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Abstract

We develop a unifying theory of shareholder activism in which a blockholder ac-

tively influences key firm policies. The blockholder may adjust their ownership stake

over time, shaping their level of engagement and the firm’s decisions. We analytically

characterize the blockholder’s dynamic trading strategy, their entry and exit decisions,

and the firm’s financing, investment, and compensation policies. Our model shows that

restricting blockholder control can benefit passive shareholders in the short run, but it

endogenously reduces blockholder ownership and firm value in the long run.
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Activist shareholders, who push for changes in company policies and seek to influence

share prices, play a significant role in corporate governance. When trying to improve firm

performance and capture the value they generate, activists must deal with complex and

closely intertwined decisions related to the strategic trading of their shares and the level

and form of their engagement. Despite its importance, a comprehensive framework for

understanding the interplay among these decisions is still lacking. Key questions remain

unanswered: How should activists adjust their holdings over time? In what ways does trading

impact their engagement and influence the company’s financial and strategic choices? And,

ultimately, should activists exit their position by selling their shares or work towards taking

the company private? Addressing these questions is critical to advancing our understanding

of activist strategies and their impact on firm outcomes.

Our goal in this article is to develop a tractable dynamic theory of shareholder activism in

which an activist’s equity stake and the firm’s investment, financing, payout, and compensa-

tion policies are jointly determined in the presence of agency conflicts. We model activism as

a dynamic process involving endogenous entry, post-entry trading, and engagement. A large

shareholder—or blockholder—shapes firm outcomes through three distinct mechanisms: (i)

exerting effort to improve productivity, (ii) contracting with management to reduce agency

costs, and (iii) directly influencing investment and financing decisions. Alongside these ef-

forts and policy interventions, the blockholder can adjust their stake in the firm over time,

affecting their level of engagement, the firm’s share price, and firm policies.

Our model generalizes the framework of DeMarzo and Urošević (2006) to a strategic

trader, the potential activist, who not only influences firm productivity through costly effort,

but can also engage in contracting with management, impact firm investment and financing

decisions, or choose to exit or take the firm private through dynamic trading. We derive the

equilibrium in closed form, which includes the activist’s dynamic trading strategy, entry and

exit decisions, alongside the firm’s compensation, investment, payout, and financing policies,

all under the assumption of no commitment from the activist. The model highlights how

the allocation of control rights over firm policies influences the activist’s trading policy and

shapes both their engagement and the firm’s strategic decisions and value.

A key feature of the model is the endogenous and dynamic nature of the activist’s own-

ership stake, which serves as a state variable influencing both engagement levels and firm
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policies. Beginning with an initial stake, the activist can adjust its holdings over time through

dynamic trading. Post-entry, the activist trades strategically with price impact, recognizing

how its actions influence market prices. The activist faces a continuum of dispersed, passive

shareholders who take prices as given. In determining its optimal trading strategy, the ac-

tivist balances several competing forces. First, a larger stake enhances engagement. Second,

increased ownership boosts firm value and amplifies the benefits of debt by improving the

firm’s financing capacity. Third, passive shareholders may supply shares inelastically, lead-

ing to greater price impact.1 Last, maintaining a large position imposes holding costs due

to financial or capital constraints.

The fourth effect—similar to the mechanism in DeMarzo and Urošević (2006)—naturally

leads the blockholder to sell more (or buy less).2 The third effect highlights the costliness of

building a large stake when prices react to trades. When this friction is removed, takeover

bids and public-to-private transactions may arise in equilibrium. The second effect reflects

how a larger ownership stake increases firm value, enabling more borrowing and unlocking

greater debt-related benefits. As a large, strategic trader, the blockholder internalizes these

gains, which boost the returns on their existing holdings. Passive shareholders, in contrast,

ignore this firm-value effect when selling shares, leading to gains from trade. The first effect

arises because blockholder effort is not contractible, requiring that effort at any given time

remains incentive-compatible. Due to moral hazard, blockholder effort is inefficiently low.

However, when the blockholder increases their equity stake, their incentive to exert effort

improves, resulting in greater payoffs on their existing infra-marginal equity holdings. This

incentive effect, like the debt benefit, is internalized by the activist but ignored by passive

investors, further contributing to gains from trade. Whether the activist’s stake rises or falls

over time depends on the balance among these forces. Importantly, because the activist

internalizes more strongly the benefits of improved effort and debt capacity when holding a

larger stake, its propensity to buy (sell) increases as its stake becomes larger (lower).

A central result of the paper is that the activist’s optimal trading policy involves a

1Our assumption that demand is inelastic reflects the growing evidence that shifts in demand significantly
influence price levels, regardless of whether such trades contain information. See e.g. Koijen and Yogo (2019);
Haddad, Huebner, and Loualiche (2025); Hartzmark and Solomon (2025) and the references therein.

2DeMarzo and Urošević (2006) model a large shareholder with CARA preferences that faces normally
distributed shocks. As a result, its preferences can be expressed as a certainty equivalent equal to the mean
payoff expected to be received less a risk adjustment, which corresponds to the holding cost in our model.
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combination of a double-barrier policy and the continuous management of the ownership

stake between the barriers through dynamic sales and purchases. We show that there exists

endogenous upper and lower thresholds for the blockholder’s equity stake—the endogenous

state variable—such that it is optimal for the blockholder (i) to gradually sell and eventually

exit when the initial stake falls below the lower threshold, and (ii) otherwise, to increase own-

ership until reaching the upper threshold, where the blockholder either maintains a constant

stake or initiates a takeover bid. We demonstrate that the duration of activist engagement

is endogenous and depends on corporate governance and the level of agency conflicts, with

high and low levels more likely to lead to exit. We also show that the blockholder is more

likely to increase its stake over time, and less likely to exit, when debt benefits are larger,

when it is effective at improving firm productivity through effort, and when the firm faces

good investment opportunities.

Additionally, we find that blockholder entry raises firm value and long-term investment,

with investment rates increasing alongside the size of the blockholder’s stake.3 However,

because the average valuation of capital for blockholders—which determines investment—is

less than the average valuation of capital for passive shareholders, there is underinvestment

from the perspective of passive shareholders in any given state. Blockholder entry also in-

creases debt financing, with a book leverage ratio that grows with their stake. Yet, similar to

investment, blockholders choose a debt level that differs from the passive investors’ optimum,

again due to their lower valuation of the firm—and thus, a lower perceived cost of default.

In our baseline model, the blockholder determines corporate policies. We then examine

the consequences of limiting the blockholder’s influence—restrictions that, in practice, may

arise from governance structures such as anti-takeover or entrenchment provisions like a stag-

gered board (Bebchuk, Cohen, and Ferrell, 2009). While blockholder-controlled policies may

not maximize the value for passive shareholders, our analysis reveals a paradox: restricting

blockholder control can ultimately reduce other shareholders’ value. More specifically, we

show that while the blockholder and passive investors are aligned on the choice of manage-

rial compensation and leverage, they have divergent preferences over investment. Assigning

investment control to dispersed shareholders leads the firm to allocate more resources to

long-term investment for any given level of blockholder ownership. However, on average, the

3Lewellen and Lewellen (2022) provide direct evidence on institutions’ financial incentives to be engaged
shareholders by looking at the gains in management fees due to an increase in value of their stockholdings.
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blockholder’s stake is lower under passive investor control than under blockholder control,

resulting in reduced long-term investment. This outcome arises because the blockholder’s

value function declines: it internalizes that purchasing additional shares raises the stock

price and increases investment, thereby moving the investment policy further away from the

blockholder’s desired investment level. As a result, without the ability to change invest-

ment, the blockholder is less inclined to maintain a significant stake, less willing to acquire

additional shares, and more likely to exit. These findings highlight the importance of the

endogenous and dynamic nature of the blockholder’s stake in corporate control, underscoring

the need to consider how shifts in control influence not only current policy choices but also

the blockholder’s ongoing and future engagement with the firm.

Although the policies chosen by the blockholder do not maximize passive shareholder

value, our analysis reveals a counterintuitive result: passive shareholder value can actually

be lower when they choose investment and financing decisions. This occurs due to changes

in the blockholder’s trading behavior and level of engagement. Specifically, when dispersed

shareholders control investment, the firm allocates more resources to long-term investment

for any given level of blockholder ownership. However, on average, the blockholder’s stake is

lower under passive investor control than under blockholder control, leading to reduced long-

term investment. This outcome arises because the blockholder’s value function declines, as

it internalizes that purchasing additional shares drives up the firm’s stock price and invest-

ment, thereby moving the investment level further away from its desired investment level. As

a result, the blockholder is less likely to maintain a significant stake and acquire additional

shares and more likely to exit. We in fact demonstrate that whether exit can be part of an

optimal strategy when there is no holding cost uniquely depends on the allocation of control

rights. Exit is not optimal when the blockholder controls investment and financing. Exit be-

comes a feature of the optimal strategy when blockholder does not control investment. These

findings emphasize the importance of the endogeneity and dynamic nature of blockholder

stake when examining the implications of corporate control and the need to consider how

shifts in control influence both immediate corporate policies and the blockholder’s ongoing

and future engagement with the firm.

Our main contribution is to develop a tractable, comprehensive framework for under-

standing the dynamic interactions between shareholder activism and firm policies and show
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how the allocation of control rights shapes trading, engagement, and value creation. There-

fore, our paper primarily relates to the literature on shareholder activism and blockholders

(see, e.g., Maug (1998); Noe (2002); Edmans and Manso (2011); Khanna and Mathews

(2012); Dasgupta and Piacentino (2015); Levit (2019); Marinovic and Varas (2025)).

Most closely related to our paper, Admati, Pfleiderer, and Zechner (1994), DeMarzo and

Urošević (2006), and Back, Collin-Dufresne, Fos, Li, and Ljungqvist (2018) study the trading

of a large shareholder that influences firm performance via costly effort. In these models,

blockholders have no direct influence over firm decisions, limiting the scope of engagement.

Our model allows blockholders to actively shape firm policies while dynamically adjusting

their stake, thereby capturing the rich interplay between trading behavior, corporate gov-

ernance, and firm strategy in a more realistic and tractable way. Under certain conditions

(no managerial moral hazard, no debt, and fixed investment policy), our setting coincides

with that in DeMarzo and Urošević (2006). However, by introducing agency conflicts and

modeling firm policies explicitly, we obtain equilibrium outcomes that differ from those in

DeMarzo and Urošević (2006). Notably, the blockholder may increase its stake over time,

take over the firm, or exit. Our richer setting allows us to generate predictions relating firm

policies to the size of the blockholder stake or regarding the duration of activist engagement.

It also allows us to examine the effects of the allocation of control rights on the activist trad-

ing behavior and firm value and endogenize the duration of activist engagement, emerging

from the interaction between dynamic trading behavior and firm policies.

More generally, our paper advances the literature by allowing the blockholder to affect

firm performance not only via its own effort but also by contracting with management and

by influencing the firm’s financing and investment choices. A higher blockholder stake makes

contracting more efficient, increases leverage and investment, and generates endogenous gains

from trade, leading to the novel result that the blockholder may dynamically buy a larger

stake despite holding costs. Methodologically, we advance the literature on shareholder

activism by jointly and tractably modeling entry, dynamic trading, dynamic financing, and

investment choices, and the interactions between the incentives of management and the

blockholder. Notably, our modeling allows us to capture the key economic mechanisms and

to analytically characterize the equilibrium in closed form.

We solve for the Markov-perfect equilibrium trading strategy using a methodology similar
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to DeMarzo and Urošević (2006), which has also proved useful in other contexts. For instance,

Daley and Green (2020) study dynamic bargaining with adverse selection. Hu and Varas

(2025), DeMarzo and He (2021), and DeMarzo, He, and Tourre (2023) respectively study loan

sales, corporate leverage, and the dynamics of government debt under limited commitment.

Another strand of the literature on trading and activism that is related to our paper is

the literature on “governance by exit,” which includes the papers by Admati and Pfleiderer

(2009), Edmans and Manso (2011), Dasgupta and Piacentino (2015), and Levit (2019). In

these models, a blockholder has access to private information about firm value and may sell

her block on negative information. The focus of these papers is on trading by an insider who

has private information about firm value that is exogenous to her trading. These models have

a single round of trading and cannot analyze feedback from prices to blockholder actions.

1 Model Setup

We develop a dynamic model of shareholder activism, in which a blockholder (i.e., activist

shareholder) invests in a firm to alter its policies and improve firm value. The blockholder

does so by (i) exerting private effort to improve asset productivity, (ii) incentivizing the firm’s

manager with an optimal contract, and (iii) shaping the firm’s investment and financing

policies. The blockholder can dynamically increase or decrease its ownership stake in the

firm by purchasing or selling shares, leading to changes in effort, investment, and financing

(i.e., leverage). Trading decisions are observable by investors, and investors rationally take

into account this information when determining their demand for shares. All policies—except

payouts to management through the optimal contract—are chosen without commitment.

Technology. Time t ∈ [0,∞) is continuous and infinite. There are three risk-neutral agents

with common discount rate ρ > 0: A blockholder, a continuum of dispersed passive investors,

and a manager. We consider a single firm run by the manager. The firm is financed with

equity and debt.4 The large shareholder’s trading/ownership policy is given by the function

θ, where θt ∈ [0, 1] denotes the fraction of the firm’s equity held by the blockholder with the

remaining 1− θt held by passive investors.

4In addition to these three agents sharing the same preferences, our model also features debtholders (with
a different discount rate) who play a passive role and are introduced later on.
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Firm cash flows depend on the endogenous capital stockKt > 0, blockholder effort bt ≥ 0,

and managerial cash diversion mt ∈ {0, 1}. Over any period of time [t, t + dt), incremental

cash flows are KtdXt, where dXt is the scaled cash flow per unit of capital with:5

dXt = α1dt+ dNt(1−mt), (1)

where α1 ≥ 0. In (1), dNt ∈ {0, 1} is a jump process with E[dNt] = (α2 + bt)dt for α2 > 0.

This specification implies that large positive cash flows arrive infrequently, while the cash

flow rate is α1 otherwise. Investors (and the blockholder) observe the realization of cash

flows dXt, but do not observe dNt or mt. When dNt = 1 and additional cash flows of Kt are

realized, the manager can divert from the cash flows by setting mt = 1, in which case she

gains a private benefit of λKt with λ ∈ [0, 1) (diversion is inefficient). In this case, investors

observe dXt = α1dt and thus cannot discern cash flow diversion upon a shock from no shock

occurring. We define

α = α1 + α2 (2)

so that expected (scaled) cash flows are given by E[dXt] = (α+bt)dt. Also, while the baseline

model only allows for positive cash flow shocks and risk-free debt, Section 4 introduces

negative cash flow shocks and risky debt.

As in DeMarzo and Urošević (2006), firm cash flows depend on unobservable blockholder

effort bt ≥ 0, which entails a private flow cost 1
2
κKtb

2
t to the blockholder for a cost parameter

κ > 0. The blockholder’s private effort captures its engagement with the firm, for instance,

by appointing key personnel and board members, providing industry connections, or devel-

oping strategies and proposals that increase the return on invested capital (such as better

management of working capital, costs, overheads, purchases, or product mix). This effort

choice cannot be contracted on and endogenously depends on the size of the stake of the

blockholder, with a blockholder that cannot commit to future trades.

5For simplicity, we adopt a specification where cash flows are always positive so the firm does not generate
negative dividends, which would have to be covered via frequent share issuance. Crucially, our findings would
also be entirely unchanged if we assumed dXt = (α + bt − mt)dt + σdZt, where dZt is the increment of a
Brownian motion and σ > 0, as in DeMarzo and Urošević (2006). However, under the specification with
Brownian shocks dZt, cash flows would become negative, and the firm would frequently issue new shares
to cover cash flow shortfalls, a scenario we regard as less realistic. Nonetheless, the two stipulations are
isomorphic, and cash flows are not a state variable for the blockholder’s problem under either specification.
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Moral Hazard and Short-Term Contracting. To deal with managerial cash diversion,

firm shareholders write a contract with the manager. Since corporate policies and trad-

ing are chosen without commitment, we also preclude commitment to long-term contracts,

and thus restrict the contracting space to short-term contracts over [t, t + dt).6 We follow

the formulation of the short-term contracting problem in continuous time in He and Kr-

ishnamurthy (2011). Notably, we focus on incentive-compatible contracts that implement

mt = 0. Under our assumptions, it does not matter whether the contract is set by passive

shareholders or the blockholder. Loosely speaking, both parties find it optimal to choose

the contract that provides the manager with the minimum cash flow exposure in the set of

incentive-compatible contracts, thereby maximizing the residual exposure of shareholders.

To formalize the contracting problem, denote the anticipated blockholder effort by b̂t.

In optimum, we have b̂t = bt, i.e., anticipated and actual effort levels coincide. When the

blockholder does not invest, then θt = 0 and bt = b̂t = 0. The short-term contract Ct = (βt, ct)

stipulates a flow (base) wage ct, in addition to a payout βtKt

(
dXt−(α+ b̂t)dt

)
which depends

on the realization of dXt relative to its expected mean (α+ b̂t)dt. With no loss in generality,

we normalize the manager’s reservation utility to zero, so that its expected payoff from the

contract must be positive. We denote the total payment to the manager over [t, t + dt),

which is contingent on the realization of dXt, by KtdCt = Kt

[
ctdt+ βt

(
dXt − (α + b̂t)dt

)]
.

Consider a cash flow shock dNt = 1. If the manager diverts the generated cash flow and

sets mt = 1, she derives private benefit λKt. Otherwise, if she does not divert cash flow, the

manager gets βtKt. Thus, the manager does not divert cash flow if the following incentive

constraint holds:

βt ≥ λ. (3)

As will become clear, both the stock price and the blockholder payoff decrease in βt, so set-

ting βt = λ is optimal and the incentive condition (3) is tight. The manager’s participation

constraint requires KtEm
t [dCt] to be weakly positive, where Em

t denotes the time-t expecta-

tion under the manager’s information set, i.e., conditional on mt and an anticipated level of

blockholder effort b̂t (which coincides in optimum with actual effort bt). In optimum, share-

6The blockholder holds an equity stake in the firm and, by assumption, cannot write a contract with
passive shareholders. That is, the blockholder’s contract with the firm is exogenous and restricted to equity.
Moreover, shareholders cannot side-contract with management, i.e., the manager contracts with the firm as
a whole, and any payments to/from the manager are borne by shareholders in proportion to their stake.
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holders design the optimal contract, which maximizes their own value, so that the manager’s

participation constraint binds. Setting Em
t [dCt] to zero, the base wage is zero, i.e., ct = 0.

Capital Investment. The firm chooses the investment rate it ≥ 0 against convex invest-

ment cost 1
2
Kti

2
t to grow its capital stock, which evolves according to

dKt = (µit − δ)Ktdt. (4)

In (4), µ ≥ 0 captures the efficiency of investment and δ ≥ 0 is the constant rate of depreci-

ation. In the baseline model, investment is chosen by the blockholder, provided it holds an

ownership stake θt > 0. Section 3 analyzes a model variant in which dispersed shareholders

choose investment and shows that, via its feedback effect on blockholder trading and effort

choice, dispersed shareholder control over investment reduces passive shareholder value.

Note that we could equivalently assume that the manager chooses investment it. Because

Kt is observable and dKt is deterministic, investment it could be contracted upon, i.e., there

is no moral hazard with respect to investment.

Debt Financing. Blockholders, such as private equity funds or hedge funds, often initiate

capital structure changes after investing in firms. To capture the effects of debt financing

on blockholder trading and firm policies, we introduce dynamic short-term debt issuance as

in e.g. Abel (2018), Hu, Varas, and Ying (2025), or Bolton, Wang, and Yang (2023). As in

those models, the firm issues at any time t short-term debt with endogenous face value Lt

that matures at time t+ dt. The benefits of debt are captured in reduced form by assuming

that creditors discount cash flows at a rate r ≤ ρ.7 If the firm defaults on its debt, it is

liquidated. The liquidation value of assets given by RK, where R ≥ 0, is sufficiently small

to ensure that liquidation is inefficient and that creditors are not repaid in full in default. (A

specific parameter condition is R < p0, where p0 is scaled firm value under passive ownership

characterized in Proposition 1.) In default, the absolute priority of claims is enforced so that

the firm’s equity value and the blockholder’s continuation payoff fall to zero.

Timing. We characterize the heuristic timing of the model within a time interval [t, t+ dt).

First, at the beginning of [t, t + dt) and after previous-period debt has been repaid and

7This modeling is standard in dynamic financing and investment models (e.g., DeAngelo, DeAngelo, and
Whited (2011) and Geelen, Hajda, Morellec, and Winegar (2024)), and is equivalent to assuming tax benefits
of debt r = (1− τ)ρ, where τ ∈ (0, 1) is the corporate tax rate.
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previous-period trading, the blockholder’s stake equals θ = θt (i.e., θ is a predictable process).

Given θ, shareholders choose the managerial contract Ct = (ct, βt), the investment rate it ≥ 0,

and the amount of (new) short-term debt Lt, where the proceeds from debt issuance are

distributed as dividends. Second, the blockholder chooses its effort level, the shock dNt

realizes and, observing dNt, the manager chooses diversion mt. Then, cash flows dXt are

realized and observed, and the manager receives its promised payments. Third, at the end of

[t, t+dt), debt matures: Shareholders either repay creditors (1+rtdt)Lt dollars, where rt is the

endogenous interest rate, or default. If the firm does not default, cash flows net of investment

cost, managerial compensation, and debt repayment are distributed as dividends to the

shareholders. Fourth, the blockholder can trade and chooses dθt, determining next-period

stake θt+dt = θt+dθt. Finally, the capital stock is updated with Kt+dt = Kt

[
1+(µit−δ)dt

]
.8

Broadly speaking, our model features two types of blockholder decisions: (i) corporate

policies and (ii) trading. We assume that corporate policies within an instant are chosen

taking blockholder ownership as given, while trading occurs at the end of the period. Both

the blockholder and passive investors anticipate how trading will influence future corporate

decisions. In our continuous time model, periods are infinitesimal and, therefore, the exact

timing—while useful in guiding intuition—does not matter. In particular, in the heuristic

timing, the blockholder trades after debt is repaid. However, as we demonstrate in Section

2.5, this assumption is without loss in generality in that we could allow trading before and

after the repayment of debt without changing the results.

At the beginning of time t, after debt is repaid and before new debt is issued, we denote

the blockholder’s value function by Vt and equity value (i.e., firm value) by Pt. As we show

later in Lemma 1, the firm optimally defaults on debt just after issuance when Vt < θtLt or

Pt < Lt, irrespective of whether the blockholder or passive shareholders control the default

decision. Clearly, creditors find it suboptimal to extend an amount of debt Lt that triggers

immediate default. As in Abel (2018), this observation implies an endogenous borrowing

constraint

θtLt ≤ Vt and Lt ≤ Pt. (5)

8Note that one can net out the “special” dividends from debt issuance with the debt repayment. Moreover,
the change in the capital stock is of order dt and its effect on other quantities of order dt is therefore
negligible. Hence, the exact timing of when the capital stock is updated does not matter for trading, default,
or contracting. To avoid tedious notation, we assume it occurs at the very end of the period.
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This borrowing constraint states that the blockholder and passive shareholders are protected

by limited liability, i.e., they cannot commit to a particular ownership stake, and they can

always choose to exit and obtain a weakly positive payoff. Therefore, in equilibrium, their

continuation payoffs must remain positive at all times. Given the dynamics of cash flows in

equation (1), constraint (5) implies that debt is risk-free, so that the fair interest rate on

debt is rt = r and the default time T equals +∞. Section 4 introduces large jump shocks to

the firm’s capital stock, which leads to default and renders debt risky.

