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CHAPTER 1

INTRODUCTION AND BASIC
INGREDIENTS

This monograph focuses on some technical aspects of multidimensional scaling (MDS).
This technique finds a graphical representation of objects in low dimensional space such
that the Euclidean distances between objects correspond as well as possible to given
dissimilarities that indicate how dissimilar pairs of objects are. The area of
multidimensional scaling received a great impetus by the article of Shepard (1962), who
gave an heuristic algorithm to solve this problem. The excellent articles of Kruskal
(1964a,b) solved the multidimensional scaling problem in a mathematically convenient
way. Later several other approaches to perform multidimensional scaling emerged, all
based on minimizing a loss function that measures the deviance of the multidimensional
scaling model. Loss functions have been defined in a variety of ways, e.g., using the
scalar products in classical scaling (Torgerson, 1958; Gower, 1966), using differences
between squared distances and squared dissimilarities (the S—STRESS approach of Takane,
Young, and De Leeuw, 1977), using the difference of the logarithms of dissimilarities
and distances (the maximum likelihood approach of Ramsay, 1977), or using the
differences between dissimilarities and distances (Kruskal, 1964a,b). These approaches
give solutions which may be different from each other. This monograph discusses some
technical problems of Kruskal's approach to multidimensional scaling, and their solutions.
Before presenting these problems, we give a brief example of MDS.

Suppose that we have a table of road distances between the capital cities of the 12
members of the EEC as given in Table 1.1. Generally, the entries in such a table are called
dissimilarities , since they tell us how dissimilar any pair of objects in the table are.
Assume that we do not have a map and only know these dissimilarities.
Multidimensional scaling can be used to derive a map in which the distances between the
points on the map are as close as possible to the entries in the given table. Figure 1.1 gives
such a reconstruction for road distances among capitals in the EEC. We clearly see that
the cities are not located at their geographical locations. This mismatch arises from the fact
that Table 1.1 uses road distances, which are not necessarily equal to the distances "as the
crow flies". It is very common in applications of multidimensional scaling that we are not
able to find a perfect match between the dissimilarity table and the reconstructed distances
in a map. In this example we knew a priori that the reconstructed map of the dissimilarity
table has to fit reasonably in a two-dimensional plane. For general dissimilarity tables we
neither know in advance if a perfect representation exists, nor what the dimensionality
should be. Applications of multidimensional scaling can be found many areas of research,
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i.e., psychology, sociology, political science, economics, bibliometry, chemical
modelling, etcetera. The aim in all applications is to

Table 1.1 Road distances in kilometres among capitals in the EEC.
Ams Ath Ber Bru Dub Cop Lis Lon Lux Mad Par
Amsterdam
Athens 3017
Berlin 660 2552
Brussels 204 2931 754
Dublin 1087 3795 1603 921
Copenhagen 755 3051 445 945 1796
Lisbon 2301 4559 2887 2092 2821 3045
London 540 3298 1093 378 543 1306 2279
Luxembourg 392 2715 768 217 1135 966 2137 592
Madrid 1765 3945 2350 1559 2247 2495 653 1721 1602
Paris 494 3025 1087 296 997 1249 1798 455 338 1263
Rome 1718 2450 1520 1527 2413 2046 2720 1870 1312 2084 1441
= Athens
Figure 1.1  An example of MDS. Map reconstructed from the road distances between

the capitals of the EEC reported in Table 1.1. A true map of EEC

countries is projected onto the solution.

find a mapping of objects in a low dimensional space (usually a one, two, or three
dimensional space) such that the distances between the objects in the reconstructed map
match the given dissimilarities as closely as possible. The graphical representation of the
objects can help reveal underlying mechanisms causing the (dis)similarity between the
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objects. The dissimilarities need not necessarily stem from real distances, as was the case
in the example. They could be obtained in a psychological judgement experiment in which
respondents have to compare objects directly. Or, dissimilarities may have been derived
from similarity measures (for a list of some of these measures, see, for example, Gower
and Legendre, 1986). For a general introduction to multidimensional scaling we refer the
reader to Kruskal and Wish (1978), Borg and Lingoes (1987), Schiffman, Reynolds, and
Young (1981), or Coxon (1982).

We now specify multidimensional scaling (MDS) more formally. The central MDS
loss function in this monograph is the STRESS function that is defined as

A(X) = Y w(8; - d; X))’ (1.1)

i<j

In (1.1) the nonnegative dissimilarity between objects i and j is presented by 6, their
reconstructed Euclidean distance in the plot by d;(X), the p coordinates of all n objects are
gathered in the nxp matrix X, and fixed nonnegative weights w;; are included to
(down)weight the residual of object pair ij. The main algorithm that we use for
minimizing STRESS is the majorization algorithm, SMACOF, as proposed by De Leeuw
and Heiser (1977, 1980) and De Leeuw (1977, 1988), which can be seen as‘a
generalization of Guttman's (1968) C-matrix method. One of the most attractive features
of the SMACOF algorithm is that a series of nonincreasing STRESS values is obtained, and
that the difference between configurations in subsequent steps also converges. However,
usually the solution at convergence is a local minimum of the STRESS function, not
necessarily a global minimum. This local minimum problem is especially severe for
unidimensional scaling. Furthermore, convergence of the STRESS values can be very slow
due to the linear convergence rate of SMACOF (De Leeuw, 1988). Apart from these
computational difficulties, problems can arise with the collection of dissimilarities or with
the interpretation of the MDS solution.

In this monograph we propose solutions for some problems with the SMACOF
algorithm, without destroying its attractive properties. Majorization is one of the most
important concepts that we use in many of the algorithms presented. In particular, an
important part of this monograph is devoted to the local minimum problem of STRESS.
We investigate several strategies to obtain better local minima, hopefully a global
minimum. Furthermore, we look at incomplete MDS, where certain object pairs are
disregarded and in which certain objects may have fixed positions in the solution. We
present a unification and extension of related algorithms that make use of incomplete
MDS. We propose adaptations for certain cases of incomplete MDS that lead to a faster
algorithm. A different problem arises when we have to interpret MDS problems with a
large number of objects. Then it can be very useful to simplify interpretation by using
cluster restrictions. Finally, the SMACOF algorithm is extended to deal with general
Minkowski distance, of which the Euclidean distance is a special case. Note that the local
minimum problem of MDS remains present when using Minkowski distances. However,
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we limit ourselves to the study of the local minimum problem for Euclidean distances,
because it turns out to be complicated enough. Often the algorithms and solutions are
illustrated with real data, that mostly stem from the social sciences. The interest of this
monograph is not confined to MDS only. Many of the technical ideas may prove their
usefulness in areas outside the field of MDS.

In the remainder of this chapter we discuss the basic ingredients on which this
monograph is built. We present the SMACOF algorithm for MDS and models that can be
incorporated as special cases of SMACOF. We also discuss two specific MDS problems,
full-dimensional scaling and unidimensional scaling. However, we start by discussing the
principle of minimizing a function by iterative majorization, because it is one of the
fundamental concepts of this monograph.

1.1 Iterative majorization

In this monograph we often need to find a minimum of a complicated function. One of
the main minimization techniques that we shall use is the method of iterative majorization.
It is a simple and attractive method that generates a monotonically nonincreasing sequence
of function values. If the function is bounded from below we usually end up in a
stationary point that is a local minimum. An early reference to majorization in the context
of line search can be found in Ortega and Rheinboldt (1970, p. 253-255). Majorization
has become increasingly popular as a minimization method (see, for example, Kiers
(1990), Bijleveld and De Leeuw (1991), Verboon and Heiser (1992), and Van der Lans
(1992)). In the field of multidimensional scaling it has been applied in a variety of settings
by, among others, De Leeuw and Heiser (1977), De Leeuw and Heiser (1980), De Leeuw
(1988), Meulman (1986, 1992), and Groenen, Mathar, and Heiser (1992).

The central idea of the majorization method is to replace iteratively the original
complicated function @(x) by an auxiliary function ¢(x,y), which has to meet the
following requirements. First, the auxiliary function @(x,y) should be more simple to
minimize than @(x). Secondly, the original function must always be smaller than or at
most equal to the auxiliary function, i.e., ¢(x) < §(x,y). Thirdly, the auxiliary function
should touch the surface at the so-called supporting point y, i.e., ¢(y) = ¢(y,y). If these
three requirements are met, we call $(x,y) a majorizing function of ¢(x).

To understand the principle of minimizing a function by majorization, consider the
following. Let the minimum of @(x,y) over x be attained at x*, for x, y, x* in the
corresponding domain X. The requirements of the majorizing function imply the chain of
inequalities

o(x") < G(x"y) < §(y.y) = o(y) (1.2)

for all x, y € X. This chain of inequalities is named the sandwich inequality by De Leeuw
(1992), since the minimum of the majorizing function @(x*,y) is squeezed between ¢(x*)
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and @(y). A graphical representation of these inequalities is presented in Figure 1.2 for
two subsequent iterations of iterative majorization of the function ¢(x), with x being a
scalar.

O(xp) = @xo.x0) |- -
' (TN} SR PR

O(xp) = @xyxy) |- - S\ - = = -\ -

o) |- - - =
(e YET" 67% )l I

X2 X1 Xo
Figure 1.2 [llustration of two steps of the iterative majorization method. The auxiliary
Junction tp(x.xo) is located above the original function ¢(x) and touches at
the supporting point xo. The minimum of the auxiliary function @ (x,x0) is
attained at xy, where @(x1) can never be larger than ©(xy,xp). These steps
are repeated.

The majorization algorithm is given by

Y « Yo, where yg is a starting value.

Find x* for which ¢(x*,y) = miny §(x,y).

If o(y) — ¢(x*) < £ then stop. (¢ a small positive constant.)
y « x+and go to 2.

&= 24 =

Obviously, by (1.2) the majorization algorithm yields a nonincreasing sequence of
function values, which is an attractive aspect of iterative majorization. If the function ¢(x)
is not bounded from below and if there are no sufficient restrictions on x, then the stop
criterion of step 3 may never be met. In the sequel, this situation does not arise. Although
the function value never increases, the majorization principle does not say how fast the
function values converge. In the next section, we obtain a convergence theorem for a
specific case of majorization. A more relaxed version of the majorization algorithm is
obtained by demanding in step 2 merely that ¢(x*,y) < @(y.y), instead of requiring that
x* is the minimum of §(x,y). This weaker form of majorization does not change the
sandwich inequality (1.2), so that a reduction of function values is retained. Generally, we
do not know much about the convergence of the sequence of x, except if we have
additional properties of the corresponding iterative map such as closeness and continuity
(see Zangwill, 1969). A necessary condition for a point x* to be a minimizer of ¢(x) is
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that x* minimizes @(.,x*). So, if ¢(x*) = ¢(y) and x*+ =y, this necessary condition is
satisfied by y. Note that the majorization algorithm can stop at a stationary point that is not
a local minimum. However, Fletcher (1987, p. 19) notes that for algorithms that reduce
the function value on every iteration, it usually holds that "the stationary point tumns out to
be a local minimizer, except in rather rare circumstances"”.

We distinguish two particularly useful applications of majorization. The first one is
majorization of a concave function, which we call /inear majorization. Any concave
function ¢(x) may by definition be majorized by a linear function at any point x. Thus, we
can always find a plane that touches at the supporting point y. This plane may touch the
concave function elsewhere, or is located above it. Moreover, the plane is a simple linear
function of x. An example of a univariate concave function is given in Figure 1.3.

o(xy) = §xy.xp)

X
Figure 1.3  An example of linear majorization of a concave function ©(x) by a linear
Sunction.

To see why linear majorization holds for concave functions, it is convenient to apply the
concept of subgradient from convex analysis (see, e.g., Rockafellar, 1970). The set of all
subgradients of ¢(.) at y is called subdifferential d¢(y). If ¢(.) is differentiable at y then
the set of subgradients consists of one element, which is the gradient. Thus, if a function
is differentiable then the derivative is the only subgradient. Let b(y) be a subgradient at y
of the concave function ¢(y) = y'b(y) + c(y). For b(y) to be a subgradient, it must satisfy
the subgradient inequality

O(x) < @(y) + (x - Y)'b(y) = x'b(y) + c(y) = $(x.y). (1.3)

The inequality shows that the majorization requirements ¢(x) < ¢(x,y) and ¢(x) = ¢(x,X)
are fulfilled. Moreover, the majorizing function ¢(x,y) = x'b(y) + c(y) is a linear function
in x, which is clearly a simple function of x. As an example, we can apply linear
majorization to the concave function @(x) = log x for x > 0. The (sub)gradient of log y is
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given by 1/y, so that the subgradient inequality yields ¢(x) = log x <log y + (x — y)fy =
@ (x,). It is not difficult to see that choosing x = y gives equality.

The second group of functions that can be majorized is characterized by a bounded
Hessian. This type of majorization can be applied if the function ¢(x) can be majorized by
®(x,y) = X'A(y)x —x'b(y) + c(y), with A(y) positive semi-definite. A bounded Hessian
V2¢(x) implies that the curvature (that is, the second derivative) of the function ¢(x) is
always less than the curvature of some quadratic function, x'V2¢(x)x < x'A(y)x.
Therefore, we call this type of majorization quadratic majorization. A nice example is the
function ¢(x) = Ixl, used by Heiser (1988). It can be proved that the function ¢(x,y) = 2 IyI

+ 5 x2/lyl for y # 0 is a majorizing function of ¢(x). This example of quadratic majorization
is illustrated in Figure 1.4.

O(xp) = §x1.x)

X
Figure 1.4  An example of quadratic majorization of ¢(x) = Ixl, a function with a
bounded second derivative if x #0.

A special case of quadratic majorization evolves by majorizing a function that is a sum of
a quadratic function in a fixed metric A (A is independent of y) and a concave function.
Later we shall see that the STRESS function is such a special case of quadratic
majorization.

The classification of linear and quadratic majorization is due to De Leeuw (1992),
who used the terms type I and type II majorization. When minimizing a function we may
apply linear and quadratic majorization together without any problem, as long as the
majorization conditions hold.

