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Abstract

This paper revisits the important result of the real options approach to investment under

uncertainty, which states that increased uncertainty raises the value of waiting and thus

decelerates investment. Typically in this literature projects are assumed to be perpetual.

However, in today’s economy firms face a fast-changing technology environment, implying

that investment projects are usually considered to have a finite life. The present paper studies

investment projects with finite project life, and we find that, in contrast with the existing

theory, investments may be accelerated by increased uncertainty. It is shown that this

particularly happens at low levels of uncertainty and when project life is short.
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1. Introduction

The standard theory of the real options approach to investment, as clearly
explained in Dixit and Pindyck (1994),1 states that uncertainty in combination with
irreversibility creates a value of the option to wait with undertaking capital
investments. Over time more information becomes available, which enables the
decision maker to make better investment decisions at a later date.

The general prediction of the real options literature is that a higher level of
uncertainty increases the value of waiting and thus has a negative effect on
investment. In this paper we revisit this conclusion. To do so we adopt the standard
framework with contingent claims valuation of the investment opportunity and
change it in one aspect: where the vast majority of the real options literature assumes
projects to be perpetual, we allow for the project to generate earnings only during a
finite amount of time.2 The assumption of a project having an infinite life is useful
mostly due to its simplicity. However, in corporate practice the investment projects
are usually considered to have a finite life. This is especially true in today’s
knowledge economy, in which innovations limit the economic lifetime of
technologies.3 We show that the simplifying assumption of perpetual projects is
critical for the investment–uncertainty relationship. Our main result is that the
investment threshold decreases with uncertainty in case the uncertainty level is low
and the project life is short. So, changing the project life from infinite to finite can
imply a negative relationship between uncertainty and the value of waiting, which
reverses the basic real options result.

To be more precise, an increase in uncertainty affects the investment threshold in
three different ways. The first effect is the discounting effect. An increase of
uncertainty raises the discount rate via the risk premium component. This reduces
the net present value (NPV) of the investment and thus raises the investment
threshold. The second effect is the volatility effect, which affects the value of the
option to wait positively: higher uncertainty increases the upside potential payoff
from the option, leaving the downside payoff unchanged at zero (since the option
will not be exercised at low payoff values). This increased option value implies that
the firm has more incentive to wait, which also increases the investment threshold.
The third effect of an increase of uncertainty on the investment threshold is the
convenience yield effect. The increase of asset riskiness raises the discount rate and
thus also the convenience yield of the investment opportunity. This decreases the
1Some more recent contributions include studies of implications of learning (Decamps and Mariotti,

2004; Thijssen et al., 2006), agency (Grenadier and Wang, 2005), business cycle (Guo et al., 2005), policy

change (Pawlina and Kort, 2005), and implications to capital structure choices (Miao, 2005), mergers and

acquisitions dynamics (Morellec and Zhdanov, 2005), or exit strategies (Murto, 2004).
2Notably, Majd and Pindyck (1987) discuss some implications of finite project life on real options

modeling. While they provide some arguments and cases when the finite project life considerations can be

omitted, these considerations turn out to play an important role in our analysis.
3Certainly, the same arguments point toward introducing a finite life of the investment opportunity and

not only of the project after investment. We do study this case in Section 4.1 where it is shown that our

main result also holds there.
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value of waiting, so that it is more attractive to invest earlier resulting in a lower
investment threshold.

The discounting and volatility effects thus raise the investment threshold, while the
convenience yield effect works in the opposite direction. Projects with a short life are
relatively insensitive to discount rates. On the other hand, at low levels of
uncertainty, increased uncertainty has still little effect on the probability of observing
low prices, and thus the volatility effect is small in this case. Consequently, it is
possible for the negative convenience yield effect to dominate the two other effects
when the project life is finite and uncertainty is low. In that case it thus holds that the
investment threshold decreases with uncertainty.

We examine the robustness of the non-monotonic effect of uncertainty on
investment in the case of a finite project life by considering several variations of the
problem. First, we show that this result survives in case the opportunity to invest in
the project is available only for a limited amount of time. Next, we prove that this
also holds for other relaxations of the infinite project life assumption, like uncertain
project duration and capital depreciation. Furthermore, we find that generalized
functional forms of the convenience yield preserve the observed relationships.
Finally, the non-monotonic effect is also present in case revenues are mean reverting.

The impact of uncertainty on investments has been of interest to economists for a
long time. One strand of literature relies on convex costs of capital adjustment and
convexity of marginal profits in prices. As shown by Hartman (1972) and Abel
(1983), in such a setting uncertainty hastens investment. The other important strand
of literature, based on the real options theory, acknowledges (partial) irreversibility
of investments and predicts that uncertainty delays investment. This paper verifies
the latter prediction and shows that the investment trigger is not necessarily
increasing in uncertainty. Most closely related papers are Caballero (1991) and
Bar-Ilan and Strange (1996). Caballero (1991) considers a perfect competition setting
with convex adjustment costs, and he obtains that irreversibility does not lead to the
usual negative investment–uncertainty relationship. Bar-Ilan and Strange (1996)
assume that there are lags between investment decisions and realizations. Firms have
abilities to abandon uncompleted projects in bad times, which creates a convexity in
the output and value functions. Bar-Ilan and Strange (1996) find that uncertainty
may accelerate as well as decelerate investment depending on specific parameter
values. Both papers have in common that they depart from the conventional result of
the real options literature, because the models create convexities in line of Hartman
(1972) and Abel (1983). Thus it comes with little surprise that in these papers
uncertainty may either accelerate or decelerate investment. The result of our paper is
unique in the sense that uncertainty may hasten irreversible investment without
building on the convexity of the marginal product of capital. Our model remains in
the pure real options framework and the reversal of the conventional result builds
solely on the contingent claims valuation of investment opportunities and a finite
capital lifetime. Moreover, since we only depart from the standard real option
framework by imposing a finite lifetime, our model is more general and is thus
applicable to more investment situations than Caballero (1991) and Bar-Ilan and
Strange (1996).
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A different approach to study the relationship between uncertainty and
irreversible investments is taken by Sarkar (2000). Sarkar analyzes the probability
of investment taking place within a certain time period and points at the fact that an
increasing trigger does not automatically mean that investment will be delayed.
A related result is shown by Ruffino and Treussard (2007) in a model of duopolistic
competition with investment and time to build. The difference with our result is that
we show that increased uncertainty may not even lead to an increased trigger.