Preferences: Holding Costs and Benefits. We make two assumptions that affect the

blockholder’s and passive investors’ incentives to trade. First, as in prior models of block-

holder investors (DeMarzo and Urošević, 2006; Marinovic and Varas, 2025) and dynamic

trading models (Du and Zhu, 2017; Duffie and Zhu, 2017), the blockholder incurs a flow

holding cost 1
2
πθ2t ≥ 0, that scales with the size of its investment in the firm as captured

by firm size Kt. As discussed in Duffie and Zhu (2017), this disutility flow may reflect, in

reduced form, the blockholder’s financial or capital constraints or higher cost of capital. We

emphasize that this cost, while affecting trading dynamics, is not essential for our formal

results, notably for the existence and uniqueness of an equilibrium.

Second, our paper extends previous models by explicitly introducing a utility benefit,

η(θ), that passive investors derive from holding the stock. This utility benefit leads to

inelastic demand (Koijen, Richmond, and Yogo, 2024; Haddad et al., 2025), making it more

difficult for the blockholder to acquire the entire firm. More broadly, it captures the growing

evidence that trades influence prices, regardless of whether they convey information, as

recently shown using event studies or estimation of demand systems (see Hartzmark and

Solomon (2025) and references therein). Appendix E provides a micro-foundation for this

utility benefit, linking it to heterogeneous demand (Koijen and Yogo, 2019) among certain

passive investors—such as index investors—who assign a high value to the stock and are

reluctant to sell beyond a certain threshold. In our model, this utility benefit implies the

existence of a unique Markov equilibrium with continuous prices and trading. However, as

we show in Section 5.1, without such utility benefit, we can solve for an equilibrium with

qualitatively similar properties, but featuring both smooth and lumpy trading, as it may

become optimal for the blockholder to make a takeover offer to acquire the entire firm.

Blockholder Payoffs. We next specify the payoffs of the blockholder and passive investors,
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where we assume that the blockholder controls managerial contracts and financing and in-

vestment decisions. Assuming that the blockholder chooses the level of debt Lt and the

manager’s contract Ct is without loss in generality, as the blockholder and passive investors

agree on both the optimal level of debt and the managerial contract, as we show later. In

contrast, control rights over investment matter for equilibrium outcomes; see Section 3.

At time t = 0, the firm starts with zero debt, i.e., L0− = 0, and there is a potentially

discrete debt issuance dL0 > 0. When the blockholder holds a stake in the firm, it chooses

its effort bt, trading dθt, debt issuance dLt, investment it, and contract Ct to maximize:

V0 = max
(bt,dθt,dLt,it,Ct)t≥0

E0

[ ∫ T

0

e−ρt

{
θt
[
KtdXt −

Kti
2
t

2
dt−KtdCt + Lt(ρ− r)dt

]
(6)

−Kt

(
πθ2t
2

+
κb2t
2

)
du− (Pt + dPt)dθt

}]
,

subject to (4) and (5). Because the blockholder owns a fraction θt of the firm, it collects a

fraction θt of dividends, while incurring the full cost of effort
κb2t
2

as well as the flow holding

cost
πθ2t
2
. The term −dθt(Pt + dPt) captures the payoff that the blockholder collects from

trading over a short time period (t, t+dt). The blockholder has price impact and trades over

[t, t + dt) at “end-of-period” price Pt+dt = Pt + dPt. Although we do not explicitly account

for it in our notation, the blockholder’s expectation in (6) is taken under its information set,

which involves its own effort choice bt. All controls are chosen without commitment.

To understand how debt issuance affects the blockholder’s initial payoff and specifically

its flow payoff, note that issuing an additional dollar of debt at time t and paying it out

as a dividend, while repaying debt and interest at time t + dt, changes the blockholder’s

payoff over [t, t+ dt] by θt1− θ(1− ρdt)(1+ rdt) = θt(ρ− r)dt, since terms of order (dt)2 are

negligible in continuous time. As such, the level of debt changes the blockholder’s flow payoff

by θt(ρ − r)Ltdt. Lastly, in the baseline model without large negative shocks, (5) makes it

optimal for both the blockholder and passive investors to avoid default and T = ∞.

Passive Investors’ Payoff and Stock Price. Due to the blockholder’s private effort and

holding costs and passive shareholders’ utility benefit, the value of the firm under blockholder
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ownership from passive investor perspective differs from V0 (scaled by θ) and equals

P0 = E0

[∫ T

0

e−ρt

(
Kt

(
dXt −

i2t
2
dt

)
−KtdCt + (ρ− r)Ltdt+Ktη(θt)dt

)]
, (7)

where passive investors anticipate the level of blockholder effort and managerial cash diver-

sion when forming expectations; in optimum, the information sets and expectations of the

manager, the blockholder, and passive investors coincide. The stock price is the expected

discounted value of all future dividends, including the utility benefit Ktη(θt). Appendix E

provides a micro-foundation for the utility benefit, where we derive the functional form (our

findings go through under different functional forms):

η(θ) = πI [θ − θ̃]+, (8)

for parameters πI > 0 and θ̃ ∈ [0, 1]. Here, [·]+ = max{0, ·}.

In summary, the blockholder and passive investors differ in three dimensions. First, the

blockholder exerts private effort, while passive investors do not. Second, the blockholder

acts as a large strategic trader, while passive shareholders take prices as given. Third, the

blockholder incurs a flow holding cost, while passive investors get a flow utility benefit.

2 Model Solution and Markov Equilibrium

2.1 Parameter Conditions

In what follows, we impose several parameter conditions. First, we assume that

(r + δ)2 >
µ2(1 + 2κα)

κ
, (9)

to ensure that valuations are finite and that µi < r + δ always holds in equilibrium, both

under passive and blockholder ownership. Second, we assume that holding costs are not

prohibitively large, in that

π <
1− λ2

κ
. (10)
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This condition ensures that some blockholder ownership is optimal and occurs in equilibrium.

If this condition is not met, the equilibrium is trivial with the blockholder holding zero stake

in the firm. Third and last, we assume that

η(1) = πI(1− θ̃) >
(ρ− r) (1− λ2 − κπ)

2
√

κ (κ (r + δ)2 − µ2(1− λ2 − κπ)− 2κµ2α)
+

λ(1− λ)

κ
− π. (11)

This condition ensures the existence of a unique continuous Markov equilibrium. In this equi-

librium, the blockholder trades smoothly according to dθ = θ̇dt. We relax this assumption in

Section 5.1 and show that our findings remain qualitatively unchanged, yet the blockholder

may conduct large trades (e.g., in the context of a takeover).

2.2 Passive Ownership Benchmark

We start by characterizing optimal effort, investment, and financing in the passive ownership

benchmark. When θ = 0, passive investors dynamically choose the managerial contract, debt

issuance, and investment to maximize firm value (with η(0) = 0):

P 0
0 = max

(dLt,it,Ct)t≥0

Et

[∫ ∞

0

e−ρt

(
KtdXt −

Kti
2
t

2
dt−KtdCt + (ρ− r)Ltdt

)]
, (12)

subject to Lt ≤ P 0
t where P 0

t is the stock price with passive owners. This yields:

Proposition 1 (Passive ownership benchmark). In the passive ownership benchmark, the

managerial contract satisfies βt = λ while blockholder effort is zero. Model quantities scale

linearly in Kt = K with debt issuance satisfying L0
t = Ktp

0 for ρ > r and L0
t ∈ [0, Ktp

0] for

ρ = r, and scaled firm value satisfying P 0
t = Ktp

0 with p0 =
r+δ−

√
(r+δ)2−2αµ2

µ2 and i0 = µp0.

In the passive ownership benchmark, model quantities, including debt, scale with Kt or

are constant, as is the case for effort or the investment rate. The firm issues debt up to the

borrowing constraint (when ρ > r), with the choice of debt being indeterminate when ρ = r

and debt has no value effects (Modigliani and Miller (1958)). Since debtholders discount at a

weakly lower rate r, shareholders sell the firm to debtholders (the firm is fully debt-financed)

and firm value equals free cash flows discounted at r net of the cash flow growth rate.
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2.3 Continuous, Scaled Markov Equilibrium

Our model features a dynamic trading game in which the blockholder acts as a large strategic

player (or trader) that internalizes the impact of its trading on prices. The blockholder faces

a continuum of dispersed, passive shareholders who take prices as given. As in DeMarzo and

Urošević (2006), we solve for a Markov Perfect Equilibrium with the blockholder’s ownership

stake θt and capital Kt as state variables and trading with price impact (while this model

assumes that prices only move due to new information, in our model they may also move

due to inelastic supply). We focus on Markov equilibria with the following properties:

1. Markovian Payoffs with Scaling Property and Continuity. The value function

of the blockholder satisfies (6) and the firm’s stock price satisfies (7) given equilibrium

policies. Payoffs scale with the capital stock Kt, in that Vt = Ktv(θt) and Pt = Ktp(θt)

for increasing, continuous functions v(θ) and p(θ).

2. Markovian Equilibrium Policies. The blockholder takes the current state (Kt, θt) =

(K, θ) as given when optimizing its continuation payoff according to (6), i.e., equilib-

rium policies are Markov processes. Equilibrium efforts (at,mt)t≥0, investment (it)t≥0,

debt (Lt)t≥0 are Markov processes chosen according to (6). In particular, the trading

strategy (dθt)t≥0, maximizing (6), is a Markov process that determines, given the cur-

rent state θt = θ ∈ [0, 1], the value of lims↓t θs = θt + dθt where dθt ∈ [−θt, 1− θt]. The

trading strategy solves for any t ≥ 0:

dθt ∈ arg max
∆∈[−θt,1−θt]

Kt {v(θt +∆)−∆p(θt +∆)} . (13)

given the price P (K, θ) = Kp(θ) and the value function V (K, θ) = Kv(θ).

We refer to Markov perfect equilibria satisfying these properties as continuous, scaled

Markov equilibria. We will show that a unique continuous, scaled Markov equilibrium exists.

In this Markov equilibrium, the blockholder’s trading is smooth, in that dθ = θ̇dt for an

endogenous trading rate θ̇. Moreover, in this Markov equilibrium, optimal efforts (at,mt)t≥0,

investment (it)t≥0, and the trading strategy (dθt)t≥0 are functions of θt only and do not

depend on Kt. In addition, the debt policy Lt scales with Kt—just like the stock price and

value function—in that Lt = Ktℓ(θt) where ℓ(θt) is the firm’s scaled debt level. In what
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follows, we refer to p(θ), v(θ), and ℓ(θ) simply as the stock price, value function, and debt,

respectively, omitting for convenience the adjective “scaled”.

2.4 Effort Choice and Contracting

A first channel through which the blockholder affects firm value is by providing effort. When

choosing effort b, the blockholder takes the contract of the manager (β, c) as given. Indeed,

since b is not observable or contractible, the contract with the manager cannot condition on

the choice of b. The blockholder’s scaled expected flow payoff related to effort and contracting

with management can be written as

max
β≥λ,b

{
θEb [dX − dC]− κb2

2
dt

}
= θαdt+ max

β≥λ,b

{(
θb− θ(b− b̂)β

)
− κb2

2

}
dt, (14)

where the expectation Eb is under the blockholder’s information set, which includes the

choice of b. Optimizing over b yields b = θ(1−β)
κ

. Inserting optimal b into (14) and imposing

b̂ = b shows that the blockholder’s flow payoff decreases in β. As such, it is optimal to set

β = λ. Likewise, setting higher managerial incentives over [t, t+ dt) reduces b and therefore

harms passive shareholders. As neither the blockholder nor passive shareholders benefit from

increasing managerial incentives above λ, it holds that β = λ in an optimal contract. With

β = λ, the incentive condition of the blockholder becomes

b =
θ(1− λ)

κ
. (15)

Blockholder effort increases with its equity stake and decreases with the severity of manage-

rial moral hazard, i.e., the strength of managerial incentives, β = λ. When θ < 1 and/or

λ > 0, the blockholder incurs the full cost of effort but captures only part of its benefits.

Indeed, because the blockholder only owns part of the firm’s equity, the benefits of higher

effort are shared with passive investors. In addition, since blockholder effort is unobservable

and cannot be contracted with the manager, a fraction β = λ of the benefits of effort are

shared with management through the incentive contract. As a result, effort is inefficiently

low and depends on θ and therefore on the trading strategy of the blockholder.
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2.5 Trading and Default

Let us next turn to trading in state (K, θ), which, in principle, can happen just before debt

is repaid (i.e., with scaled debt ℓ outstanding) or after debt is repaid (i.e., with zero debt

outstanding). We consider the firm in a state (Kt, θt) = (K, θ) that is attained in equilibrium

after time 0, i.e., we abstract from states that are never reached.9

Before proceeding, we define the blockholder’s (scaled) valuation of the firm:

y(θ) :=
v(θ)

θ
, (16)

which will play a key role in the following analysis. As we show, the blockholder’s valuation

of the firm is generally below that of passive shareholders. The blockholder’s valuation of

the firm’s equity is then y(θ) − ℓ, passive shareholders’ valuation of equity reads p(θ) − ℓ,

and the borrowing constraint (5) can be rewritten as ℓ ≤ min {y(θ), p(θ)}.

First, we analyze the endogenous default decision and show that there is no default if

and only if (5) holds, irrespective of whether the blockholder or passive investors control

the default decision. Recall that (5) can be written as ℓ ≤ min {y(θ), p(θ)}. Clearly, if (5)

holds, both passive shareholders and the blockholder are better off not defaulting. To prove

the “only if” part, we conjecture that p(0) < y(θ) ≤ p(θ), which, as we verify, holds in the

Markov equilibrium for all levels of θ that are attained. As shown in the proof of Lemma 1,

if ℓ > y(θ) and the blockholder derived a negative continuation payoff from holding a stake

θ, the blockholder would optimally sell its entire stake (at any weakly positive price) before

repaying debt. Indeed, due to limited liability and the associated option of default, the stock

price is always weakly positive. Selling the entire stake yields a weakly positive payoff and,

therefore, is at least as good as forcing default if given the opportunity. Following this trade,

the price would drop to p(0) < ℓ and equity value would become negative, making it optimal

for passive shareholders to default. This leads to the following Lemma:

Lemma 1. Consider any state (K, θ) with θ > 0 reached after time t > 0 with positive

probability and suppose p(0) < y(θ) ≤ p(θ), which is satisfied in equilibrium. Then, the firm

9As discussed in greater detail in the proof of Lemma 1, attainability of a state (K, θ) in equilibrium

implies that there exists no large trade toward another state (K, θ̂) that leads to strictly higher equilibrium

payoffs. If such a trade toward θ̂ would yield strictly higher payoff, the blockholder would never remain in
state (K, θ) and just immediately trade toward (K, θ̂), rendering (K, θ) unattainable.
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does not default if and only if constraint (5) holds, irrespective of whether the blockholder or

passive shareholders control the default decision.

Lemma 1 implies that, regardless of the allocation of control rights, the firm defaults im-

mediately after debt issuance whenever ℓ > min {y(θ), p(θ)}. Although we do not explicitly

model their behavior, creditors are rationally unwilling to extend an amount of debt that

triggers immediate default. Thus, constraint (5) must hold in equilibrium and pins down

the maximum amount of debt the firm can issue.

Second, with (5) being met before and after trading, there is no default. Just before debt

is repaid and given a debt level ℓ, the blockholder’s gain from trading toward state θ̂ reads

G−(θ, θ̂) := (v(θ̂)− θ̂ℓ)− (v(θ)− θℓ)− (θ̂ − θ)(p(θ̂)− ℓ) = v(θ̂)− v(θ)− (θ̂ − θ)p(θ̂).

Thus, gains from trade just before debt is repaid are equal to gains from trade just after

debt is repaid, G(θ, θ̂) := v(θ̂) − v(θ) − (θ̂ − θ)p(θ̂). Clearly, since gains from trade do not

depend on the timing of the trade (conditional on no default), the next period stake satisfies

θt+dt = argmaxθ̂ G
−(θ, θ̂) = argmaxθ̂ G(θ, θ̂). Consequently, conditional on no default, the

blockholder realizes the same payoff and chooses the same next-period stake θt+dt, irrespective

of whether it trades just before or after debt is repaid (or at both times). Taking the limit

θ̂ → θ, this argument also applies to infinitesimal trades.

Thus, the blockholder is indifferent between the timing of trade over [t, t+ dt], and opti-

mally trades after debt repayment. Likewise, passive investors are also indifferent regarding

the blockholder’s timing of trade, i.e., the pricing of the stock is not affected by the exact

timing of trade.10 For convenience and without loss of generality, we consider below that the

blockholder only trades after debt is repaid.

10This finding holds more generally. However, it is immediate to see that, because the blockholder will
trade smoothly in equilibrium, the timing of trade does not affect shareholders’ payoff and the stock price.
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2.6 Blockholder Value Function

As shown in the Appendix, the blockholder optimally trades smoothly in equilibrium, i.e.,

dθ = θ̇dt and its value function satisfies the Hamilton-Jacobi-Bellman (HJB) equation:

(ρ+ δ)v(θ) = max
ℓ,θ̇,i

[
θ

(
α + b− i2

2
+ (ρ− r)ℓ

)
− πθ2

2
− κb2

2
+ µiv(θ) + θ̇ (v′(θ)− p(θ))

]
(17)

which is solved subject to the borrowing constraint ℓ ≤ min {p(θ), y(θ)} and the incentive

condition (15). In (17), the term θ̇ (v′(θ)− p(θ)) captures the gains associated with (smooth)

trading. For an interior solution θ̇ ∈ (−∞,∞), it must be that

p(θ) = v′(θ). (18)

Indeed, the blockholder is willing to pay v′(θ) dollars for an additional unit of stock. The cost

of purchasing this additional unit equals the market price (i.e., passive investors’ valuation)

of the stock p(θ). In equilibrium, the marginal benefit of buying equals the marginal cost,

and the blockholder is indifferent between trading smoothly and not trading. Therefore, the

value function v(θ) can be determined “as if” the blockholder could not trade at all and hence

coincides with the payoff v̂(θ) that would prevail absent any trading opportunities. That is,

v̂(θ) is the solution to (17) upon setting θ̇ = 0, which can be solved for in closed form; see

equation (A.3) in the Appendix. The following Lemma characterizes the blockholder’s value

function and the stock price under smooth trading:

Lemma 2. The following holds when the blockholder trades smoothly in equilibrium:

1. The value function of the blockholder satisfies V (K, θ) = Kv(θ), with v(θ) solving (17)

and satisfying v(θ) = v̂(θ) where v̂(θ) is available in closed form in (A.3). The stock

price satisfies P (θ,K) = Kp(θ) for a function p(θ) satisfying p(θ) = v′(θ) and solving

(22) below; p(θ) is available in closed form in (A.5) with p(0) = p0.

2. The value function of the blockholder v(θ) is increasing and convex in its stake θ, in

that v′(θ), v′′(θ) > 0 with v(0) = 0. As such, the stock price p(θ) = v′(θ) > y(θ)

increases with the equity stake of the blockholder.

As established in Lemma 2, the value function of the blockholder is increasing and convex
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in θ. Together with (18) and v(0) = 0, this implies y(θ) < p(θ). That is, the blockholder’s

marginal valuation v′(θ) of an additional unit of stock coincides with the stock price p(θ).

However, its valuation of the firm y(θ) lies below the marginal valuation and the stock price.

As a result, (5) reduces to ℓ ≤ y(θ). Since the blockholder’s scaled payoff increases in ℓ, it is

optimal to issue as much debt as its borrowing constraint allows. Therefore, the borrowing

constraint binds in that

ℓ = ℓ(θ) = y(θ). (19)

We can additionally solve for the firm’s choice of investment as

i = µy(θ). (20)

Notice that a marginal increase in K increases the firm’s stock price by p(θ) and the block-

holder’s value of the firm by y(θ) < p(θ). As a result, the blockholder does not internalize

the full benefits of investment to the firm and underinvests.

2.7 Equilibrium Trading

To characterize the blockholder’s equilibrium trading behavior, we first obtain its valuation

of an additional unit of stock. For this sake, we differentiate both sides of (17) and use

p(θ) = v′(θ) = dv(θ)
dθ

to obtain:

(ρ+ δ − µi)p(θ)︸ ︷︷ ︸
(ρ+δ−µi)

dv(θ)
dθ

= α + b− i2

2
+ (ρ− r)ℓ(θ)− πθ︸ ︷︷ ︸

(ρ+δ−µi)
∂v(θ)
∂θ

+
θλ(1− λ)

κ︸ ︷︷ ︸
(ρ+δ−µi)( ∂v(θ)

∂b
∂b
∂θ )

+ θ(ρ− r)ℓ′(θ)︸ ︷︷ ︸
(ρ+δ−µi)( ∂v(θ)

∂ℓ
∂ℓ
∂θ )

. (21)

In addition to (21) (derived from the valuation equation of blockholders), p(θ) satisfies the

pricing equation of passive investors (resulting from (7)) who are dispersed and price-takers:11

(ρ+ δ − µi)p(θ) = α + b− i2

2
+ (ρ− r)ℓ(θ) + p′(θ)θ̇ + η(θ). (22)

11To derive (22), note that passive investors are risk-neutral and have a discount rate of ρ. Thus,
expected dividends and price appreciation must yield their required rate of return ρ in equilibrium, in
that ρP (K, θ)dt = E[K(dX − dC − 0.5i2dt) + dP (K, θ)]. Using P (K, θ) = Kp(θ), we get E[dP (K, θ)] =
K
(
p′(θ)θ̇ + (µi− δ)p(θ)

)
dt. Using this relation, we can rewrite the pricing equation to (22).
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Combining (21) and (22) allows us to derive the blockholder’s equilibrium trading rate as

θ̇ =
1

p′(θ)

[
θ(ρ− r)ℓ′(θ) +

θλ(1− λ)

κ
− πθ − η(θ)

]
. (23)

The trading rate in (23) balances three forces, each reflecting gains from trade. First,

a larger stake increases the firm’s debt capacity, generating gains from trade θ(ρ − r)ℓ′(θ)

through the debt capacity channel. Second, an increase in the blockholder’s stake mitigates

the moral hazard problem and increases blockholder effort, resulting in gains from trade of

θλ(1−λ)
κ

through the effort channel. Third, the blockholder gains from selling shares because

of the marginal flow holding cost πθ and passive investors’ utility benefit η(θ). The third

effect, all else equal, causes the blockholder to sell more (or buy less). The first and second

effects—which we explain in greater detail below—are positive and increase the trading rate.

Debt Capacity Channel. To understand the debt capacity channel, note that a marginal

increase in the blockholder’s stake θ relaxes the borrowing constraint ℓ ≤ y(θ), which in-

creases firm value and the blockholder’s payoff on its existing infra-marginal equity holdings.

In particular, since the debt choice ℓ does not satisfy a first-order condition, we have ∂v(θ)
∂ℓ

> 0

in (17). Therefore, when the blockholder marginally increases its stake, it realizes an addi-

tional payoff due to the increased debt capacity of (ρ+ δ−µi)
(

∂v(θ)
∂ℓ

∂ℓ
∂θ

)
= θ(ρ− r)ℓ′(θ) > 0,

which boosts its valuation of an additional unit of equity v′(θ). As a large, strategic trader,

the blockholder internalizes this effect which increases its valuation of the firm’s stock in (21)

by θ(ρ− r)ℓ′(θ) = (ρ− r)
(
p(θ)− y(θ)

)
> 0. In contrast, as shown in (22), dispersed passive

shareholders do not internalize this value-enhancing effect when selling to the blockholder,

and therefore, their valuation of the firm does not reflect it. This difference generates gains

from trade, increasing the blockholder’s incentive to acquire a larger stake in the firm.

Effort Channel. Recall that blockholder effort is unobservable and not contractible, while

management is subject to moral hazard, creating a double moral hazard problem. As a

result, any increase in cash flows due to higher effort partially benefits management through

the incentive contract. Notably, when increasing its effort, the blockholder only captures

a fraction (1 − λ)θ of the resulting increase in cash flows. Consequently, the blockholder

chooses effort b to maximize its payoff given by (1−λ)θb− 1
2
κb2, which leads to the incentive

constraint (15). In contrast, if blockholder effort could be contracted upon, the blockholder
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would maximize its total payoff from effort for a given stake θ, that is, θb− 1
2
κb2, leading to

a higher effort level of θ
κ
. Thus, due to moral hazard, blockholder effort is inefficiently low,

even accounting for partial ownership (i.e., θ < 1), because it does not maximize θb− 1
2
κb2.