1.2 Convergence rate of quadratic majorization

Throughout this monograph the algorithms based on majorization play an important role.
Therefore, it is useful to be able to have an expected rate of convergence of such
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algorithms. In particular, we wish to establish how fast x converges to a stationary value
x*. Assessing the convergence behaviour of x is done by examining the ratio

X "'x‘
im H_’ﬂ_ﬂ= (1.4)

|1q !
= e x|

where q is the order of convergence and x is the rate of convergence. Forg=1and x21
we have sublinear divergence, linear convergence for 0 < x < 1, and for x =0
superlinear convergence. If ¢ = 2 and 0 < x < 1 we have quadratic convergence, and for
k = 0 superquadratic convergence. For the class of quadratic majorizing functions, the
next theorem tells that the majorization algorithm has linear convergence rate if the
function is twice differentiable at the local minimum and the largest eigenvalue of the
derivative of the iterative map is smaller than 1.

Theorem 1.1

Suppose that the function @(x) is majorized by ¢(x,y) = %x‘A(y)x - x'b(y) + c(y),
with equality if y = x, i.e., 9(x) < $(x,y) and @(x) = ¢(x,x). Let one iteration of the
majorization algorithm be given by

x*t « A(y)'b(y)
y « Xx*, (1.5)

where we assume that the inverse A(y)-! exists. Also, assume that x* is a local
minimum of ¢(x) and that x* converges to x". Furthermore, assume that the Hessian
of y'b(y) exists at x*, and is given by B(x*). Then the quadratic majorization algorithm
has linear convergence with rate equal to the largest eigenvalue A of A(x*)1B(x*), if
O<A<l.

Proof
By lemma 10.2.1 of Ortega and Rheinboldt (1970), the derivative of the mapping

xt « A(x)1b(x) (1.6)

at the local minimum x"* is given by

A" 1B(x*), 1.n

because the derivative of the mapping x** « x — A(x)~!b(x) can be expressed by I —
A(x")y1B(x*). Next, we need to prove that the eigenvalues of A(x*)1B(x") are real.
Note that because of the majorization inequality and the assumption that A(y) is
invertible, A(y) is symmetric and positive definite and so is A(y)"!. Furthermore, B(y)
is the Hessian of y'b(y) and is consequently symmetric. Wilkinson (1965, page 35)
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proved that for A(x*)-! symmetric and positive definite and for B(x*) symmetric, the
eigenvalues of A(x*)"1B(x") are real, because the eigensystem (A(x*) 1B(x*) - Al)y =
0 is equivalent to (B(x*) - AA(x*))y = 0.

The theorems of Ostrowski (1966, page 162, theorem 22.1) and Ortega and
Rheinboldt, 1970, theorem 10.1.4) say that if the derivative of a mapping has the
largest eigenvalue A < 1 at a local minimum x*, then the iterative process converges
with a linear convergence rate of A to x*. Q.E.D.

This theorem has implications for several applications of majorization. It allows
one, e.g., to prove the linear convergence rate of STRESS under certain conditions. For
many applications of majorization, this result can be applied to prove linear convergence.

1.3 Majorizing the STRESS function

In this section we apply iterative majorization to the STRESS function, which goes back to
De Leeuw and Heiser (1977), De Leeuw and Heiser (1980), and De Leeuw (1988). The
acronym SMACOF initially stood for Scaling by MAximizing a COnvex Function, but
since the mid 1980's it stands for Scaling by MAjorizing a COmplicated Function.
Algorithms other than SMACOF have been derived to minimize STRESS. For example,
using approaches from convex analysis, very similar algorithms for minimizing STRESS
were obtained by De Leeuw (1977), Mathar (1989), and Mathar and Groenen (1991).
Here, we pursue the majorization approach and show how to majorize the STRESS
function o(X), following the SMACOF theory.
The STRESS function (1.1) can be rewritten as

X)= Yow;y(8; -d;(X))’
i<j
i<j i<j i<j
= M+ (X)-2p(X), (1.8)

where d;(X) is the Euclidean distance,

12
d,-j(X)=( le(x,-s—xjs) ) ="x,~—xj||, (1.9)
between object i and j, and the row vector x; contains the coordinates of object i. We
assume throughout this monograph that the weight matrix is irreducible, i.e., there exists
no partitioning of objects into disjoint subsets, such that w;; = 0 whenever objects i and j
are in different subsets. If the weight matrix is reducible, then the problem can be
decomposed in separate smaller multidimensional scaling problems, one for each subset.
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In the sequel, we assume without loss of generality that X has zero column means. By
using the Cauchy-Schwarz inequality

Ixi = xilllyi = ¥ 2 (i = x)'vi - ¥, (1.10)
it can be verified that
< W‘"S," \
_wljaUdij(X)—__J_'Ldij(Y](xi -x;) (i - ¥)) (1.11)

holds whenever d;{Y) # 0. Equality is obtained if X equals cY. Furthermore, if d;{Y) =
0 it remains true that

with equality if d;{X) = d;(Y) = 0. Thus, for b;(Y) = w;i8;/d;(Y) if d;{Y) # 0 and
bi{(Y) = 0if d;{Y) = 0 it always holds that

-wiiddi(X) < —bi(Y) (xi — X)) (yi - ¥)), (1.13)
with equality if X = ¢Y. Summing both sides of (1.13) over i < j shows that

“0(X) = LX) € ~DigibifY) (i —x) (i - ¥)) = —pX.Y).  (1.14)

This implies that -p(X) can be majorized by a linear function —p(X,Y) so that p(X) =
p(X,X) and p(X) < —p(X,Y). This is a clear example of linear majorization.

We shall rewrite p(X) and p(X,Y) in such a way that a matrix expression is
obtained from which an update sequence for the coordinates of the objects is easily
derived. An important aid is the expression

2,-<ja.'j(x.'—Xj)'(Yi—Yj)=tIX'AY, (1.15)

which holds for every symmetric matrix A with off-diagonal elements —qa;; and the
diagonal elements X;.a;;. The rows and columns of A sum to zero, which implies that 1
is contained in the null space of A, so that the rank of A can never exceed n — 1. If all
elements a;; are nonnegative then A is positive semi-definite. Combining (1.15) and the
right side of (1.14) allows us to express the majorizing function p(X,Y) as

tr XB(Y)Y. (1.16)

Since equality of (1.14) occurs for Y = X, we have the majorizing expression
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—(X) =-pX,X) =—tr XB(X)X < -tr X'B(Y)Y = -p(X,Y). (1.17)

Similarly, we may use (1.15) to obtain a matrix expression for n2(X). Let D® be the
matrix of squared distances d%}(X), ie.,

D?) =1a' + al' - 2XX', (1.18)

where o is a vector with the diagonal elements of XX'. Since D(2) has zero diagonal,
N%(X) can also be written as

~3tr VD®), (1.19)

where V is a symmetric matrix with off-diagonal elements -w;; and diagonal elements
Xj=i wij. The factor 1/2 is introduced because of the symmetry of D. Manipulating (1.18)
and (1.19) and using the fact that 1 is in the null-space of V gives

NAX)=tr X'VX . (1.20)

Formulations (1.20) and (1.17) allow us to write the STRESS function conveniently
in matrix algebra by

62(X) = N} + tX'VX - 20X'B(X)X , (1.21)
which is majorized by
62(X,Y) = n} + rX'VX - 2uX'B(Y)Y . (122)

The majorizing function (1.22) is a quadratic function in X. Its minimum is obtained by
setting its gradient with respect to X equal to zero;

Vo62X,Y)=2VX -2B(Y)Y=0. (1.23)

As stated above, the matrix V has 1 in its null space. Therefore, we need a generalized
inverse of V, for which we take the Moore-Penrose inverse, to obtain the minimum of
62(X,Y). The Moore-Penrose inverse of V is given by V™ = (V + 11')-! — n-211". The
last term —n-211" is irrelevant in SMACOF as V~ is subsequently multiplied by a matrix
orthogonal to 1, since B(Y) also has 1 in its null space . This leads us to the update
formula of the SMACOF algorithm,

X =V B(Y)Y. (1.24)

De Leeuw and Heiser (1980) call (1.24) the Guttman transform, in recognition of
Guttman (1968). The majorization algorithm guarantees a series of nonincreasing STRESS
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values. When the algorithm stops, the stationary condition X = V B(X)X holds. Note that
after one step of the algorithm X is column-centered, even if Y is not column-centered.
Since distances do not change under rotation of X, it is convenient to rotate X to principal
axes after convergence has been reached.

In the next few sections we look at two special cases of MDS, i.e., unidimensional
scaling and full-dimensional scaling. However, first we discuss a coordinate-free
formulation of the SMACOF algorithm, and the rate of convergence of the Guttman
transform.

1.3.1  Coordinate-free update

Using the Guttman transform (1.24) allows us to develop an update sequence of SMACOF
in terms of distances only (Gower, 1991). One of the advantages is that it eliminates the
rotation and translation problem. It also has some elegance to formulate the algorithm of a
distance model like STRESS in terms of distances only.

From (1.18) it is known that the inner product matrix —2XX' is equal to the double
centered distance matrix JD®@J, where D) contains squared distances and J is the
centering operator I — n-111'. This suggests immediately post-multiplying the Guttman
transform with its transpose, i.e.,

XX'=VBY)YYB(Y)V, (1.25)

which essentially gives the coordinate free update. Furthermore, we may replace YY' by
D%z) since it is pre and post multiplied by B(Y), which is rowwise and columnwise
orthogonal to 1. To express that the elements of B(Y) only depend on the d;{Y), not on Y
itself, we write it as B(Dy). This leads to the following distance formulation of the
Guttman transform:

JD®J = VB(Dy)DYB(Dy)V". (1.26)

Note in this coordinate-free formulation the rank of the starting configuration is retained
throughout the iterative process, even without imposing additional rank restrictions. The
majorization results still hold, which implies that the sequence of STRESS values never
increases. A disadvantage of the coordinate-free update is that it requires more
computation and that it may not be numerically stable. Gower (1984) was the first to
notice the possibility of coordinate-free scaling by looking at the normal equations at a
local minimum. However, his formulation did not include the post multiplication by
B(Dy)V™ in (1.26) so that the sequence of STRESS values were not necessarily
convergent.
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13.2  Convergence rate of SMACOF

Quite early it was recognized that the SMACOF algorithm has a linear convergence rate
(De Leeuw and Heiser, 1980). De Leeuw (1988) proved the linear convergence rate using
the fact that if w;;;; > O for all object pairs ij, no distance can be zero at a local minimum,
which makes STRESS twice differentiable at a local minimum (see De Leeuw, 1984, or
section 7.4). According to theorem 1.1, we have to find the largest eigenvalue of the
derivative of the Guttman transform to establish the convergence rate. Let us first regard
the derivative H(X) of B(X)X, which is equal to the Hessian of p(X). It can be expressed
as a partitioned block matrix of pxp blocks Hy(X) of size nxn. The diagonal blocks
H,,(X) are equal to (B(X) — E;,(X)) and the off diagonal blocks H;(X) are equal to
—E (X), where E,(X) consist of off diagonal elements

Wiid:s
estij = — 5 (is = Xjs)(Xis — Xjr)» (1.27)
ij

and the diagonal elements e;; = —Z,-,,-es,,-j. The derivative of the Guttman transform is
given by A"H(X), where A is a block diagonal matrix with diagonal blocks V. To
establish the convergence rate, we need to know the largest eigenvalue of A"H(X"), with
X* a local minimum. Using similar arguments as in theorem 1.1, we can prove that A~
H(X*) has real eigenvalues. At X* the Hessian of the STRESS function must be positive
semi-definite, i.e., A — H(X*) must be positive semi-definite. Consequently, I - A~
H(X*) must be positive semi-definite too, which proves that all eigenvalues of A"H(X")
are smaller than or equal to 1. De Leeuw (1988) showed that at a local minimum X*, A™
H(X*) has 1/2p(p — 1) eigenvalues equal to one, due to the invariance of STRESS under
rotations. Let us impose some identification constraints on X, like rotating the solution
always to principal axes. Furthermore, suppose that no other eigenvalues of ATH(X") are
equal to one, so that X* is an isolated stationary point, as De Leeuw (1988) calls it.
Although the majorizing function (1.22) was obtained by linear majorization, it may be
regarded as a quadratic majorizing function with matrix A(X) being fixed. Then we can
use theorem 1.1 which tells us that the SMACOF algorithm defined by (1.24) has a linear
convergence rate A, with A being the largest eigenvalue of A"H(X*) smaller than 1. For
more details, we refer to De Leeuw (1988).

14 Full-dimensional scaling

A special case of minimizing STRESS appears in full-dimensional scaling, where the
dimensionality is at most p = — 1. In full-dimensional scaling there is only one
minimum that is a global one, which is a result due to De Leeuw (1992). This can be seen
from the matrix of squared distances D@ which equals 1o’ + o1’ — 2XX', with X being
column-centered, cf. (1.18). Thus the rank of XX' can never exceedn —1. Forp=n—1
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the cross product term XX' is simply a double centered positive semi definite matrix K,
so that the squared distances d,gj(X) are given by k;; + kj; — 2k;;. This allows us to express
STRESS as

oX(K)=nZ + ijw;j(k,-,- +kj = 2k;) - 22‘.<jw,-,8,-j ki +kj; — 2k;

I Y (128
=15 +N°(K) - 2p(K).

Theterm ) . w;(k; +k;; —2k;) is a linear function in K. The second term takes minus
the square root of the same linear function of K, which is a convex function in K. The
sum of a linear and a convex function is convex. Thus minimizing STRESS over K is
minimizing a convex function over a convex set, which has a local minimum that is a
global minimum. Note that this result does not hold in case K is restricted to have p <
n - 1, because the set of K restricted to have rank p < n - 1 is not convex. A similar result
holds for full-dimensional scaling with S—STRESS, which among others has been proved
by Gaffke and Mathar (1989) using the cyclic projection algorithm.

Although one would expect K to be of rank n — 1 at a minimum, this usually is not
the case. In fact, numerical experiments suggest that at the minimum, the rank of K does
not exceed the number of positive eigenvalues in classical scaling. Bailey and Gower
(1990) proved this conjecture for S-STRESS, but we were not able to prove it for STRESS.

1.5 Unidimensional scaling

It has been noted by Heiser and De Leeuw (1977), Defays (1978), and Hubert and Arabie
(1986) that minimizing the STRESS function with equal weights changes to a
combinatorial problem when p = 1. In this section we show why unidimensional scaling
is a combinatorial problem and extend this result to unequal weights.