Beyond this introduction the paper is organized as follows. In the next section we
consider the model of the finitely lived project and derive the optimal investment
trigger. Section 3 studies how uncertainty influences the investment decision. In
Section 4 we discuss robustness, while Section 5 concludes. All proofs are contained
in Appendix A.
2. The model and the optimal investment decision

We consider an irreversible investment project with finite life of T years that can be
undertaken at any time. After the investment has taken place, the project generates a
stochastic revenue of Qt per unit time. Qt evolves exogenously according to a
geometric Brownian motion

dQt ¼ mQt dtþ sQt dZt, (1)

where dZ is the increment of a standard Wiener process, m is the drift parameter and s
is the volatility parameter that introduces the uncertainty in our model. Throughout
the paper we assume that m;s40. When the project is undertaken, a one-time
investment cost I is paid. For simplicity, the marginal costs are put equal to zero.

We employ the contingent claims approach to real options valuation.4 Under the
standard assumption of market completeness, the expected rate of return of the
project p is determined in the financial market equilibrium. The CAPM5 formula
relates p, the risk-free interest rate r, the correlation of the project return with the
return of the market portfolio r, and the market price of risk l as follows:

p ¼ rþ lrs. (2)

The difference between p, the expected return of the project, and m, the expected rate
of change of Q, is referred to as the convenience yield (or return shortfall) of the
investment opportunity. The later is denoted by d and satisfies

d � p� m ¼ rþ lrs� m. (3)
4The standard methods in real options theory to value an investment opportunity are dynamic

programming and contingent claims valuation (Dixit and Pindyck, 1994). Compared to dynamic

programming, the contingent claims approach offers a better treatment of the discount rate, because it is

endogenously determined as an implication of the overall equilibrium in capital markets.
5The assumption that the intertemporal Capital Asset Pricing Model (CAPM) of Merton (1973) holds is

in accordance with the related literature. The CAPM brings a linear relationship between the discount rate

and s. In Section 4.3 we show that the results we present also hold for more general discount rate

functions.
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We assume that d40, which ensures that the investment is ever undertaken;
otherwise it is never optimal to exercise the option.

The level of uncertainty faced by the firm is measured by the volatility parameter
s. From (3) we obtain that a change in s results in a change of p, which must
lead to an adjustment of either m or d or both. In general, this relation depends
on what is assumed to be an endogenous parameter affected by changes in
volatility. A certain guideline in this respect could be Pindyck (2004), that
relates commodity inventories, spot and future prices and the level of volatility.
The model is estimated for several commodities and the results show that a volatility
shock has a significant effect on the convenience yield and only a small effect
on the price. Consistent with this evidence, it also seems to be more common in
the related literature on the investment–uncertainty relationship to assume that m is
fixed and d changes with s (e.g., Sarkar, 2000, 2003). We follow this modelling
convention.

The value of the project V ðQÞ evolves over time and depends on the current
realization of Q. Upon installation the project value is equal to the expected
present value of the revenue stream discounted by the risk-adjusted discount rate. If
the project has a finite life of T years, then the project value at the time of the
investment is

V ðQÞ ¼ E

Z T

0

e�ptQt dtjQ0 ¼ Q

� �
¼

Z T

0

e�ðp�mÞtQdt ¼ Q
1� e�ðrþlrs�mÞT

rþ lrs� m
.

(4)

Before the project is installed, the firm holds an option to invest. The option is held
until the stochastic revenue flow reaches a sufficiently high level at which it is optimal
to exercise the option and invest. The option value F ðQÞ can be found by the
replicating portfolio argument. Employing the standard methods (cf. Dixit and
Pindyck, 1994) yields that F ðQÞ must satisfy the differential equation:

1
2
s2Q2F 00ðQÞ þ ðm� lrsÞQF 0ðQÞ � rF ðQÞ ¼ 0. (5)

We solve this differential equation subject to the value matching and smooth pasting
conditions at the investment trigger Qn and a zero value condition at Q ¼ 0. The
derivations are standard and are omitted here. The resulting firm value prior to
investment is

F ðQÞ ¼ ðV ðQnÞ � IÞ
Q

Qn

� �b1
.

The optimal investment rule is given by the upper trigger

Qn ¼
b1

b1 � 1

rþ lrs� m
1� e�ðrþlrs�mÞT

I , (6)

while b1 is the positive root of the quadratic equation

L0 �
1
2
s2bðb� 1Þ þ ðm� lrsÞb� r ¼ 0 (7)
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and equals

b1 ¼
1

2
�

m� lrs
s2

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m� lrs

s2
�

1

2

� �2

þ
2r

s2

s
, (8)

Under the NPV rule the investment is undertaken as soon as the risk-adjusted
project value exceeds the investment cost, that is at the revenue level equal to

rþlrs�m
1�e�ðrþlrs�mÞT

I . This value is always lower than Qn in (6), as b141. So there are states

where the expected payoff of investment is positive and the firm chooses to wait and
not to invest. The option to invest captures this positive value of waiting.
3. The effects of uncertainty on the investment trigger

This section studies the effect of uncertainty on the value of waiting. First, we
show that, as usual, the value of waiting, reflected in the level of investment trigger,
always increases with uncertainty when the project life is infinite or when discount
rates are unaffected by uncertainty. Second, if the equilibrium discount rate contains
a positive risk premium, we derive that the value of waiting decreases with
uncertainty in case of finite project lives and low levels of uncertainty. Finally, we
provide an economic analysis of these results.

3.1. Monotonicity results

We start out with the basic real options result for the investment project with
infinite life.

Proposition 1. If the project life is infinite, the investment trigger increases with

uncertainty.