In particular, in the HJB equation (17), we have ∂v(θ)
∂b

> 0 because b does not maximize the

right-hand side of (17), but rather is pinned down by the incentive condition (15).

When the blockholder marginally increases its equity stake, its incentives to exert effort

increase by ∂b
∂θ

= 1−λ
κ
. This effect raises the blockholder’s payoff from effort on its existing

infra-marginal equity holdings by ∂
∂θ

(
θb− 1

2
κb2
)
= b+ θλ ∂b

∂θ
. In particular, θλ ∂b

∂θ
= (ρ+ δ −

µi)
(

∂v(θ)
∂b

∂b
∂θ

)
> 0 reflects the additional payoff resulting from increased efficiency in effort

provision and the alleviation of the double moral hazard problem due to a marginal increase

in ownership. The blockholder, acting as a large strategic trader, internalizes this increased

efficiency in effort provision when acquiring additional shares, which raises its valuation of

the firm’s equity in (21) by θλ ∂b
∂θ

= θλ(1−λ)
κ

. As shown in (22), dispersed passive investors do

not internalize this effect when selling to the blockholder.

Investment. In contrast with debt and blockholder effort, investment is set efficiently for the

blockholder and, as such, is not directly associated with gains from trade. Indeed, investment

satisfies the first-order condition ∂v(θ)
∂i

= 0, so that the gains from trade related to investment,

(ρ+δ−µi)
(

∂v(θ)
∂i

∂i
∂θ

)
, are zero. However, as will become clear, investment opportunities and

µ indirectly affect the gains from trade by changing the firm’s debt capacity.

Overall Gains from Trade. Depending on the relative strength of the forces at play, the

overall gains from trade, and thus the trading rate of the blockholder, can be positive or

negative. Crucially, the extent to which the blockholder internalizes the increase in firm

value from enhanced debt capacity and effort provision depends on the size of its equity

stake. Notably, the blockholder internalizes these effects more when owning a larger fraction

of the firm, which increases its propensity to buy (sell) when θ is high (low).

Lemma 3 (Dynamics of the blockholder stake). The trading rate θ̇ = θ̇(θ) in a continuous,

scaled Markov equilibrium is given in (23), and satisfies θ̇(0) = 0 and θ̇(1) < 0. Define the
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thresholds:

θ = inf
{
θ ∈ [0, 1] : θ̇(θ′) < 0 for all θ′ ∈ (θ, 1)

}
(24)

θ = inf
{
θ ∈ [0, θ) : θ̇(θ′) > 0 for all θ′ ∈ (θ, θ)

}
. (25)

We have θ̇(θ) = θ̇(θ) = 0, i.e., θ ≤ θ are stationary points in a continuous, scaled Markov

equilibrium. Define (whenever µ > 0)

Θ :=
κ

µ2 (1− λ2 − κπ)

[
(r + δ)2 − 2µ2α− (ρ− r)2 (1− λ2 − κπ)

2

4 (κπ − λ(1− λ))2

]
. (26)

The following cases can prevail:

1. When Θ < 0, we have that θ = 0 and θ ∈ (θ̃, 1). Then, θ̇ > 0 for all θ ∈ (0, θ) and

θ̇ < 0 for all θ ∈ (θ, 1).

2. When Θ ∈ (0, θ̃), we have that θ = Θ and θ ∈ (θ̃, 1). Then, θ̇ > 0 for all θ ∈ (θ, θ) and

θ̇ < 0 for all θ ∈ (0, θ) and θ ∈ (θ, 1).

3. When Θ > θ̃, we have that θ̇ < 0 for all θ ∈ [0, 1], and θ = θ = 0.

Lemma 3 shows that the equilibrium features at least one and at most three stationary

points on [0, 1], one of them being zero. Three cases can prevail. First, we can have θ = θ = 0

so that zero is the only stationary point. Then, from any θ > 0, the blockholder divests its

stake and eventually exits in that θ̇ < 0 and θ converges toward zero. Second, we can have

θ = 0 < θ in which case zero and θ are stationary points. Then, starting from a non-zero

stake θ, the equity stake of the blockholder θ will always smoothly converge to the “target”

ownership level θ. Third, when 0 < θ < θ ≤ 1, we have that for θ ∈ (0, θ) and θ ∈ (θ, 1), the

trading rate is negative, while for θ ∈ (θ, θ), the trading rate is positive. Thus, for θ > θ, we

have convergence of θ toward θ; for θ < θ, there is convergence toward zero and exit.

2.8 Equilibrium Summary and Endogenous Entry

We summarize the unique continuous, scaled Markov equilibrium in Proposition 2.
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Proposition 2 (Existence and uniqueness of equilibrium). There exists a unique continuous,

scaled Markov equilibrium with state variables (K, θ). In this Markov equilibrium:

1. All payoffs scale with K in that V (K, θ) = Kv(θ), P (K, θ) = Kp(θ), and L(K, θ) =

Kℓ(θ). The blockholder’s scaled value function satisfies (17), i.e., v(θ) = v̂(θ) and the

stock price satisfies p(θ) = v̂′(θ).

2. The blockholder trades smoothly at rate θ̇ given in (23).

3. There exist thresholds 0 ≤ θ ≤ θ ≤ 1, characterized in Lemma 3, such that θ̇ = 0 for

θ = 0, θ, θ (where θ = θ is possible). The trading rate is negative, i.e., θ̇ < 0, for small

θ ∈ (0, θ) and large θ ∈ (θ, 1]. The trading rate is positive, i.e., θ̇ > 0, for θ ∈ (θ, θ).

While we solve for the equilibrium given an initial blockholder stake, we can also endo-

genize entry. Blockholder entry increases firm value. However, if this value creation is fully

reflected in the price at which the blockholder initially acquires their equity stake, due to

a free-rider problem among passive shareholders, the blockholder cannot capture the gains

from activism and has no incentive to invest in the first place. In practice, blockholders

can accumulate sizable ownership shares before disclosing them (Collin-Dufresne and Fos,

2016).12 We thus assume that the blockholder can acquire a fraction η ∈ [0, 1] of the firm

at the price P 0
0 that prevails under passive ownership. The remainder θ0 − η is bought at a

price P0 that reflects the gains from activism. Then, the blockholder pays R(θ0)K0 dollars

to acquire a stake θ0, with R(θ0) := ηp(0) + max{0, θ0 − η}p(θ0), and enters if and only if

E(θ0) := max
θ0∈[0,1]

K0

[
v(θ0)−R(θ0)

]
≥ 0. (27)

The following proposition characterizes the blockholder’s entry decision and initial stake.

Proposition 3. The blockholder’s initial stake satisfies θ0 = η.

When the blockholder enters, it only acquires the stake η, which it can buy at a discount.

To gain some intuition, note that—whether at time t = 0 or afterward—the blockholder

optimally trades smoothly, and large lumpy trades are strictly sub-optimal. Choosing θ0 > η

12In the U.S., owners of more than 5% of the equity of a public firm are required to file a report with the
SEC, at which point the price adjusts to reflect this information. Collin-Dufresne and Fos (2015) report that
the average blockholder holds 7.51% of the target’s shares when making its first public disclosure.
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is equivalent to acquiring first a stake η in the firm and immediately buying θ0− η > 0 units

of the firm equity in a large lumpy trade. However, this is sub-optimal.

2.9 Ownership Dynamics, Debt, and Investment

In our model, the blockholder enters the firm, exerts effort, and changes the firm’s investment

and financing policies to improve firm value. Three scenarios regarding entry and subsequent

dynamic trading can occur. First, the blockholder does not enter. This scenario prevails when

the cost of exerting effort κ, the cost of holding the stock π, or managerial agency conflicts λ

are large. Second, the blockholder enters to take advantage of the lower acquisition price at

entry but does not find it optimal to remain invested in the firm for long, in that it gradually

divests its stake. Third, the blockholder enters and gradually acquires a larger stake in the

firm, potentially acquiring the entire firm eventually.

Corollary 1 (Long-run ownership and comparative statics). The following holds:

1. In the limit t → ∞, we have θ∞ := limt→∞ θt ∈ {0, θ, θ}. When θ0 > θ, then θ∞ = θ.

When θ0 = θ, then θ∞ = θ. When θ0 < θ, then θ∞ = 0.

2. The blockholder is more likely to buy (and less likely to sell) when µ is larger, or r and

κ are lower. Specifically, Θ decreases in µ, and increases in r and κ. When θ > 0,

then θ increases in µ, and decreases in r and κ.

3. When µ = 0, we have that θ = 0 and

θ =

 πI θ̃

πI −
(

(ρ−r)(1−λ2−κπ)
2κ(r+δ)

− λ(1−λ)
κ

− π
)
 I{θ > θ̃}. (28)

4. When µ = ρ − r = 0, we have θ∞ > 0 whenever λ ∈ (λ−, λ+) and θ∞ = 0 otherwise,

where λ± = 1±
√
1−4κπ
2

. Thus, the blockholder engages with the firm over the long term

for intermediate levels of agency conflicts λ but exits when the level of agency conflicts

λ is too large or too small.

Corollary 1 shows that the blockholder is more likely to acquire a larger stake in the

firm if it has a lower cost of effort or a lower holding cost. Furthermore, it is more likely to
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Figure 1: Managerial Agency Conflicts and Model Dynamics. We numerically calcu-
late the equilibrium under varying levels of agency conflicts λ. The parameters are α = κ = 1,
ρ + δ = 0.2, r + δ = 0.1, λ = 0.25, µ = 0.05, and π = 0.5, as well as θ̃ = 0.99 and πI = 1.
We set θ0 = 0.3.

increase its stake when investment opportunities are good (i.e., µ is high) or the net benefits

of debt are large (i.e., r is low). In our baseline model, supply is inelastic and the stake of

the blockholder evolves between θ and θ, which are stationary points. Interestingly, when

θ=0, the blockholder may choose to exit the firm after divesting its stake smoothly.

In addition, Corollary 1 shows that the blockholder’s trading rate is generally hump-

shaped in the level of internal agency conflicts λ. Indeed, as shown by equation (23), when

agency conflicts are high or low, the blockholder has no incentives to exert effort as either

the benefits of effort are captured by management or the double moral hazard problem is

weak. As a result, the blockholder is more likely to exert effort and remain invested in

firms with intermediate levels of governance and agency conflicts between management and

shareholders, i.e., intermediate λ. The effects are illustrated in Figure 1, which plots the

time dynamics of key equilibrium quantities for varying levels of managerial agency conflicts.

Lastly, Section 5.1 shows that the optimal trading strategy still features two thresholds

(within which the blockholder trades smoothly) when (11) is not met, but the blockholder

acquires the remainder of the firm at once in a lumpy trade at the upper threshold.

Importantly, in our baseline model, parameters are constant, while the state variables
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(K, θ) evolve over time. Because all value functions and prices scale with K, the meaningful

dynamics in our model stem solely from the blockholder’s trading. That is, model dynamics

are entirely endogenous, and given the parameters, one can perfectly predict whether the

blockholder increases its stake towards a stationary point (potentially acquiring the entire

firm) or exits as t → ∞. Section 5.2 extends the model to accommodate stochastic dynamics

in the activist’s ownership stake.

3 Control Rights over Financing and Investment

In our baseline model, the blockholder determines corporate policies. In this section, we

explore the consequences of reallocating control rights from the blockholder to other share-

holders. Specifically, we consider governance structures that prevent the blockholder from

gaining control or influencing key corporate decisions—such as those featuring anti-takeover

or entrenchment provisions (Bebchuk et al., 2009). We analyze how such restrictions affect

the blockholder’s incentives to acquire a significant ownership stake and to exert effort in

monitoring or engaging with management. Our results indicate that while the blockholder

and passive shareholders are aligned on optimal managerial compensation and capital struc-

ture, they disagree on the firm’s investment policy. Restricting the blockholder’s control

over investment decisions reduces its incentive to acquire a large stake, ultimately lowering

firm value. This highlights that governance provisions limiting blockholder influence may

diminish overall shareholder value, in line with evidence in Bebchuk et al. (2009).

3.1 Financing and Mangerial Compensation

In the baseline model, the debt level is such that the liability constraint of the blockholder

binds. As a result, the amount of debt issued by the firm satisfies L = Kℓ(θ) while book

leverage is given by ℓ(θ) = y(θ), where ℓ(θ) is an increasing function of θ.

Recall that, conditional on no default and ignoring the borrowing constraint (5), both

the blockholder’s payoff v(θ) and the stock price p(θ) increase in ℓ. However, even if passive

shareholders had control over debt policy, it would not be possible for them to increase

leverage beyond y(θ). Indeed, ℓ > y(θ) violates (5) and implies a negative private valuation

for the blockholder that would trigger its immediate exit. This exit would in turn lead to
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a downward jump in the stock price (since p′(θ) > 0), leading to negative equity value and

making it optimal for passive shareholders to default, as shown in Lemma 1. That is, even

if given full control, passive shareholders cannot raise ℓ above y(θ) due to the blockholder’s

limited commitment to a particular equity stake and to the threat of immediate exit.

Likewise, the blockholder and passive shareholders are aligned on the optimal managerial

contract, as already discussed before. Both parties find it optimal to choose the contract

that minimizes agency rents.

3.2 Investment

Similarly, in the baseline model, the blockholder controls investment and chooses the invest-

ment rate i = µy(θ). That is, the blockholder’s valuation for the firm pins down investment.

Given θ and smooth trading, passive shareholder value would be maximized under the in-

vestment rate i = µp(θ) > µy(θ).13 In essence, there is an under-investment problem that

reduces passive shareholder value. To address this issue, suppose that passive investors con-

trol investment as long as θ < 1. Thus, i = µp(θ), which increases investment and the stock

price in a given state, i.e., holding θ fixed. However, the blockholder cannot commit to

maintaining a given ownership stake and allocating control rights over investment to passive

shareholders reduces its valuation for the firm, causing the blockholder to lower its stake

in the firm. As we next show, this effect ultimately reduces the stock price and passive

shareholders’ value, as well as firm investment in the long-run.

To establish this result, we again solve for a continuous, scaled Markov equilibrium where

the equilibrium is defined as in the baseline, except that we impose parameter condition

B.1 instead of (11) and the investment rate is chosen by passive investors—put differently,

the blockholder is restricted from choosing investment. Appendix B and Proposition 4

demonstrate that a unique continuous, scaled Markov equilibrium in which the blockholder

trades smoothly at rate θ̇ exists.14

Unlike in the baseline, the value function is no longer available in closed form but instead

characterized by an ordinary differential equation since the stock price, and thus investment,

13Given θ, passive shareholder value is maximized according to i = argmaxî≥0(µîp(θ)− î2/2).
14Admittedly, this uniqueness result is slightly less general than uniqueness among all continuous, scaled

Markov equilibrium (which we established for the baseline). However, although we are unable to prove it,
we believe that our equilibrium is also unique among continuous, scaled Markov equilibria.
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depend on the derivative of v(θ). In particular, the value function of the blockholder solves:

(ρ+ δ)v(θ) = θ

(
α + b+ (ρ− r)ℓ(θ)− (µv′(θ))2

2

)
− πθ2

2
− κb2

2
+ µ2v′(θ)v(θ), (29)

where p(θ) = v′(θ), ℓ(θ) = y(θ), and b = θ(1−λ)
κ

. This ODE is solved subject to the boundary

condition

lim
θ→0

v(θ)

θ
= lim

θ→0

v̂(θ)

θ
. (30)

That is, the solution and the blockholder’s value function approach that of the baseline when

θ → 0. We also show that this boundary condition implies limθ→0 v
′(θ) = p(0) where p(0)

is characterized in Proposition 1. The economic interpretation of this boundary condition is

that the blockholder’s and passive shareholders valuation of the company coincide as θ → 0,

so that control rights over investment do not matter since both parties follow the same

objective for investment. Indeed, the baseline also features v̂′(θ) = limθ→0
v̂(θ)
θ

= p(0).

When passive shareholders control investment, the smooth trading rate satisfies

θ̇ =
1

p′(θ)

[
θ(ρ− r)ℓ′(θ) +

θλ(1− λ)

κ
− πθ − η(θ) + θµi′(θ) (y(θ)− p(θ))

]
. (31)

Thus, when investment is set by passive shareholders, the trading rate involves the novel

term

θµi′(θ) (y(θ)− p(θ)) = (ρ+ δ − µi)

(
∂v(θ)

∂i

∂i

∂θ

)
< 0,

which is absent in the baseline model where investment solves the first-order condition ∂v(θ)
∂i

=

0. This term is negative, implying that the blockholder is more likely to sell its shares over

time when passive shareholders control investment. This reflects the blockholder’s lower

valuation of the firm, as it internalizes that purchasing additional shares drives up the firm’s

stock price and investment, further worsening inefficiencies from its perspective. In other

words, the blockholder exhibits an increased propensity to acquire more of the firm rather

than to exit when it controls investment. We summarize our findings in Proposition 4:

Proposition 4. When passive investors control investment and i = µp(θ), a scaled, contin-

uous Markov equilibrium with smooth trading exists and is unique. In this equilibrium:

1. The blockholder’s scaled value function v(θ) is strictly convex and solves (29) subject
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to (30). The stock price satisfies p(θ) = v′(θ) with y(θ) = v(θ)
θ

> p(θ).

2. The smooth trading rate θ̇ satisfies (31).

3. The blockholder’s value function is lower than in the baseline where the blockholder

controls investment, i.e., v(θ) < v̂(θ).

We can additionally characterize analytically the effects of investor control on the trading

rate of the blockholder where there are no benefits of debt (ρ = r) and no holding costs or

firm-level moral hazard (π = λ = 0). By continuity, the takeaways also apply as long as

ρ− r > 0, π > 0, and λ > 0 are positive but sufficiently close to zero.

Corollary 2. Suppose that π = λ = 0 and ρ = r. Suppose that, given investor control over

investment, θ0 satisfies θ0 ∈ (0, θ̃). Then, the following holds:

1. When passive investors control investment, we have θ̇ < 0 and the blockholder eventu-

ally exits with limt→∞ θt = θ∞ = 0 as well as limt→∞ p(θt) = v̂′(0).

2. When the blockholder controls investment, we have dθt = 0 for all t ≥ 0, and θt and

p(θt) remain constant at θ0 > 0 and p(θ0) = v̂′(θ0) > v̂′(0) respectively.

Figure 2 shows an example of equilibrium dynamics under two governance structures:

blockholder control (solid black line) and passive investor control (dotted red line), both

starting from the same initial stake, θ0. Shifting control rights from blockholders to passive

investors—represented by the transition from the solid black to the dotted red line—lowers

the blockholder’s valuation of the firm. This, in turn, leads to a gradual reduction in their

ownership stake. Panel A shows that when blockholders control investment, they increase

their stake over time. Conversely, under passive investor control, blockholders steadily divest.

As a result, blockholder control fosters rising levels of effort, firm value, debt, and investment,

whereas all of these metrics decline under dispersed investor control. Since blockholders

contribute positively to firm value, their reduced ownership under passive investor control

diminishes both the firm’s stock price and its debt capacity (see Panels C and D). Notably,

while passive investor control leads to higher initial investment at a given ownership level,

the blockholder’s divestment causes investment to decline over time. As shown in Panel

B, investment under blockholder control eventually surpasses that under passive investor

control due to the blockholder’s increasing engagement.
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Figure 2: Model Dynamics and Control. We numerically calculate the equilibrium both
under blockholder control (baseline; solid black line) and investor control (dotted red line).
The parameters are α = κ = 1, ρ+ δ = 0.2, r + δ = 0.1, λ = 0.25, µ = 0.05, and π = 0.4, as
well as θ̃ = 0.99 and πI = 1. We set θ0 = 0.3.

Our analysis shows that allocating control to passive investors has distinct effects in the

short versus long run, as it influences current corporate policies and the blockholder’s trading

rate, which, in turn, affects future ownership levels and firm decisions. Notably, allocating

control to passive shareholders increases investment at a given level of blockholder ownership,

but reduces both the blockholder’s trading rate and future investment. Thus, as shown in

Corollary 2, whether exit can be part of an optimal strategy when there is no holding cost

(π = 0) uniquely depends on the allocation of control rights. Exit is not optimal when

the blockholder controls investment and financing. Exit becomes a feature of the optimal

strategy when blockholder does not control investment.

4 Large Shocks, Default, and Risky Debt

The specification of cash flows in (1) implies that the firm never defaults on its debt provided

that (5) is satisfied, which is always the case in equilibrium. We now extend the model by

incorporating large, persistent shocks to the capital shock K as in, e.g., Bolton et al. (2023).

Since cash flows scale with K, these shocks can also be interpreted as persistent shocks to
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cash flows. In particular, we assume that a fraction 1−S of the capital stock is destroyed at

a Poisson rate Λ ≥ 0 where, for simplicity, S is uniformly distributed on [0, 1]. In the event

of default following the shock, the firm is liquidated. In liquidation, creditors recover the

liquidation value RSK, and equity value falls to zero. We assume that R ≥ 0 is sufficiently

small that the liquidation value does not fully repay creditors in default under equilibrium

debt levels. In particular, R < p0 where p0 is the scaled stock price under passive ownership

from the baseline model. We also assume that the capital shock is not influenced by the

manager and is not contractible. As in the baseline, the blockholder chooses debt and

investment, and the contract of the manager features a base wage of zero and an exposure

βt = λ to the Brownian shocks.

We provide a heuristic characterization of the continuous, scaled Markov equilibrium.

We start the analysis by clarifying the timing of events and actions within a time interval

[t, t + dt), with pre-shock capital K = Kt− = lims↑tKt where use the left-limit notation to

emphasize that Kt− is the capital stock before realization of the jump shock. First, given

θ, the blockholder chooses the managerial contract, the investment rate, and the amount of

debt. Second, the blockholder chooses its effort level, the shock dNt realizes and, observing

dNt, the manager chooses diversion mt. Then, cash flows dXt realize, and the manager

receives its promised payments. Then, uncertainty regarding the capital shock unfolds: The

capital stock remains at K if no shock realizes and drops to SK if a shock realizes. Third,

shareholders repay debt or default. In case of no default, cash flows net of managerial com-

pensation, investment cost, and debt repayment are distributed as dividends to sharheolders.

As in the baseline model, the blockholder can trade before or after debt is repaid. Finally,

the capital stock adjusts for investment and depreciation in the case of no default.

A shock to capital leads to a drop in the blockholder’s payoff. When the blockholder’s

post-shock payoffK(Sv(θ)−θℓ) is negative, the firm defaults. A default occurs either because

the blockholder has the authority to force default or because it sells its entire stake (at a

positive price), thereby reducing equity value below the level of debt and making default

optimal for passive shareholders. Due to y(θ) < p(θ), it suffices to look at the blockholder’s

incentives to default, which are stronger than those of passive shareholders. That is, as in the

baseline, the blockholder’s valuation of the firm y = y(θ) pins down default irrespective of

whether the blockholder or passive shareholders control default. We can rewrite the default
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condition as

Sy(θ) < ℓ = ℓ(θ) ⇐⇒ S <
ℓ(θ)

y(θ)
=

ℓ

y
.

Conditional on a shock occurring, the probability of default is given by ∆ := ℓ
y
. In default,

creditors recover in expectation ℓ
2y
RK dollars or R

2y
dollars per unit of debt. The fair interest

rate on risky debt is thus

r̂ := r + Λ∆

(
1− R

2y

)
(32)

with a credit spread r̂ − r = Λ∆
(
1− R

2y

)
. The following Proposition, proven in Appendix

C, characterizes equilibrium outcomes.

Proposition 5. In a continuous, scaled Markov equilibrium,the blockholder’s valuation of

the firm y(θ) increases in θ and satisfies y(θ) < p(θ). Furthermore:

1. The trading rate satisfies

θ̇ =
1

p′(θ)

[
θ(ρ− r)y′(θ)∆ +

θλ(1− λ)

κ
− πθ − η(θ)

]
.