If we are dealing with one dimension only, the distance between two points can be
expressed as d;(x) = (x; - x;)sign(x; - x;), where sign(x; - x;) = 1 for x; > x;j, sign(x; - xj) =
0 for x; = x; and sign(x; - x;) = -1 for x; < x;. Here we use x for the column vector of
coordinates of the n objects. Thus, we see that only the rankorder of x determines the
sign(x; - x;). In this case, STRESS can be expressed as

o2 (x)=1§ +X Vx =23 w;8,(x; - x;)sign(x; - x;). (1.29)
i<f

This shows that the cross-product term of STRESS, p(x), can be factored into a part that is
linear in x and a part that depends only on the rankorder of the elements of x. As an
example we plotted in Figure 1.5 the values of p(x) and the values of the gradient
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Figure 1.5 p(x) and its subgradient values for varying x4 keeping the other
coordinates fixed at their optimal position x';. The dissimilarities are taken
Jfrom the Mani-collection from Robinson (1951) reported by Hubert and
Arabie (1986).

of p(x) against varying values of x4, keeping the other values of x fixed at their optimal
positions. The dissimilarities in this example have been discussed by Robinson (1951)
and Hubert and Arabie (1986). It is easily seen that the (sub)gradient only changes
whenever x4 passes one of the other points. This step function indicates that p(x) is a
piecewise linear function, its pieces being linear within each rankorder of x. For each
rankorder, the STRESS is consequently quadratic in x. It suggests that the unidimensional
scaling problem can be solved by minimizing STRESS over all permutations, i.e., a
combinatorial problem. A more profound discussion follows shortly.

Let y denote the rankorder of the vector x, thus xy1) < xy2) < ... Sxyp € ... € Xy(n)
with corresponding permutation matrix P, so that Px is the vector with the elements
ordered nondecreasingly. We are going to show that at a local optimum of a function that
is only dependent on the permutation y, the Guttman transform yields an x that has the
rankorder given by y. Therefore, for this rankorder, STRESS has a local minimum. For
the moment, let us assume that all weights w;; = 1, which makes V = al - 11' = nJ.
Define #; = 3i8 i)y and u; = Ljs Sy (i), Which is respectively the row sum up to the
main diagonal and the row sum from the main diagonal of the matrix with values
dyw(;)- Using this notation, (1.29) can be written as

o’ (x)=12 +x Vx-2xXP (t—u). (1.30)

For a given rankorder v, (1.30) is quadratic in x and has its minimum when x is equal to
the Guttman transform V°P'(t - u) = n-1JP'(t - u). The Guttman transform of the
majorization approach only uses the rankorder information of the previous configuration,
since P, t and u only depend on the permutation of x. Therefore, SMACOF will stop if the
rankorder of x does not change, which usually happens in a few iterations. At this point
STRESS has a local minimum. Function (1.30) can also be expressed as
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o?(x)="n3 +n'1|nJPx—(t—u )||2 —n7Ye—uf?, 1.31)

where the term t2(y) = n-1|t - u||? is a function of the permutation only. Thus if t2(y) is
maximized, the second term of (1.31) vanishes for x equal to n-1JP'(t - u). Defays (1978)
attacks the minimization of (1.31) by the maximization of t2(y). Suppose that we have
found a permutation v that is locally optimal with respect to adjacent pairwise
interchanges; i.e., any local change of v, interchanging w(i) and w(i+1), does not increases
the value of t2(y). We say that t2(y) has a local maximum if permutation y satisfies this
sufficient condition. Note that this is a stronger formulation for a local minimum than we
used for STRESS, since STRESS has a local minimum whenever the Guttman transform
cannot change the order of x. We shall prove that at a local maximum of t2(y) the vector
t - u is ordered with increasing values. Clearly, this order is not disturbed by the Guttman
transform, because Px has the same order. Thus if we can find a permutation y for which
n-1)|t - ul? is locally optimal with respect to pairwise interchanges, then a local minimum
of STRESS can be found in one step by taking the Guttman transform.

It remains to be proven that ¢; — u; < tj,1 — #;41 at a local maximum of t2(y).
Suppose that 7;* and 1;* denote the values at such a local maximum and 7;~ and u;~ denote
the values of the same permutation except for one pairwise interchange of objects i and i +
1. Since n-1[Jt* - u*? is a local maximum, it must be true that [|t* - u*|*= |t~ - u~|?, or
equivalently that

(7 =)+ (=) 2 (7 =) (=) (32

By definition we have

= "= Syl
™ = 65+ Byt
= w1+ Sywisn),
Uirl™ = W —  Sywiis1)- (1.33)

Rewriting the right part of (1.32) gives

(t; —u; )2 + (f;+1 - u;-'+1)2 2 (’;H ~ Uiy - 28, (.')(.'+1))2 + (f: - + 25w(i)(i+l))2 =
(’:—H - “.'11)2 + (’: —u; )2 + 85@ G+ +
88y i =47 ) = 48y yieny (71 — W) (1.34)

or, equivalently

48w(i)w(i+])(28w(i)w(i+l) + (’: - ".') - (f.:—l a “i‘+l)) <0. (1.35)
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From (1.35) and the observation that dy(jyq+1) 2 O, it is easily verified that
6= Sty —u,-‘ﬂ, which holds for every i between 1 and n - 1. This result is due to
Defays (1978), also, see Hubert and Arabie (1986) who call every permuted matrix with
elements 8yy;)y(;) monotonic, if t - u is monotone nondecreasing. Note that the proof
given above is only valid if all weights are equal to one.

If the weights w;; are different from unity, V does not equal aI - 11', but much of
what is said above still holds in a different metric. The STRESS function can be
appropriately written as

o*(x)=nf +jx- VP -u), “le-uff (1.36)
where norm lx"i equals x'Vx, 1; = E__.‘aﬂw(,')wj and u; = ZP,‘GM;)W-) with aj;= w,;,ﬁ,-j.
Here too, it suffices to maximize |t—ul® _ over all permutations and set x = V"
P'(t — u). For this we have to establish that the permutation that maximizes ||t — uII2 -
gives a vector PV'P'(t - u) that is monotonic increasing, so that taking the Guftman
transform does not change the rankorder of x, which implies a local minimum for
STRESS. This brings us to the following theorem.

Theorem 1.2

Minimizing STRESS with p = 1, w;; 20 and W irreducible, can be solved by
maximizing t2(y) = |t—u||2 ey OVRE all permutations . If t2(y) is maximal with
respect to all permutations !flat are adjacent pairwise interchanges of y*, then STRESS
has a local minimum.

Proof

Suppose that we have found a permutation y* for which [t —u|? _ is optimal with
. ato i s . » w2 Y,_ | )

respect to all adjacent pairwise interchanges, i.e., [|t*~u*[[py-p- 2'“ ~u~[qv-g- Where

Q is the permutation matrix based on y~. Let A be the matrix (e; - €;,1)(€; - €;+1)', with

e; the ith column of I, so that the permutation matrix I - A can be used to interchange

the values of elements i and i+1, i.e., Q = (I - A)P. This makes

2 2
||t~_u~"Qv—Q- = ||t~—u~"(l—A)PV'P‘(l—A) e "(I b A)(t~_u~)lliv—Pn . (1.37)

We also know that t~ - u~ = (I - A) (t* - u*) — 2ay;) () (€; - €11), so that (I - A)(t~ -
u)=(t"-u") - 2ayyy() (- A) (e; - €;,1), which allows us to rewrite (1.37) as

2 %2 2 2
lt—u-lgv-g = It°-ulpy-p +day, 1A - A)ei - e py-p
—4ayiy (t* - u)PVP(I- A) (e; - e:11). (1.38)
The second and third term in (1.38) can be simplified using (I - A)(e; - €,41) =

(€ - €jr1) - (€ - €;11)(€; - €41)'(€; - €111) = (& - €;41) - 2(e; - €;.1) = —(€; - €;41), S0 that
the second term becomes
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2 2 2 2
4ayivp I(X - A)e; - ein))fpy-p = 44 6w lle; - ei1llpy—p- (1.39)
and the third term becomes

— dayiyp (- WYPYVPL- A) (e - €i41) =
dayiy) (t* - U YPVP(e; - €;11). (1.40)

Summarizing these results gives

2 12
It -wlpyp 2 |t—u "QV‘Q""
w2 2 2
fe*—u®| pvpt 4aw(.)w) lle; - ei+l||PV'P'
+4ayipyg) (8 - )PV P(ei - ei1y), (1.41)

or equivalently
2 * SDY—D
Ads i e - €intllpyp + dayinyG (1 - uYPV P - €i) <O (142)

Since ay(y() and |le; - €41 ||%,V-P. are nonnegative, we must have (t* - u*)’PV~
P'(e; - e;41) < O for (1.42) to hold. This implies that the elements of PV_P'(t* - u*) are
monotonically increasing. If x* equals the Guttman transform V™P'(t* - u*), it follows
that Px* is also monotonically increasing, so that the rankorder does not change and
hence STRESS has a local minimum. Q.E.D.

Heiser (1981) showed that metric unfolding can be formulated as a
multidimensional scaling problem with a special weight matrix V (also, see section 5.2).
In turn, the result above shows that unidimensional unfolding is a combinatorial problem,
which was also recognized by Heiser (1981) and Poole (1984, 1990) in a different way.
We retum to this subject in chapter 5.

We have shown that unidimensional scaling amounts to maximizing a measure
over all possible permutations, i.e., a combinatorial problem. We also demonstrated that
the Guttman transform uses the rankorder information only and is finished whenever the
rankorder does not change, usually within a few iterations. Therefore, whenever p =1 it
seems fruitful to switch to a combinatorial optimization strategy.

1.6 Non-metric scaling

In the previous part, the dissimilarities were kept fixed. However, this is not strictly
necessary; we may also use only the order information of the dissimilarities. The main
contribution of Shepard (1962) and Kruskal (1964a,b) was that they realized this very fact
and proposed appropriate algorithms that allow for non-metric transformations of the
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dissimilarities. Using transformations that are monotonic with the dissimilarities relaxes
the STRESS model. At the cost of loosing the direct relation between dissimilarities and
distances, non-metric scaling yields lower STRESS then metric MDS, so that usually an
acceptable solution is obtained in less dimensions. Apart from the monotone regression
transformation, many other transformations can be used. We return to this in a moment.

Non-metric scaling can be viewed in two ways. First, Kruskal (1977) views it as a
function of the distances: for every matrix of distances and given rankorder of 3;;, there
exists a matrix of optimally transformed dissimilarities, also called pseudo-distances . The
second way of viewing non-metric scaling is described by De Leeuw and Heiser (1977)
and De Leeuw (1988) who regard it as an alternating least squares algorithm: in one step
the pseudo-distances are fixed and a better fitting configuration is sought, in the other step
the configuration is fixed and the pseudo-distances are optimally transformed. Sometimes
we have to impose additional constraints on the pseudo-distances to avoid degenerate
solutions. For example, when using monotone regression it is necessary to normalize the
pseudo-distances with sum of squares 1 (or any other constant) to avoid a solution where
all pseudo-distances and all distances are zero.

Generally, any class of transformations can be used that belongs to a model that
makes sense. Suppose that instead of fixed dissimilarities only intervals for each
dissimilarity is given. Then we could define the pseudo-distance being as close as
possible to the corresponding distance, provided it remains in the supplied interval. Other
transformations like B-spline transformation, linear regression, multiple regression, or
polynomial regression could also be used. Depending on the transformation, negative
pseudo-distances may occur, for example when using linear regression with an intercept,
which requires an adaptation of the SMACOF algorithm (see Heiser, 1991) to retain
convergence.

1.7 Special MDS models

Various models known from the literature can be implemented by imposing restrictions
on X. An extensive discussion for metric projection restrictions in the SMACOF algorithm
has been given by De Leeuw and Heiser (1980). Often, but not always, analytic solutions
for metric projections exist. Even if no analytic solution exists, we show below that the
sequence of STRESS values remains convergent.

A restriction can apply elementwise, rowwise, columnwise, on the configuration as
a whole, or combinations of this. An example of elementwise restrictions is the use of
equality constraints among various elements of X. Rowwise restrictions may be used to
constrain all points to be on the surface of a p dimensional sphere. Column restrictions
may be used to generate a configuration matrix with X'X = I. Finally, the size of the
configuration may be restricted by requiring that trX'X = ¢ as done by Mathar (1989). An
important class of restrictions is formed by restrictions for which an analytic solution
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exists of the metric projection Pg, that finds for any Y an X € Q as close as possible to
Y.ie.,

+ 2 _ v %R
|x* -], = minfv - X, (143)
where X is the Guttman transform V™B(Y)Y. We shall now discuss some known
restrictions. Many special models and applications of restrictions could be given, but we
restrict ourselves to some powerful examples. Important models for three way analysis
are the INDSCAL model and the IDIOSCAL model of Carroll and Chang (1970). In the
context of MDS we have a dissimilarity matrix for each layer k, whose configuration X;
should be related to a common configuration X by X; = XS,. For diagonal S; the model
is named INDSCAL, and if S is positive semi-definite we deal with the IDIOSCAL model.
Another application making wide use of ordered cone restrictions is the non-linear
extension of multivariate analysis in the STRESS framework of Meulman (1986, 1992).
There, order restrictions are imposed on columns. A third possible application of
restrictions is to require that X is a linear combination of some previous estimates and the
Guttman transform. In this way De Leeuw and Heiser (1980) created a conjugate gradient
method. Generally, if X has to satisfy multiple restrictions €;, where each €; is convex,
we may use the cyclic projection algorithm of Dykstra (1983). The cyclic projection
algorithm has been used extensively for a variety of restrictions by Van der Lans (1992).

From the majorizing function of 62(X), the Guttman transform X, and any
restricted configurations X+,Y for which

-], <Iv-%F, (1.44)
holds, it can be shown that
ox) s g +[x* -, X[}, <o(v). (1.45)
This can be seen by adding 1 and [X[?, to both sides of (1.44), which gives
ooy s 1 +[x* - X[, ~[RE, s+ [V - K -[RJ =or). 146

As a consequence we get a convergent series of STRESS values for such restricted
configurations, even though (1.43) need not be satisfied. This opens the possibility of
using a wide class of restrictions. For some restrictions, like cluster restrictions, it is
possible to find an X+ that meets the weaker condition (1.44), but it is very hard to have it
satisfy (1.43).
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1.8 Outline of this monograph

From the previous sections it should be clear that much is known about algorithms for
STRESS and applications of STRESS. However, some issues remain open. The elegant
method of majorization only guarantees lower STRESS values, and stops usually at a local
minimum, which need not be a global minimum. This problem is especially severe for
the unidimensional case. Therefore, we study methods that aim at finding the global
minimum. This is done in chapter 2. Then we concentrate on one special method, called
the tunneling method, in chapter 3 and apply it to the STRESS function. Minimization by
the tunneling method is implemented with iterative majorization. In chapter 4 we try to
find indications when local minima may be found, and get an idea of the performance of
some global optimization methods.