In case of an infinite project life the effect of uncertainty on the investment trigger is
unambiguously positive. This is the standard real options result, which says that the
value of waiting increases with uncertainty. This is reflected by higher trigger values,
because the revenue must reach a higher level before investment is optimally undertaken.

Now, let us move on to the finite life project case. We first consider the scenario
where the impact of systematic risk is absent or not priced by the market. This
implies that the discount rate is constant, and requires that either the market price of
risk is zero, l ¼ 0, or that the correlation of the project return with the return of the
market portfolio is zero, r ¼ 0.

Proposition 2. If the discount rate is constant (zero market price of risk or zero

correlation of project return with the return of the market portfolio), the relationship

between the investment trigger and uncertainty is always positive.

Proposition 2 states that, in the absence of the risk premium effect the investment
trigger always increases with uncertainty irrespective of the project lifetime, which is
again the usual real options result. It is important to point out, however, that the
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conditions necessary for constant discount rates are in general difficult to accept in
the context of investment models; see discussions in, e.g., Zeira (1990) and Sarkar
(2003).

The next proposition considers one case where the discount rate is not constant.

Proposition 3. If lro0, then the relationship between the investment trigger and

uncertainty is always positive.

This result shows that in case of a negative risk premium (possible if either the
correlation of the project return with the return of the market portfolio or the
market price of risk is negative), the usual positive relationship arises.

3.2. Non-monotonicity result

We proved in the previous subsection that both in the model with a project of
infinite life and in the model without a risk premium or with a negative risk
premium, the impact of uncertainty on the investment trigger is always positive.
These are interesting special and limit cases; however, the assumptions of
Propositions 1 and 2 are serious abstractions from reality, and the negative risk
premium condition of Proposition 3 is a relatively rare phenomenon in the markets.
Next, we turn to the most common situation where the project life is finite and the
discount rate is set in the capital market equilibrium with a positive risk premium.
We now show that the effect on the trigger is no longer monotonic in uncertainty.

Proposition 4. If the project life is finite and lr40, the uncertainty effect on the

investment trigger is non-monotonic: it decreases in s for low levels of s and then

increases. The length of the s-interval where the negative effect occurs is negatively

related to the project lifetime.

Fig. 1 presents some numerical examples, where the parameter values correspond
to earlier work on the investment–uncertainty relationship, in particular to Sarkar
(2000). We see that indeed there is a negative relation between s and Qn for lower
values of s. The effect is more pronounced for short-term projects, but even in the
case of a 30-year project Qn decreases until s is around 0.12. The example shows that
the positive effect of uncertainty on investment (negative on the trigger) arises for
economically relevant parameter values. The figure, of course, also confirms that for
an infinitely long project the relation is monotonic and increasing in line of the
results in Proposition 1.

3.3. Economic analysis of the non-monotonicity result

In this section we provide an economic interpretation of the non-monotonic effect
of uncertainty shown in Proposition 4 (we assume here that lr40). From (3) and (6)
it follows that the investment trigger can also be expressed as

Qn ¼
b1

b1 � 1

d
1� e�dT

I . (9)
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Fig. 1. Investment trigger as a function of volatility for various project lengths T and the set of

parameters: m ¼ 0:08, r ¼ 0:1, r ¼ 0:7, l ¼ 0:4, I ¼ 10.
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At this point it is convenient to trace all the variables that are affected by uncertainty
and consider the trigger as a function of three parameters: Qnðs; dðsÞ; b1ðs; dðsÞÞÞ.
Then the derivative of the investment trigger with respect to s can be decomposed
into three effects in the following way:

d

ds
Qnðs; dðsÞ;b1ðs; dðsÞÞÞ ¼

qQn

qd
qd
qs|fflfflffl{zfflfflffl}

Discounting effect

þ
qQn

qb1

qb1
qs|fflfflfflffl{zfflfflfflffl}

Volatility effect

þ
qQn

qb1

qb1
qd

qd
qs|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

Convenience yield effect

.

(10)

The three effects have a clear interpretation and each has an unambiguous sign
(for the case of lr40). The first term on the right-hand side, the discounting effect,
measures the impact of revenue uncertainty on the rate used to discount the project
value. Rising uncertainty increases the discount rate, which reduces the NPV of the
investment project. This implies that it is less profitable to invest in this project,
which leads to an increase of the trigger value. Consequently, as is straightforward to
derive, the discounting effect is always positive.

Since the second and the third term of (10) both affect the trigger value via b1, they
reflect the influence of uncertainty on the value of the option to wait. Below we refer
to these two effects combined as the option effect. The volatility effect, which is

represented by the derivative qQn

qb1
qb1
qs , captures the direct impact of uncertainty on the

value of the option to wait. Higher uncertainty increases the upside potential payoff
from the option, leaving the downside payoff unchanged at zero (since the option
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will not be exercised at low payoff values). This is the well-known positive impact of
uncertainty on the option value. An increased option value implies that the firm has
more incentive to wait. This raises the opportunity cost of investing so that the
investment trigger will increase. Hence, the effect is unequivocally positive.

The product qQn

qb1
qb1
qd

qd
qs in (10) represents the impact of uncertainty on the option

value through the convenience yield, and we refer to it as the convenience yield effect.
Increased uncertainty raises the risk premium of the expected rate of return and thus
also the convenience yield, which in turn elevates the opportunity cost of holding the
option and consequently decreases its value. For this reason it is attractive to invest
earlier, which reduces the trigger.

Summarizing, we conclude that the discounting and volatility effects are positive,
while the convenience yield effect is negative. Clearly, the negative relationship
between uncertainty and investment occurs only if the convenience effect dominates
the two other effects. The following proposition shows how the uncertainty level and
the project length influence the relative size of the three effects.

Proposition 5. (i) Define ŝ ¼ fsX0 : ðb1 � 1Þs� lr ¼ 0g. The combined option effect

is negative at soŝ and positive at s4ŝ.
(ii) The shorter is the project life T , the smaller is the discounting effect and the

larger in absolute terms are the two option effects.