2. Scaled debt ℓ = ℓ(θ) and the probability of default Λ∆ satisfy

ℓ = ℓ(θ) = min

{
y(θ),

(ρ− r)y(θ)2

Λ
(
y(θ)−R

)} and Λ∆ = min

{
Λ,

(ρ− r)y(θ)

y(θ)−R

}
.

3. The default probability Λ∆ and credit spreads r̂−r decrease in θ. Scaled debt ℓ increases

in θ whenever y(θ)
2

≥ R and decreases in θ when y(θ)
2

< R. When R ≤ p0

2
, then y(θ)

2
≥ R

for all θ ≥ θ and scaled debt increases in θ. When R ∈
(

p0

2
, p0
)
, ℓ decreases in a right-

neighborhood of θ.

We note that the baseline model and results are obtained when the arrival intensity of

capital shocks tends to zero, i.e., Λ → 0. Under these circumstances, we have ℓ → y(θ),

∆ → 1 for any θ, while the default intensity Λ∆ vanishes, rendering debt risk-free.

In this model with large shocks, the choice of debt reflects a standard trade-off, whereby

firm leverage balances the benefits of debt with the cost of default. One can interpret RK as

the firm’s tangible or collateralizable assets, which can be seized by creditors in default. All
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else equal, higher R increases creditors’ recovery in default and therefore lowers the interest

rate, making it attractive to issue more debt and raising scaled debt ℓ and default risk.

Blockholder engagement—that is, the value that the blockholder adds to the firm—is an

intangible, non-pledgeable asset, whose value increases with θ. As the blockholder’s stake in

the firm increases, the blockholder adds greater value through engagement, which raises the

going-concern value of the firm and thus incentives to avoid default. Therefore, an increase

in θ has two effects. First, holding the level of debt fixed, a higher θ reduces default risk

and credit spreads. Second, unless R is large, the firm takes advantage of the lower spreads

and accordingly raises more debt as θ increases, thereby increasing credit risk and spreads.

When R is large, debt is high to begin with, and the firm finds it attractive to mitigate

default risk by lowering debt as θ increases and default becomes more costly. Overall, the

first effect dominates the second one, in that credit spreads and default risk decrease with

θ. Book debt increases in θ, unless R is large; for larger R, book debt is U-shaped in θ.

As in the baseline model, the trading rate θ̇ reflects the gains from trade associated with

debt issuance, increasing the blockholder’s propensity to acquire a larger stake in the firm.

First, when ∆ = 1 and debt choice is constrained by the borrowing constraint (5) in that

ℓ = y(θ), then ∂v(θ)
∂ℓ

> 0 and ∂∆
∂θ

= 0. As in the baseline, the gains from trade term associated

with debt is proportional to ∂v(θ)
∂ℓ

∂ℓ
∂θ

> 0. Specifically, the blockholder internalizes that by

buying additional shares, it increases the firm’s debt capacity, which increases firm value.

Second, when ∆ < 1, debt choice is not constrained by the borrowing constraint ℓ ≤ y(θ)

but solves the first-order condition ∂v(θ)
∂ℓ

= 0. In this case, the blockholder, acting as a large

strategic trader, internalizes that purchasing additional shares reduces credit risk and the

cost of default. This channel generates gains from trade, as passive investors do not account

for this when valuing the firm’s stock, given by θ(ρ−r)y′(θ)∆ = (ρ+δ+Λ−µi)
(

∂v(θ)
∂∆

∂∆
∂θ

)
> 0.

Finally, note that in a given state θ, the blockholder chooses too high leverage relative

to passive investors’ preferences. The intuition is that, upon default, the blockholder loses

y(θ) per unit of equity, while passive shareholders lose p(θ) > y(θ). Thus, the blockholder

associates a lower cost with default than do passive shareholders. Appendix C.7 shows how

the allocation of control rights affects blockholder trading in this model variant.
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5 Extensions and Other Results

5.1 Large Trades and Public-to-Private Transactions

In our baseline model, the blockholder faces dispersed shareholders who differ in their will-

ingness to sell the firm’s stock, with a set of shareholders who are reluctant to sell beyond a

certain point, as reflected in condition (11). We now show that when condition (11) is not

met, for instance, because η(θ) is small or zero, we can similarly construct a Markov equilib-

rium whereby quantities scale with K, specifically, P (K, θ) = Kp(θ) and V (K, θ) = Kv(θ).

However, in this Markov equilibrium, the price function p(θ) is no longer continuous.

Specifically, with (11) not being met, we now characterize an equilibrium that follows

the definition from Section 2.3 but without the requirement that p(θ) is continuous. While

in this case, there can be multiple equilibria, we characterize the equilibrium closest to the

one from the baseline with a minimum number of price discontinuities. When (11) is not

met, a price discontinuity may indeed arise as it may become optimal for the blockholder

to initiate a takeover bid for all remaining shares at a fair price when reaching some upper

threshold θ∗ from below, even if such a bid is not mandatory. Within the class of equilibria

where p(θ) has at most one discontinuity—corresponding to the lumpy trade associated with

a successful takeover bid—we obtain uniqueness.15

Proposition 6 characterizes the scaled equilibrium that is analogous to our baseline.

Proposition 6 (Equilibrium with takeover bid). When (11) does not hold, then there

exists a scaled Markov equilibrium with state variables (K, θ), so that P (K, θ) = Kp(θ)

and V (K, θ) = Kv(θ). The choice of control variables (ℓ, i, b) is as in the baseline, with

ℓ(θ) = y(θ), i(θ) = µy(θ), and b(θ) = (1−λ)
κ

. Further, there exists a threshold θ∗—defined in

the Appendix in (D.2)—such that:

1. For θ ∈ [0, θ∗), the blockholder trades smoothly at rate θ̇ given in (23), where θ̇ > 0

(θ̇ < 0) for θ > θ (θ < θ) and θ = Θ. Further, we have v(θ) = v̂(θ) and p(θ) = v̂′(θ).

2. For θ ∈ (θ∗, 1), the blockholder conducts an immediate lumpy trade toward one (acquires

the entire firm) and thereafter stops trading. Its value function is v(θ) = v̂(1) − (1 −
15A mandatory bid is required by law in many countries, usually when the bidder already owns a certain

percentage of shares (often over 30%). There are no provisions for mandatory bids in the United States.
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θ)p̂(1) where p̂(1) is the stock prevailing when the blockholder maintains perpetually full

ownership of the firm. The stock price satisfies p(θ) = p̂(1) where p̂(1) < v̂′(1).

3. Suppose that θ reaches θ∗ from below, i.e., limθ→θ∗ θ̇(θ) > 0. Then, once θ = θ∗, the

blockholder randomizes between not trading at all or buying the entire firm at once at

an endogenous rate γ∗ > 0, given in (D.3). When limθ→θ∗ θ̇(θ) ≤ 0, the blockholder

trades smoothly at θ = θ∗ at rate θ̇ from (23). The blockholder’s value function satisfies

v̂(θ∗) = v̂(1)− (1− θ∗)p̂(1), which pins down the threshold θ∗.

Thus, the price exhibits one discontinuity (upward jump) at θ = θ∗. While there can

be multiple equilibria and, in particular, numerous equilibria with price discontinuities, we

characterize the equilibrium closest to the one from the baseline with a minimum number of

price discontinuities, specifically, a single discontinuity. Within the class of equilibria where

p(θ) has at most one discontinuity, we obtain uniqueness.

5.2 Stochastic Trading and Liquidity Shocks

In the benchmark model, we abstract from elements that would introduce exogenous trading

dynamics and are not crucial for our key findings. As a result, given the parameters, one can

predict whether the blockholder will maintain its stake or acquire the entire firm or exit as

t → ∞. Our framework can be extended by allowing model parameters to evolve over time,

leading to stochastic trading and long-run ownership. For instance, preference parameters

π, ρ, r, or technological parameters such as µ, κ, could follow a Markov switching process,

introducing exogenous randomness into the blockholder’s equilibrium trading behavior that

would complement the endogenous dynamics highlighted in the baseline framework.

To illustrate this in the simplest possible setting, suppose the holding cost π is initially

zero but can jump to a positive value π+ = π at a Poisson arrival time with intensity ϕ.

We assume that both before and after the jump, parameter condition (11) holds, so that we

obtain an equilibrium with smooth trading. We sketch the equilibrium in this setting. The

equilibrium after the jump is similar to that described in Proposition 2, with blockholder

value function v(θ) = v̂(θ), stock price p(θ) = v̂′(θ), and smooth trading according to (23).

Prior to the jump, we denote the blockholder value function by vPre(θ) and the stock price
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by pPre(θ). For θ ∈ [0, 1], the value function solves:

(ρ+ δ + ϕ)vPre(θ) = max
ℓ,i

[
θ

(
α + b+ (ρ− r)ℓ− i2

2

)
− κb2

2
+ µivPre(θ) + ϕv(θ)

]
, (33)

where ϕ(v(θ)− vPre(θ)) captures the effects of a jump on the blockholder value function and

b satisfies (15).

It is clear that for yPre(θ) = vPre(θ)
θ

, we obtain ℓPre(θ) = yPre(θ), iPre(θ) = µyPre(θ),

and bPre(θ) = b(θ). Also, we have that vPre(θ) > v(θ) as an upward jump in π reduces the

blockholder’s valuation of the firm. Next, note that pPre(θ) = v′Pre(θ) and v′(θ) = p(θ). We

then can solve for the trading rate as

θ̇Pre =
1

p′Pre(θ)

[
θ(ρ− r)ℓ′Pre(θ) +

θλ(1− λ)

κ
− η(θ)

]
. (34)

Note that η(θ) = 0 and θ̇Pre > 0 for θ < θ̃. Thus, the upper stationary point θPre pre-shock

is larger than θ̃, while θ is smaller than θ̃ (see Lemma 3). Thus, given θ0 ∈ (0, θ̃), two

scenarios can happen

1. First, θ < θ0 < θPre. Then, the blockholder trades up to θPre where it stops trading.

Once the shock hits, it will trade toward target level θ. Either way, we have θ∞ = θ.

2. Second, θ0 ≤ θ < θPre. Again, the blockholder gradually trades up to θPre. If the

liquidity shock hits early before θ surpasses θ, the blockholder will exit and θ∞ = 0. If,

on the other hand, the liquidity shock hits late only after θ > θ, the blockholder will

remain invested in this firm and trade to θ. Thus, the long-run outcome is stochastic.

Overall, we find that early realizations of negative liquidity shocks can lead to exit. In

contrast, late realizations are less impactful and often do not prevent long-run acquisition

by the blockholder. This highlights the critical role of timing in liquidity shocks, shaping

both the short- and long-run evolution of blockholder ownership.
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5.3 Blockholder-Level versus Firm-Level Debt

Blockholders, such as investment funds, often finance deals with debt that is on their own

balance sheet, in addition to debt that is on the balance sheet of the firms they invest in.16

While the baseline assumes that all debt is on the firm-level, we sketch how the model would

change if blockholders had leveraged on their own; details are presented in Appendix D.2.

We denote the firm’s debt level by L = Kℓ(θ) and the blockholder’s own debt by LB =

KℓB(θ). As in the baseline model, debt is subject to a limited liability constraint, preventing

immediate default. Debt at the blockholder level is identical to firm-level debt in all aspects,

except that it is fully repaid by the blockholder. In contrast, the blockholder repays firm-level

debt in proportion to its ownership stake, i.e., it only repays a fraction θ of the firm-level

debt. As such, the blockholder’s limited liability constraint becomes

v(θ) ≥ θℓ(θ) + ℓB(θ). (35)

Using arguments similar to those in the baseline, it can be shown that this constraint is

optimally binding. In what follows, we denote by ω = ℓB(θ)
v(θ)

the fraction of the blockholder’s

effective debt which is not on the firm-level. The equilibrium remains qualitatively unchanged

relative to the baseline.

The blockholder’s value function and the stock price are independent of ω, so the block-

holder is, in principle, indifferent over choices of ω. The blockholder’s value function remains

unchanged, and so do its marginal and average valuations. The pricing equation remains

(22), but note that ℓ(θ) = (1 − ω)y(θ). As shown in the following Proposition, the key

difference arising with respect to the baseline is that ω—whether a parameter or dynamic

choice—increases the blockholder’s trading rate.

Proposition 7. With blockholder-level leverage, total debt equals y(θ), and the blockholder’s

payoff is independent of the share of blockholder-level debt to total debt, ω. The trading rate

increases in the use of blockholder-level leverage ω in that

θ̇ =
1

p′(θ)

[
θλ(1− λ)

κ
− πθ − η(θ) + (ρ− r)

(
p(θ)− (1− ω)y(θ)

)]
. (36)

16For instance, private equity funds raise, next to equity capital from limited partners, debt from banks,
often in the form of subscription lines of credit or loans based on the net asset value of their portfolio.
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Having leverage at the blockholder level reduces, all else being equal, the firm’s stock

price, since passive shareholders can capture less of the benefits of issuing debt. To neutralize

this effect, the blockholder buys more (or sells less) of the firm, exerting upward pressure

on the stock price. Taken together, blockholder-level leverage enables the blockholder to

purchase a larger stake in the firm. It also implies lower book leverage at the firm level for

given θ, but, since ℓ(θ) increases in θ, it can lead to higher firm-level leverage over time.

6 Conclusion and Implications

This paper studies the optimal trading strategy and level of engagement of activist blockhold-

ers in a model in which a blockholder can expend costly effort to improve firm productivity,

contract with management to limit agency costs, and influence investment and financing de-

cisions. We obtain the equilibrium in closed form, that is, the blockholder’s dynamic trading

strategy, its entry and exit decisions, and the firm’s compensation, financing, and investment

policies, assuming no commitment on the part of the blockholder. We then use the model

to study firm and ownership dynamics and examine the effects of the allocation of control

rights on passive shareholder value.

The trading strategy of the blockholder exhibits features commonly observed in practice.

Notably, after acquiring an endogenous toehold, the blockholder’s optimal trading policy

involves a combination of a double-barrier policy and the continuous management of the

ownership stake through dynamic sales and purchases. Depending on the starting level of

ownership and firm characteristics, the activist may follow one of several paths: fully exit

the firm, gradually converge to a stable target ownership level, initiate a takeover bid, or

exhibit a bifurcation pattern where small initial stakes lead to exit while sufficiently large

stakes result in continued engagement.

The ownership stake of the blockholder, which is endogenous and evolves dynamically,

shapes blockholder engagement and firm policies. Our model shows that blockholder entry

leads to an increase in firm value, book leverage, and long-run investment. In addition,

both the rate of investment and leverage are predicted to increase with the stake of the

blockholder. However, both policies are suboptimal from the perspective of passive investors

in any given state, with an investment rate that is too low and a debt level that is too high
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relative to the levels that would maximize passive shareholder value. Debt financing at the

blockholder level mitigates the latter effect by reducing firm-level leverage.

While firm policies do not maximize passive shareholder value when the blockholder is

in control, our analysis shows that granting passive shareholders control over investment or

financing decisions paradoxically reduces their value. This outcome arises due to the im-

pact on the blockholder’s trading behavior and engagement, and the blockholder’s inability

to commit to a specific stake. Notably, a key aspect of our model is the endogenous and

dynamic nature of the blockholder’s stake, which leads to divergent effects on shareholder

welfare in static versus dynamic settings. Specifically, assigning investment control to passive

shareholders boosts investment at a given level of blockholder ownership but diminishes the

blockholder’s trading activity and future investment potential. Moreover, in our model, the

blockholder does not find it optimal to exit when controlling both investment and financing

while also enhancing the firm’s return on capital through effort. In contrast, exit becomes

a part of the optimal strategy if the blockholder’s control is limited solely to improving the

firm’s return on capital via effort. Ultimately, our findings reveal that allocating invest-

ment control to passive shareholders reduces their value due to its adverse effects on the

blockholder’s trading, ownership stake, and engagement.
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DeMarzo, P. M. and B. Urošević (2006). Ownership dynamics and asset pricing with a large
shareholder. The Journal of Political Economy 114 (4), 774–815.

Du, S. and H. Zhu (2017). What is the optimal trading frequency in financial markets? The
Review of Economic Studies 84, 1606–1651.

Duffie, D. and H. Zhu (2017). Size discovery. The Review of Financial Studies 30 (4),
1095–1150.

41



Edmans, A. and G. Manso (2011). Governance through trading and intervention: A theory
of multiple blockholders. The Review of Financial Studies 24 (7), 2395–2428.

Geelen, T., J. Hajda, E. Morellec, and A. Winegar (2024). Asset life, leverage, and debt
maturity matching. The Journal of Financial Economics 154, 103796.

Haddad, V., P. Huebner, and E. Loualiche (2025). How competitive is the stock market? the-
ory, evidence from portfolios, and implications for the rise of passive investing. American
Economic Review 115 (3), 975–1018.

Hartzmark, S. and D. Solomon (2025). Marketwide predictable price pressure. The American
Economic Review forthcoming.

He, Z. and A. Krishnamurthy (2011). A model of capital and crises. The Review of Economic
Studies 79 (2), 735–777.

Hu, Y. and F. Varas (2025). Intermediary financing without commitment. The Journal of
Financial Economics forthcoming.

Hu, Y., F. Varas, and C. Ying (2025). Debt maturity management. Working paper, Duke
University.

Khanna, N. and R. Mathews (2012). Doing battle with short sellers: The conflicted role of
blockholders in bear raids. The Journal of Financial Economics 106, 229–246.

Koijen, R., R. Richmond, and M. Yogo (2024). Which investors matter for equity valuations
and expected returns? The Review of Economic Studies 91, 2387–2424.

Koijen, R. and M. Yogo (2019). A demand system approach to asset pricing. The Journal
of Political Economy 127 (4), 1475–1992.

Levit, D. (2019). Soft shareholder activism. The Review of Financial Studies 32 (7), 2775–
2808.

Lewellen, J. and K. Lewellen (2022). Institutional investors and corporate governance: The
incentive to be engaged. The Journal of Finance 77, 213–264.

Marinovic, I. and F. Varas (2025). Strategic trading and blockholder dynamics. The Rand
Journal of Economics forthcoming.

Maug, E. (1998). Large shareholders as monitors: Is there a trade-off between liquidity and
control? The Journal of Finance 53 (1), 65–98.

Modigliani, F. and M. Miller (1958). The cost of capital, corporation finance, and the theory
of investment. The American Economic Review 48 (2), 261–297.

Noe, T. H. (2002). Investor activism and financial market structure. The Review of Financial
Studies 15 (1), 289–318.

42



Appendix

A Omitted Proofs

A.1 Proof of Lemma 1

We focus on a Markov equilibrium in which all quantities scale with K. To analyze trading,
we therefore consider scaled payoffs, using that V (K, θ) = Kv(θ), P (K, θ), and L(K, θ) =
Kℓ(θ).

The “if part” is immediate from the arguments in the main text. It remains to prove
the “only if” part for θ > 0. We consider the firm at time t > 0 in state (Kt, θt−) = (K, θ),
which, by assumption, is attainable. Attainability of (K, θ) requires that there no profitable
deviations in state (K, θ), in that there does not exist a trade toward any other state (K, θ̂)
that yields strictly higher payoff for the blockholder. That is, any trade toward another state
(K, θ̂) must yield weakly lower payoff for the blockholder than state (K, θ).

Suppose to the contrary that there exists a stake θ̂ for which the firm does not default and
for which v(θ) < v(θ̂)− (θ̂− θ)p(θ̂) holds. If this was the case, the blockholder would realize
a strictly positive payoff by trading toward state θ̂ just before time t, at time t− = lims↑t s.

As such, state (K, θ) is not attainable. Thus, v(θ) ≥ v(θ̂)− (θ̂ − θ)p(θ̂) for all θ̂ ∈ [0, 1].

Consider now ℓ = ℓ(θ) > v(θ)
θ
. Suppose the firm does not default after the blockholder

trades toward stake θ̂ just before debt repayment. As default would be optimal post-trade

for both types of shareholders when ℓ > p(θ̂) ≥ v(θ̂)

θ̂
, it suffices to consider p(θ̂) ≥ ℓ. Then,

the gains from trading toward state θ̂ just before debt repayment read

G−(θ, θ̂) =:
[
v(θ̂)− θ̂ℓ

]
−
[
v(θ)−θℓ

]
−(θ̂−θ)(p(θ̂)−ℓ) = v(θ̂)−v(θ)−(θ̂−θ)p(θ̂) ≤ 0 (A.1)

for all θ̂ ∈ [0, 1] that do not lead to default. The last inequality used that by attainability
of state (K, θ), we have v(θ) ≥ v(θ̂) − (θ̂ − θ)p(θ) for all θ̂ ∈ [0, 1], as shown above. Thus,
conditional on no default occurring, the blockholder’s continuation payoff is (weakly) smaller
than v(θ)− θℓ < 0 and therefore strictly negative.

However, the blockholder can do strictly better than that by selling its entire stake at
any positive price, which yields a weakly positive payoff for the blockholder; indeed, due to
the option to default, the firm’s stock price must be weakly positive at any time. Note that
selling the entire stake yields a weakly higher payoff than forcing immediate default, which
is possible if the blockholder is in control of the default decision and yields a payoff of zero.
Consequently, it suffices to prove the claim assuming that passive shareholders decide on
default and default at time t whenever pt < ℓt.

When the blockholder sells its entire stake θ, it trades toward (post-trade) stake (K, θ̂)

with θ̂ = 0. Due to p(0) ≤ v(θ)
θ

< ℓ, the firm optimally defaults post-trade for θ̂ = 0.

By the above arguments, any other trade toward θ̂ that does not trigger default yields
gains from trade G−(θ, θ̂) ≤ 0 and therefore strictly negative post-trade payoff for the block-
holder. In contrast, selling the entire stake triggers default and yields zero payoff. Thus,
when v(θ) < θℓ, the blockholder’s optimal trading necessarily triggers default. Since the
stock price in default is zero, the blockholder cannot do better than selling its entire stake
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once v(θ) < θℓ.

A.2 Proof of Lemma 2

For a Markov equilibrium with states (K, θ), we conjecture and verify that V (K, θ) = Kv(θ),
P (K, θ) = Kp(θ), and L(K, θ) = Kℓ(θ). Given these conjectures, we can rewrite the bor-

rowing constraints from (5) as ℓ = ℓ(θ) ≤ min{v(θ)
θ
, p(θ)}. Moreover, the partial derivatives

of the value function then read VK(K, θ) = v(θ) and Vθ(K, θ) = Kv′(θ).
By the dynamic programming principle, the integral representation (6) implies that the

blockholder’s value function solves (under smooth trading) the HJB equation:

ρV (K, θ) = max
ℓ,θ̇,i

{
K

[
θ

(
α + b+ (ρ− r)ℓ− i2

2

)
− κb2

2
− πθ2

2

]
+ VK(K, θ)K(µi− δ) + θ̇

[
Vθ(K, θ)− P (K, θ)

]}
,

subject to (15) and the borrowing constraint, where we used that, in equilibrium, expected
payouts to the manager are zero, i.e., E[dC] = λE[dX − (α + b)dt] = λσE[dZ] = 0. Us-
ing V (K, θ) = Kv(θ), P (K, θ) = Kp(θ), VK(K, θ) = v(θ), and Vθ(K, θ) = Kv′(θ) and
rearranging and canceling K > 0 on both sides, we obtain

(ρ+ δ)v(θ) = max
ℓ,θ̇,i

[
θ

(
α + b+ (ρ− r)ℓ− i2

2

)
− κb2

2
− πθ2

2
+ µiv(θ) + θ̇[v′(θ)− p(θ)]

]
,

(A.2)
which is (17). This verifies our conjecture V (K, θ) = Kv(θ). Since the right-hand side of (17)
does not depend on K and the borrowing constraint does not depend on K, it follows that
(scaled) control variables do not depend on K either and are functions of θ only. Specifically,
we obtain L = ℓ(θ)K in optimum.