A useful aspect of the STRESS function is the inclusion of weights. It allows for
missing patterns with multidimensional scaling. Chapter 5 discusses several structured
missing data patterns. In particular, we discuss acceleration of inverting a matrix
associated with the STRESS function. Also, we indicate how missing data patterns can be
used for (external) unfolding and semi-complete scaling. Inspecting the multidimensional
scaling solution can be difficult with a large number of objects. Therefore, restrictions can
be helpful to reduce the amount of output. In chapter 6, we discuss (fuzzy) clustering
implementations in MDS. Finally, in chapter 7 we extend the majorization method for
STRESS to include Minkowski distances.






CHAPTER 2

GLOBAL OPTIMIZATION AND
STRESS

One of the advantages of the majorization algorithm in metric multidimensional scaling is
that a monotone decreasing series of STRESS values is obtained. The majorization method
also has a weakness; the solution is usually a locally optimal solution, but not necessarily
the best overall solution. Thus, other configurations may exist that have a better fit.
Finding the best overall solution corresponds in mathematical terms to finding a global
minimum of the STRESS function, which is an important topic in this monograph. Several
local search procedures for STRESS are well known, like the gradient method proposed by
Kruskal (1964a,b) and the SMACOF algorithm of De Leeuw (1977) and De Leeuw and
Heiser (1980). In fact, any standard nonlinear programming technique known from the
field of numerical optimization could be used for a local search. Such local search
techniques give at best a local minimum, but not a global one. The problem of finding
global minima is the main concem of the field of global optimization. Unfortunately, the
knowledge of existence of a lower minimum is rarely available.

The mathematical formulation of a global minimum X* of the real-valued function
o(X) is that

o(X")-o(X)<0 2.1

for all feasible X. This does not imply that X* is unique; there may well be other X with
o(X"*) = o(X). In contrast, a local minimum is defined to be the point where all other
points within a small neighbourhood have higher function values. Thus, a global
minimum is the lowest local minimum. Apart from the necessary conditions for a local
minimum like a vanishing gradient and a matrix of second derivatives that is positive
semi-definite, no such mathematical condition exists for the global minimum (except
equivalent formulations of (2.1)). Unless the function exhibits special analytical properties
it will generally be hard to find the global optimum. Horst and Tuy (1990) warn that "...
global solution methods must be significantly different from non-linear programming
techniques, and they can be expected to be - and are - much more expensive
computationally."

An aspect which makes global optimization difficult is the so called curse of
dimensionality. As the number of parameters to be estimated rises, so does the space to
be searched. In fact, the amount of space to be searched grows exponentially with the
number of parameters. Even for a small number of parameters an exhaustive search is
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virtually impossible, unless a very large amount of the space can be discarded from the
start. The number of parameters for STRESS, which is the total number of coordinates of
the configuration, is very high. Therefore, it may be expected that finding the global
minimum of the STRESS function is (computationally) very hard.

In the next section we give a brief overview of the literature on global optimization,
and, where possible, in the context of minimizing the STRESS function. Recently there has
been an increasing interest in global optimization. Some recent publications reviewing this
area are Horst and Tuy (1990), Rinnooy Kan and Timmer (1987a,b), and Tom and
Zilinskas (1989). Moreover, in 1991 the Journal of Global Optimization was founded. In
chapter 1 we saw that there are three special cases of MDS: full-dimensional scaling, that
has no local minimum problem, unidimensional scaling, that has an especially severe
local minimum problem, and MDS with 1 < p < n - 1, for which the local minimum
problem can also be present. For unidimensional scaling we apply some algorithms
especially suited for combinatorial problems. Next, we look at methods better suited for
MDS with p > 1, such as stochastic methods, like the well-known multistart method and
multi-level-single-linkage, which can be seen as an improvement of multistart. An
important contribution of this monograph is the tunneling method for global optimization,
discussed extensively in chapter 3.

We are mainly concemned with algorithms that aim at finding a global minimum
within a reasonable amount of time. Some of the global optimization methods discussed
below consist of a local search phase and a global search phase. We use the SMACOF
algorithm during the local search.

2.1 A classification of the field of global optimization

A short summary and classification of global optimization techniques will be given here
and some of them discussed in more detail in subsequent sections. We do not intend to
cover the field exhaustively, but we wish to create a framework in which the global
optimization techniques discussed can be placed. Several classifications of this field exist,
but we follow the classification given by Tomn and Zilinskas (1989). They separate the
techniques into those with a guaranteed accuracy in reaching the global minimum, and
those without (see Figure 2.1). To the former group belong covering methods, that
exclude subregions that do not contain the global minimum. The techniques without
guaranteed accuracy are separated in direct methods (random search, clustering methods
and generalized descent methods) that use only local information and indirect methods
(methods approximating the level sets, or the objective function) that build a model of the
level sets or the objective function.
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Branch and bound

Guaranteed Covering methods €~ Interval analysis
Ry Dynamic programming ()
Pure random search
Single start
Random search< Multistart (+)
Global Simulated annealing (¢)
optimization . . Density clustering
3 Direct (— Clustering—e=—"""" \ /1:. jevel.single-linkage (+)
Generalized Trajectory methods
0 guarant descent — Penalty methods
accuracy Approximating (Tunneling (<))
. level sets
Indirect { Approximating
objective function

Figure 2.1  Classification of global optimization methods. Methods indicated with ()
are discussed in more detail.

A simple example of a covering method is complete enumeration in combinatorial
problems. Branch and bound techniques also fall in this class. Here the total parameter
space is split in subsets for which lower and upper bounds of the function are known. The
subsets that are known not to contain the global minimum are excluded. The remaining
subsets are split again, so that we end up with the global minimum within some pre-set
accuracy. Recent publications of this type of methods is Horst and Tuy (1990), who only
use convex analysis and do not need the usual requirement of existing first and second
derivatives of the objective function. Klaassen (1989) has applied a variant of this method,
interval analysis (see Hansen, 1980), to the STRESS function. Unfortunately, his method
was only successful for very small problems. Another type of covering method was used
by Hubert and Arabie (1986), who used dynamic programming successfully for
unidimensional scaling (see section 2.2.1). We retumn to covering methods in section 2.3.
These methods can be regarded as deterministic, since they have guaranteed success. Note
that this does not imply that they succeed in finite time.

Under the direct methods we find the random search methods like pure random
search, singlestart and multistart (see section 2.4). In all three methods random
configurations are generated and STRESS values determined. In single start a local search
is started from a random configuration with the lowest STRESS, whereas multistart starts
a local search from every random configuration. No local search is used in the pure
random search. All three methods consider the lowest STRESS value to be the global
minimum. For an overview of pure random search see Zhigljavsky (1991). These
strategies (especially multistart) are widely used to investigate whether a function suffers
from local minima or not. Since the early 1980's a different random search method
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became popular; the method of simulated annealing. During the simulated annealing
process a different random perturbation is generated. This perturbation is always accepted
if it yields a decrease in function value. However, an increase in function value is also
accepted with a certain (decreasing) probability. Machmouchi (1992) applied simulated
annealing to non-metric MDS, but little is known about its efficiency in determining a
global minimum. We discuss simulated annealing for unidimensional scaling in more
detail in section 2.2.3.

The third type is formed by clustering methods. These methods refine the multistart
method in that they intend to start a local search only once for configurations leading to
the same local minimum (Rinnooy Kan and Timmer, 1987a,b). This type of algorithm is
often regarded as relatively efficient (Zhigljavsky, 1991; Tém and Zilinskas; 1989). Two
examples of this method are Tom's density clustering (1976) and the multi-level-single-
linkage algorithm of Timmer (1984). We adapt Timmer's clustering method to MDS in
section 2.5.

The fourth type is formed by generalized descent methods, where the function is
modified to guarantee a lower minimum. Trajectory methods try to model the stationary
points (local minima, local maxima and saddle points) by a curve in an extra
parametrization. Following the trajectory of the curve would lead to all local minima,
including the global one. These methods are commonly not regarded as being promising
(Timmer, 1984; Torn and Zilinskas; 1989). Penalty methods modify the function itself to
prevent returning to local minima found in previous iterations. One such penalty method
is the tunneling algorithm, that alternates a local search with a tunneling step. In the latter
step we try to find a solution different from the previous local minimum, that has the
same STRESS value as the local minimum. An important and attractive feature of the
tunneling algorithm is that successive local minima are always lower. We return to this
method in more detail in chapter 3.

The first indirect models aim at approximating the level sets, that is the set of
configurations with STRESS smaller or equal to some constant. The level set L. is the set
{X € R™|0o(X) < c}. The idea is to find a ¢ and thus a solution X for which a volume
measure of the set L. equals zero. At such a configuration STRESS must have its global
minimum. Torn and Zilinskas note that this approach does not seem to be very
promising.

The last type is formed by methods approximating the objective function. Here a
theory is developed based on a statistical model of the function. The unknown function
values are treated as random variables in a Bayesian analysis. This class of methods can
be used for functions that are expensive to evaluate, so that all information is used
optimally. It has been found very efficient for oscillating functions of one parameter only
(see Zilinskas, 1978) and for engineering problems with functions that are expensive to
evaluate. For more details we refer to Mockus (1989).

Now that we have established a framework of global optimization methods, we
apply some of these methods to the STRESS function. First, we discuss unidimensional
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scaling with p = 1. The global optimization methods that follow thereafter are best suited
for 1 <p <n -1, although they may also be applied to unidimensional scaling.

22 Unidimensional scaling

We showed in section 1.5 that minimizing the STRESS function for p = 1 amounts to a
combinatorial problem. A nice implication of this observation is that finding a global
maximum of t2(y) must also give a global minimum of STRESS. Thus we have to avoid
local maxima of the function t2(y). Defays (1978) used a branch and bound algorithm to
find the global minimum of STRESS. Another obvious strategy is to look at all
permutations and select the optimal one. This strategy is prohibitive for large n, since we
have to deal with n! different permutations. Therefore, we discuss more efficient
algorithms, like the dynamic programming approach of Hubert and Golledge (1981) and
Hubert and Arabie (1986), which finds the global optimum for small sized » (say n <
20). For larger n, this approach is too intensive, so we have to change to searches that are
not necessarily guaranteed to arrive at the global optimum. Of these we discuss pairwise
interchange strategies, simulated annealing, and tabu-search, which aims at finding
increasingly better local optima.

2.2.1  Dynamic programming

In the previous chapter, it turned out that unidimensional scaling is a combinatorial
problem. Hubert and Golledge (1981) and Hubert and Arabie (1986) used a special
feature of t2(y) to reduce the order of the computations needed to obtain a global
maximum from n! to 27, Let R be a subset of m—1 of the n objects and R' be the subset of
m objects obtained by adding object & that was not in R. If object k is at position m in the
final permutation, of which the first m-1 are given by w,,.;, then its contribution to the
final value of |t - u|? is given by (tm — um)? = (ZjerBjk — Zje #O;x)?. Suppose that AR)
contains the maximum contributions to t2(.) so far. Then the maximum contribution
including object k in position m is

2
f(R )= maXf(R)+(2jER8k,w(j) _ZjeRsk'w(j)) . (22)

overallm= (m'fl) subsets R and objects k that form together subset R'. Thus to assess the
contribution of object k in position m to the optimal t3(.) we need to know neither the
particular order of y,, nor which objects are positioned after m. We only need to know
which objects are positioned before m, not their particular order. The empty set with no
objects present (m = 0) has @) = 0.
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The recursive relation in (2.2) is exploited in the dynamic programming approach.
We start with the empty set and consider ('1') subsets of size 1 and store the value of (2.2)
for each of them. Then we regard the (;) subsets of size 2, store their value of (2.2) and
also store the object that was added last to obtain {R"). This is repeated for each larger
subset until the final set of all objects is considered. Then we use the two arrays for
finding the permutation that led to the maximum solution, starting from the last added
object to the first one.

Non-identical weights

The same approach as in dynamic programming can be extended to unidimensional
scaling with general nonnegative weights. However, we cannot guarantee a global
minimum anymore. We have seen that for non-identical weights, [t —ul?> _ has to be
optimized. For this function it is still possible to judge the COllLl‘ibutiOI'lF‘;)fP object k in
position m using only the objects in the positions smaller than m and object k. However,
in contrast to the unit weights case, we do have to know the ordering of the objects in
positions smaller than m. Hence some of the efficiency of the dynamic programming
approach is lost, although we still only have to consider 2" subsets.

Let PV'P' be decomposed by a Cholesky factorization in RR', with R an upper
triangular matrix. This can be done by finding the ordinary Cholesky factorization R'R of
matrix PV"P' transposed over the lower-left upper-right diagonal. There should be no
problem in finding such decomposition since V is positive semi-definite, hence so is
PVP'. Then we can show that the contribution of object k in position m to |t —ulf® _
depends only on the values of t;— u; for i <m. Note that |t—ul? R
((t—u)R) ((t—u)R), where (t — u)R is a vector whose element i is only dependent on
elements j < i. The function to be maximized is

2

2 2
e =lt-uf _ = Zi(zjsir it —u; )) 2.3)
The maximum contribution to t2(.) of having object k in position m is
2
SR)=max fR) + (T rjmt =) 2.4)

over all m= (m"_'l) subsets R and objects k that form together subset R', knowing the values
ti — u; for i <m. The value of t, — Um = Ljc g Ak,y) — LjeR Gk ()

We can work our way recursively until we have subset R' containing all objects. For
each different subset we have to store three items, the value f{R), the object that was added
last to obtain R, and the value of #; — 4; and we have to compute the Cholesky factorization
to obtain R. Note that we only need the part of R determined by the elements yAj) with j <
i. We start with the empty subset and work our way to the subset of all objects using
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(2.4). However, in this way we cannot guarantee that the global maximum of Jt —u|® _
is found in the last subset that contains all objects, due to violation of the principle of
optimality in dynamic programming. This principle states that f(R) must be optimal
regardless of the object added to form R'. Thus the final permutation does not need to give
the order of coordinates in the global minimum configuration of STRESS, although we
expect it to be close to a global minimum. Compared with the unit weight case, the
current procedure does increase the number of operations because the Cholesky
decomposition of PV"P' has to be computed for each of the 27 subsets.