The first part of the proposition states that the sign of the effect of uncertainty on the
option value is ambiguous but separable into two regions.6 At a relatively high
uncertainty level the positive volatility effect dominates the negative convenience
yield effect. At low levels of uncertainty the negative effect dominates. In such a case,
a marginal increase in uncertainty has little impact on the probability of reaching
extreme values by the underlying process and hence the volatility effect is relatively
small. On the other hand, the convenience yield effect is also significantly present at
low levels of uncertainty, since the convenience yield d is linear in s, implying that
the marginal effect of s in d is constant (in fact the convenience yield effect is not
constant but diminishes at higher s, as the full effect works via the discount factor).

The second part of the proposition states that the project and option-related
effects react differently to changes in the project life. The discounting effect becomes
smaller with shorter project lives. Clearly, short-lived projects are relatively
insensitive to marginal changes of the discount rate. On the other hand, the
option-related effects increase with shorter project lives. This is because a shorter
project life implies that the current revenue flow needs to be larger for the investment
to be optimal, which leads to larger option effects.

Now we are ready to establish when and why an increasing uncertainty level may
lower the investment threshold. At low levels of uncertainty, the positive volatility
6From Proposition 5 (i) it is clear that in a setup where only the option effects are present, the non-

monotonic investment–uncertainty relationship would arise irrespective of the project lifetime. This could

be the case for example, if the project value V behaves according to geometric Brownian process. This was

shown in a contemporaneous work by Wong (2007). However such a setup is a rather serious abstraction

from reality (see Dixit and Pindyck, 1994, p. 175 for arguments) and the negative effect disappears as soon

as perpetual revenues from the project are directly modelled.
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Table 1

The three effects of uncertainty affecting the position of the investment trigger for the set of parameters:

m ¼ 0:08, r ¼ 0:1, r ¼ 0:7, l ¼ 0:4, I ¼ 10, Q ¼ 1

T ¼ 10 T ¼ 30

s Qn (1) (2) (3) (4) Qn (1) (2) (3) (4)

0.00 5.52 7.47 0.00 �77.23 �69.77 2.22 8.38 0.00 �31.03 �22.65

0.02 4.44 5.95 1.19 �48.51 �41.37 1.87 6.86 0.50 �20.44 �13.08

0.04 3.77 5.01 2.15 �33.70 �26.54 1.66 5.92 0.95 �14.86 �8.00

0.06 3.34 4.39 2.99 �25.03 �17.65 1.54 5.29 1.38 �11.53 �4.86

0.08 3.05 3.97 3.75 �19.47 �11.75 1.46 4.88 1.80 �9.35 �2.67

0.10 2.86 3.68 4.40 �15.66 �7.57 1.43 4.60 2.20 �7.82 �1.02

0.12 2.74 3.49 4.95 �12.92 �4.48 1.42 4.43 2.57 �6.70 0.29

0.14 2.67 3.38 5.36 �10.90 �2.17 1.44 4.34 2.88 �5.86 1.36

0.16 2.65 3.31 5.65 �9.38 �0.42 1.47 4.30 3.15 �5.22 2.22

0.18 2.65 3.28 5.85 �8.24 0.90 1.53 4.30 3.37 �4.74 2.93

0.20 2.68 3.28 5.99 �7.37 1.91 1.59 4.34 3.55 �4.37 3.52

0.22 2.73 3.31 6.09 �6.70 2.69 1.67 4.39 3.72 �4.09 4.02

0.24 2.79 3.34 6.17 �6.19 3.32 1.75 4.46 3.87 �3.89 4.45

The columns present: the discounting effect (1), the volatility effect (2), the convenience yield effect (3) and

the total effect (4).

S. Gryglewicz et al. / Journal of Economic Dynamics & Control 32 (2008) 2191–22132200
effect is small and the effects working via discount rate and convenience yield are still
significant. These two last effects have opposing signs so that a low s alone is not
enough to observe a negative total effect (cf. Proposition 1). If, however, in addition
the project life is short then the positive discounting effect will be small and the
negative convenience yield effect dominates. Therefore, at low levels of s and T, it is
possible that the negative convenience yield effect dominates the two positive effects
(see Proposition 4).

These mechanisms are illustrated in a numerical example presented in Table 1. It
allows for a closer inspection of the magnitude of the effects of uncertainty affecting
the position of the investment trigger. The volatility and convenience yield effects
increase with shortening the project life. The discounting effect decreases with
smaller T. The combined option effect is negative for low levels of s but it is
increasing in s (it becomes positive for s4ŝ ¼ 0:241). The longer the project life, the
faster is the negative convenience yield effect offset by the positive impact of
the discounting and volatility effects. If T ¼ 10, the total effect is negative for s
between 0 and 0:16; while for T ¼ 30 the total effect remains negative for s between
0 and 0:10.
4. Robustness

The model of the previous sections has been geared to show our results in the
simplest setting. The aim of this section is to demonstrate that our main result, i.e.
that the value of waiting decreases with uncertainty in case of a short project life and
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a limited amount of uncertainty, can be generalized. First we consider a scenario
where the investment opportunity is available only for a limited amount of time.
After that we analyze the case where the project has an uncertain duration. Next, we
consider more general, thus not necessary linear, convenience yield functions in
uncertainty. Finally, we allow the revenue process to be mean reverting.
4.1. Finite-life option

We now assume that the project and the option to invest both have finite
durability. McDonald and Siegel (1986) also allow for a finite life of the investment
opportunity, but their project is implicitly perpetual. Finite life options have been
extensively studied, and the book by Detemple (2005) provides background on
recent analytical, approximation and numerical methods. A new numerical approach
has been recently proposed by Nagae and Akamatsu (2007), in which the real
options problem is reformulated as a system of complementarity problems.