Next, note that by (7), a passive shareholder’s valuation for the firm’s stock, i.e., the
firm’s stock price, satisfies:

ρP (K, θ) = K
(
α + b− i2

2
+ (ρ− r)ℓ+ η(θ)

)
+ PK(K, θ)K(µi− δ) + Pθ(K, θ)θ̇,

where we used that in optimum E[dC] = 0. Using P (K, θ) = Kp(θ), Pθ(K, θ) = Kp′(θ), and
PK(K, θ) = p(θ), we obtain after simplifications

(ρ+ δ − µi)p(θ) = α + b+ (ρ− r)ℓ(θ)− i2

2
+ η(θ) + p′(θ)θ̇,

which is (22), which verifies our conjecture P (K, θ) = Kp(θ).

To derive closed-form expressions for v(θ) and p(θ), first conjecture that p(θ) ≥ v(θ)
θ
,

which we verify at the end of the proof. We now solve the optimization in (17). First, since
the right-hand-side of (17) increases in ℓ, optimal scaled debt satisfies

ℓ = ℓ(θ) =
v(θ)

θ
.
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Thus, the borrowing constraint ℓ = ℓ(θ) ≤ min{v(θ)
θ
, p(θ)} = v(θ)

θ
binds in optimum. Second,

the optimization with respect to the investment rate i yields i = i(θ) = µv(θ)
θ

. Third,

notice that the right-hand side of (17) is linear in θ̇. As such, for smooth trading, i.e.,
θ̇ ∈ (−∞,+∞) to be optimal, it must be that v′(θ) = p(θ).

Inserting these relations back into (17) and using (15), we can solve

v(θ) = v̂(θ) :=
θ
(
κ(r + δ)−

√
κ (κ (r + δ)2 − µ2(1− λ2 − κπ) θ − 2κµ2α)

)
κµ2

. (A.3)

Note that (9) implies

κ (r + δ)2 − µ2(1− λ2 − κπ) θ − 2κµ2α > 0, (A.4)

so the term under square root is positive.
We can then calculate the stock price via

p(θ) = v̂′(θ) =
θ (1− λ2 − κπ)

2
√

κ (κ (r + δ)2 − µ2(1− λ2 − κπ) θ − 2κµ2α)
+

v̂(θ)

θ
. (A.5)

Due to condition (10), we have that p(θ) > v(θ)
θ

= y(θ).
Finally, calculate

v̂′′(θ) =
κ (1− λ2 − κπ) (4κ r2 − 3µ2 θ + 3λ2 µ2 θ − 8ακµ2 + 3κµ2 π θ)

4 (κ (κ r2 − µ2 θ + λ2 µ2 θ − 2ακµ2 + κµ2 π θ))3/2

Conditions (9) and (10) imply that v̂′′(θ) > 0.

A.3 Proof of Lemma 3

Consider an equilibrium with smooth trading. Under smooth trading, we have v̂(θ) = v(θ)
and p(θ) = v′(θ), and the trading rate θ̇ satisfies (23):

θ̇ = θ̇(θ) =
θ

v̂′′(θ)

[
λ(1− λ)

κ
+ (ρ− r)ℓ′(θ)− π − η(θ)

θ

]
In addition, ℓ(θ) = v̂(θ)

θ
and thus ℓ′(θ) = θv̂′(θ)−v̂(θ)

θ2
= 1

θ

(
v̂′(θ)− v̂(θ)

θ

)
. Using the last

expression together with (A.5), we get:

ℓ′(θ) =
(1− λ2 − κπ)

2
√

κ (κ (r + δ)2 − µ2(1− λ2 − κπ) θ − 2κµ2α)
. (A.6)
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For θ = 0, we have θ̇ = 0. Otherwise, for θ > 0, the sign of θ̇ = θ̇(θ) is determined by

D(θ) :=
λ(1− λ)

κ
+ (ρ− r)ℓ′(θ)− π − η(θ)

θ
(A.7)

=
(ρ− r) (1− λ2 − κπ)

2
√

κ (κ (r + δ)2 − µ2(1− λ2 − κπ) θ − 2κµ2α)
+

λ(1− λ)

κ
− π − πI

(
1− θ̃

θ

)+

,

where η(θ) is defined in (8). Observe that by parameter condition (11), D(1) < 0 and
therefore θ̇(1) < 0. This implies that there exists a left-neighborhood of one in which we
have θ̇ < 0, which, in turn, implies θ < 1.

For θ ̸= θ̃, D(θ) is differentiable and we obtain

D′(θ) =
(ρ− r)κµ2 (1− λ2 − κπ)

2

4 [κ (κ (r + δ)2 − µ2(1− λ2 − κπ) θ − 2κµ2α)]3/2
−

(
πI θ̃

θ2

)
I{θ > θ̃}.

Thus, when θ < θ̃, we have D′(θ) ≥ 0 with the inequality being strict if µ > 0. Further, for

θ ̸= θ̃, we have D′′(θ) > 0.

This implies the following. First, for θ ∈ [0, θ̃], D(θ) has at most one root. Moreover,

on the interval (θ̃, 1], the function D(θ) also has at most one root, since D(1) < 0. It has
precisely one root on this interval if and only if D(θ̃) > 0. Taken together, the function
D(θ) has at most two roots on the interval [0, 1]. Since θ̇ ∝ θD(θ), there exist at most three
stationary points, i.e., θ̇(θ) has (weakly) more than one but (weakly) less than three roots
on [0, 1].

There are three cases to distinguish.

1. Suppose D(θ) has zero roots on [0, 1]. Then, D(θ) < 0 and θ̇ < 0 for all θ ∈ [0, 1].
Then, the definition (24) implies θ = θ = 0 and note that θ̇(0) = 0.

2. Suppose that D(θ) has precisely one root, denoted θC , on [0, 1]. Then, it must be that

this root θC lies in [θ̃, 1]. To see this, suppose to the contrary that θC ∈ (0, θ̃). Then,

D(θ̃) > 0; thus, there exists a second root on (θ̃, 1], a contradiction.

By definition of θ in (24), the root equals θ, i.e., θC = θ, with θ ∈ [θ̃, 1].

We then have D(θ) > 0 and θ̇ > 0 for all θ < θ, as well as D(θ) < 0 and θ̇ < 0 for all

θ ∈ (θ̃, 1). The definition of θ implies θ = 0. Overall, θ̇(θ) = θ̇(θ) = 0.

3. Suppose that D(θ) has two roots, denoted θC1 < θC2 , on [0, 1]. Then, it must be that

D(0),D(1) < 0 < D(θ̃), and the smaller (larger) root satisfies θC1 ∈ (0, θ̃) (θC2 ∈ (θ̃, 1)).
By defintion of the thresholds in (24), we then have θC1 = θ and θC2 = θ. It follows that
θ̇ < 0 for θ ∈ (0, θ) or θ ∈ (θ, 1), while θ̇ > 0 for θ ∈ (θ, θ). Moreover, θ̇(θ) = θ̇(θ) = 0.

In this scenario, whenever µ > 0, we can solve D(θ) = 0 for θ < θ̃, yielding

θ = Θ :=
κ

µ2 (1− λ2 − κπ)

[
(r + δ)2 − 2µ2α− (ρ− r)2 (1− λ2 − κπ)

2

4 (κπ − λ(1− λ))2

]
,
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which is (26), as desired.

The expression Θ determines the number of roots of D(θ). First, when Θ ≥ θ̃, then D(θ)

has zero roots, and θ = θ = 0. Second, when Θ ∈ (0, θ̃), then D(θ) has two roots, i.e., θ and

θ, with θ = Θ and θ ∈ (θ̃, 1). Third, when Θ ≤ 0, then D(θ) has a single root θ ∈ (θ̃, 1), and
θ = 0.

A.4 Proof of Proposition 2

We prove the existence of a unique scaled, continuous Markov equilibrium in which the price
satisfies the scaling property, in that P (K, θ) = Kp(θ). The proof proceeds in several parts.
Part I presents the blockholder’s HJB equation (A.12)— allowing for general trading pro-
cesses and lumpy trading—and presents general results regarding the blockholder’s optimal
trading and equilibrium conditions—these conditions must hold in any Markov equilibrium
where the price satisfies P (K, θ) = Kp(θ) and they are also valid in other model variants.
Part II verifies the optimality of the proposed trading strategy: Conjecturing the equilibrium
(scaled) price p(θ) from Proposition 2, it shows that smooth trading is strictly optimal and
the (scaled) value function from Proposition 2 solves the HJB equation. Part III argues that
the equilibrium is unique. Unlike Part I, which presents general equilibrium conditions, the
other parts present proofs that only apply to our baseline.

A.4.1 Part I: Equilibrium Properties

We allow for continuous and lumpy trading by specifying the dynamics of the blockholder’s
stake as

dθt = θ̇tdt+ dIt, (A.8)

where θ̇t is the drift of dθt and dIt captures solely lumpy trading, in that It =
∫ t

0
dIs is

constant except for a countable number of times t. Since we focus on a Markov equilibrium,
we will depress time subscripts in the remainder of the proof.

More specifically, we consider that at an endogenous (state-dependent) intensity γ ∈
[0,∞], the blockholder conducts a lumpy trade toward state θ̂ ∈ [0, 1], where θ̂ is optimally
chosen by the blockholder and thus endogenous. With a slight abuse of notation, γ = +∞
corresponds to a lumpy trade that occurs with some atom of probability (possibly with
probability one). That is, we can write

dθ = θ̇dt+ (θ̂ − θ)dN, (A.9)

where dN ∈ {0, 1} is a jump process with E[dN ] = γdt. We introduce the convention that
whenever θ̂ = θ in aforementioned process, we set γ = 0.

Given a price P (K, θ) = Kp(θ) for an increasing, continuous function p(θ), we conjecture
and verify that V (K, θ) = Kv(θ) in the Markov equilibrium, where v(θ) and p(θ) are almost
everywhere differentiable (i.e., they are differentiable on [0, 1] except at countably many
points). Thus, for any θ ∈ (0, 1), the limits limx↑θ ω(θ) and limx↓θ ω(θ) exist and are well-
defined for ω ∈ {v′, p}.
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We characterize the blockholder’s dynamic optimization, given the conjectured equilib-
rium price P (K, θ) = Kp(θ)—we note that the scaled price function p(θ) need not be the one
proposed in Proposition 2 and our results of this part of the proof hold in any equilibrium.

To allow for generality and to encompass the model variant of Section 3 or B, we impose
that the investment it must satisfy a constraint it ∈ It. In Section 3, we set I = {µp(θ)},
while the baseline has It = [0,∞). We restrict it = i(θ) to be Markovian.

HJB Equation. Analogous to (6), in state (Kt, θt) = (K, θ) at time t, the value function
equals

V (K, θ) = max
(dLs,dθs,is∈Is)s≥t

Et

[ ∫ ∞

0

e−ρ(s−t)

{
θs
[
KsdXs −

Ksi
2
s

2
ds+ Ls(ρ− r)ds

]
(A.10)

−Ks

(
πθ2s
2

+
κb(θs)

2

2

)
ds− dθsKsp(θs + dθs)

}∣∣∣∣(Kt, θt) = (K, θ)

]
,

where we impose the optimal contract (with E[dC] = 0), the optimal effort choice from (15),

bs = b(θs), the default time of T = ∞ and the borrowing constraint Ls ≤ min{V (Ks,θs)
θs

, P (Ks, θs)}.
By the dynamic programming principle and the integral expression (A.10), the block-

holder’s value function solves the HJB equation:

ρV (K, θ)dt = max
ℓ,dθ,i∈I

{
K

[
θ

(
α + b+ (ρ− r)ℓ− i2

2

)
dt− πθ2

2
− κb2

2
dt

]
(A.11)

+ VK(K, θ)K(µi− δ)dt+ V (K, θ + dθ)− dθP (K, θ + dθ)
]}

,

where trading dθ follows the endogenous process (A.9), b is given in (15), and the borrowing

constraint becomes Kℓ ≤ min{V (K,θ)
θ

, P (K, θ)}.
Using the conjecture V (K, θ) = Kv(θ) and P (K, θ) = Kp(θ), we note that the gains

from trade V (K, θ + dθ) − dθP (K, θ + dθ) = K
[
v(θ + dθ) − dθp(θ + dθ)

]
are linear in K.

Specifically, if, in state (K, θ), the blockholder changes its stake by θ̂ − θ, then its total
payoff changes by V (K, θ̂)− (θ̂−θ)P (K, θ)−V (K, θ) = K

[
v(θ)− (θ̂−θ)p(θ)

]
. It is therefore

without loss of generality to work with scaled payoffs when characterizing optimal trading.
Using (A.9), one can show—similar to the derivation of (A.2) in Lemma 2—that the scaled
value function satisfies (in equilibrium) the following HJB equation:

(ρ+ δ)v(θ) = max
θ̇,γ,θ̂,ℓ,i∈I

{
θ

(
α + b+ (ρ− r)ℓ− i2

2

)
− πθ2

2
− κb2

2
+ µiv(θ)

+ θ̇
[
I{θ̇ ≥ 0} lim

x↓θ

(
v′(x)− p(x)

)
+ I{θ̇ < 0} lim

x↑θ

(
v′(x)− p(x)

)]
+ γ
[
v(θ̂)− v(θ)− (θ̂ − θ)p(θ̂)

]}
, (A.12)

subject to incentive constraint (15) for b and the borrowing constraint ℓ ≤ min{v(θ)
θ
, p(θ)}.

HJB equation (A.12) generalizes (A.2) to account for the possibility of lumpy trades and
randomized lumpy trades. It is well-defined for θ̇ ∈ (−∞,+∞) and γ ∈ [0,+∞). When
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γ = +∞, the HJB equation becomes with some abuse of notation: v(θ) = maxθ̂∈[0,1] v(θ̂)−
(θ̂ − θ)p(θ̂). Moreover, we regard an infinite trading rate θ̇ ∈ {−∞,+∞} as equivalent to a
lumpy trade, γ = +∞.

Also note that according to (A.9), the optimization in (A.12) implies that optimal trading
solves the equilibrium condition (13).

Gains From Trade and Equilibrium Trading Condition. For an interior solution
θ̇ ∈ (−∞,+∞) and γ ∈ [0,∞) to be optimal, it must be

lim
x↓θ

(
v′(x)− p(x)

)
≤ 0, and lim

x↑θ

(
v′(x)− p(x)

)
≥ 0,

max
θ̂∈[0,1]

[
v(θ̂)− v(θ)− (θ̂ − θ)p(θ̂)

]
≤ 0. (A.13)

We define the endogenous region

S = {θ ∈ [0, 1] : θ̇ ∈ (−∞,∞) and γ ∈ [0,∞)}. (A.14)

As in the definition of the trading process in (A.9), we follow the convention that whenever
θ̂ = θ, we set γ = 0. That is, whenever there is no lumpy trade in state θ, then γ = γ(θ) = 0.

Note that for all θ ∈ S, the condition (A.13) holds. Moreover, S encompasses all states
that may be attained in equilibrium, in that for any θ ∈ S, the blockholder does not imme-
diately trade away from that state.

For θ ̸∈ S, by definition, an immediate lumpy trade is optimal so that maxθ̂∈[0,1]
[
v(θ̂)−

v(θ)− (θ̂ − θ)p(θ̂)
]
= 0. Either way, we have

v(θ̂)− v(θ)− (θ̂ − θ)p(θ̂) ≤ 0 for all θ, θ̂ ∈ [0, 1]. (A.15)

Whenever v(0) = 0, we can set θ = 0 in (A.15) to obtain p(θ̂) ≥ v(θ̂)

θ̂
. That is, when v(0) = 0,

then v(θ)
θ

≤ p(θ) holds for θ ∈ [0, 1].

Next, consider θ ∈ S. Clearly, maxθ̂∈[0,1]
[
v(θ̂) − v(θ) − (θ̂ − θ)p(θ̂)

]
≤ 0, which implies

γ
[
v(θ̂) − v(θ) − (θ̂ − θ)p(θ̂)

]
= 0 for any θ̂. Likewise, it is optimal to set θ̇ ≤ 0 when

limx↓θ
(
v′(x) − p(x)

)
< 0 and θ̇ ≥ 0 when limx↑θ

(
v′(x) − p(x)

)
> 0. Overall, whenever

θ̇ ∈ (−∞,+∞) and γ ∈ [0,∞) is optimal:

max
θ̇,γ,θ̂

{
θ̇
[
I{θ̇ ≥ 0} lim

x↓θ

(
v′(x)− p(x)

)
+ I{θ̇ < 0} lim

x↑θ

(
v′(x)− p(x)

)]
(A.16)

+ γ
[
v(θ̂)− v(θ)− (θ̂ − θ)p(θ̂)

]}
= 0.

Plugging condition (A.16) back into (A.12), we obtain for the blockholder’s value function
on S:

(ρ+ δ)v(θ) = max
ℓ,i∈I

{
θ

(
α + b+ (ρ− r)ℓ− i2

2

)
− πθ2

2
− κb2

2
+ µiv(θ)

}
, (A.17)
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with b characterized in (15) and ℓ ≤ min{v(θ)
θ
, p(θ)}. In the baseline, the optimal investment

is i = v(θ)
θ
.

Baseline solution and v(0) = 0. Conjecture that v(0) = 0. Then, (A.15) implies v(θ)
θ

≤
p(θ). Thus, the optimization in (A.17) implies ℓ = v(θ)

θ
, and we can solve (A.17) for v(θ) =

v̂(θ) for all θ ∈ S. We verify that v(0) = 0. When 0 ∈ S, then (A.17) immediately implies
that v(0) = 0. v(0) solves (A.17) and the claim follows. When 0 ̸∈ S, then an immediate
lumpy trade toward some state θ̂ ∈ S is optimal and

v(0) = max
θ̂∈[0,1]

G(θ̂) := max
θ̂∈[0,1]

[
v̂(θ̂)− θ̂p(θ̂)

]
.

Note that p(θ̂) = v̂′(θ̂), and G′(θ̂) = −θ̂v′′(θ̂) < 0. In addition, G(0) = 0 and, because G(θ̂)
decreases, we obtain v(0) = 0.

A.4.2 Part II: Optimality of Smooth Trading and Trading Strategy

We verify the optimality of the proposed trading strategy under the proposed price function
satisfying p(θ) = v̂′(θ). That is, we conjecture the equilibrium price p(θ) = v̂′(θ) and verify
that, given this price, smooth trading is optimal and constitutes an equilibrium strategy.
This part then establishes the existence of a continuous, scaled Markov equilibrium.

Optimality of Smooth Trading. Consider state θ ∈ S, so that (A.13) holds and
v(θ) = v̂(θ) (as shown before). Because the price is continuous, (A.13) implies that v(θ)
is differentiable, with p(θ) = v′(θ).

We now solve the blockholder’s optimal trading and value function given the conjectured
price function p(θ) = v̂′(θ). For this sake, we solve (13) or, equivalently, the choice of trading
in the HJB equation (A.12). We show that smooth trading is optimal—that is,

θ̇dt ∈ arg max
∆∈[−θ,1−θ]

Kt {v(θ +∆)−∆p(θ +∆)} (A.18)

for finite trading rate θ̇ ∈ (−∞,+∞). Having established the optimality of smooth trading,
the HJB equation (A.12) then implies v(θ) = v̂(θ).

Note that for any finite trading rate dθ = θ̇dt, we have

v(θ + θ̇dt)− θ̇dt · p(θ + θ̇dt) = v̂(θ) + (v̂′(θ)− p(θ)θ̇dt = v̂(θ).

after ignoring terms of order (dt)2 or higher (which are negligible in continuous time). Thus,
smooth trading at any finite rate θ̇ yields continuation payoff v̂(θ). The blockholder is
indifferent across any finite trading rates and, in particular, v̂(θ) is also the payoff when the
blockholder does not trade at all.

In contrast, consider a lumpy trade toward state θ̂ from any state θ. We assume that
θ̂ ∈ S, as otherwise the lumpy trade would be followed immediately by another lumpy trade
and we could consolidate these trades. Thus, the blockholder chooses dθ = θ̂ − θ in state θ,
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which yields (scaled) payoff (given θ):

G(θ̂) := v̂(θ̂)− (θ̂ − θ)p(θ̂) = v̂(θ̂)− (θ̂ − θ)v̂′(θ̂).

Note that G(θ) = v(θ) and G′(θ̂) = −(θ̂ − θ)v̂′′(θ̂). Thus, G(θ̂) obtains its maximum for
θ = θ̂. Thus, given the price p(θ) = v̂′(θ), a lumpy trade is never optimal. This It follows
that smooth trading (including not trading at all) strictly dominates any lumpy trade with
θ̂ ̸= θ.

By definition, for all θ ̸∈ S, the blockholder would find it optimal to conduct a lumpy
trade toward a point θ̂ ∈ S. Above argument applies for both θ ∈ S and θ ̸∈ S. However,
we have shown that the blockholder would be better off not trading at all. Thus, the set
[0, 1]− S must be empty or, equivalently, S = [0, 1].

Thus, given the conjectured price function, smooth trading is optimal for all θ ∈ [0, 1]
and yields value function v(θ) = v̂(θ). In particular, v(θ) = v̂(θ) solves the HJB equation
(A.12).

Solving the Trading Rate. To show that p(θ) = v̂′(θ) is indeed an equilibrium price under
smooth trading and to establish that the proposed equilibrium indeed exists, we need to solve
for the equilibrium trade that is consistent with the price p(θ) = v̂′(θ) for all θ ∈ [0, 1].

To determine trading rate, we differentiate the closed-form expression for v̂(θ) with re-
spect to θ and using v̂′(θ) = p(θ), we obtain

(ρ+ δ)p(θ) = α + b+ µip(θ)− i2

2
+ (ρ− r)ℓ(θ)− π +

θλ(1− λ)

κ
+ θ(ρ− r)ℓ′(θ). (A.19)

In addition to satisfying (A.19), p(θ) satisfies the pricing equation of passive shareholders

(ρ+ δ − µi)p(θ) = α + b− i2

2
+ (ρ− r)ℓ(θ) + η(θ) + p′(θ)θ̇, (A.20)

where p(θ) increases with θ, i.e., p′(θ) > 0. Combining (A.19) and (A.20) yields

θ̇ =
1

p′(θ)

[
θλ(1− λ)

κ
+ θ(ρ− r)ℓ′(θ)− πθ − η(θ)

]
(A.21)

with p′(θ) = v̂′′(θ) > 0 and θℓ′(θ) = p(θ)− v(θ)
θ

> 0.

Finally, as shown by Lemma 3, the trading rate θ̇ = θ̇(θ) satisfies θ̇(0) = 0 and θ̇(1) <
0. Thus, the smooth trading is such that θ adheres to the “feasibility” constraint θ[0, 1].
Specifically, the process dθ = θ̇dt with aforementioned trading rate stays within [0, 1].

A.4.3 Part III: Equilibrium Uniqueness

Having shown that a continuous, scaled Markov equilibrium exists, we now argue that it
must be unique.

To see this, first recall that in equilibrium the condition (A.13) must hold for all θ ∈ S. As
the price function is continuous, then (A.13) implies that in equilibrium, v(θ) is differentiable
at θ with v′(θ) = p(θ) for all θ ∈ S. Thus, on S, we get that v(θ) = v̂(θ) and p(θ) = v̂′(θ).
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Given this price, we have shown that the blockholder’s trading rate is uniquely determined
according to (A.21). Thus, on the set S, the price is uniquely determined as p(θ) = v̂′(θ),
while the value function satisfies v(θ) = v̂(θ).

This leaves the possibility open that there might be an equilibrium with continuous scaled
price p(θ) which features S ≠ [0, 1]. However, repeating arguments made before, one can
then consider θ ∈ [0, 1]− S. In state θ ̸∈ S, it is then, by definition of the set S, optimal to
lumpily trade toward state θ̂ ∈ S (where v(θ̂) = v̂(θ̂) and p(θ̂) = v̂′(θ̂)). This trade yields
continuation payoff

v̂(θ̂)− (θ̂ − θ)v̂′(θ̂) < v̂(θ).

Thus, the blockholder would prefer not trading at all in θ ̸∈ S. Thus, the set [0, 1]−S must
be empty in any continuous, scaled trading equilibrium, while the equilibrium is uniquely
determined on S.