2.2.2  Pairwise interchange strategies

For large n the dynamic programming approach of Hubert and Golledge (1981) becomes
impractical. Therefore, we discuss in the following sections heuristic methods that find a
local maximum relatively fast, some with mechanisms for avoiding local minima. Here
we discuss pairwise interchange strategies, where some interchanges of two objects are
compared and the one is chosen that increases t2(y) maximally.

A pairwise interchange strategy tries to find a permutation that is maximal with
respect to some pairwise interchanges. We shall call this heuristic the Jocally optimal
pairwise interchange (LOPI) strategy (cf. De Soete, Hubert, and Arabie, 1988). Let y;; be
the permutation resulting from y with pair i, j interchanged, i.e., y;; (k) = (k) for all
k#ijand y;; (V) = w()), vij () = w(i). Define the neighbourhood N of y to be those
permutations that can be formed with one pairwise interchange from y. The local search
of this strategy amounts to finding iteratively the maximum of t2(y;;) over N until t2(y;)
is no larger than 2(y) for all permutations in the neighbourhood N, so that v defines a
local maximum. The attraction of pairwise interchange strategy lies in its simplicity and
its computational efficiency in determining the best pairwise interchange. The efficiency is
dependent on the definition of the neighbourhood N, of which we discuss four.

In its simplest form N consists of all pairwise interchanges of adjacent objects, thus
considering v; ;1 for i = 1, n — 1. We shall call this the LOPI1 strategy. One iteration of
the LOPI1 strategy can be summarized by

k+1 -1,2
vV —argmaxi! (v,

where the superscript (k) denotes the iteration number. To decide which pairwise
interchange has to be carried out, we need to assess the n—1 values of t2(y;;.1). It is not
necessary to compute the t2(y; ;1) from scratch, but instead it can be computed from
t2(y) and using (1.33) for weights equal to one, or from t2(y) and using parts from (1.37)
for non-identical weights.

A second strategy is advocated by Poole (1984, 1990) for unfolding. He considers
each object separately and finds the optimal position for this object keeping the order of
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the other objects fixed. Let us call this strategy LOPI2. One iteration of LOPI2 can be
formulated as

Y ey
loop over objects /=1ton
determine position i of object /
V(1) « v'(0), ¥(i+1) « ') for j < i and y(j) « v'(j) forj > i
Viey
loopoverj=1ton-1
' « argmax ((y"), 2(y/jjs1) )
Ve Vi
end loop over j
end loop over /

Wkt D)

Note that this is a stronger formulation of a local maximum than LOPI1, where we stop
whenever there is no adjacent pairwise interchange that gives a higher value of t2(y). At
such a permutation it may still be possible that the pairwise interchange y; ;.2 would
increase the value of t2(y). LOPI2 excludes this case too. Thus the neighbourhood of
LOPI2 is larger than that of LOPI1 and includes the neighbourhood of LOPI1. Clearly, the
permutation that satisfies the stop condition of LOPI2, also satisfies the stopping condition
of LOPI1. Poole (1990) conjectures that the number of permutations that satisfies the
stopping criterion of LOPI2 decreases with n. If true, then LOPI2 would be a very
successful strategy for large n. Just as for LOPI1 we can compute t2(y';j,1) quite
efficiently in the (un)weighted case from t2(y/).

Heiser (1989) uses pairwise interchanges in the context of city-block scaling. He
arrives at local maxima with the same properties as LOPI1, but via a different path, Heiser
. regards the pairwise interchanges of all n(n — 1)/2 pairs. We call Heiser's strategy LOPI3.
It can be summarized as

Ve yb
loopoveri=1ton
loopoverj=1ton
¥ « argmax (2(y), t(y/;) )
end loop over j
end loop over i

kD
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Indeed, if no change occurs it must be true that object i has optimal position keeping the
order of the other objects fixed, so that a maximum of LOPI3 must also be a maximum of
LOPI1, but not necessarily of LOPI2. LOPI3 is computationally more intensive than LOPI1,
since more pairs have to be considered. An even more intensive variant of LOPI3 was
used by De Soete et al. (1988). Their variant, which we call LOPI4, amounts to

WD o argmax;e; ((2(y0), 2(y) ).

Again a permutation at the stopping condition of LOPI4 also satisfies the stopping
condition of LOPI3.

In section 1.5 we showed that for y* optimal with respect to adjacent pairwise
interchanges, the vector ¢ — u in the identical weights case or the vector PV"P'(t — u) in
the non-identical weights case are monotone increasing. Hence, STRESS has a local
minimum for this permutation, because taking the Guttman transform does not change
the order. If y* is the permutation at the stop condition of LOPI2, LOPI3, or LOPI4, then it
also satisfies the stop condition of LOPI1. Therefore, the LOPI2, LOPI3 and LOPI4 strategies
also have a local minimum of STRESS for permutation y*. Since LOPI2, LOPI3, and LOPH4
consider a larger neighbourhood for finding the local maximum of t2(y) than LOPI1, they
have a better chance of finding the global minimum of STRESS. In chapter 4 we present a
simulation study using the LOPI1, LOPL2, LOPI3, and LOP4 strategies.

2.23  Simulated annealing

The method of simulated annealing has been proposed for combinatorial optimization by
Kirkpatrick, Gelatt, and Vecchi (1983) and Cemy (1985), see also Van Laarhoven and
Aarts (1987). The idea of simulated annealing can be extended to general optimization
problems. It eamns its name from the cooling process (annealing) in solid state physics.
The aim is to cool material down to its lowest energy state by slowly reducing the
temperature. If an equilibrium is reached, the temperature is somewhat increased to allow
defects frozen in the structure to become loose again, so that after cooling down, a lower
energy state of the material can be reached. The simulation of this annealing process
serves as a metaphor in optimization.

De Soete, Hubert, and Arabie (1988) applied simulated annealing to unidimensional
scaling. Their procedure can be described as follows:

1 T 2.5t2(y0), k< 0, y® « 0, r « 2n

2.V b, c Lk k+1

3. Repeat r times

c«0

Perturb y" into ¢ by a random pairwise interchange
Set v' « v if t2(y') 2 t2(y") o1

B
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if 2(y/) < t2(y") with probability exp([t3(v') - t%(y")]/1)
6. Ify'=ythence1
7. End repeat
8. D ' T 12, re L1r
9. If a change occurred (¢ = 1) then go to 2

Every perturbation that increases t2(y) is always accepted. If it decreases t2(y), it is
accepted with a probability that decreases during the process, so that eventually the system
freezes. Evidently, changing the initial settings of the cooling scheme or changing the
diminishing rule of the temperature T also changes the behaviour of the algorithm.

De Soete, Hubert, and Arabie (1988) used simulated annealing on unidimensional
scaling and concluded that it did not perform better than the LOPI4 procedure.

224  The tabu search

Here, we discuss a heuristic method heavily based on a local search procedure like the
pairwise interchange that finds a local maximum fast and tries to find subsequently better
local maxima. The tabu search was proposed by Glover (1989, 1990) and used by De
Amorim, Barthélemy, and Ribeiro (1992) in the context of clustering. It consists of two
steps, a local search step yielding a local maximum and a global step in which a
permutation is sought with a higher or at least equal value of t2(y) and that is different
from the current local maximum permutation. Once found, we return to the local step,
and so on. In the global step some search directions leading to the current local maximum
are forbidden, hence the name tabu search.

The local step of tabu search is the pairwise interchange strategy of section 2.2.2. In
the global search we wish to find a permutation different from the one we found so far,
that has the same maximum value, or even higher. From that point we can retumn to our
local search again, and so on. During the global search we accept the permutation that
gives the highest value of t2(y), unless v is one of the tabu permutations that lay in the
path leading to a previously found local maximum. In the latter case we accept the next
best solution that is not a tabu permutation. The global search differs from the local search
by adding an acceptance rule. Thus, in the global step we are only willing to decrease the
value of t2(.), if it avoids returning to the previous local maximum.

Sometimes the method is called a steepest ascent, mildest descent method. In the
next chapter it will turn out that the tabu search may be regarded as a discrete version of
the tunneling method. It can also be seen as a non-probabilistic form of simulated
annealing. Only in a limiting case can a global maximum be guaranteed. Then all
ascending paths leading to all local maxima are tabu, which clearly is of no practical use
for large n. In chapter 4 we present a simulation study to compare the tabu search with
other strategies.
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Using the ingredients set out above, we can summarize the tabu search algorithm as
follows:

1.  Initialise
Set y(D « y0, k 0.

2. Local step
a kek+1.
b. Regard pairwise interchanges of (©) and let y* be the permutation with the
highest value of t2(.).
c. If t2(y#) has a lower value than t2(y(®) then y® defines a local maximum
and go to the global step 3a.
d. Set y+1)  yt and go to step 2a.

3.  Global step

a v e yd

b. Regard all pairwise interchanges of ¥ and let y& be the permutation with the
highest value of t2(.) that is not in the Tabu list.

c. If 2(y) has a higher value than t2(y(®) then set y*+1) equal to y& and go to
local step 2a.

d. If t%(ye) has a lower value than t2(y/) then add y& to the Tabu list.

e. Set y/ « yg. If the Tabu list gets longer than s points then remove the oldest
tabu permutation.

f. If we cycle in the global step for more than r iterations or we return to the
previous local minimum, then we stop and declare y* to be the candidate
global minimum.

The tabu search always wants to find a permutation that has a higher value of the function,
unless it appears to be on a path leading to a previously found local maximum. In that
case we accept a permutation with a lower function value, but we take one with the
smallest possible decrease. If it would have been possible to use a tabu list as large as the
total number of permutations, then this strategy would produce a global maximum with
certainty. Obviously, even for small size n, this would be much more impractical than
using the dynamic programming approach outlined in the previous section. By making
the tabu list too short we may cycle through the permutations and return to a previously
visited permutation. Another aspect determining the success of the global step is the
maximum number of iterations after which we terminate the global search. If it is too
tight, we may not find a permutation with a higher value than the local maximum one,
although it may exist. If it is too loose the method becomes inefficient and may run into
cycles.

There exists a nice relation with simulated annealing (SA). The main similarity
between both methods is that they sometimes accept a step which decreases the function
value. The difference between SA and the tabu search is the acceptance rule. The tabu
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search accepts a decrease in function value if there exists no better solution in the
neighbourhood that is not forbidden. SA always accepts a permutation that increases the
function value. If it does not, then SA still may accept the permutation with a certain
probability. This probability tends to zero to damp the process.

23 Space covering methods using Lipschitz constants

After having considered unidimensional scaling, we return to multidimensional scaling
and focus on space covering methods in this section. A useful property in space covering
methods is the Lipschitz constant. A function is said to have a Lipschitz constant L if it
satisfies the inequality

lo(X)) - o(X,)} < L|[X; - X,|.- (2.5)

Often the Euclidean norm is used, but this may not be necessarily so. Suppose that (2.5)
holds and that we have some sample configurations X; with X* equal to argmin; o(X;).
Then it is not difficult to show that all X within distance (o(X;) - 6(X*))/L of X;
necessarily have STRESS larger than o(X*).

The following theorem shows that STRESS has a Lipschitz constant.

Theorem 2.1
Using the Euclidean norm in the metric V, STRESS has a Lipschitz constant 1.

Proof

Let 8, dy, and d; be the vectors of length n(n—1)/2 with lower triangular elements of
A, D(X}), and D(X3) respectively, so that 6(X;) = |8 - d;|lw with w a diagonal
matrix with weights w, and [d; - da]| 3, = Zicj wii(difX1) — dj(X1))2 From the
triangle inequality we have

o(X;) = |8~dy,, <|5-dq],, +|d; - d>],
o(X,) =[8—d,|, s|8-dyl, +|d; - d,],,

which makes
lo(X;)—o(X, )| < |d; - dy. ..
The square of the right-hand term can be written as

Hdl —dzllzv = zi<j Wu df,(Xl) + ijw,-j d%,(XQ)— Zijw,-j du(xl)dq(X2)

=trX,' VX, +trX,' VX, - Zijw,-jd,-j(Xl)d,-j(Xz ).
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By the Cauchy-Schwarz inequality —d;(X)d;(X7) < «(x1,; — X1,))'(x2,; — X2,j) we have
li -, <X, VX +uX,' VX, - 20Xy VX, =X, - X}
Combining these inequalities gives
[o(X1) - 0(Xy)| < Jdi - daf,, <X, =Xy,
which proves that STRESS has a Lipschitz constant of one. Q.E.D.

The Llpschltz constant is defined in the Euclidean norm with the metric V, i.e.,
IX; - Xi"v = tr(X; - X;) V(X; - X,). It means that if 6(X;) 2 6(X3) within an
ellipsoid around X defined by V with length smaller than 6(X;) — 6(X3), STRESS must
be larger than or equal to 6(X3). This theorem can easily be extended to the unweighted
Euclidean norm, but then we get a less sharp Lipschitz constant. A disadvantage of not
using ellipsoids is that the volume covered is smaller than the one using V (unless V has
equal eigenvalues), since a sphere fitting inside an ellipsoid has a smaller volume than the
ellipsoid. Let A be the largest eigenvalue of V. Then matnx V — Al is negative semi-
definite, so that the inequality [X; - X2"v X, - X2| must hold. The Lipschitz
constant of STRESS in unweighted Euclidean norm equals A1/ for column centered X. If
all weights are equal to one, then V = nl — 11', which has n as its largest eigenvalue. In
this case the Lipschitz constant in unweighted Euclidean norm is equal to 1”2,

The Lipschitz constant is of particular use in space covering methods. In this way
parts of the space can be excluded from containing the global minimum. One of the
problems of this method is to cover the full space. Although the Lipschitz condition of
STRESS is defined in terms of hyperball or ellipsoids, we can always find a hypercube that
fits inside this area. In this way it is easier to cover the space with contiguous subsets.
However, the space covering method suffers from the curse of dimensionality. Timmer
(1984) shows that the computational effort required increases exponentially with np.
Therefore, we shall not use space covering methods to minimize STRESS in its general
form. However, this method may be used to obtain the global minimum of a related
problem, finding the minimum of STRESS with all objects fixed, but one object free.
Clearly, this does not have to lead to the global minimum of the STRESS function, but a
stricter local minimum is obtained, i.e., a local minimum where each object has a global
minimum conditioned on the other objects.