The project life is T years and its value V ðQÞ is given by Eq. (4). Denote the life
length of the option as TF . Since the option expires at TF , its value F ðQ; tF Þ depends
on remaining time tF to maturity. To find the differential equation defining the
option value we follow the same steps as in Section 2. The resulting partial
differential equation includes the time derivative and is given by

1
2
s2Q2F QQ þ ðm� lrsÞQFQ � F t � rF ¼ 0. (11)

The option value must satisfy the terminal condition at the expiry date TF :

F ðQ; 0Þ ¼ maxðV ðQÞ � I ; 0Þ,

which states that at t ¼ 0 the option is exercised (the investment is undertaken) if the
project’s expected present value exceeds the investment cost. The option satisfies also
the boundary conditions at Q ¼ 0 and Qn similar to the ones used in Section 2:
F ðQn; tF Þ ¼ V ðQnÞ � I , F QðQ

n; tF Þ ¼ V 0ðQnÞ and F ð0; tF Þ ¼ 0.
Unlike in the previous problem, in which Qn was a single point, here the optimal

investment trigger QnðtF Þ is a function of time. The problem we have to solve is
analogous to the valuation of American-style options with a finite expiry date, to
which no closed-form solutions exist. We numerically solve Eq. (11) together with
the boundary conditions using the Crank–Nicholson finite-difference scheme. We
apply the logarithmic change of variable and use a mesh size of 500� 500 points.
The computer code is available through the JEDC Supplement Archive.

Figs. 2 and 3 present our results for the optimal investment trigger boundary
QnðtF Þ. We assumed the option life TF to be 10 years and the project life T to be
either 10 years (Fig. 2), or perpetual (Fig. 3). All other parameters are as in the
numerical example of Fig. 1. The triggers QnðtF Þ are drawn for various levels of s
ranging from 0:10 to 0:30. The horizontal axis depicts the remaining option life tF .

As expected, the right-hand side of both figures at tF ¼ TF ¼ 10 is well
approximated by the model with a perpetual real option, so that the trigger
boundary values are very close to those in Fig. 1 (T ¼ 10 and1 curves). At tF ¼ 0,
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Fig. 2. Project and option with finite life: investment trigger boundary, QnðtF Þ, for various levels of

volatility and the set of parameters: m ¼ 0:08, r ¼ 0:1, r ¼ 0:7, l ¼ 0:4, I ¼ 10, T ¼ 10, TF ¼ 10.

Fig. 3. A perpetual project and a finitely lived option to invest: investment trigger boundary, QnðtF Þ for

various levels of volatility and the set of parameters: m ¼ 0:08, r ¼ 0:1, r ¼ 0:7, l ¼ 0:4, I ¼ 10; T ¼ 1,

TF ¼ 10.

S. Gryglewicz et al. / Journal of Economic Dynamics & Control 32 (2008) 2191–22132202
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when the investment decision becomes a now-or-never decision, all curves are at the
values implied by the NPV investment rule.

Fig. 2 clearly confirms our result that a finite project life may cause the real option
investment rule to be non-monotonic in uncertainty. An increase of s from 0:10 to
0:15 moves the curve downwards.7 But an increase of s from 0:20 to 0:25 and 0:30
shifts the optimal triggers upwards. The important finding of this numerical analysis
is that after comparing Figs. 2 and 3, we can conclude that the levels of s at which
the trigger decreases and increases with uncertainty, remain roughly the same. In
both cases the revenue uncertainty level at which the change of sign occurs lies
between s ¼ 0:15 and 0:20. Thus the finite-life option assumption neither mitigates
nor augments the positive relationship between investment and uncertainty due to
the decreasing trigger.

Fig. 2 shows also that the effect of uncertainty may differ depending on the
remaining option life. The dashed curve of s ¼ 0:15 is below the dot-marked curve of
s ¼ 0:25 at high tF and above at low tF . The reason is the nearly flat horizontal
shape of the optimal investment trigger curve at relatively low s (s ¼ 0:10 or 0:15)
for most of the option life and a sudden drop close to tF ¼ 0. This shape is caused by
the convenience yield being low at lower s; implying that there is only a small gain of
undertaking the investment early (recall that a call option is never prematurely
exercised if the convenience (dividend) yield is zero).

The behavior of the investment boundary in Fig. 2 can be contrasted with the case
of the perpetual project. Fig. 3 shows that when the project life is infinite then QnðtÞ

moves upwards with increasing uncertainty. This is the usual monotonic relation
consistent with the model with perpetual opportunity to invest.

4.2. Stochastic project life

An alternative for assuming a deterministic finite project life is to impose that a
Poisson arrival brings the project to an end. We study this here and assume that the
project lifetime (after installation) follows a Poisson process with rate g. Among the
numerous studies applying this setup we like to mention Merton (1976), who uses it
in a financial option context, and McDonald and Siegel (1986), who apply it to the
case of real investments.

Using Eq. (4) and the probability density of the stochastic lifetime, we obtain the
project value

V ðQÞ ¼

Z 1
0

Q
1� e�ðrþlrs�mÞt

rþ lrs� m
g e�gt dt ¼

Q

rþ lrs� mþ g
.

Note that the mortality rate g leads to an environment equivalent to the one with
perpetual projects except that the effective discount rate is now rþ lrs� mþ g
rather than rþ lrs� m. The resulting formula prompts that a project with
stochastic lifetime can be interpreted as a perpetual project that is exponentially
depreciated with rate g (see Dixit and Pindyck, 1994, p. 200).
7Except at the expiry date tF ¼ 0, at which QnðtÞ increases in s for all s.
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Analogous to the previous analyses, the optimal investment trigger can be derived
as follows:

Qn ¼
b1

b1 � 1
ðrþ lrs� mþ gÞI . (12)

We can now show that the non-monotonic uncertainty effect carries over to the case
of a stochastic project life.
Proposition 6. If g40 and lr40, then the uncertainty effect on the investment trigger

is non-monotonic: it decreases in s for low levels of s and then increases. The length of

the s-interval where the negative effect occurs increases in g.
This result points out how strongly the monotonic relationship between the
investment trigger and uncertainty hinges on the assumption of the project being
perpetual. If there exists just a small probability that the project will be finished in
finite time, the investment trigger will be decreasing with increasing uncertainty for a
small enough s. To illustrate this result, a numerical example is presented in Fig. 4.
Here we indeed see that even a very small g causes the trigger to decrease in
uncertainty at low but realistic levels of uncertainty. We also see that the boundary
moves upward as g increases, reflecting that a higher instantaneous flow of is needed
for the investment to be optimal, once the probability that a project ends increases.
Fig. 4. Investment trigger as a function of volatility for various Poisson arrival rates g and the set of

parameters: m ¼ 0:08, r ¼ 0:1, r ¼ 0:7, l ¼ 0:4, I ¼ 10.
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4.3. General convenience yield

