B

∂a
=

F B
−(γ −r )φ−φa

3+r
. (A55)

Provided a < ā, we have a=aB =0 only if

φ≥
1

(r +3−q)(γ −r )
(A56)

Note that this necessary condition depends on the level of screening effort, which is endogenous.
Next, note that

F B =F B (q)= max
a∈[0,ā]

(
1−(γ −r )φa−0.5φa2

r +3−a−q

)
≥

1

r +3

As such, a necessary condition condition for aB =0—that is, ∂ F B
∂a |a=0≤0—and thus βB =0 is that

(see (A55))

1

r +3
≤ (γ −r )φ ⇐⇒ 1≤ (γ −r )(r +3)φ ⇐⇒ φ>

1

(r +3)(γ −r )
.

Thus, when 1> (γ −r )(r +3)φ, the lender never sells its entire stake in finite time, that is,
limt→∞βt =cB >0 as well as aB >0.
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We now proceed by deriving a sufficient condition for a=aB =0, which only depends on

exogenous model parameters. Because ∂ F B
∂q >0, we obtain

F B
≤ max

a∈[0,ā]

(
1−(γ −r )φa−0.5φa2

r +3−a− q̄

)
,

that is, an upper bound for F B =F B (q) that does not depend on q . Then,

∂ F B

∂a
|a=0≤0 ⇐⇒ F B

|a=0≤ (γ −r )φ.

Owing to F B
|a=0≤

1
r+3−q̄ , we obtain F B

|a=0≤ (γ −r )φ if

1

r +3− q̄
≤ (γ −r )φ ⇐⇒ φ≥

1

(r +3− q̄)(γ −r )
.

Next, notice that the second-order derivative of F B with respect to a satisfies:

∂2(3+r )F B

∂a2
=

∂ F B

∂a
−φ=

F B
−(γ −r )φ−φa

3+r
−φ

<
1

3+r

(
1

r +3− q̄ − ā
−(γ −r )φ

)
−φ=

1

3+r

(
1

r +3− q̄ − ā
−(γ +3)φ

)
,

where the second equality uses (A55), the inequality uses F B
−φa < 1

r+3−q̄−ā , and the last equality
collects terms.

Thus, we obtain aB =0 if

φ>max

{
1

(r +3− q̄)(γ −r )
,

1

(r +3− q̄ − ā)(γ +3)

}
,

that is, if φ is sufficiently large. As such, we have aB =V B =W B =0, limt→∞ Vt =limt→∞ V̇t =0,
as well as cB =0 and limt→∞ct =0.

A.6.2 Part 2. It remains to check whether Vt reaches 0 in a finite time, in which case Wt and ct
reach zero in finite time; this implies, then, under our implementation, that the agent sells its entire
stake in finite time, in that the implementation stipulates β(0)=0.

Recall V̇ =G(V ) with G(V )=(γ +λ(V ))V −W , so that limV →0 V̇ =0. As limV →0 F(V )=
F B (q), we have

F ′(0) := lim
V →0

F ′(V )=
F B (q)−(γ −r )φ

φ
<0,

so that a(V ) from (A23) converges to aB (q)=0 as V →V B (q)=0.
Because of aB =a(V B )=0, we have a(V )< F(V )/φ as well as

F ′′(V )=
−(γ −r )F ′(V )

V̇
. (A57)

in a right-neighbourhood of zero (0,ϵ̂) for appropriate ϵ̂ >0. Also, recall that in this right-
neighbourhood

W (V )=a(V )φ=F(V )− F ′(V )[V +φ]−(γ −r )φ

and a(V ) are also differentiable.
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We can calculate

W ′(V )=−F ′′(V )[V +φ]=
(γ −r )F ′(V )

V̇
=
(γ −r )F ′(V )

G(V )
,

where the second equality uses (A57). As such, we can calculate

lim
V →0

W ′(V )=+∞

as well as

lim
V →0

∂ V̇
∂V

= lim
V →0

∂G(V )

∂V
= lim

V →0
G ′(V )= lim

V →0

(
γ +λ(V )−W ′(V )(1+V/φ)

)
=−∞.

It follows that G(V ) is not continuously differentiable on [0,V0] and thus is also not Lipschitz
continuous in the same interval.

Next, notice that G(V )<−V ⇐⇒ G(V )/(−V )>1 on an interval (0,ϵ′). This follows from
the fact that

lim
V →0

G(V )

−V
= lim

V →0

G ′(V )

−1
=∞,

and continuity of G(V ) for V >0, where we used L’Hopital’s rule.
As a next step, we show that for α∈ (0,1) there exists 0<ϵ<ϵ′ such that on (0,ϵ):

G(V )<−V α
⇐⇒

−V α

G(V )
<1.

To do so, we calculate

0≤ lim
V →0

−V −α

G(V )
= lim

V →0

−αV α−1

G ′(V )
= lim

V →0

αV α−1

(γ−r )F ′(V )
G(V )

= lim
V →0

−αV α−1G(V )

(γ −r )F ′(V )
= lim

V →0

−αV α−1G(V )

(γ −r )F ′(0)

= lim
V →0

αV α−1G(V )

(γ −r )F ′(0)
≤ lim

V →0

αV α−1(−V )

(γ −r )F ′(0)
= lim

V →0

αV α

−(γ −r )F ′(0)
=0,

where we used L’Hopital’s rule in the first equality and that G(V )<−V in a neighborhood of
zero (and thus in the limit V →0) in the second last inequality. The remaining steps carry out
simplifying calculations. Thus, by continuity, we have G(V )<−V α <0 on (0,ϵ).

Let T =inf{t ≥0:Vt =ϵ}. As ϵ>0 and G(V )<0 for V ≥ϵ, it readily follows that T is finite,
that is, T <∞.

Next, for times t ≥T , consider the ODE X t =−Xα
t with XT =K >0 for α∈ (0,1) which admits

the general solution:33

X t =


[

K 1−α
−(1−α)(t −T )

] 1
1−α for t <T ′

0 for t ≥T ′

for a constant K . Thus, XT =K >0. It follows that X t reaches 0 at time T ′ =T + K1−α

1−α <∞.

Set K =ϵ, so that XT =VT =ϵ. Because of G(V )≤−V α as well as V̇t =G(Vt ) and Ẋ t =−Xα
t ,

it follows that Vt ≤ X t for t ≥T . As such, Vt reaches 0 in finite time T ′′
≤T ′ <∞. Thus, in the

implementation, βt reaches β(0)=βB =0 in finite time, which was to be shown.

33 For a verification of this guess, simply calculate for t <T ′:

Ẋt =−

[
K 1−α

−(1−α)(t −T )
] 1
1−α

−1
=
[

K 1−α
−(1−α)(t −T )

] α
1−α =−V α

t .
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