24 Multistart

The multistart algorithm is a simple but powerful method, often used to find a global
minimum. It consists of repeatedly choosing different (random) start values, each
followed by a local search procedure. Clearly, the local minimum with the lowest function
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value is a candidate global minimum. The strength of the multistart method is its
simplicity combined with attractive theoretical properties. When using random start
values and under mild smoothness assumptions, it can be proven that the multistart
method asymptotically yields the global optimum with probability 1. However, we need
infinitely many start configurations and local searches to reach the asymptotics. Besides,
multistart is wasteful because the same local minimum will be found by various start
configurations that are within the region of attraction of the same local minimum.
Boender (1984) developed stopping rules based on a Bayesian estimate of the number of
local minima and the relative size of the region of attraction. If we assume that each
number of local minima w is equally likely to occur and we assume that given w the
relative sizes of the regions of attraction for each local minimum follow a uniform
distribution on the (w — 1) dimensional surface, then the posterior expectation of the
number of local minima is

L-1

where L is the number of local searches performed so far. A simple termination rule is to
stop whenever the number of local minima found differs only 0.5 from the expected
number of local minima.

A better performance is obtained if we would start a local search procedure only
once for each region of attraction that belongs to a unique local minimum. This ideal is
approximated with clustering algorithms, of which we discuss an attractive one in the next
section.

2.5 Multi-Level-Single-Linkage clustering

The multi-level-single-linkage clustering algorithm (MLSL) for global optimization is a
stochastic method with attractive theoretical properties developed by Timmer (1984) and
Rinnooy Kan and Timmer (1987a,b). MLSL may be regarded as an improvement of
multistart. Clearly, in most cases multistart is wasteful, because the same local minimum
may be found many times. A better performance could be obtained if we were able to
start a local search procedure only once for each region of attraction that belongs to a
unique local minimum. This ideal is approximated by clustering algorithms. Various
cluster methods are known in the global optimization literature, but according to Timmer
(1984) (also, see Zhigljavsky, 1991, Tom and Zilinskas, 1989) an adapted version of
single-linkage is an appealing one in the present context. Clustering is a technique that
assigns points to clusters to find groups of similar points (Hartigan, 1975). In global
optimization we regard each nxp = ¢ configuration matrix X as a point in R9.

Each cluster (and therefore the region of attraction) is defined by a seed point (here a
local minimum configuration) and all points that are within a critical distance ry of each
other. As ry becomes smaller over the iterations, the clusters approximate the region of
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attraction better. The single-linkage clustering algorithm is known for the sausage shaped
clusters it finds, the so called chaining effect. For our purpose it is a useful effect, since
the level sets L,, given by {X € R?10(X) < y}, may well have this form. The method is
defined over a compact and convex subset S of R4, which is assumed to contain the
global minimum. Here, we choose S to be a rectangular parallelepiped. The MLSL
algorithm differs from ordinary single-linkage clustering in that it takes the function value
of the sample points into account, hence the name multi-level-single-linkage. The
algorithm can be summarized as follows

1.  Initialise. Set k 0 and X = {2}.

(Global phase) Draw N initial configurations from the uniform distribution
over S. Evaluate STRESS value for each configuration. Add the points to set X.
Set k « k+1. Adjust critical distance ry.

3.  (Local phase) Apply the local search procedure to every sample point X; of X
unless X; is within a small distance € of the boundary of S, or there exists
another X with o(X;) < o(X;) within critical distance r.

4.  Decide by means of a stopping rule to stop or return to 2.

Note that other clustering methods can be applied by changing the selection rule in step 3.
It is easy to see that it is not necessary to keep track of the clusters. The only information
that is needed for the decision to start a local search procedure is derived from the distance
between point X; and the other points in the sample set X and their function values. MLSL
depends critically on how the critical distance is defined. This should be done in such a
way that eventually all local minima are found, including the global one, but not infinitely
many local search procedures are needed. Timmer (1984) proved that these requirements
are met by deriving the critical distance from volume measures and probabilities. For
rigorous proofs of the method we refer to Timmer (1984) and Rinnooy Kan and Timmer
(1987a,b). A simplified outline of the proof is presented here.

25.1  Why MLSL works

In developing global optimization algorithms two aspects are attractive. If the method is
asymptotically correct, then the method guarantees that a global minimum will be found
eventually. The second attractive aspect is that it should be efficient. We would like to find
the global minimum within reasonable time, preferably before infinity. These two aspects
can be proved for global optimization with MLSL, although for large n the efficiency
declines.

Let Ba,, be the set of points X within critical distance r of A with A, Xe S and let
A, be the set of points in By , with 6(X) < 6(A). In the sequel, the critical distance in
iteration k is denoted interchangeably by r or r,. We want to make sure that for any new
sample point A with increasing £ the number of expected points in A, , increases, so that
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eventually no local searches are performed. On the other hand, r should become
arbitrarily small so that no local minima are overlooked.

Suppose we have kN sample points from a uniform distribution where A is one of
them. The probability that none of the other points is within distance r of A with smaller
function value is

KN-1
(1———"‘("“)) , @.7)
m(S)

where m(S) is the Lebesque measure of S, a volume measure. We shall see that MLSL is
defined in such a way that this probability tends to zero after a sufficient number of
iterations. This implies that the probability of finding another point within distance r with
lower function value goes to one, so that eventually no local search is started. However,
given r we do not know a priori m(A, ;). It tumns out that a simple relationship exists
between m(A, ,) and m(B, ;). It can be proven that as r decreases to 0, it holds that
m(Aa ) 2 Bm(Ba ) with 0 < < 1/2 (see Timmer, 1984; Rinnooy Kan and Timmer,
1987a,b). This can be seen intuitively for one dimension by looking at Figure 2.2. For
large r, m(A, ) can be larger than 1/2 m(B, ,), as in the figure or smaller than
1/2 m(B, ). When zooming in, i.e., choosing r smaller and smaller, the surface of the
function is approximated by a hyperplane. This holds for every distance measure that is
symmetric around each of the ¢ dimensions of X, for X not a stationary point. The points
within distance r of A tend to be split in two equal parts, one with function values larger
than o(A), the other half with smaller function values. Theorem 4.2.2.1 of Timmer
(1984) implies that we can always find a B, with 0 < B < 1/2 (if the function is twice
continuously differentiable and A is not a stationary point) such that m(A4 ;) 2 pm(Bj4 ;)
holds for r smaller than some small constant.

o(A)

28
|—|_|B Ar
A A,:

Figure 2.2 For decreasing ri, m(A,,) gets larger than B m(By ,) for some
0<B<l2.

Using this resuit, an upper bound can be found of the probability that there is no point in
the sample set within distance r; with smaller function value (2.7), i.e.,
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m(A, ;)2 Bm(By ),
_ m(AA,r) < Bm(BAr)
m) ~  mS)
(1 _ m(AA,r )J < (] - Bm(BA.r)J’ (2.8)
m(S) m(S)
(1 _ m(AA,r))kN—l = (1 _ Bm(BA.r))W_ll
m(S) m(S)

The upper bound of this probability depends directly on m(B, ,), which in turn depends
directly on r; for properly chosen distance measures. For r; smaller than some small
constant, (2.8) shows that it is expected to find other points within distance ry, let alone
points with smaller function values, eventually with probability 1. The decision rule for
starting a local search procedure from A implies that no local search is started. Thus
eventually no local searches shall be performed.

Suppose that B, , is entirely contained in S. Then the expected number of sample
points in By , is kNm(B, ,)/m(S). By setting this equal to y In kN, where 7 is a pre-set
positive constant and In is the natural logarithm, the density of points in B, , gets higher
with increasing number of iterations. As r becomes smaller, the number of points within
distance r of A increases, and so does the number of points within distance r with smaller
STRESS values. Consequently, the probability that a local search is started from A goes to
Zero.

As an intermezzo, we could use the arguments outlined above to construct a
stochastic form of a space covering method. The sampling method and definition of the
critical distance could be used from MLSL. Remember that covering methods do not have
local searches. Then we know that the density of sample points within distance r of A
increases over the iterations, whereas r decreases. Due to the fact that STRESS has a
Lipschitz constant, we get increasingly better lower bounds of STRESS. Furthermore, the
stochastic process ensures that the entire feasible region gets covered. After termination,
we end up with an upper and lower bound of the global minimum of STRESS that is
directly dependent on the Lipschitz constant of STRESS and the critical distance r.
Unfortunately, to obtain an acceptable range for the global minimum we need a huge
number of sample points, which increases drastically with the dimensionality g. We shall
not discuss this further.

Clearly, some stopping rule is needed for the MLSL algorithm. Fortunately, the
assumptions of Boender (1984) for terminating the multistart method are still valid, thus
we may use the same stopping rule. However, for large scale problems we may have to
stop earlier because of problems with the storage of all the sample points. It remains to be
shown how r; can be derived for a proper distance measure. Before discussing this in
section 2.5.3, we first investigate the feasible region S.
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25.2  The feasible region S

The MLSL method requires the specification of a feasible region S. We present two ways
of determining S. First of all, we have to determine the number of parameters of the nxp
configuration matrix X. A configuration matrix determines the value of STRESS uniquely
up to an arbitrary translation, rotation or reflection. Thus one local minimum
configuration X* generates infinitely many other local minima, simply by using the above
mentioned transformations. Since the MLSL method searches for all local minima this is
an undesirable feature which can be solved by constraining the configuration matrix. A
second way of solving this problem is by using distances, which is discussed later on.
Using constraints on the configuration, the translation invariance can be solved by fixing
one point of the configuration matrix X at the origin, say the first row x,'. The rotation
invariance is constrained by letting the second row x,' only vary along the first axis and
setting the remaining coordinates fixed to zero. For p larger than 2 we free the coordinates
of the third row only on the first two axes and fixing the rest to zero, etc. Thus a
configuration matrix X with 3 dimensions is constrained to be

0 O 0
x21 0 0
0

X X31 X33

= L 2.9)
X41 X42 X43

| Xn1 Xn2  Xp3

The reflection problem is solved by restricting the first subdiagonal elements (x,, X3, and
X43 in the 3 dimensions example above) to be nonnegative. The constraints reduce the
number of free parameters to g = (n—1)p — p(p-1)/2.

From any unconstrained X the constrained matrix X+ may be obtained as follows.
First the origin is set to the first row x;' by X+ « X — 1x;". Thus x*, equals 0. Further, let
X ;) be the pxp matrix of the rows x*; to x*,,; and T be the modified Gram-Schmidt
decomposition of X,)' which makes T a rotation matrix with T'T =1 and X(,)' = TL'
with L a lower triangular matrix. Note that the diagonal elements of L are always positive.
Then X(p)T =L and thus X*T is of the form (2.9), meeting the desired constraints.

We could define the feasible region S to be a large (n-1)p — p(p-1)/2 dimensional
hypercube, but a sharper set exists. We can find it by making use of a known
configuration X with a preferably low STRESS value. A sharp bound could be obtained by
applying classical scaling followed by SMACOF, which gives us the first local minimum.
The feasible region S can be determined by examining the definition of STRESS closer.
Clearly it holds that

wif8; - (X)) < 6%(X), (2.10)
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since STRESS is the sum of w;{(8;; — d;{X))? over i<j . This implies
max(8; — w;"26(X), 0) < dy(X) < §;; + wj2a(X), (2.11)

and therefore point j must be located inside a p-dimensional hypersphere with centre point

i and radius 8;; + w;"/%26(X), but outside a hypersphere with radius max(§;; -
ij i

i

w,-}” 2(3(!!:1), 0). In the ;equel we shall not make use of the latter lower bound unless
indicated otherwise. For each pair of points, one of which is fixed, we may find the radius
of the p-dimensional hypersphere in which the point must be located. Given point j the
coordinate x;, of point i must be in the interval [-8; — w;'/26(X) + x;,, 8; + wj'2a(X)
+ x;5]. Let the lower bound of x;; be represented by x;; and the upper bound by X;;, so that
the interval becomes [xis, Xi5,). The upper bound of X;; is defined x;; + w,»}”""o(X) +
max,-;,-&,»_,-, the lower bound x;; by x;; — w,}” 2c(X) - maxﬂ,ﬁ,-j. Note that the intervals on
all p dimensions define the smallest hypercube that contains the hypersphere with radius
8 + w,-}” 26(X). Although the hypercube has a larger volume than the hypersphere it has
the advantage that it is easier to handle.

Above it was explained how a unique configuration, without freedom of rotation
translation and reflection, is obtained and how intervals for the coordinates may be
obtained. However, nothing has been said about which point should be fixed and what the
order of the points should be, as long as the coordinates satisfy the restrictions of (2.9).
We still may exploit this freedom by changing the order of the objects as to minimize the
Lebesque measure and thus reduce the size of S. Clearly, changing the order of the points
does not matter as long as this order is consistently used throughout the method. Here we
set the origin in the point that reduces S the most, i.e., the point with the largest interval.
Since its coordinates are fixed to zero, no contribution is given to the Lebesque measure
of S. A further reduction of m(S) is obtained when we place the point which has the
second largest interval in second position. Since this point has only positive values on the
first axis and zero values on the second, no extra contribution is given to m(S). Instead of
a p-dimensional hypercube only a 1-dimensional interval is given. Clearly, this reduces
the volume of § too. The same procedure is followed to select further points up to the p-th
position.

A second way of getting rid of the rotation, translation and reflection invariance is
by using the distance between the vectors of distances d. Clearly, both X and its rotation
have the same vector of distances. The two decisions that are to be made by MLSL are: a.
for o(X») < o(X) is X outside critical distance of X, so that a local search should be
started from X1, and b. once a local search is started, is the local minimum just found
different from other local minima already found. From the proof of theorem 2.1 we know
that |d; - d, |, S|X; - X, Therefore, if |d,—d,|, 2 r, then also |X, - X,|y 2.
This means that if we decide not to start a local search on basis of the distance vectors, we
would not have started a local search if we based our decision on [X;—X,]..
Conversely, it might happen that a local search is started, although the decision rule based
on |X; - X, would not start it.
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Let us now return to the second demarcation option of S. It can be obtained if we
have a good estimate of the lowest local minimum found so far, say o(X *). Since at a
stationary point n2(X*) = p(X*), we may write 02(X*) = 11% -N2%(X*). Thus, if we wish
to find a local minimum with 62(X) < 62(X™), then 112(X) must be larger than 112(X*)
and is always smaller than (or equal to) n%. This means that the global minimum must
always be outside a hypersphere of radius n(X"), but inside a hypersphere of length ns,
i.e., inside the peel defined by the two spheres. Thus we may adapt S during the MLSL
iterations so that S becomes smaller as sharper bounds of the global minimum are
known, One problem that remains is that we have to draw sample points that are
uniformly distributed within a hyperball. This can be done by using generalized polar
coordinates. Let the g = np vector x denote vec(X), that is the columns of X placed
underneath each other. The generalized polar coordinates of x are given by

X1 = r sin 91

x; = rcos 9;sin 0,

X3 = rcos B8;cos 0;sin 03

Xg.1= T COs 07 Cos 8;cos B3 ... cos 8.2 sin 6,1

x; = rcos6;cos 0zcos 03 ... cos B,.2cos 8.1, (2.12)

where r20,0<0;<2m,and -t <9;<mfori=1,..,q- 1. It can be easily verified that
indeed X; x;2 = r2. If r is kept fixed, then a uniform distribution on the hyperball with
radius r is obtained by drawing 6, uniformly from the appropriate interval. For the
density to be constant within the hyperball § it must be true that the probability of finding
a sample point A within radius r inside the hyperball § is equal to

m(BA‘r) . nq/2rq _
mS) mEOra+ge2) (2.13)

where I'(x) is the gamma function. This ratio must be equal for all radii. The only way to
assure this is by requiring that 79 is uniformly distributed, thus by drawing an 7' from the
uniform distribution between 0 and the ny 7 and setting r = r'/. If we want to draw a
sample point from the uniform distribution in the peel defined above, then it suffices to
draw 7 from the uniform distribution between n¥4(X") and g'?.