Taken together, the continuous, scaled Markov equilibrium that we have characterized is
unique.

A.5 Proof of Corollary 1

We recall for the purpose of this proof D(θ) defined in (A.7), satisfying

D(θ) =
(ρ− r) (1− λ2 − κπ)

2
√

κ (κ (r + δ)2 − µ2(1− λ2 − κπ) θ − 2κµ2α)
+

λ(1− λ)

κ
− π − πI

(
1− θ̃

θ

)+

.

We prove claims (1), (2), and (3) of the Corollary in the respective order.

1. Claim 1 follows directly from Lemma 3. In the long run, as t → ∞, the state θ drifts
to one of the stationary points. The dynamics of θ are deterministic, so that θ∞ is
deterministic.

2. We start by proving the claim regarding θ. Suppose that θ > 0. Then, θ > θ̃ satisfies
D(θ) = 0. The function D(θ) is differentiable at θ ∈ (θ̃, 1), satisfying D′(θ) < 0.
Totally differentiating D(θ) with respect to an arbitrary model parameter x, we get
from the implicit function theorem:

∂θ

∂x
= − 1

D′(θ)

∂D(θ)

∂x
, (A.22)

which has the same sign as ∂D(θ)
∂x

. Clearly, D(θ) increases in µ for any θ. Thus, θ

increases in µ. Next, note that D(θ) decreases in r for any θ, so that θ decreases in r.
Finally, D(θ) decreases in κ for any θ, so that θ decreases in κ too.

Next, we prove the claims regarding Θ. Note that D(Θ) = 0 with D′(Θ) > 0. Thus,

∂Θ

∂x
= − 1

D′(θ)

∂D(Θ)

∂x
, (A.23)
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which has the opposite sign as ∂D(θ)
∂x

. Thus, Θ decreases in µ, increases in r, and

increases in κ. Next, note that D(θ) decreases in r for any θ, so that θ decreases in r.

3. Finally, consider the case µ = 0. Then, D(θ) simplifies to

D(θ) =
(ρ− r) (1− λ2 − κπ)

2κ(r + δ)
+

λ(1− λ)

κ
− π − πI

(
1− θ̃

θ

)+

Note that for θ < θ̃, D(θ) is a constant and does not change with θ, so that there
cannot be a root on (θ, θ) (ignoring the knife-edge case that D(θ) ≡ 0 on this interval).
Either way, we have θ = 0. Then, we can solve

θ =

 πI θ̃

πI −
(

(ρ−r)(1−λ2−κπ)
2κ(r+δ)

− λ(1−λ)
κ

− π
)
 I{θ > θ̃}.

Note that θ > θ̃ if and only if (ρ−r)(1−λ2−κπ)
2κ(r+δ)

− λ(1−λ)
κ

− π > 0. In this case, we have

D(θ̃) > 0.

A.6 Proof of Proposition 3

For θ0 ∈ [0, 1], the blockholder’s scaled entry payoff reads

e(θ0) := v(θ0)−R(θ0) = v(θ0)− θ0p(θ0) + min{η, θ0}(p(θ0)− p(0)), (A.24)

where v(θ0) = v̂(θ0) and p(θ0) = v̂′(θ0), as well as p(0) = v̂′(0).
Consider θ0 ≤ η. Then, e(θ0) = v̂(θ0) − θ0v̂

′(0). Note that e(0) = 0 and e′(θ0) =
v̂′(θ0)− v̂′(0) = 0, i.e., e(θ0) is increasing and positive for θ0 ∈ (0, η). This implies e(η) > 0.

Next, consider θ0 ≥ η. Then, e(θ0) = v̂(θ0) − θ0v̂
′(θ0) + η

[
v̂′(θ0) − v̂′(0)

]
. Note that

e(η) > 0, while e′(θ0) = −(θ0 − η)v̂′′(θ0) < 0. Thus, e(θ0) decreases for θ0 > η.
Therefore, e(θ0) is maximized for θ0 = η.

B Investment Set by Passive Shareholders—Solution

Details and Proof of Proposition 4

We now provide the solution details for the model variant with passive shareholders control-
ling investment. Unless otherwise mentioned, all assumptions remain as in the baseline. We
assume µ > 0, as otherwise there is no investment and the baseline model applies.

In particular, we assume that instead of the blockholder, the passive shareholders choose
investment whenever θ < 1; for θ = 1, the blockholder chooses investment. We look
for a scaled, continuous Markov equilibrium with state variables (Kt, θt) = (K, θ), where
L(K, θ) = Kℓ(θ), V (K, θ) = Kv(θ), and P (K, θ) = Ktp(θ) with continuous and increasing
price function p(θ). Besides investment choice, all other elements, including debt choice and
the contracting with management, remain unchanged relative to the baseline. When writing
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down the payoffs, we already impose the optimal structure of the optimal contract with
management, which is the same as in the baseline. In addition, as in the baseline, it can be
shown that y(θ) < v′(θ) = p(θ).

Formally, passive shareholders choose the investment rate to maximize the stock price
P (K, θ), taking the blockholder’s trading dθ and other controls as given. That is, passive
shareholders choose investment rate i to maximize

ρP (K, θ) = max
i≥0

{
K

(
α + b− i2

2
+ η(θ)

)
+ (ρ− r)L(K, θ) +

E[dP (K, θ)]

dt

}
,

Due to P (K, θ) = Kp(θ) and dK
K

= (µi− δ)dt, this optimization can be rewritten as

(ρ+ δ)p(θ) = max
i≥0

{
α + b+ µip(θ)− i2

2
+ (ρ− r)ℓ+ η(θ) +

E[dp(θ)]
dt

}
,

where, as we show, equilibrium effort b satisfies b = θ(1−λ)
κ

and debt ℓ satisfies ℓ = ℓ(θ) = v(θ)
θ
.

The optimization with respect to i yields

i = i(θ) = µp(θ)

for all θ ∈ (0, 1).
To focus on non-trivial cases and to guarantee the existence of a unique continuous,

scaled Markov equilibrium, we make the following assumptions. First, as in the baseline, we
assume (9), (10), and µi < r + δ. Second, analogously to (11), we assume that

η(1) = πI(1− θ̃) > (ρ− r)

√
1− λ2 − κπ + 2ακ

κµ2
+

λ(1− λ)

κ
− π. (B.1)

The condition (B.1) slightly differs from (11), but has similar economic meaning. It will
ensure θ̇(1) < 0 and θ < 1, i.e., the blockholder never acquires the entire firm. Likewise, as
shown in Lemma 3, this outcome also prevailed in the baseline. Since the blockholder never
acquires the entire firm or, more generally, a sufficiently large stake (unless it is born with
it), both with and without control over investment, one could assume that the blockholder
controls investment for ownership levels θ sufficiently close to one, without changing the key
findings and equilibrium properties.

We note that the equilibrium properties of Appendix A.4.1—that is, (A.12), (A.15),
or (A.17)—are also valid in this model variant and are used in the following proofs. In
particular, Appendix A.4.1 derives equilibrium properties that must hold in any continuous,
scaled Markov equilibrium under any Markovian investment policy.

We solve for a continuous, scaled Markov equilibrium where the blockholder trades
smoothly at rate θ̇ = θ̇(θ) for all θ ∈ [0, 1], in that the set S—defined in (A.14)—satisfies
S = [0, 1]. In what follows, we suppose S = [0, 1], solve for the equilibrium, and then verify
in Appendix B.6 that S = [0, 1] holds in equilibrium. Appendix B.6 also establishes the
uniqueness of the continuous, scaled Markov equilibrium with smooth trading. We note that
this uniqueness result is slightly less general than uniqueness among all continuous, scaled
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Markov equilibria (which we established for the baseline).

B.1 Optimization and HJB Equation

In a continuous, scaled Markov equilibrium, (A.12) must hold whenever θ̇ ∈ (−∞,∞) and
a lumpy trade is not strictly optimal, in that gains from trade are zero in equilibrium.
By continuity of the price function, we have p(θ) = v′(θ). Analogously to (A.17), the
blockholder’s scaled value function v(θ) solves the HJB equation:

(ρ+ δ)v(θ) = max
ℓ

[
θ

(
α + b+ (ρ− r)ℓ− i2

2

)
− πθ2

2
− κb2

2
+ µiv(θ)

]
, (B.2)

subject to (5) and b = θ(1−λ)
κ

. We used that the gains from trade are zero, and the

blockholder’s value function is determined “as if” it could not trade at all (i.e., θ̇ = 0).

The choice of scaled debt satisfies, as in the baseline, ℓ(θ) = y(θ) = v(θ)
θ
. The only

and key difference to (17) and (A.17) is that the blockholder does not choose investment,
which, instead, equals i = µp(θ) = µv′(θ) and statically maximizes equity value p(θ), i.e.,

i = argmaxî≥0

[
µîp(θ)− î2

2

]
= µp(θ).

We can insert optimal debt policy, ℓ(θ) = y(θ), and the investment policy, i = µp(θ) =
µv′(θ), into (B.2) to obtain the following first-order ODE for v(θ):

(r + δ)v(θ) = θ

(
α + b− (µv′(θ))2

2

)
− κb2

2
− πθ2

2
+ µ2v′(θ)v(θ). (B.3)

Using y(θ) = v(θ)
θ

for θ ∈ (0, 1), we obtain from (B.3):

(r + δ)y(θ) = α +
θ(1− λ2)

2κ
− πθ

2
+ µ2v′(θ)

(
y(θ)− 1

2
v′(θ)

)
(B.4)

Note that when passive investors choose investment, the investment choice generally does
not maximize the blockholder’s scaled value function. As such, the blockholder’s scaled
value function is lower than that in the baseline, in that v(θ) < v̂(θ) and y(θ) < v̂(θ)

θ
for all

θ ∈ (0, 1).

B.2 ODE for Value Function and Stock Price

First note that according to (A.15), we have

v(θ̂)− v(θ)− (θ̂ − θ)p(θ̂) ≤ 0 for all θ, θ̂ ∈ [0, 1].

We conjecture and verify that v(0) = 0 (see below). Setting θ = 0 and using v(0) = 0, we

have p(θ̂) ≥ v(θ̂)

θ̂
. Thus, y(θ) = v(θ)

θ
≤ p(θ) = v′(θ) holds for all θ ∈ [0, 1].
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Using v′(θ) ≥ y(θ) for θ ∈ (0, 1), we can solve (B.3) for v′(θ) to obtain:

v′(θ) =

√
θ(1− λ2 − κπ) + 2ακ + y(θ)2 κµ2 − 2y(θ)κ (r + δ)

κµ2
+ y(θ). (B.5)

The ODE (B.5) is solved on (0, 1) subject to the boundary condition

lim
θ→0

v(θ)

θ
= lim

θ→0
y(θ) = lim

θ→0

v̂(θ)

θ
, (B.6)

where v̂(θ) is the value function under the baseline (i.e., when blockholder controls invest-
ment) given in (A.3). The boundary condition (B.6) implies in particular, limθ→0 v(θ) =
limθ→0 v̂(θ) = 0, i.e., v(0) = 0. The boundary condition reflects that in the limit θ → 0, the
blockholder’s value function approaches the value under the baseline.

We now prove that the term under the square root in (B.5) is strictly positive and that
v′(θ) > y(θ) in the continuous, scaled Markov equilibrium. Since we have already shown
v′(θ) ≥ y(θ), we suppose to the contrary there exists θ ∈ (0, 1) such that v′(θ) = y(θ) for
θ > 0. Thus, the baseline case effectively prevails where i = µp(θ) = µy(θ) maximizes the

blockholder’s value function. Then, (B.3) reduces to (A.17) with i = µv(θ)
θ

and ℓ(θ) = v(θ)
θ
.

In this case, we could solve (B.3) or, equivalently, (B.4) for

v(θ) = v̂(θ) =
θ
(
κ(r + δ)−

√
κ (κ (r + δ)2 − µ2(1− λ2 − κπ) θ − 2κµ2α)

)
κµ2

where above expression for v̂(θ) is taken from (A.3). Thus, y(θ) = v̂(θ)
θ
. Note that when

v(θ) = v̂(θ), the term under the square root in (B.4) becomes zero.
The ODE (B.5) and limθ→0 v

′(θ) = limθ→0 y(θ) imply then y(θ̂) = v′(θ̂) and v(θ̂) = v̂(θ̂)

for all θ̂ ∈ [0, θ]. However, v′(θ̂) = v̂′(θ̂) > v̂(θ̂)

θ̂
= y(θ̂) (see (A.5) and (A.3)), a contradiction.

The claim follows, i.e., v′(θ) > y(θ) in a continuous, scaled Markov equilibrium for θ ∈ (0, 1).

We note that limθ→0
v̂(θ)
θ

= p(0) where p(0) = p0 is defined in Proposition 1. For θ → 0, we
obtain that the term under the square root in (B.5) approaches zero, so that limθ→0 v

′(θ) =
limθ→0 y(θ) = p(0), i.e., v′(0) = p0.

B.3 Existence and Uniqueness of ODE Solution

Together, the ODE (B.5) and the boundary condition (B.6), as well as p(θ) = v′(θ) and the
trading strategy (discussed below), characterize the continuous, scaled Markov equilibrium.
A solution to (B.5) exists, but may not be unique. We argue now that v(θ) is uniquely
determined.

Note that the right-hand side of (B.5) is not Lipschitz continuous in v(θ) or y(θ), as
the term under the square root approaches zero as y(θ) approaches v′(θ). Thus, standard
uniqueness results do not apply, and there could be a solution to (B.5) where v′(θ) = y(θ)
on an interval. However, such a solution is ruled out, as we have shown v′(θ) > y(θ) for all
θ ∈ (0, 1).
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That is, v(θ) is the unique solution to (B.5) subject to (B.6) which satisfies v′(θ) > y(θ)
for all θ ∈ (0, 1). This solution can also be obtained by solving an auxiliary ODE and

invoking standard uniqueness results. Specifically, for ε > 0 and yε(θ) =
vε(θ)
θ

, we can solve

v′ε(θ) =

√
max

{
ε,
θ(1− λ2 − κπ) + 2ακ + yε(θ)2 κµ2 − 2yε(θ)κ (r + δ)

κµ2

}
+ yε(θ)

subject to

lim
θ→0

vε(θ)

θ
= lim

θ→0
yε(θ) = lim

θ→0

v̂(θ)

θ
.

The solution vε(θ) to this ODE is unique for any ε > 0, satisfying v′ε(θ) > yε(θ). We then
obtain v(θ) = limε→0 vε(θ) for all θ ∈ [0, 1], satisfying v′(θ) > y(θ) for θ ∈ (0, 1).

B.4 Strict Convexity of Value Function

We start by differentiating both sides of the ODE (B.3) with respect to θ to obtain

(r + δ)v′(θ) =

(
α + b− πθ − (µv′(θ))2

2

)
+

θλ(1− λ)

κ

− θµ2v′(θ)v′′(θ) + µ2(v′(θ))2 + µ2v(θ)v′′(θ).

Thus, provided θ > 0, we can solve for

v′′(θ) =
1

µ2θ
(
v′(θ)− y(θ)

) [α + b− πθ +
(µv′(θ))2

2
+

θλ(1− λ)

κ
− (r + δ)v′(θ)

]
︸ ︷︷ ︸

=:A(θ)

. (B.7)

Note that by (B.5), it follows that v′(θ) > y(θ) and µ2θ
[
v′(θ)− y(θ)

]
> 0. Thus, to show

that v′′(θ) > 0, we need to show that the term in square brackets in (B.7)—which we denote
by A(θ)—is positive. More generally, (B.7) implies that on (0, 1), v′′(θ) has the same sign
as A(θ).

Recall that, as discussed above, the boundary condition (B.6) implies v′(0) = p(0) where
p(0) = p0 is characterized in Proposition 1. Thus, inserting v′(0) = p(0) into our expression
for A(θ), we get A(0) = 0.

Next, calculate

A′(θ) =
1− λ2 − κπ

κ
− (r + δ)v′′(θ)− µ2v′(θ)v′′(θ)

=
1− λ2 − κπ

κ
− (r + δ − µi)v′′(θ). (B.8)

where we used i = µv′(θ). Note that r + δ − µi > 0 (finite valuations requirement ensured
by parameter condition (9)) and that 1− λ2 − κπ > 0 due to parameter condition (10).

We now prove that A(θ) > 0 (i.e., v′′(θ) > 0) in a right-neighborhood of zero. Suppose
to the contrary that there exists ε > 0 such that A(θ) < 0 (i.e., v′′(θ) < 0) for all θ ∈ (0, ε).
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However, v′′(θ) < 0 implies A′(θ) > 0 owing to (B.8). Thus, due to A(0) = 0, we must
have A(θ) > 0 on this interval, a contradiction. Thus, A(θ) > 0 and v′′(θ) > 0 in a
right-neighborhood of zero.

Last, suppose to the contrary that there exists θ′ ∈ (0, 1) such that v′′(θ′) < 0, i.e.,
A(θ′) < 0. Then, there exits—by continuity of v′′(θ) and A(θ)—a value θ′′ ∈ (0, θ′) where
v′′(θ′′) = 0, i.e., A(θ′′) = 0, as well as A′(θ′′) < 0. That is, because v′′(θ) > 0 and A(θ) > 0
in a right-neighborhood of zero and v′′(θ′),A(θ′) < 0, there must exists a root θ′′ of v′′(θ) and
A(θ), whereby A(θ) crosses zero from above with A′(θ′′) < 0. However, inserting v′′(θ′′) = 0
into (B.8) we obtain A′(θ′′) > 0, a contradiction. It follows that v′′(θ) > 0 on (0, 1).

B.5 Smooth Trading Rate

We determine the trading rate θ̇ = θ̇(θ). Differentiating both sides of (B.2) with respect to
θ and using p(θ) = v′(θ), we get

(ρ+ δ − µi)p(θ) = α + b− i2

2
+ (ρ− r)ℓ(θ)− πθ (B.9)

+
θλ(1− λ)

κ
+ θ(ρ− r)ℓ′(θ) + i′(θ)θµ

(
v(θ)

θ
− p(θ)

)
.

where ℓ = ℓ(θ) = v(θ)
θ

and i = i(θ) = µp(θ) = µv′(θ).

In analogy to (A.20) in the benchmark model, p(θ) satisfies the fair pricing equation of
passive shareholders:

(ρ+ δ − µi)p(θ) = α + b− i2

2
+ (ρ− r)ℓ(θ) + η(θ) + p′(θ)θ̇.

Combining (B.9) with the fair pricing equation, we can solve for the trading rate:

θ̇ = θ̇(θ) =
1

p′(θ)

[
θλ(1− λ)

κ
+ θ(ρ− r)ℓ′(θ)− πθ − η(θ) + θµi′(θ) (y(θ)− p(θ))

]
. (B.10)

Due to v′′(θ) > 0 and v′(θ)θ > v(θ), we get that ℓ′(θ) = 1
θ
(p(θ)− y(θ)) > 0 as well as

i′(θ) = µv′′(θ) > 0, so that

θµi′(θ)

(
v(θ)

θ
− p(θ)

)
= θµ2v′′(θ)

(
y(θ)− v′(θ)

)
< 0.

Finally, we verify that the proposed trading is such that θ stays within [0, 1], which boils
down to showing θ̇(0) ≥ 0 and θ̇(1) ≤ 0. First, inserting θ = 0 into (B.10), we note that
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θ̇(0) = 0. Second, we can calculate

θ̇(1) =
1

p′(1)

λ(1− λ)

κ
+ (ρ− r)(p(θ)− y(θ))− π − η(1) + µi′(1) (y(1)− p(1))︸ ︷︷ ︸

≤0


≤ 1

p′(1)

[
λ(1− λ)

κ
+ (ρ− r)

√
(1− λ2 − κπ) + 2ακ

κµ2
− π − η(1)

]
< 0,

where we used (B.5) to transition from the first to the second line, and we used (B.1) for
the last inequality. In addition, we used that√

θ(1− λ2 − κπ) + 2ακ + y(θ)2 κµ2 − 2y(θ)κ (r + δ)

κµ2
≤

√
(1− λ2 − κπ) + 2ακ

κµ2
.

To see this, define

B(y) := θ(1− λ2 − κπ) + 2ακ + y2 κµ2 − 2y κ (r + δ)

κµ2
.

Observe that B(0) > 0 and B′(y) ∝ −(r+δ−µ2y). For y ≤ v′(θ), we get r+δ−µ2y > r+δ−µi,
which is positive under the assumption of finite valuations (see (9)).

B.6 Optimality of Smooth Trading and Uniqueness

We show that lumpy trades are strictly sub-optimal, in that

0 = argmax
∆

[v(θ +∆)−∆p(θ +∆)] (B.11)

for any ∆ ∈ [−θ, 1 − θ]. The derivative with respect to ∆ of the term in square brackets
reads G(∆) := v′(θ + ∆) − p(θ + ∆) − ∆p′(θ + ∆). We have p(θ + ∆) = v′(θ + ∆), so
G(∆) = −∆v′′(θ +∆). Condition (B.11) holds if v′′(θ) > 0 holds for all θ ∈ (0, 1). We have
shown that v(θ) is strictly convex, establishing the optimality of smooth trading. Indeed,
given v′′(θ) > 0, it follows that smooth trading dominates lumpy trading in any given state,
also verifying our conjecture that S = [0, 1] holds in our equilibrium.

Uniqueness of the equilibrium—within the class of continuous, scaled Markov equilibrium
with smooth trading—follows from the uniqueness of the solution v(θ) to (B.5) subject to
(B.6) — which must hold in any continuous, scaled Markov equilibrium with S = [0, 1] —
combined with the pricing condition p(θ) = v′(θ).

Thus, v(θ) and p(θ) are uniquely pinned down in continuous, scaled Markov equilibrium
with smooth trading (which implies S = [0, 1]). As we have shown previously, given v(θ) and
p(θ), the trading rate is uniquely pinned down too, whereby trading is such that θ̇(0) ≥ 0
and θ̇(1) < 0, i.e., the equilibrium trading is consistent the constraint θ ∈ [0, 1].

Thus, a continuous, scaled Markov equilibrium with smooth trading exists and is unique.
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B.7 Proof of Corollary 2

First, the assumptions imply that under investor control over investment, the trading rate
satisfies according to (31):

θ̇ =
1

p′(θ)
[θµi′(θ) (y(θ)− p(θ))] < 0.

Thus, limt→∞ θt = θ̂ as well as limt→∞ p(θt) = p(θ̂) for some value θ̂ ∈ [0, θ0]. Suppose, to
the contrary, that θ̂ > 0. Then, limθ↓θ̂ θ̇ = 0 which implies limθ↓θ̂ y(θ) = limθ↓θ̂ p(θ), which
contradicts that y(θ) < p(θ) on (0, 1). Therefore, limt→∞ θt = 0, which implies—by virtue
of (B.6)—that limt→∞ p(θt) = v̂′(0).

Now, consider the baseline model. that the blockholder obtains the baseline, so the
trading rate in the continuous, scaled Markov equilibrium is given in (23). Under our as-
sumptions π = λ = ρ−r = 0, (23) readily implies θ̇ = 0, so that θt and p(θt) remain constant
at θt = θ0 and p(θt) = p(θ0), where p(θ0) > p(0) = p0.

C Risky Debt

Suppose that the firm experiences a downward jump in capital stock at Poisson rate Λ, in
that Kt follows

dKt

Kt−
= (µit − δ)dt− (1− St)dN

K
t ,

where Kt− = lims↑t Ks denotes the left-limit of capital, i.e., the capital stock at time t just
before the shock to capital is realized. Here, dNK

t ∈ {0, 1} is the increment of a Poisson

process with intensity Λ =
E[dNK

t ]

dt
> 0 and St (or equivalently 1−St) is uniformly distributed

over [0, 1] and i.i.d across time t. That is, each time t, there is a new random draw of St

from U([0, 1]) which is not observable unless dNK
t = 1 and in particular not observable at

time t−. Instantaneous cash flows equal Kt−dXt. Intuitively, a capital shock over [t, t + dt)
does not affect current cash flows dXt, but “next-period” cash flows.