The previous results stated in Propositions 1–6 are obtained for the framework of
Section 2 (and Section 4.2 in the stochastic life case). In that model, the equilibrium
discount rate, and also the convenience yield, are determined by the standard CAPM
and thus are linear in s. Here we check whether this linearity is crucial for the results
that we obtained. This issue is relevant as, apart from the standard CAPM, there
exist theory and some evidence in favor of nonlinearity. For example, it is well
known that the presence of finite heterogeneous investment horizons leads to a
nonlinear CAPM with a nonlinear relationship between returns and risk (see e.g.,
Lee et al., 1990). Moreover, there is a growing literature on factor pricing models
with nonlinearities (see Bansal and Viswanathan, 1993).

Let the convenience yield be a non-decreasing, continuous, twice differentiable
function of uncertainty dðsÞ for sX0. In the previous sections we obtained results for
the linear case, i.e. d00ðsÞ ¼ 0. We now present propositions that generalize those
results. Corresponding to Proposition 1 we have that

Proposition 7. If the project life is infinite and d0ðsÞX0, then the investment trigger

increases with uncertainty.

Proposition 4 can be generalized as follows.

Proposition 8. If the project life is finite, d0ðsÞ40 and d00ðsÞp0, then the uncertainty

effect on the investment trigger is non-monotonic: it decreases in s for low levels of s
and then increases. The length of the s-interval where the negative effect occurs

decreases with project lifetime.

So in the case of a finite project life, the previously observed properties for linear
dðsÞ carry over to a concave dðsÞ. In case of a convex dðsÞ, we can have either a
U-shaped relationship and a monotonic one.8

4.4. Mean reverting revenues

In this section we relax the assumption that revenue follows a geometric Brownian
motion by allowing Q to be mean reverting. There have been several studies that
considered the impact of mean revision on real options valuation (Metcalf and
Hassett, 1995; Schwartz, 1997; Sarkar, 2003). We analyze here whether our result
that a finite project life may cause a non-monotonic investment–uncertainty
relationship carries over to the framework with mean revision.

Suppose that the revenue flow follows a geometric mean reverting process
characterized by the following stochastic differential equation:

dQt ¼ ½mQt þ kðy emt �QtÞ�dtþ sQt dZt. (13)
8To check it, take, for instance, dðsÞ ¼ rþ lrs3=2 � m with the parameter values as in Table 1 and the

uncertainty effect is U-shaped. However, if dðsÞ ¼ rþ lrs3 � m; the effect of uncertainty is always

positive.
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The process corresponds to the generalized mean revision in Eq. (2) of Metcalf and
Hassett, 1995. k40 is the speed of revision of the process towards its mean. The
mean is y emt and grows exponentially at rate m40. If k ¼ 0 the process becomes a
geometric Brownian motion with drift m as in (1). If m ¼ 0; the process in (13)
becomes a simple mean revision with constant mean as studied by Sarkar (2003).

Denote the project value with remaining time t to maturity at time t by V ðQ; t; tÞ
(the mean of Q depends on calendar time and this dependence is reflected in V).
Using standard arguments, we find that V ðQ; t; tÞ must satisfy the following
differential equation:

1
2
s2Q2V QQ þ ½ðm� lrsÞQþ kðy emt �QÞ�VQ � V t � rV þQ ¼ 0 (14)

with the terminal condition at maturity t ¼ 0,

V ðQ; 0; tÞ ¼ 0. (15)

Differential equation (14) with boundary condition (15) has an analytical solution9

which is linear in Q:

V ðQ;T ; tÞ ¼ AQþ B,

where

A ¼
1� e�ðrþlrs�mþkÞT

rþ lrs� mþ k
,

B ¼
ky emt

kþ lrs
1� e�ðr�mÞT

r� m
�

1� e�ðrþlrs�mþkÞT

rþ lrs� mþ k

� �
.

As expected, when k ¼ 0 the value function is identical to (4) with revenues following
a geometric Brownian motion. When m ¼ 0 the formula simplifies to the value
function in Eq. (2) in Sarkar (2003).

Similarly, using standard arguments one can show that the value of the option to
invest F ðQÞ satisfies

1
2
s2Q2F QQ þ ½ðm� lrsÞQþ kðy emt �QÞ�F Q � rF ¼ 0 (16)

with boundary conditions: F ðQnÞ ¼ AQþ B� I , FQðQ
nÞ ¼ A and F ð0Þ ¼ 0. The

differential equation (16) with the boundary conditions has no known analytical
solution, but it can be readily solved numerically. To find the optimal investment
trigger we use a simple shooting method. The method is very accurate as long as the
value function does not have to be evaluated numerically (see Dangl and Wirl, 2003
for more details and further discussion). We convert the second order differential
equation (16) into a system of two first order differential equations and employ a
Runge–Kutta algorithm to solve the initial value problem. The computer code is
available through the JEDC Supplement Archive.
9The analytical solution for the project value with finite lifetime when revenues follow a generalized

geometric mean reverting process (13) might be of interest on its own; see also Li (2003) who solves a

similar problem.
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Fig. 5. Investment trigger as a function of volatility for various levels of speed of revision k and the set of

parameters: m ¼ 0:08, r ¼ 0:1, r ¼ 0:7, l ¼ 0:4, y ¼ 0:5; I ¼ 10; t ¼ 0. Project lifetime T is 10 (left) and 30
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To examine the effect of uncertainty on investment in the presence of mean
revision, we repeat the numerical exercise for various project durations and levels of
speed of revision k. Fig. 5 illustrates the results for two different project lifetimes
T ¼ 10 and 30, and various levels of k. The other parameters are as in the previous
numerical examples with the addition of y ¼ 0:5 and t ¼ 0. In principle, for each t

the mean of Q is different (it grows deterministically and equals y emt) and so the
trigger strategy changes over time. y is the mean at t ¼ 0 and its value is chosen in
such a way that it is not above the optimal investment triggers at t ¼ 0.