We presented two ways of finding a demarcation of S, the first one defining a
parallelepiped, the second one an ellipsoid. For now it remains open which one is to be
used, but a guideline could be to use whichever one has the smallest Lebesque measure.
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253  Definitions of the critical distance

Up to now the set By, is defined to be the set of all points within critical distance r of A,
but we did not specify the distance norm of the critical distance. Two distance norms
seem reasonable, the Euclidean distance defining hyperballs and the max norm defining
hypercubes. Timmer (1984) used the Euclidean norm ||A - X|| originally in MLSL. Then
By - defines a hyperball with volume

]

m(BA,r)=an/2)-

(2.14)

Since all kV sample points are uniformly distributed, the probability that there is a sample
point within distance r of A is m(By ,)/m(S) if B, , is entirely contained in S. In section
2.5.1 it was assumed that this ratio equals y In k&N /kN. From the right part of

kN KN  ri%p9
N (B, )= B yiniN 2.15
() A= s e e
we derive the critical distance
-172 yinkN /4
=% (F(l+q/2)m(S)—) . (2.16)

It can be proven that for y> 4 the number of local searches started is finite with
probability 1, even if the sampling continues for ever (Timmer, 1984; Rinnooy Kan and
Timmer, 1987a,b).

The second option for choosing the definition for the critical distance is the max
norm, or the L., norm. With this option, the set B, , defines a hypercube with midpoint A
which has distance r to all sides, and volume

m(B, ,)=(2r). 2.17)

Setting m(B, ,)/m(S) equal to y In &V /kN allows the critical distance to be expressed as

(2.18)

In deriving (2.16) and (2.18) we assumed that By , is entirely contained in S. In the next
section we shall see that for most sample points, B, , is not entirely contained in S when r
is relatively large. Since r is large during the initial stage, a local search will be started
from almost every sample point.
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254  The curse of dimensionality

One problem with the current formulation of MLSL for STRESS is its lack of efficiency for
high dimensionality . Especially during the initial stage, the probability of starting a local
search from a sample point is very large. This is caused by the fact that in the beginning
the number of sample points is small and therefore r is large. However, if there are not so
many sample points then the probability of a sample point being near the boundary of S is
also very large. This can be seen from either of the two definitions of S. Suppose that S is
a sphere. Then, from the transformation needed for the radius of the generalized polar
coordinates, we see that the majority of sample points are near the border of S. Now let S
be a hypercube. Then too it is not difficult to show that most sample points are located
near the boundary of S. It can be seen when comparing the contents hypercube with the
contents of a hyperball that fits exactly in the cube. For higher dimensions the difference
between the two grows rapidly. This difference,

27 —an | (2.19)
r(1+q/2)

rapidly tends to (2r)¢ as g gets larger. Therefore, the only way to assure kN m(B, ,)/m(S)
= log N is to have large r. But for large » much of the hyperball around a given point A
is located outside S. Consequently, if the critical distance is still large, much of the
hyperball B, , around sample point A is outside S. Thus the probability of finding another
sample point within critical distance is (much) less then kNm(B, ,)/m(S). Here again we
encounter the curse of dimensionality.

To increase the efficiency of MLSL we follow Groenen (1992) who proposed to
move By, with center point C such that C is as close as possible to A and that B¢, fits
entirely inside S. If r is defined to be the Euclidean distance, then the hyperball B, , has to
be moved into S. However, if S is a hypercube then it may happen that A falls outside
Bc,, which would imply a local search anyhow from A. This problem is avoided when
using the hyperball definition of S. On the other hand, if we are using the L., norm then
By, defines a hypercube that has to be moved such that it falls exactly inside S. Now we
may have a problem again if S is a hypersphere, since it can happen that A falls outside
Bc,,. Therefore, if r is defined in the L., norm, the hypercube definition of S should be
used.

Since the moving B, , ensures that it always fits inside S, the expected number of
sample points within critical distance r of each other equals indeed y In kV /kN. Changing
the MLSL algorithm this way does not change the other theoretical properties. When r is
smaller than g, no local search was started anyway, and thus no set B, , has to be moved
and the old situation applies. )

To get an idea of the size of the critical distance given the number of points, r was
computed for different numbers of sample points. We took S to be a unit hypercube and
defined r in the L., norm. In Figure 2.3 two typical curves are given, one for n = 17 and p
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=2, the other for n =9 and p = 2. It can be seen that in the first example one needs about
1040 sample points to obtain a » smaller than 0.05 . This is a clear indication of the curse
of dimensionality.

| | I

1 00 1 040 1 080 1 01 20 1 0160

number of sample points

Figure 2.3  Number of sample points and the corresponding critical distance where S
is a unit hypercube for two small sized MDS problems.

2.6 Concluding remarks

In this chapter we presented the problem of global optimization of STRESS. A
classification of global optimization techniques was given. Some of them were discussed
in more detail and applied to the STRESS function. We have split the scaling problem into
three parts: full-dimensional scaling, unidimensional scaling and MDS for 1 <p <n-1.
In the previous chapter it was shown that the full-dimensional scaling problem has a local
minimum that is also global. Unidimensional scaling turned out to be a combinatorial
problem, which can be solved globally by dynamic programming, or solved locally by
using heuristic strategies like pairwise interchange, simulated annealing and the tabu
search. For MDS with 1 < p < n -1 we discussed several techniques like space covering
methods, multistart and multi-level-single-linkage clustering. We proved that STRESS has
a Lipschitz constant. In the next chapter, we discuss and extend the tunneling method in
great detail. In chapter 4, we present a simulation study that compares some of these
global optimization methods in various settings.






CHAPTER 3

THE TUNNELING METHOD

In this chapter we study systematic ways for finding a decreasing series of local minima
of the MDS STRESS function by using the tunneling method. This method consists of an
iterative two-step procedure: in the first step a local minimum is sought and in the second
one another configuration is determined with exactly the same STRESS. It can be
described by the following analogy. Suppose we wish to find the lowest spot in a selected
area in the Alps. First we have a local search where we pour some water and see where it
stops. From this point we perform a global search by digging tunnels horizontally until
we come out of the mountain, Then we pour water again and dig tunnels again. If we stay
underground for a long time while digging the tunnel, we simply conclude that the last
spot was in fact the lowest place in the area.

The tunneling method for functions of more parameters is mainly due to Montalvo
(1979), Gomez and Levy (1982) and Levy and Gomez (1985). Earlier Vilkov, Zhidkov,
and Shchedrin (1975) presented a one-parameter tunneling function. An important and
attractive feature of the tunneling algorithm is that successive local minima always have
lower or equal function values. The method can be classified among the generalized
descent methods that use a penalty function. The tunneling method can also be viewed as
a continuous version of the discrete tabu search discussed before, since both methods try
to avoid previously found local minima and continue their search for other configurations
with equal or lower function values.

The tunneling step is the crux of the tunneling method. It is performed by
minimization of a particular function, called the tunneling function. To find another
configuration with the same STRESS, this function must have several characteristics.
Some of these characteristics are met by the tunneling function originally defined by
Gomez and Levy (1982):

oX)-o(X")

To(X)=
||x-x‘

3.1)

where X* is the local minimum configuration. The first characteristic that (3.1) exhibits, is
that it has zero points for configurations with STRESS equal to o(X*). Secondly, these
zero points are not necessarily the lowest possible value of the tunneling function. Thirdly,
the factor |X* — X|| =%, also called the pole of the tunneling function, is used to create
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elevated values of the tunneling function near the local minimum configuration X*, so that
a zero point at X* is presumably excluded. Because the pole is a factor, it does not change
the positions of the zero points different from X*. Note that 1o(X) is not defined at the
local minimum X", so that any minimization algorithm should start from somewhere
else.

The complex task of finding the global minimum of the STRESS function has been
replaced by a similarly complex problem, i.e., finding the zero points of the tunneling
function by minimization . Fortunately, the latter problem has the distinct advantage of
having an additional feature for a desired local minimum of the tunneling function: it
should have STRESS smaller than or equal to 6(X*). Clearly, if X* is a unique global
minimum it will be impossible to find a zero point of T4(X). However, for the moment
we assume that X* is not a unique global minimum, so that zero points of the tunneling
function do exist.

The tunneling function (3.1) has some major defects, some of which are solely due
to the STRESS function. A redefinition of the tunneling function that solves these defects is
presented in section 3.1. We also explain why these problems may occur and give some
of their mathematical properties. Section 3.2 shows how the redefined function can be
minimized to obtain its zero points. Two important methods used for the minimization of
the tunneling function are iterative majorization and parametric programming, which
keeps tunneling within the majorization framework of SMACOF. These sections are based
on Groenen and Heiser (1991). It may be necessary to have more than one pole in the
tunneling function for the tunneling step to succeed. Therefore, we discuss the
minimization of the tunneling function with more than one pole in section 3.3. In section
3.4 some applications of the tunneling method are given. Finally, in section 3.5 we
experiment with various parameter settings of the tunneling algorithm for a good tuning
of the method.

31 Redefining the tunneling function

Definition (3.1) of the tunneling function suffers from some problems that will be
described shortly. In this section we first present a redefinition of the tunneling function
that solves these problems. Then we explain in the next three subsections how the
redefinition is built step by step and give the mathematical properties in greater detail.

The first problem involves changes of the tunneling function value when a
configuration is rotated. This is inconsistent with the STRESS function, which is invariant
under rotation. Therefore, the tunneling function has to be invariant under rotations too.
The second problem involves the strength of the pole. If the pole is not strong enough,
then the tunneling function has an undesired zero point at X*. It is shown analytically that
a pole strength parameter must be included. A similar analytical result is obtained for the
third problem that we will call attraction to the horizon. It turns out that we must be
careful not to end up with very large configurations that also yield tunneling function
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values close to zero. We now present a redefinition of the tunneling function that solves
these problems and still exhibits the characteristics initially set out as desirable:

)“(1+ : \
-
poc)-ex. o

Joox-occ] |

71(X)

(c(X)—o(x‘)

(o(X)—o(x‘))”

(3.2)

where [D(X*) - D(X)[| 2= Z;jwij(di(X*) - d;(X))2. The function 7,(X) seems to
satisfy all requirements: the zero points (that is, points with STRESS equal to o(X*)) do
not change after multiplication, a configuration that is a rotation of X yields the same
tunneling function value, the pole can be made strong enough by adjusting the pole
strength parameter A (0 < A < 1), and for large configurations minimizing 1,(X) amounts
to minimizing (6(X) — 6(X*))2* because 1 + |[D(X*) - D(X)|| 32 tends to one. A one
dimensional slice of 7,(X) is given in Figure 3.1. A summary of all the properties of (3.2)
is given in Table 3.1.

log 7,(X)
1 -

X* Xo Xoo

——
Figure 3.1 A one dimensional slice of the tunneling function 1,(X).

In the next three subsections we derive the redefined tunneling function (3.2) in
steps from the original one (3.1). In fact we start from
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(6X)-o(X")’

Tz(X)‘:—IX—;T—. (33)

which is always nonnegative. Consequently, the zero points are the lowest value possible
of the tunneling function.

Table 3.1 The elements of the tunneling function 11(X) and their purpose.

Purpose Element

1.  Zero point if STRESS is equal 1X)=0(X)-o(X")
to local minimum STRESS.

2. Zero points are the lowest o(X) = (o X)—o (x.))z

tunneling function values.
. . L] . \2
3. Avoid a zero point at X” by wX) = (o(X) —o(X )) /P(X)
erecting a pole.
4,  Avoid a zero point at irrelevant P(X) = [D(X*) - D(X)} %,

transformations of X*.

5. Ensure sufficiently strong pole (use
pole strength parameter A, 0 <A < 1).

6. Avoid attraction to the horizon.

X) = (0(X) - o(x'))“ /P(X)

T(X) = (o(X)- o(x*))“(l +1/P(X))

3.1.1  Obtaining rotational invariance of the denominator

One basic property of the STRESS function is its invariance under rotation of the solution
X. This property can be easily understood by realizing that the STRESS function is defined
on the distances between points of the configuration, not on the configuration itself.
Clearly, distances do not change under rotation, reflection, or translation. Therefore, it is
desirable that this property is maintained in the tunneling function. Unreported numerical
experiments showed that minimizing t,(X) leads to a rotation of the local minimum
configuration within a small number of iterations. The behaviour of 1,(X) can be
understood by examining it more closely. The problem is caused by the numerator
(o(X) — 6(X*))?, since the STRESS function is invariant under rotation of X. It can be
seen quite easily that a rotation of X" is a minimum of the tunneling function. Let R be a
rotation matrix with R'R = RR' = L. Since 6(X*R) = o(X*), the numerator of 7,(X"R) is
zero. Furthermore, the denominator is
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IX*R - X*|? = tr X*(2I -R - R")X" 2 0. (3.4)

For the left-hand-side to be strictly greater than zero, it is sufficient that 2 - R — R' is
positive definite. The latter can be verified by using the Cauchy-Schwarz inequality twice

IY] [YR] =tr YY'2tr YRY'
Y] J¥YR| =tr YY' 2tr YR'Y'

for any rotation matrix R, with equality if and only if R =1. Thus, any R # 1 yields a
non-zero denominator. The zero numerator and non-zero denominator of Ty(X*R) imply
a minimum, but not a desirable one. Therefore, we need to adapt the denominator to
remove the possibility of finding rotations of the local minimum configuration.