Throughout, we assume that the blockholder chooses debt and investment. Furthermore,
we assume that the large capital shock, specifically dNK

t and St are not contractible with
management; they are also not influenced by management, which only affects the cash flows
Kt−dXt. That is, the manager’s contract takes the same form as in the baseline, featuring a
base wage ct and an exposure βt to cash flow realizations. By this assumption, we rule out
the possibility that the firm could write an insurance contract with management in which the
manager provides a large cash payment to repay debt following the shock—such a contract
is counterfactual. Thus, the manager’s contract Ct = (ct, βt) is only contingent on cash flows
Kt−dXt. We already use that the flow wage equals zero, i.e., ct = 0, and that the sensitivity
satisfies βt = λ.

In the following, we omit time subscripts and the left-limit notation, unless necessary.
Specifically, fraction 1 − S of the capital is destroyed, where S is uniformly distributed on
[0, 1]. Hence, when pre-shock capital stock equals K, then post-shock capital stock equals
SK. In the event that the firm defaults following this shock, creditors recover the firm’s
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liquidation value or RSK, where R < p(0) is sufficiently small to ensure that liquidation is
inefficient and creditors cannot be repaid in full in the event of default in equilibrium. See
Section C.6 for a characterization of p(0)—since p(0) is generally not available in closed-form,
there is unfortunately no explicit condition on parameters that ensures R < p(0).

The heuristic timing of the model with large shocks to capital within a time interval
[t, t + dt) is as follows. Initially, the blockholder’s stake equals θt and capital stock equals
Kt− . First, at the beginning of [t, t + dt), given a blockholder stake θt, shareholders choose
the managerial contract Ct = (ct, βt), the investment rate it ≥ 0, and the amount of short-
term debt Lt, where we assume that the proceeds from debt issuance are distributed as
dividends (one can net out these dividends with the debt repayment of the previous instant).
Second, the blockholder chooses its effort; then dNt realized and, observing dNt, the manager
chooses diversion mt. Then, cash flows dXt and capital shock dNK

t (1 − St) are realized;
the manager receives its promised payments. At this point in time, capital stock equals
Kt−

[
1− (1− St)dN

K
t

]
. Third, at the end of [t, t+ dt), debt matures and shareholders repay

debtholders (1+rtdt)Lt, where rt is the endogenous interest rate, or default, in which case it
is liquidated and the blockholder’s continuation payoff and firm value become zero. In case of
no default, cash flows net of investment cost, managerial compensation, and debt repayment
are distributed as dividends to shareholders. Fourth, after cash flows and capital shock are
realized, the blockholder can trade and chooses dθt, determining the next-period stake θt+dt =
θt + dθt. Notably, the blockholder can trade just before or just after debt is repaid. Finally,
investment and deprecation materialize, so Kt+dt = Kt−

[
1−(1−St)dN

K
t

]
+Kt−

[
µit−δ

]
dt.17

We characterize a continuous, scaled Markov equilibrium with state variables (Kt− , θt−) =
(K, θ), where Vt− = Kt−v(θt−), Pt− = Kt−p(θt), and Lt− = Kt−ℓ(θt)—we omit time sub-
scripts unless necessary. For brevity, we omit a formal proof of existence and uniqueness and
sketch the arguments here. However, one could adapt our baseline arguments to prove the
existence and uniqueness of a scaled, continuous Markov equilibrium, as well as to establish
the optimality of smooth trading.

Following the same arguments as in the baseline, we obtain v′(θ) = p(θ) as well as the
strict convexity of v(θ), i.e., v′′(θ) > 0 at points of differentiability, as necessary conditions

for the optimality of smooth trading. Moreover, we use that y = y(θ) = v(θ)
θ

increases in

θ, i.e., θv′(θ) − v(θ) > 0. Likewise, we already use that optimal investment satisfies µv(θ)
θ

,

as well as that blockholder effort satisfies b = θ(1−λ)
κ

. All these properties can be proven by
repeating the same arguments as in the baseline; we omit them for the sake of brevity.

C.1 Default and Credit Spreads

We start by characterizing endogenous default and credit spreads. Consider the firm just
after it has issued scaled debt of ℓ in state (K, θ). When a shock of size S realizes, the
blockholder’s (unscaled) payoff drops from K(v(θ) − ℓ) pre-shock to K

[
Sv(θ) − θℓ

]
post-

shock. When the blockholder’s post-shock payoffK[Sv(θ)−θℓ
]
is negative, i.e., Sv(θ)

θ
< ℓ, the

17The change in the capital stock due to investment and depreciation is of order dt and its effect on other
quantities of order dt therefore negligible. As such, the exact timing of when the capital stock is updated
does not matter for trading or default. For convenience and to avoid tedious notation, we assume it occurs
at the very end of the period.
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firm defaults following the shock. Analogous to the reasoning in Lemma 1, which shows that
the firm defaults whenever the blockholder’s payoff is strictly negative, default following the
shock occurs in one of two ways. Either the blockholder has the authority to force default, or
it sells its entire stake (at a positive price), thereby reducing the firm’s equity value below the
level of outstanding debt and making default optimal for passive shareholders. Otherwise,
when Sv(θ)

θ
≥ ℓ, the firm does not default following a shock.

Recall the definition (16), that is, y(θ) := v(θ)
θ
. In the Appendix, we may occasionally

suppress the dependence of y on θ. As argued above, following a shock with size S, the firm
defaults if and only if

Sy(θ) < ℓ = ℓ(θ) ⇐⇒ S <
ℓ(θ)

y(θ)
.

Conditional on a shock occurring, the probability of default is therefore given by ∆ := ℓ
y
—

which is a function of θ (dependence suppressed for convenience). Thus, the probability of
default over an instant [t, t+ dt) is Λ∆dt.

The recovery value in default following a size S-shock is RKS. Conditional on default,
i.e., S < ℓ

y
, creditors recover in expectation ℓ

2y
RK dollars, i.e., R

2y
dollars per unit of debt

(with face value of one dollar). When risk-neutral creditors with discount rate r lend one
dollar, they require an expected repayment at time t+ dt of 1 + rdt dollars, in that

1 + rdt = Λ∆dt · R
2y

+ (1− Λ∆dt)(1 + r̂dt),

where r̂ is the endogenous interest rate on debt.
To understand the above equality, note that over [t, t + dt), the creditors are repaid the

dollar plus interest r̂dt in case the firm does not default, which happens with probability
1 − Λ∆dt. With probability Λ∆dt, the firm defaults and creditors recover in expectation
R
2y

< 1 dollars per dollar lent. We can solve the above expression for the fair interest rate

r̂ := r + Λ∆

(
1− R

2y

)
,

which coincides with (32). Therefore, the credit spread equals r̂ − r = Λ∆
(
1− R

2y

)
.

C.2 Payoffs

The following derivations turn out to be convenient in characterizing the blockholder’s payoff
function. Conditional on a shock occurring and no default, the average scaled continuation
payoff post-shock equals

v(θ)

2

(
ℓ

y
+ 1

)
− θℓ =

v(θ)

2
(1 + ∆)− θℓ =

θy

2
(1 + ∆)− θℓ
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for the blockholder. It equals

p(θ)

2

(
ℓ

y
+ 1

)
− ℓ =

p(θ)

2
(1 + ∆)− ℓ

for the passive investors. Given a level of debt ℓ, we can calculate the expected continuation
payoff for the blockholder conditional on a shock occurring as:

Eb(θ) := ES
t

[
max{0, Sv(θ)− θℓ}

∣∣dNt = 1; θt = θ
]

= (1−∆)

(
v(θ)

2
(1 + ∆)− θℓ

)
=

(
θy

2

) [
1−∆2]− ℓ(1−∆),

where the ES
t is taken with respect to the random variable S conditional on dNK

t = 1.
Likewise, the expected continuation payoff for the passive shareholders, i.e., the expected
stock price, conditional on a shock occurring becomes

Ep(θ) := ES
t

[(
Sp(θ)− ℓ

)
I{Sv(θ) ≥ θℓ}

∣∣dNt = 1; θt = θ
]

(C.1)

= (1−∆)

(
p(θ)

2
(1 + ∆)− ℓ

)
=

(
p(θ)

2

)[
1−∆2]− ℓ(1−∆),

where the indicator I{Sv(θ) ≥ θℓ} equals one if and only if the firm does not default following
the shock, that is, if and only if S ≥ ℓ

y
.

We heuristically derive the blockholder’s HJB equation under optimal debt and invest-
ment choice, starting in state (K, θ) with zero debt outstanding. Recall that in optimum
i = µy. Importantly, in equilibrium, gains from trade are zero and v′(θ) = p(θ), so the
blockholder’s payoff is “as if” it could not trade and θ remains constant. Thus, consider
the hypothetical scenario that θ remains constant over [t, t+ dt). First, recall that the firm
receives a capital shock with probability Λdt, in which case it defaults with probability ∆dt
and does not default otherwise. The scaled payoff from issuing Kℓ dollars of debt maturing
at t+ dt, with proceeds paid out as dividends, satisfies:

Kv(θ) = θKℓ+K

(
θ

(
α + b− i2

2

)
− πθ2

2
− κb2

2

)
dt

+ e−ρdt(1− Λdt)
{
[K + (µi− δ)dt]v(θ)− θKℓ(1 + r̂dt)

}
+ e−ρdtΛ(1−∆)dt

{
K[S̃ + (µi− δ)dt]v(θ)− θKℓ(1 + r̂dt)

}
,

where S̃ := E
[
S
∣∣∣S ≥ ℓ

y

]
= 1

2
+ ℓ

2y
for y = v(θ)

θ
, r̂ = r + Λ∆

(
1− R

2y

)
, and ∆ = ℓ

y
.

Taking the limit dt → 0, ignoring terms of order (dt)2, and doing some algebra, we can
derive that the blockholder’s value function solves

(ρ+ δ + Λ− µi)v(θ) =θ

(
α + b− i2

2
+ (ρ+ Λ− r̂)ℓ

)
− πθ2

2
− κb2

2
+ ΛEb(θ).

Note that the shock arrival rate Λ effectively augments the blockholder’s discount rate, i.e.,
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the “effective” discount rate becomes ρ+Λ. Inserting the interest rate r̂ from (32) into above
equation, we can rearrange to obtain for the blockholder’s value function:

(ρ+ δ − µi+ Λ)v(θ) =θ

(
α + b+ (ρ− r)ℓ− i2

2

)
− πθ2

2
− κb2

2
+

θΛ

2

[
y −∆2(y −R)

]
,

(C.2)

given the controls.

C.3 Optimal Debt Choice

Taking the derivative of the right-hand-side of (C.2) with respect to ℓ, we get

∂v(θ)

∂ℓ
∝ θ(ρ− r)− θΛ∆(y −R)

y
∝ (ρ− r)

Λ
− ℓ(y −R)

y2
,

where the proportionality sign ∝ indicates the omission of positive scaling constants. If
ℓ < v(θ)

θ
, i.e. the borrowing constraint (5) does not bind, the optimal choice of debt ℓ solves

∂v(θ)
∂ℓ

= 0. As such, we can solve for

ℓ = ℓ(θ) = min

{
y,

(ρ− r)y2

Λ(y −R)

}
, (C.3)

where, as we recall, y = y(θ) = v(θ)
θ
. We also note that y = y(θ) ≥ p(0) = p0, so the

denominator of above expression is strictly positive.

As such, the default probability, conditional on a shock occurring, becomes

∆(θ) =
ℓ(θ)

y(θ)
= min

{
1,

(ρ− r)y

Λ(y −R)

}

C.4 Stock Price and Trading Rate

The stock price satisfies the pricing equation

(ρ+ δ + Λ− µi)p(θ) =α + b− πθ − i2

2
+ (ρ+ Λ− r̂)ℓ− κb2

2
+ ΛEp(θ),

where Ep(θ) is the expected continuation stock price conditional on a shock occurring from
(C.1). Here, Λ augments the discount rate of passive shareholders. Upon a shock occurring
with probability Λ, the passive shareholders realize expected continuation stock price Ep(θ).
We can rewrite the pricing equation as follows:

(ρ+ δ + Λ)p(θ) =α + b+ (ρ− r)ℓ− i2

2
+ µip(θ) + η(θ)

+
Λ
[
p(θ)−∆2(p(θ)−R)

]
2

+ p′(θ)θ̇. (C.4)
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Next, we derive the blockholder’s valuation of an additional unit of stock, i.e., v′(θ), which,
in equilibrium, must equal the stock price p(θ). We distinguish two cases, (i) ℓ < 1 and (ii)
ℓ = y.

Borrowing Constraint ℓ ≤ y(θ) is slack. First, suppose that ℓ < y = y(θ), which implies

∆ < 1. Then, the choice of debt ℓ solves the first-order condition ∂v(θ)
∂ℓ

= 0, and so does

investment, i.e., ∂v(θ)
∂i

= 0. We now invoke the envelope theorem and differentiate both sides
of (C.2) with respect to θ. After some algebra, we obtain that the marginal valuation of an
additional unit of stock from the blockholder perspective satisfies v′(θ) = p(θ) with

(ρ+ δ + Λ)p(θ) = α + b− πθ + (ρ− r)ℓ− i2

2
+ µip(θ) +

θλ(1− λ)

κ

+
Λ
[
p(θ)−∆2(p(θ)−R)

]
2

+ θΛ
y′(θ)ℓ2

y3
(y −R) .

The last term θΛy′(θ)ℓ2

y3
(y −R) is strictly positive due to y′(θ) > 0 and can be rewritten as

follows:

θΛ
y′(θ)ℓ2

y3
(y −R) = θΛ∆2y

′(θ)[y −R]

y
= θy′(θ)

(
(ρ− r)2y

Λ(y −R)

)
= θ(ρ− r)y′(θ)∆.

Borrowing Constraint ℓ ≤ y(θ) is binding. Second, consider ℓ = ℓ(θ) = y(θ), i.e., ∆ = 1.

Then, the choice of debt is constrained by the borrowing constraint ℓ ≤ y and does not solve
a first-order condition. Again, we differentiate both sides of (C.2) with respect to θ. We
then obtain that the marginal valuation of an additional unit of stock from the blockholder
perspective satisfies v′(θ) = p(θ) with

(ρ+ δ + Λ)p(θ) = α + b− πθ + (ρ− r)ℓ− i2

2
+ µip(θ) +

θλ(1− λ)

κ
+

Λ
[
p(θ)−∆2(p(θ)−R)

]
2

+ θ(ρ− r)ℓ′(θ).

Due to ℓ(θ) = y(θ) whenever ∆ = 1, we have θ(ρ− r)ℓ′(θ) = θ(ρ− r)y′(θ)∆ = (ρ− r)[p(θ)−
y(θ)] > 0.

In both scenarios, we can combine above equations for p(θ) = v′(θ) with (C.4) to solve
for the trading rate:

θ̇ =
1

p′(θ)

[
θλ(1− λ)

κ
− πθ − η(θ) + θ(ρ− r)y′(θ)∆

]
. (C.5)

Here, θ(ρ− r)y′(θ)∆ = (ρ− r)∆
[
p(θ)− y(θ)

]
> 0 captures the gains from trade associated

with risky debt.
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C.5 Dynamics of Debt, Default Probabilities, and Credit Spreads

Suppose that in state (K, θ), optimal debt satisfies ℓ = (ρ−r)y(θ)2

Λ(y(θ)−R)
< y. Then,

ℓ′(θ) =
y′(θ)(ρ− r)

Λ

2y(y −R)− y2

(y −R)2
=

y′(θ)(ρ− r)

Λ

y(y − 2R)

(y −R)2
.

If R ≤ p(0)
2
, y − 2R is unambiguously positive and debt ℓ increases with θ. Otherwise, when

p(0)
2

< R < p(0), then there exists a right-neighborhood of 0 in which ℓ′(θ). Then, ℓ(θ) is
generally U-shaped in θ, i.e., first decreases and then increases in θ.

Next, the default probability ∆(θ) satisfies

∆′(θ) =
y′(θ)

Λ

(y(θ)−R)(ρ− r)− (ρ− r)y(θ)

(y(θ)−R)2
= −R

y′(θ)

Λ

(ρ− r)

(y(θ)−R)2
< 0.

Thus, the default probability decreases with θ.

Finally, calculate the credit spread

r̂ − r =
(ρ− r)y

y −R
− R(ρ− r)

2(y −R)
= (ρ− r)

2y −R

2(y −R)

which decreases with θ.

C.6 Passive Ownership Benchmark

Under (perpetual) passive ownership, the stock price satisfies Kp(0) and investment satisfies
i = i0µp(0), as in the baseline. Debt issuance ℓ = ℓ0 is subject to the borrowing constraint
ℓ ≤ p(0), which ensures that equity value remains positive and precludes immediate default.
Moreover, following a capital shock of size S, the firm defaults under passive ownership
whenever Sp(0) < ℓ, leading to the probability of default ∆ = ∆0 = ℓ

p(0)
.

Analogously to the pricing equation (C.4)—which holds for θ > 0—the scaled passive-
ownership price satisfies

(ρ+ δ + Λ)p(0) = max
ℓ

(
α + (ρ− r)ℓ− i2

2
+ µip(0) +

Λ
[
p(0)−∆2(p(0)−R)

]
2

)
. (C.6)

It can be obtained similar to (C.4) upon setting θ̇ = 0, η(θ) = 0, and θ = 0, while optimizing
the right-hand-side over debt.

Debt choice satisfies under passive ownership solves the first-order condition (if interior):

(ρ− r)− Λℓ(p(0)−R)

(p(0))2
= 0,

leading to

ℓ = ℓ0 = min

{
p(0),

(ρ− r)(p(0))2

Λ(p(0)−R)

}
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One can insert this expression for ℓ = ℓ0 back into (C.6), but there is no closed-form solution
for p(0); one needs to solve p(0) numerically. Overall, p(0) will be a function of R. We
impose p(0) > R, which leads to an implicit parameter condition on R.

Note that p(0) > R implies that in equilibrium, the recovery value is insufficient to repay
creditors in full in the event of default, making debt is risky. To see this, note that the
firm default in state θ = 0 whenever S < ℓ0

p(0)
. Upon default, creditors then recover SRK

dollars. Due to SR < Sp(0) < ℓ0 — where we used R < p(0) and S < ℓ0

p(0)
— this amount

is insufficient to repay creditors in full. Likewise, in state θ, the firm defaults whenever
S < ℓ

y
, in which case creditors recover SRK dollars. Due to SR < p(0)

y
ℓ < ℓ, this amount is

insufficient to repay creditors in full.

C.7 Investor Control

We now briefly discuss how the solution changes when passive investors are in control of
corporate policies, allowing them to choose both investment and debt. In a continuous,
scaled Markov equilibrium with smooth trading, we have p(θ) = v′(θ). Under investor
control, debt and investment are determined according to:

(ρ+ δ + Λ)p(θ) = max
i,ℓ

{
α + b+ η(θ) + (ρ− r)ℓ− i2

2
+ µip(θ)

+
Λ
[
p(θ)−∆2(p(θ)−R)

]
2

+ p′(θ)θ̇

}
. (C.7)

where ∆ = ℓ
y
and ℓ ≤ y. This leads to i = iI = µp(θ) = µv′(θ). Debt choice satisfies under

investor control the first-order condition (if interior)

(ρ− r)− Λℓ[p(θ)−R]

y2
= 0,

which we solve for

ℓ = ℓI = min

{
y,

(ρ− r)y2

Λ[p(θ)−R]

}
.

Given these policies, the blockholder value function satisfies (C.2), that is:

(ρ+ δ − µi+ Λ)v(θ) = θ

(
α + b+ (ρ− r)ℓ− i2

2

)
− πθ2

2
− κb2

2
+

θΛ

2

[
y −∆2(y −R)

]
,

where the default probability ∆ = ∆I = ℓI

y
is a non-linear function of v′(θ) = p(θ), provided

ℓI < y; ℓ(θ) = ℓI(θ) and i(θ) = iI(θ) are functions of θ too. This ODE is solved subject to

limθ→0
v(θ)
θ

= p(0) — with p(0) characterized in the passive ownership benchmark.

The determination of the continuous, scaled Markov equilibrium becomes similar to that
in Section 3, but the ODE is now significantly more complicated and cannot even be explicitly
solved for v′(θ). We leave the further analysis of this model variant, acknowledging that it
would be tedious.
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Trading Rate with Investor Control. Nonetheless, we can solve for the trading rate,
without further characterizing the ODE for v(θ) or having a closed-form solution for v(θ) or
p(θ).

For this sake, we assume that the borrowing constraint does not bind, in that ℓI < y(θ).
Then, we can differentiate both sides of (C.2) with respect to θ to obtain that p(θ) = v′(θ)
satisfies:

(ρ+ δ + Λ− µi)p(θ) = α + b− πθ + (ρ− r)ℓ− i2

2
+

θλ(1− λ)

κ

+
Λ
[
p(θ)−∆2(p(θ)−R)

]
2

+ θΛ
y′(θ)ℓ2

y3
(y −R)

+ (ρ+ δ + Λ− µi)
( ∂v(θ)

∂ℓ

∂ℓI

∂θ︸ ︷︷ ︸
>0

)
+ i′(θ)θµ(y(θ)− p(θ))︸ ︷︷ ︸

<0

.

The term θΛy′(θ)ℓ2

y3
(y −R) satisfies

θΛ
y′(θ)ℓ2

y3
(y −R) = θΛ∆2y

′(θ)[y −R]

y
= θy′(θ)

(
(ρ− r)2y

Λ(y −R)

)
= θ(ρ− r)y′(θ)∆.

Combining these with (C.7), we can solve for the trading rate through θ̇ = A(θ)
p′(θ)

where

A(θ) =
θλ(1− λ)

κ
− πθ − η(θ) + θ(ρ− r)y′(θ)

+ (ρ+ δ + Λ− µi)
( ∂v(θ)

∂ℓ

∂ℓI

∂θ︸ ︷︷ ︸
>0

)
+ i′(θ)θµ(y(θ)− p(θ))︸ ︷︷ ︸

<0

.

To gain some intuition, note that if passive investors are in control, they choose too high
investment i = iI = µp(θ) and too low debt ℓ = ℓI from the blockholder’s perspective.
Therefore, a marginal increase in investment (debt) reduces (increases) the blockholder’s

value function, in that ∂v(θ)
∂i

< 0 and ∂v(θ)
∂ℓ

> 0. The blockholder internalizes that when
increasing its ownership stake marginally, it induces passive shareholders to choose higher
levels of investment and debt, which affects its own payoff. This effect influences the block-
holder’s valuation of an additional unit of equity, and therefore the gains from trade and
trading rate θ̇. Consequently, as also shown in Section 3, delegating investment decisions to
passive shareholders reduces the blockholder’s propensity to acquire additional shares and
encourages exit. In contrast, delegating debt decisions to passive shareholders increases the
blockholder’s propensity to acquire additional shares.
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D Other Results—Details and Proofs

D.1 Large Trades and Proof of Proposition 6

We characterize a scaled Markov equilibrium where P (K, θ) = p(θ) and V (K, θ) = Kv(θ).
The only difference from the baseline is that (11) is not met, while all other elements remain
unchanged. We note that when (11), it is not possible to construct a scaled Markov equilib-
rium where the price function is continuous. Instead, we will construct a Markov equilibrium
where p(θ) exhibits one discontinuity at the endogenous threshold θ∗. Here, we note that
the results from Appendix Section A.4.1 also apply in this context, since this Appendix
establishes generalized equilibrium properties that hold in any scaled Markov equilibrium,
i.e., so long as P (K, θ) = Kp(θ) and V (K, θ) = Kv(θ).

All state dependent controls b = b(θ), the managerial contract, i = i(θ), and ℓ = ℓ(θ) are
analogous to the baseline.