It is clear that in general uncertainty effects are less pronounced in the presence of
mean revision. Therefore, as illustrated in Fig. 5 uncertainty effects on investment are
flattened especially for larger k and long-lived projects. Yet the main result of this paper
still holds, since the non-monotonic relationship between uncertainty and investment is
present if the project life is short and the region of the negative effect is larger the
shorter is the project lifetime. For higher levels of k and for larger T the uncertainty
effect weakens and ultimately the effect only holds for very low values of s.
5. Conclusions

Our paper shows that a finite life of an investment project in combination with a
risk premium in expected rates of return may reverse the usual effect of uncertainty
on irreversible investments. In particular, we determined a scenario under which
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increased uncertainty reduces the value of waiting with investment. We now briefly
discuss some implications of this result.

In corporate practice investment projects are usually considered to have a finite
life, which supports the importance of our result. It thus seems that assuming the
project life to be infinite, which is done in the overwhelming majority of real options
contributions, is useful for simplicity reasons but dangerous since adverse
uncertainty effects are lost.

From a policy point of view our results demonstrate that there exists a positive
level of uncertainty at which the investment trigger admits its lowest value. If the
policy aim is to increase investment, then the implication is that it is not necessarily
optimal in all cases to decrease the level of uncertainty of policy instruments.
However, any specific recommendation may be a bit far-reaching in the current
single-firm model with a general source of uncertainty. To derive policy implications
out of our non-monotonic investment–uncertainty relationship deserves a separate
study. Similarly, in order to focus on the main features of the described mechanism,
we have not attempted to construct a richer model of industry equilibrium. This can
be done by considering a competitive industry (as in Caballero and Pindyck, 1996
and others) or imperfect competition (as in Smets, 1991; Grenadier, 1996 and
others). However, we are quite confident that, qualitatively spoken, our result carries
over to these frameworks.

Our non-monotonicity result accords with empirical findings of Bo and Lensink
(2005). In a panel of Dutch firms, the investment–uncertainty relationship is positive
at low levels of uncertainty and negative at high levels. Until now, a clear theoretical
explanation for such empirical results is missing. The factors hastening investment
with greater uncertainty indicated in this paper lend themselves to empirical tests.
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Appendix A. Proofs

A.1. Deterministic project life

The derivative of the investment trigger (given in (6)) with respect to s is

dQn

ds
¼

Ib1
ðb1 � 1Þ2

1

s2ðb1 �
1
2
Þ þ m� lrs

1

1� e�ðrþlrs�mÞT
ðM �NDÞ, (17)

where

M ¼ ðb1 � 1Þðb1 þ
1
2
Þlrs2 þ ðb1 � 1Þðr� mÞsþ b1ðm� lrsÞlr� rlr,

N ¼ ðb1 � 1Þðb1 �
1
2
Þlrs2 þ ðb1 � 1Þðm� lrsÞlr,

D ¼ ðrþ lrs� mÞT ½eðrþlrs�mÞT � 1��1.
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Denote the term M �ND by L1. The first three fractions of (17) are always positive

(recall that s2ðb1 �
1
2
Þ þ m� lrs ¼ qL0=qbjb¼b140, as the derivative is evaluated at

the higher root of the convex quadratic L0). The sign of L1 thus determines for the
sign of the derivative. From (7) we observe that

ðm� lrsÞb1 ¼ �
1
2
b21s

2 þ 1
2
b1s

2 þ r,

which can be substituted twice into M and N to obtain

M ¼ 1
2
ðb1 � 1Þ2lrs2 þ ðb1 � 1Þðrþ lrs� mÞs (18)

and

N ¼ 1
2
ðb1 � 1Þ2lrs2 þ ðrþ lrs� mÞlr. (19)
Proof of Proposition 1. First, suppose that lr40. Combining T !1 with (17) and
(18), we obtain that

dQn

ds
¼

Ib1
ðb1 � 1Þ2

1

s2ðb1 �
1
2
Þ þ m� lrs

ðb1 � 1Þs rþ
1

2
ðb1 þ 1Þlrs� m

� �� �

4
Ib1

ðb1 � 1Þ2
1

s2ðb1 �
1
2
Þ þ m� lrs

½ðb1 � 1Þsðrþ lrs� mÞ�

X0,

where the first inequality stems from the observation that 1
2
ðb1 þ 1Þ41 and the

second from the assumption that rþ lrs� m ¼ d40.
The two other possibilities lr ¼ 0 and lro0 are covered by the proofs of

Propositions 2 and 3, respectively. &

Proof of Proposition 2. Within our model we can impose absence of the impact of
systematic risk by setting r ¼ 0: The derivative of the investment trigger (given in Eq.
(6)) with respect to s is

dQn

ds
¼

Ib1
ðb1 � 1Þ2

1

s2ðb1 �
1
2
Þ þ m

1

1� e�ðr�mÞT
ðb1 � 1Þsðr� mÞ.

The resulting expression is always positive if r4m, which holds by the assumption
that d40. &

Proof of Proposition 3. Suppose that lro0. Then the assumption that d40 holds if
and only if s 2 ½0; s̄), where s̄ ¼ m�r

lr . We have that, denoting dð�Þ and b1ð�Þ as
functions of s, dðs̄Þ ¼ 0 and b1ðs̄Þ ¼ 1. So ½0; s̄Þ is the relevant domain for s in this
case. Next, we claim that

1
2
ðb1 þ 1Þsos̄ for all s 2 ½0; s̄Þ. (20)
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To verify, note that

d

ds
1

2
ðb1 þ 1Þs ¼ s2 b1 �

1

2

� �
þ m� lrs

� ��1
�

1

2
ð3b1 � 1Þs2 þ ðb1 � 1Þm� lrs

� �
40 and

1

2
ðb1ðs̄Þ þ 1Þs̄ ¼ s̄.