D.1.1 Preliminaries

In the following, it will be convenient to work with p̂(θ) defined via

p̂(θ) :=
α + b(θ) + (ρ− r)ℓ(θ)− i(θ)2

2
+ η(θ)

ρ+ δ − µi(θ)
, (D.1)

with ℓ(θ) = v̂(θ)
θ
, i(θ) = µv̂(θ)

θ
, and b = b(θ) from (15). Note that p̂(θ) is the hypothetical

scaled price that would prevail if the blockholder perpetually maintained ownership θ.
One can show that whenever (11) does not hold, we have v̂′(1) ≥ p̂(1), i.e., by construc-

tion, the condition (11) is equivalent to v̂′(1) < p̂(1).
Next, define

JH(θ) = v̂(1)− (1− θ)p̂(1)− v̂(θ),

where p̂(1) is the hypothetical price that prevails if the blockholder perpetually owns the
entire firm with θ = 1. Note that J ′

H(θ) = p̂(1) − v̂′(θ) and J ′′
H(θ) = −v̂′′(θ) < 0. Thus,

J ′
H(1) < 0. Since JH(1) = 0, it follows that JH(θ) has maximally one root on (0, 1), while

JH(θ) < 0 for θ > 1.
We define

θ∗ = inf{θ ≥ 0 : JH(θ) ≥ 0} (D.2)

Due to J ′′
H(θ) < 0 and JH(1) = 0 as well as J ′

H(1) < 0, there exist a left-neighborhood of 1
on which JH(θ) > 0. Thus, θ∗ ∈ (0, 1). If JH(θ) has a root on (0, 1), then θ∗ is this root, i.e.,
JH(θ

∗) = 0. Otherwise, JH(θ) ≥ 0 for all θ ∈ (0, 1) and θ∗ = 0.
We note that θ∗ ∈ (0, 1) if and only if JH(0) < 0, i.e., v̂(1) − p̂(1) < 0. If JH(0) ≥ 0,

the equilibrium is trivial, with the blockholder immediately acquiring the entire firm and
perpetually maintaining full ownership (θ = 1).

We therefore assume JH(0) = v̂(1) − p̂(1) < 0 in what follows to obtain an equilibrium
with meaningful trading dynamics. This implies θ∗ ∈ (0, 1).
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D.1.2 Conjecturing the Equilibrium

We conjecture the following equilibrium, where the blockholder optimally trades smoothly
on the interval [0, θ∗) according to rate θ̇ = θ̇(θ) characterized in (23). The trading rate
can be positive or negative, as in the baseline, with θ̇(0) = 0. On [0, θ∗], the (scaled) value
function satisfies v(θ) = v̂(θ) and the price satisfies p(θ) = v̂′(θ).

When v̂′(θ∗) > p̂(θ∗), the trading rate θ̇(θ) is positive in a left-neighborhood of θ∗ and
θ reaches θ∗ from below, in that limθ→θ∗ θ̇(θ) > 0. Once θ reaches θ∗, the blockholder is
indifferent and randomizes between buying the entire firm at once (i.e., dθ = 1− θ∗) and not
trading at all (i.e., dθ = 0). The rate at which the blockholder buys the entire is denoted
γ∗ > 0 and will be characterized later. The state θ remains at θ∗ until the blockholder buys
the entire firm.

When v̂′(θ∗) ≤ p̂(θ∗), the blockholder trades smoothly in state θ∗ at rate θ̇(θ∗) ≤ 0. We
then have limθ→θ∗ θ̇(θ) ≤ 0, and θ∗ is either absorbing or θ drifts away and below θ∗.

The threshold θ∗ satisfies JH(θ
∗), with θ∗ ∈ (0, 1). At θ∗, we have v(θ∗) = v̂(θ∗) and

p(θ∗) = v̂′(θ∗).
When θ = 1, the blockholder stops trading and maintains perpetually full ownership of

the firm, with value function v(1) = v̂(1) and price p(1) = p̂(1).
When θ ∈ (θ∗, 1), the blockholder immediately buys the entire firm at price p̂(1), i.e.,

dθ = 1 − θ. The price equals p(θ) = p̂(1) and the value function equals v(θ) = v̂(1) − (1 −
θ)p̂(1) > v̂(θ).

Thus, in this equilibrium, the value function is smooth and strictly convex on [0, θ∗) with
v̂′′(θ) > 0, while the price is continuous and increasing on this interval. At θ∗, the price
exhibits an upward jump while the value function exhibits a kink.

For the following analysis, we recall from Appendix section A.4.1 that v(θ) = v̂(θ) on the
set

S = {θ ∈ [0, 1] : θ̇ ∈ (−∞,+∞) and γ ∈ [0,∞)}

— defined analogously in (A.14).
In this model variant, the set S is conjectured as S ∈ [0, θ∗] ∪ {1} — with θ∗ defined in

(D.2). For θ ̸∈ S, the blockholder finds it optimal to immediately conduct a lumpy trade,
which, without loss of generality, brings θ into the set S.

D.1.3 Optimality of the Trading Strategy

We verify the optimality of the proposed trading strategy. To do so, we show that, given the
conjectured equilibrium price, the blockholder’s scaled value function v(θ) solves the HJB
equation (A.12). If v(θ) solves the HJB equation (A.12), it follows that the proposed trading
strategy is optimal, since this strategy yields payoff v(θ). To show that v(θ) solves the HJB
equation, we first need to characterize the optimal trading in different parts of the state
space under the conjectured equilibrium price p(θ) and continuation payoff v(θ). Then, one
can verify that the HJB equation holds by invoking the optimal trading strategy.

We start with preliminary findings, and distinguish the following cases and characterize
the trading in different parts of the state space.

Result: Any Lumpy Trade must be onto the edges of S. As a lumpy trade outside
of S would be immediately followed by another lumpy trade, it is without loss of generality
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to assume that a lumpy trade brings the state θ into the set S.
In the interior of S, i.e., in int(S), we have v(θ) = v̂(θ) and p(θ) = v̂′(θ). Consider state

θ and suppose to the contrary that the blockholder conducts a trade from state θ toward
state θ̂ ∈ int(S). While not trading at all yields continuation payoff v̂(θ), the trade toward
θ̂ yields continuation payoff

G(θ̂) = v̂(θ̂)− (θ̂ − θ)v̂′(θ̂)

Note that G(θ) = v̂(θ), equal to the payoff of not trading at all. Calculate G′(θ̂) = −(θ̂ −
θ)v̂′′(θ̂). Due to strict convexity of v̂(θ) it follows that G(θ̂) is optimized for θ̂ = θ. Thus, a
lumpy trade toward state θ̂ ∈ int(S) is strictly dominated by not trading at all. Hence, any
lumpy trade must bring θ onto the edges of S, i.e., θ̂ ∈ {0, 1, θ∗}
State θ ∈ (θ∗, 1). Note that v̂(1) ≤ v(1), as the blockholder always has the option not to
trade at all in state θ = 1 yielding a payoff v̂(1).

Next, suppose to the contrary that θ̇ ∈ (−∞,∞) and γ ∈ [0,∞) is optimal. Then, θ ∈ S
and v(θ) = v̂(θ). But, as θ ∈ (θ∗, 1), we have v̂(θ) < v̂(1) + (1− θ)p̂(1) ≤ v(1) + (1− θ)p̂(1)
and the blockholder could attain strictly higher payoff through a lumpy trade toward 1, i.e.,
dθ = 1− θ, a contradiction. As a consequence, θ ̸∈ S.

Thus, the blockholder conducts a lumpy trade. According to our findings above, this
lumpy trade brings θ onto the edge of S, so the blockholder trades toward θ̂ ∈ {0, 1, θ∗}.
Trading toward θ̂ = 1 yields v(1)− (1− θ)p̂(1) ≥ v̂(1) + (1− θ)p̂(1). Trading toward θ̂ = θ∗

yields

v̂(θ∗) + (θ − θ∗)p(θ∗) = v̂(1)− (1− θ∗)p̂(1) + (θ − θ∗)p(θ∗)

< v̂(1)− (1− θ∗)p̂(1) + (θ − θ∗)p̂(1) ≤ v(1)− (1− θ)p̂(1),

where we have used that v̂(θ∗) = v̂(1) − (1 − θ∗)p̂(1) and p(θ∗) < p̂(1) for θ∗ < 1. Thus,
trading toward θ̂ = 1 strictly dominates trading toward θ̂ = θ∗.

A trade toward 0 yields payoff p̂(0)θ < v̂(θ) and thus is strictly dominated by not trading
at all.

In state θ ∈ (θ∗, 1), immediately trading toward θ̂ = 1, i.e., dθ = (1− θ), is thus strictly
optimal, delivering payoff v(θ) = v(1) − (1 − θ)p̂(1). Inserting θ̂ = 1 and γ = +∞ into
(A.12), we can see that (A.12) holds.

State θ = 1. If the blockholder conducts a lumpy trade, then this trade is toward state
θ̂ ∈ {0, θ∗} on the edges of S. Relative to not trading and collecting payoff v̂(1), a trade
toward θ∗ ∈ (0, 1) changes payoff by

v̂(θ∗) + (1− θ∗)p(θ∗)− v̂(1) < v̂(θ∗) + (1− θ∗)p̂(1)− v̂(1) = 0,

where we have used that p(θ∗) < p̂(1) (for θ∗ < 1) and that, by definition of θ∗, v̂(θ∗) + (1−
θ∗)p̂(1)− v̂(1) = 0 for θ∗ ∈ (0, 1).

A trade toward θ̂ = 0 delivers payoff θp̂(0) < v̂(θ), and thus is strictly suboptimal too.
Next, suppose to the contrary that smooth trading in state θ = 1 is optimal. Thus,

θ̇ < 0. But, as we have shown, in any state θ ∈ (θ∗, 1), it is strictly optimal to trade
toward one. As such, smooth trading θ̇ < 0 in state θ = 1 cannot be, because it would be
immediately followed by a lumpy trade toward one. As a result, state θ = 1 is absorbing,
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yielding continuation payoff v̂(1), which solves the HJB equation (A.12) under dθ = 0.

State θ ∈ [0, θ∗). Any lumpy trade must bring θ onto the edges of S, as shown before, i.e.,
onto {0, θ∗, 1}. The value function on [0, θ∗) satisfies v(θ) = v̂(θ).

First, a lumpy trade toward zero yields payoff θp̂(0) < v̂(θ) (for θ > 0), and thus is
strictly suboptimal.

A lumpy trade toward θ∗ yields payoff v̂(θ∗)− (θ∗ − θ)v̂′(θ∗) < v̂(θ).
By definition of θ∗, we have v̂(θ) > v̂(1)− (1− θ)p̂(1) for θ ∈ [0, θ∗), hence a lumpy trade

toward one is strictly suboptimal too.
This verifies that any lumpy trade in state θ ∈ [0, θ∗) is strictly suboptimal. Thus,

dθ
dt

= θ̇ ∈ (−∞,+∞) and γ = 0 are optimal, and v(θ) = v̂(θ) satisfies (A.12).

One can verify that in state θ = 0, the blockholder stops trading, in that θ̇(0) from (23)
is zero. By our arguments, it is optimal to stop trading in state θ = 0.

State θ = θ∗. In state θ = θ∗, the blockholder is indifferent between not trading, yielding
payoff v̂(θ∗), or buying the entire firm at once, yielding payoff v̂(1)− (1− θ∗)p̂(1). Thus, it
is weakly optimal to randomize between these two options. This implies that it is optimal
to set θ̇ ≤ 0, as θ̇ > 0 is akin to an immediate lumpy trade. A strictly positive trading rate
θ̇ > 0 would bring θ into the region (θ∗, 1) which would trigger an immediate lumpy trade
toward one. Thus, in state θ = θ∗, it is optimal for the blockholder to either (i) randomize
between buying the entire firm and not trading (i.e., θ̇ = 0 and γ ∈ [0,∞) with θ̂ = 1) or
(ii) trade smoothly at negative (finite) rate θ̇ < 0 which also delivers payoff v̂(θ∗). Either
way, the blockholder’s payoff in state θ∗ is v̂(θ∗), solving (A.12) under θ̇ = 0 and γ ≥ 0.

D.1.4 Trading Rate

We now determine trading rate and randomized trading to ensure that the conjectured
price p(θ) under the blockholder’s proposed trading is consistent with passive shareholders’
valuation of the firm, thereby verifying that p(θ) is the scaled equilibrium price. Recall that
the blockholder stops trading in states 0 and 1, as shown above. Further, it is strictly optimal
to trade towards 1 when θ ∈ (θ∗, 1), i.e., dθ(θ) = (1− θ) for θ ∈ (θ∗, 1].

State θ ∈ [0, θ∗). For θ ∈ [0, θ∗), the optimality condition for trading (A.13) implies
v(θ) = v̂(θ) and p(θ) = v̂′(θ). Furthermore, it is optimal to trade smoothly, i.e., γ = 0. We
determine the trading rate as in the baseline to obtain θ̇ from (23); see Appendix A.4.2 for
details. The trading rate is uniquely determined in this region under smooth trading.

State θ = θ∗. Consider state θ = θ∗. When v̂′(θ∗) < p̂(θ∗), then θ̇(θ) < 0 in a left-
neighborhood of θ∗ and limθ→θ∗ θ̇(θ) ≤ 0. Then, θ drifts into the interior of [0, θ∗] and no
time is spent in state θ∗. In this case, the price satisfies p(θ) = v̂′(θ) and θ̇(θ) satisfies
(23); there is no randomization over lumpy trading in that γ = 0. In the knife-edge case
v̂′(θ∗) = p̂(θ∗), we have θ̇ = γ = 0 at θ = θ∗.

Next, consider that v̂′(θ∗) > p̂(θ∗). Then, θ̇ = θ̇(θ) > 0 in a left-neighborhood of θ∗,
in that θ reaches θ∗ from below and limθ→θ∗ θ̇(θ) > 0. Because we have in addition that
θ̇ ≤ 0 at θ∗ from (D.2), it must be that θ̇ = 0 at θ∗. By definition of θ∗, the blockholder is
indifferent between not trading at all and buying the entire firm at once in state θ∗. Once θ
reaches one, the endogenous stock price becomes p(1). As the blockholder stops trading once
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θ reaches one, we have p(1) = p̂(1). Because p(θ) = v̂′(θ) on [0, θ∗) and because θ reaches θ∗

from below, we have p(θ∗) = v̂′(θ∗).

At θ = θ∗ where θ̇ = 0, the randomization rate γ∗ is such that p(θ∗) = v̂′(θ∗). Here, p(θ∗)
satisfies passive investors’ pricing equation:

(ρ+ δ − µi(θ∗))p(θ∗) = α + b+ (ρ− r)ℓ(θ∗)− i(θ∗)2

2
+ η(θ∗)︸ ︷︷ ︸

=p̂(θ∗)

+γ∗(p̂(1)− p(θ∗)),

which can be rewritten as p(θ∗) = (ρ+δ−µi(θ∗))p̂(θ∗)+γ∗p̂(1)
ρ+δ−µi(θ∗)+γ∗ . As a consequence,

γ∗ =
[ρ+ δ − µi(θ∗)]

[
p̂(θ∗)− p(θ∗)

]
p(θ∗)− p̂(1)

=
1

p̂(1)− p(θ∗)

[
θ∗λ(1− λ)

κ
+ θ∗(ρ− r)ℓ′(θ∗)− π − η(θ∗)

]
> 0. (D.3)

The term in square brackets is precisely the numerator of (23) evaluated at θ∗.

Note that θ̇ > 0 for θ close to θ∗, so
[
θ∗λ(1−λ)

κ
+ θ(ρ− r)ℓ′(θ∗)− π − η(θ∗)

]
> 0. Moreover,

p̂(θ) < p(θ) in a left-neighborhood of θ∗, so p̂(θ∗) < p(θ∗). Because v̂(θ) is strictly convex
and v̂(θ∗) = v̂(1) − (1 − θ∗)p̂(1), we have p(θ∗) < p̂(1). As a result, the randomization rate
γ∗ from (D.3) is well-defined and strictly positive.

D.2 Blockholder-level Leverage—Solution Details and Proof of
Proposition 7

We solve for the smooth trading rate in the model variant with blockholder-level leverage.
Following arguments analogous to the baseline analysis, one could easily characterize the
unique scaled, continuous Markov equilibrium. However, since we are primarily interested in
identifying the effects that generate gains from trade, we restrict our attention to the trading
rate, which highlights these effects.

We have, as usual, p(θ) = v′(θ). With blockholder-level leverage, ω ∈ [0, 1] the block-
holder’s value function solves

(ρ+ δ)v(θ) = max
ℓ,ℓB ,i

[
θ

(
α + b+ (ρ− r)ℓ− πθ

2
− i2

2

)
+ ℓB(ρ− r)− κb2

2
+ µiv(θ)

]
, (D.4)

where investment satisfies as usual i = µv(θ)
θ

and (35) applies. Clearly, it is optimal to
choose ℓ and ℓB, such that (35) binds. Also note that when (35) binds, the blockholder’s

value function does not depend on ℓ, ℓB, or ω = ℓB

v(θ)
. Intuitively, the blockholder can have

effective debt up to v(θ), and its payoff is the same regardless of whether this debt is on the
firm or fund level. Finally, we can solve v(θ) = v̂(θ) where v̂(θ) is from (A.3).

Define the blockholder’s total debt per unit of stock ownership as ℓ̂(θ) = v(θ)
θ
. Differenti-

ating both sides of (D.4) under optimal policies with respect to θ, we obtain the blockholder’s
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valuation of an additional unit of stock v′(θ) = p(θ):

(ρ+ δ)p(θ) = α + b+ µip(θ)− i2

2
+ (ρ− r)ℓ̂(θ)− πθ +

θλ(1− λ)

κ
+ θ(ρ− r)ℓ̂′(θ).

Note that θℓ̂′(θ) = p(θ) − v(θ)
θ

> 0, due to convexity (as in the baseline), with y(θ) = v(θ)
θ
.

Moreover, ℓ(θ) = (1− ω)y(θ). The fair pricing equation for the stock price becomes

(ρ+ δ − µi)p(θ) = α + b+ (ρ− r)ℓ(θ)− i2

2
+ η(θ) + p′(θ)θ̇.

Combining these and solving for θ̇, we obtain

θ̇ =
1

p′(θ)

[
θλ(1− λ)

κ
+ (ρ− r) [p(θ)− (1− ω)y(θ)]− πθ − η(θ)

]
.

E Micro-Foundation of Utility Benefit

We micro-found the utility benefit and its functional form by modeling passive investors as
consisting of a large mass of standard passive investors, who value the firm solely based on
the present value of its dividends, and a unit mass of index investors, who apply the same
valuation but aim to hold a fixed fraction θ∗Index of the firm’s equity. Neither type of investor
can short-sell the firm’s stock.

All index investors act symmetrically, holding a fraction θt,Index of the firm. When deviat-
ing from their desired ownership allocation θ∗Index, index investors incur a disutility flow cost
KtC(θt,Index), where C(·) is convex and differentiable, satisfying C(θ∗Index) = C ′(θ∗Index) = 0.
The negative of the disutility flow is a utility benefit. The disutility flow or utility benefit
scale with the firm’s capital stock. In what follows, we work with scaled quantities (by Kt),
as in the remainder of the paper.

Although not explicitly modeled, the interpretation is that index investors allocate a
given amount of wealth to the stock market and aim to invest in the firm according to its
weight in the market.18 Deviating from their desired ownership level may be costly for index
investors, for example, because it reduces diversification or because these investors represent
funds or institutional investors aiming to minimize tracking error.

When the blockholder’s stake satisfies θt+θ∗Index > 1 ⇐⇒ θt > 1−θ∗Index, index investors
hold at most a fraction θt,Index ≤ 1 − θt < θ∗Index of the firm. Thus, they hold strictly less

18That is, if the firm represents χt% of the stock market index (e.g., S&P 500) and index investors
allocate Wt dollars to this stock market index, they would aim to hold θ∗Index = χt% × Wt dollars in

the firm, corresponding to an ownership share of χt% × Wt

Pt
. Assuming that χtWt

Pt
remains approximately

constant over time, index investors would aim for a roughly constant ownership stake in the firm. This case
prevails, for instance, when stock market capitalization equals Mt and wealth invested in the stock market
is proportional to market capitalization, i.e., Wt ∝ Mt, and the firm’s stock price is also proportional to
market capitalization, i.e., Pt ∝ Mt, we obtain χt% = Pt

Mt
= constant and consequently, χtWt

Pt
= constant.

Instead of explicitly modeling the dynamics of χtWt

Pt
and index investors’ investment decisions, we simplify

the analysis by assuming that they target a specific, constant fraction of ownership, θ∗Index. Our results
would remain qualitatively similar if we allowed θ∗Index to vary over time.
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than their desired ownership fraction θ∗Index and, accordingly, value an additional unit of
stock more than standard financial investors do, since they could reduce their disutility by
increasing their ownership stake. Thus, in equilibrium, standard passive investors have zero
ownership stake and index investors hold θt,Index = 1−θt, yielding a disutility of C(1−θt) > 0
— the disutility is positive, since index investors deviate from their desired allocation. This
disutility increases in θ, in that d

dθ
C(1− θt) = −C ′(1− θt) > 0 and C ′(1− θt) < 0.

The blockholder trades against index investors who are marginal: A marginal reduction
in the blockholder’s stake θ, resulting in a marginal increase of index investors’ stake, changes
index investors’ cost by− d

dθ
C(1−θt) = C ′(1−θt) < 0. This marginal reduction in blockholder

stake thus generates a marginal utility benefit to index investors of η(θt) := −C ′(1− θt) > 0.
Hence, η(θt) = −C ′(1 − θt) is passive investors’ utility benefit from an additional unit of
ownership under these circumstances.

When the blockholder’s stake satisfies θt + θ∗Index < 1 ⇐⇒ θt < 1 − θ∗Index, then
index investors hold their desired allocation θt,Index = θ∗Index and other passive investors hold
fraction 1−θt−θt,Index > 0. In this scenario, the blockholder trades against the other passive
investors who are marginal and adjust their holdings when θt changes, while index investors
remain at their desired allocation. Index investors’ disutility cost is zero and not affected
by small changes in the stake of the blockholder: In this case, passive investors derive zero
marginal utility benefit (i.e., zero disutility cost reduction) from increasing their stake, in
that η(θt) = 0.

In sum, the utility benefit is the negative of the marginal disutility flow of passive investors
from deviating from their desired allocation, i.e., η(θt) = −C ′(1 − θt) for θt > 1 − θ∗Index,
while zero otherwise.

We assume quadratic disutility:

C(θt,Index) =
πI

2
(θt,Index − θ∗Index)

2 for πI > 0.

For θt > 1− θ∗Index where θt,Index = 1− θt < θ∗Index, we obtain

C ′(θt,Index) = C ′(1− θt) = πI(θt,Index − θ∗Index) = πI(1− θt − θ∗Index) < 0.

Then, the utility benefit takes the functional form η(θt) = −C ′(1−θt) = πI
[
θt−(1−θ∗Index)

]
.

For θt ≤ 1− θ∗Index, the utility benefit η(θt) equals zero.
In combination, we obtain a utility benefit that satisfies:

η(θt) = πI [θt − θ̃]+, (E.1)

for parameters πI > 0 and θ̃ = 1− θ∗Index ∈ [0, 1]. Here, [·]+ = max{0, ·}.
Thus, the utility benefit reflects the demand for the stock from certain passive investors

who are reluctant to sell beyond a certain point and thus attach a high value to the stock,
such as index investors. This utility benefit implies that when θt is large, the blockholder
must pay a high price because they are buying from investors who are reluctant to sell and
place a high valuation on the firm. When πI is sufficiently large, the blockholder will never
acquire the entire firm in that θt < 1 in equilibrium, although θt may become arbitrarily close
to one. Indeed, acquiring the entire firm would be hard or prohibitively costly in practice,
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as index investors would always hold some of the firm’s ownership.19

Motivated by our micro-foundation, we interpret πI > 0 as sufficiently large and θ̃ as
close to one, implying θt < 1 in equilibrium. In particular, we impose parameter condition
(11).

19When the blockholder buys the firm’s stock, it would push up the price and thus increase the firm’s
weight in the stock market index, further stimulating demand from index investors, which in turn makes it
harder to buy more of the stock.
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