So, for positive s less than s̄, the inequality (20) is true.
Now, lro0 implies that No0. Combining (20) and (18) we have that

M ¼ ðb1 � 1Þs rþ 1
2
ðb1 þ 1Þlrs� m

� 	
4ðb1 � 1Þsðrþ lrs̄� mÞ ¼ ðb1 � 1Þsdðs̄Þ ¼ 0.

Since M40, No0 and 1XD40, the derivative (17) is also positive and the
proposition is proved. &

Proof of Proposition 4. Suppose that T is finite and lr40. We want to show that L1

is negative for low sX0 and becomes positive when s increases. First, it is useful to
observe the simple fact that 1XD40 and

dD
ds

o0. (21)

It can also be verified that

L1p0) ðb1 � 1Þs� lro0 ()
db1
ds

40. (22)

Then note that at s ¼ 0, L1 ¼ �ðr� mÞlrDo0. So dQn

ds is also negative at s ¼ 0. As s
increases, D converges to zero and L1 becomes positive. We show now that L1

changes its sign from negative to positive only once with increasing s. If L1 ¼ 0, then
D ¼ M

N
and

dL1

ds
¼

dM

ds
�

dN

ds
D�N

dD
ds

4
dM

ds
�

dN

ds
D ¼

1

N

dM

ds
N �

dN

ds
M

� �

¼
dlr
N

db1
ds

sþ b1 � 1

� �
fðb1 � 1Þ½lr� ðb1 � 1Þs�sþ dg

40, ð23Þ

The inequalities follow from (21) and (22). So L1 increases in s at the point at which
L1 ¼ 0. Now, continuity of L1 implies that it changes its sign only once from
negative to positive at some sn40. Hence the first part of the proposition is proved.

To verify that the s-interval where the negative effect occurs is larger the shorter is
the project life, we consider

dsn

dT
¼ �

qL1

qT
qL1

qs









s¼sn

¼

N
dD
dT

qL1

qs









s¼sn

o0.

The inequality follows from the fact that dD
dT
o0 and (23). &
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Proof of Proposition 5. The sum of the two option effects is

qQn

qb1

qb1
qs
þ

qQn

qb1

qb1
qd

qd
qs
¼

Ib1
ðb1 � 1Þ2

dðsÞ
1� e�dðsÞT

ðb1 � 1Þs� lr
s2ðb1 �

1
2
Þ þ m� lrs

. (24)

As b141 and s2ðb1 �
1
2
Þ þ r� dðsÞ40, the sign of expression (24) depends on the

sign of L2 � ðb1 � 1Þs� lr in the way stated in the proposition.
It remains to be shown that there exists a unique non-negative ŝ. Note that, if

lr40, at s ¼ 0 we have that L2 ¼ �lro0 and the combined option effect is
negative. To verify that the option effect changes its sign only once from negative to
positive with increasing s, we show that L2 (being continuous in s40) always
increases with s if L2p0. That is,

dL2

ds
¼

lrs� ðb1 � 1Þs2

s2ðb1 � 1Þ þ m� lrs
þ b1 � 1Xb1 � 140

if L2p0.
The discounting effect is given by

qQn

qd
qd
qs
¼

Ib1
b1 � 1

1� e�dðsÞT � dðsÞT e�dðsÞT

ð1� e�dðsÞT Þ2
lr,

which is always positive and increasing in T. It is straightforward from derivations
leading to (24) that qQn

qb1
qb1
qs and qQn

qb1
qb1
qd

qd
qs decrease in absolute terms in T. &

A.2. Stochastic project life

Let dðsÞ be a continuous twice differentiable convenience yield function. The
derivative of Qn given in (12) with respect to s eventually becomes

dQn

ds
¼

Ib1
ðb1 � 1Þ2

1

s2ðb1 �
1
2
Þ þ r� dðsÞ

L3, (25)

where

L3 ¼
1
2
ðb1 � 1Þ2d0ðsÞs2 þ ðb1 � 1ÞdðsÞsþ ½ðb1 � 1Þs� d0ðsÞ�g. (26)

The first two fractions of the right-hand side of (25) are always positive, so the sign
of the derivative is determined by the sign of L3.

Proof of Proposition 6. The proof follows from the proof of Proposition 8 below
with linear dðsÞ. &

We prove Propositions 7 and 8 only for stochastic project lifetime; similar proofs can
be obtained for the deterministic case.

Proof of Proposition 7. Note that if g ¼ 0 and d0ðsÞ40 then L3 ¼
1
2
ðb1 � 1Þ2d0ðsÞs2þ

ðb1 � 1ÞdðsÞs40. &

Proof of Proposition 8. We want to show that for g40, d0ðsÞ40 and d00ðsÞo0, L3 is
negative for low sX0 and turns to positive with increasing s. First we note that at
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s ¼ 0, L3 ¼ �d
0
ð0Þgo0. Then observe that a straightforward consequence of (26) is

that

L3p0) ðb1 � 1Þs� d0ðsÞo0 ()
db1
ds

40. (27)

Using this, if L3p0, we have that

dL3

ds
¼

db1
ds
½ðb1 � 1Þd0ðsÞs2 þ sðdðsÞ þ gÞ� þ ðb1 � 1Þ2d0ðsÞs

þ ðb1 � 1ÞðdðsÞ þ gþ d0ðsÞsÞ þ
1

2
ðb1 � 1Þ2s2 � g

� �
d00ðsÞ

4 �
1

d0ðsÞ
ðb1 � 1ÞsðdðsÞ þ gÞ

� �
d00ðsÞ40.

So L3 always increases in s if L3p0. From the continuity of L3 now follows that L3

changes its sign only once from negative to positive at some sn40. This proves the
first part of proposition.

To verify that the s-interval where the negative effect occurs is larger, the shorter
is the project life we consider

dsn

dg
¼ �

qL3

qg
qL3

qs










s¼sn

¼
d0ðsÞ � ðb1 � 1Þs

qL3

qs









s¼sn

40,

where for the inequality we employ (27) and the first part of the proof of this
proposition. &

Appendix B. Supplementary data

Supplementary data associated with this article can be found in the online version
at 10.1016/j.jedc.2007.10.003.

Appendix A. Supplementary data

Application 1.
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