This can be achieved by applying the very same idea that makes the STRESS
function invariant to rotations of the configuration. We simply use a function that
measures the difference between the distances of the local minimum configuration and the
distances of the current configuration. Or, to put it differently, we take the squared norm
of the difference between the distance matrix of X* and the distance matrix of X, i.e.,

2 *
oo

This denominator can be interpreted as the squared distance between the vector of
distances of the local minimum configuration and the vector of distances among rows of
X. In a different context, the idea to measure the distance between configurations through
their interpoint distances has been studied extensively by Meulman (1986). We use (3.5)
as the denominator of the tunneling function, which leads to the following tunneling
function

2

[pcx)-pex*) - iw;j(d;}-(X)— d5(X") . 35)
i<y

_ (o) -o(x"))’

Y 2 (3.6)
"D(X)—-D(X )|

w

Another advantage of t3(X) is that both numerator and denominator are comparable
entities. Both STRESS and the current denominator are (squared) norms of the difference
between two vectors. By using (3.6) we have obtained invariance of the tunneling
function under any rotation R of the configuration, which implies that the effectiveness of
the pole is extended to all X in the neighbourhood of X*R.
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3.1.2  The pole strength

In this section we discuss the strength of the pole analytically and give a suggestion how
to increase the pole strength. Groenen (1990) showed empirically that the pole
(denominator of the tunneling function) is not strong enough to cancel out a zero point of
the tunneling function at X*. In this section, we give an upper bound for t3(X).
Furthermore, we shall prove analytically that the tunneling function 14(X) may tend to
zero when X approaches X".

The following theorem states that the numerator of 15(X) is always smaller than its
denominator.

Theorem 3.1
For each X, X* € R™ it holds that (6(X) - 6(X*))? < [D(X*) - D(X)| 3,

Proof

Let 8, d, and d* be the vectors of length n(n—1)/2 with lower triangular elements of A,
D(X), and D(X*) respectively, so that 6(X) = || — d|, and |[D(X*) - D(X)] 2 =
|d* — d|| % . Applying the triangle inequality twice we obtain

I8-dlw <|[8-d*|w +lld —d*[w
"8-d‘"w < "8_d"w +[|d - d*|w.

S0 ||d — d*|| must be larger than or equal to both 6(X) — 6(X*) and 6(X*) — o(X),
and therefore larger than or equal to their maximum too:

lo(X) - o(X)| < |d - d*w.
Squaring both sides gives the desired result. Q.E.D.

The preceding inequality implies that O < 1;(X) < 1. This upper bound of T4(X)
does not tell us whether the pole is strong enough to avoid a minimum at X*. It merely
shows that the maximum value of the tunneling function equals one. Note that theorem
3.1 uses a part of the proof of theorem 2.1, which stated that STRESS has a Lipschitz
constant.

Another interesting question is where the extreme values of t3(X) can be found. To
answer this question we look at the behaviour of 15(X) as X approaches X*. Consider the
complete space of vectors d in R*(»-1)2_ Although the set of vectors of Euclidean
distances is a subset of R""-1)2, we can investigate what happens when d approaches d*
from any direction z. If z has unit norm, i.e., |z]w = 1, this amounts to developing the
limit of T5(d"-rz) as r tends to 0;
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o (18d"rzly — [8-0w )?

im ty(d*—rz) =
r—0 r—0 ||d‘—d'+rz|| 3'
_ [h-m |5-d +rz||wr -5 IIWT_ 3.7)
rlo

By substituting a = 8-d*, it can be seen that the latter equation is exactly the square of the
directional derivative of the function f(a) = |aw. If g is the gradient of f(a), the
directional derivative of f(a) along direction z can be expressed as g'z (see for example
Gill, Murray, and Wright, 1981, p. 53). The gradient g of f(a) is given by Dya/|a|w, and
the directional derivative is thus a'Dyz/|a]ly, where Dy, is a diagonal matrix with
diagonal elements w. Now we can write

lim T3(d'—rl) =

6-d")Dyz\2
lm [( ) Z),

[8-a"T &5
which is between zero, when z is Dy-orthogonal to 8—d*, and one, when z is a multiple
of 8—d". In this proof we assumed that any z could be used from R»(#-172, Clearly, the
set of d*-rz that are Euclidean distance vectors is a subset of R7(-1)2, Since the proof
holds for the whole set it must also hold for a subset. Therefore, we conclude that the
value of t3(X) may be any value between zero and one as X approaches X", though
stronger results may exist for the subset.

Above, it was proven that 13(X) has values between O and 1 and that, unfortunately,
near the pole the function also may have values between zero and one, depending from
which direction we approach. Therefore, we cannot guarantee that the pole is strong
enough to avoid a zero point of the tunneling function at the local minimum configuration
of the STRESS function. One obvious way of creating a stronger pole is raising the
denominator to some power larger than one, as suggested by Levy and Gomez (1985).
Or, equivalently, we can take a root of the numerator using the pole strength parameter A.
Clearly, both options are possible, because they are monotonic transformations of each
other, and such a transformation does not influence the minima and therefore the zero
points of the tunneling function.

Having eliminated the rotational problem and the pole strength problem, we
redefine the tunneling function by

_ (oX) —o(X*))*
IDX*) - DX)|2

T4(X) (3.9

In section 3.2 we shall see that taking the numerator to the power A, withO <A < 1, is
indeed a good choice for the majorization procedure for the tunneling function.
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3.1.3  Attraction to the horizon

Here we show that it is of importance to see how the tunneling function behaves when the
configuration moves to the horizon, i.e., when the coordinates get uniformly large. It turns
out that during minimization of 1,(X) the configuration may be attracted to the horizon
because the tunneling function values tend to zero.

Let us first define what is understood by a large configuration. Given a
configuration X, not equal to 0, we.say that cX is large when the uniform dilation factor ¢
is large. The behaviour of the tunneling function for large configurations can now be
reformulated as the mathematical problem of finding the limit of t,(cX) as ¢ goes to
infinity. For solving this limit we use the fact that the Euclidean distance function is
homogenous, so that d;{cX) = cd;(X). Then the limit can be written as

i —_ — ® 21
lim t,(cX)= lim (18 - cdllw - I8 - d*lw)

(3.10)
c-so0 N L

Further, to evaluate the limit it is convenient to substitute ¢ = o/(1-0) and subsequently
let o tend to 1. This simplifies the limit into

—-o/(1 —18 = d*llo \ 2>
fim 1,(cX) = lim I3 a/f —a)dllw ||5md Iy
c—00 o—1 "d - a/( l_a)d“ L

= lim (1—(!.)'1"(1—(1)8 = ad"w = "5 - dt“w] 2

a1 (o) VA(1-00d" - ad 7

_ i (U008~ odllw  (1-0)VM3 - d*]w |
ast|  l(1-o)d* —ad| ¥ |(1-od* - od] Y*

\
i (A0l (1-0)!P —d‘IIWT’L

Y N laf v*

G — gl -
= tim [(1—oya-t]q) 512 0= Ms-d IIWJ

oa—1 "d“ ul

=(0-02*=0. (3.11)

The final part of the limit follows from the assumption that 0 < A < 1, so that 1/A-1 is
greater than zero, 1/A is greater than one, and consequently (1-o)/A-! and (1-c)!/* tend
to zero for o approaching one. This derivation clearly shows that for large configurations
T4(X) tends to zero. This feature is unattractive, because we transformed the original
tunneling problem into the problem of finding a zero point of the tunneling function. The
limit above shows that we can expect 7,(X) to be close to zero not only near a
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configuration with equal STRESS value, but also for large configurations. This may direct
our algorithm inadvertently to the horizon.

The problem of attraction to the horizon indicates that a minimization algorithm
based on (3.9) may fail. To remedy this problem we are looking for a pole that has high
values if X is close to X*, also has high or constant nonzero values for large
configurations, but retains the zero points at configurations with STRESS equal to the local
minimum STRESS value. Let the numerator of the tunneling function (3.9) be presented
by N(X) and the denominator |D(X*) - D(X)|| % by P(X), so the function can be written
as N(X)/P(X). Instead of the factor 1/P(X), a factor is sought that is close to unity for
large X, and yields a large value for X close to X*. One such factor that solves the
problem of attraction to the horizon is (1 + 1/P(X)). Using this factor results in the
tunneling function 1,(X) as presented in section 3.1. In the sequel we shall refer to 7;(X)
whenever we use tunneling functions with one pole. In the next section an algorithm is
derived that searches for the zero points of t;(X).

3.2 Minimizing the tunneling function

In the previous section a tunneling function was developed that has desirable properties.
This section discusses a zero finding algorithm of this function. Since the zero points are
also the global minima of the tunneling function, we can use a minimization algorithm to
find a zero point. The minimization method used here is a combination of parametric
programming and iterative majorization . First, we show that parametric programming
remains valid if iterative majorization is applied. Then we discuss how a product of two
functions can be majorized. Next a majorization inequality is presented for a root of x.
These results are then applied to the tunneling function and an algorithm is given.

3.2.1  Convergence proof of majorized parametric programming

The tunneling function 7;(X) can be considered as a ratio of two functions of X and hence
minimization of 71(X) can be seen as a fractional programming problem. An algorithm to
minimize such a function was proposed by Dinkelbach (1967), and used by Heiser
(1981) and Groenen (1990). However, Dinkelbach's algorithm assumes that at each
iteration the absolute minimum over X of an auxiliary function F(¢g,X) can be obtained.
Such an assumption is too strong for our purpose, and in this section we develop a more
flexible version of the algorithm. More specifically, we prove that the algorithm is still
convergent if we find the minimum of a function that majorizes F(¢,X).

The tunneling function 7;(X) is given by N(X)(1+P(X))/P(X), or, for ease of
notation, T;(X) equals M(X)/P(X) where M(X) = N(X)(1+P(X)). We assume that
P(X) > 0. Then Dinkelbach's algorithm amounts to
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1. initialize g « 1,(X%)

2. X* « argmin F(g,X)

3. ¢t «1uy(XY)

4. If g* < wthen stop (with @ a pre-set small positive constant)
5. elsesetgegtandgoto?

where the auxiliary function F(q,X) is defined by
F(¢.X) = M(X) - ¢ P(X). (3.12)

If we cannot find the argument that minimizes F(q,X) in step 2 analytically, we need a
more relaxed procedure that still guarantees convergence. Suppose we have a function
M(X,Y) that majorizes the numerator of T;(X), and another function f’(X,Y) that
minorizes the denominator. Thus

MX)Y) 2 M(X)  with M(Y,Y) = M(Y),
PX)Y) < PXX) with P(Y,Y) = P(Y).
Then the parametric function
F(g,X.Y)= M(X,Y)-¢P(X.Y) (3.13)

majorizes F(q,X) for all ¢ 2 0. We can now state the following theorem, which
guarantees that the majorization version of the parametric programming algorithm always
improves 7,(X), unless X satisfies the necessary conditions for a stationary point.

Theorem 3.2:

Let X+ be a unique minimum of f‘(q,X,Y) for g = 1/(Y). Then, either 7;(X*) < t,(Y),
or 1(X*) = 14(Y). In the latter case, X* is a stationary point if the gradient of F(X)
exists at X+.

Proof
From the definition of X+ and from the properties of a majorizing function we have

F(¢.X*) < F(¢.X*Y) < F(¢,Y,Y) =F(q.Y)
for all X+ # Y. Now the particular choice g = 1,(Y) yields

Y
R (Y),Y) = M(Y) — p gy POV =0,

and therefore the inequality becomes

M(X*) - 1,(Y)P(X*) <O.
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Using the equality 1,(X*) = M(X+)/P(X+), we obtain
[T](X+) ol T](Y)] P(X+) < 0.

Since P(X*) is always nonnegative by assumption, we must have 1,(X*) < 7,(Y).
Now suppose 1,(X*) = 1,(Y); this can only happen if

F(1,(Y).X+Y) = F(1,(Y),Y,Y).

Since the majorizing function has a unique minimum, it must be true that X+ = Y, and
X+ should satisfy the stationary equation for the majorizing function. Setting the partial
derivatives with respect to X of F('tl(Y) X,X) equal to zero, we get

IM(X) _ M(Y) 3P(X)
X  P(Y) oX

For a minimum of 1,(X) the stationary equation is

IMX) IMX) pexy - JIP(X)

X —x MX)=

When X* = Y these two conditions are equivalent, Q.E.D.

This result implies that step 2 of Dinkelbach's algorithm can be relaxed into finding the
minimum of the majorization function, i.e., X* « argmin F(g,X,Y).

The relaxed version of Dinkelbach's algorithm keeps convergence to a local
minimum of our ratio function. However, some other nice properties of the original
algorithm, like concavity of F(g,X*) in g, can no longer be proven. The stopping criterion
(step 4) must be changed, because it cannot be guaranteed that the algorithm finds a zero
point of the tunneling function; it may get stuck in a higher local minimum of 1,(X). Note
that the theorem can be restated for maximizing a ratio function by reversing the signs of
all inequalities.

3.2.2  Majorizing the product of two functions

One term of the auxiliary function F(g,X), introduced by parametric programming, is a
product of two functions. Here we show how such a product can be majorized by
quadratic majorization.

Let the product N(X)(1 + P(X)) be represented here by x,x,. The inequality

2
(ﬂ-ﬁ) >0 (3.14)
N o »n
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is always true for y,, y2 > 0, because any square of a real argument is nonnegative.
Rewriting this inequality gives

2 2
(ﬂ) +(_z] 2250 o
N Y2 Nny2
XXy < %y_lez +-;—ﬁx§ . (3.15)
N y2
Furthermore, the inequality becomes a strict equality when x; equals y; and x, equals y,.
However, this happens also whenever x; equals x,y,/y,, which can be derived from
setting the inequality to zero or, equivalently, setting x;/y; = x,/y,. Note that this does not
complicate the majorization procedure. The only requirement for majorization is that the
auxiliary function touches the original function at a supporting point (as 3.2 does) and is
larger than or equal to the original function at other points. Note that (3.15) is a special
case of the geometric-arithmetic mean inequality.

323  Majorizing a root of a positive value

Above, it was pointed out that we must raise the numerator of the tunneling function to
the power A, where 0 < A < 1. It was needed to avoid a zero point of the tunneling
function at the previous local minimum. As said before, we wish to stay within the
majorization framework that guarantees a convergent algorithm. Therefore, a majorization
inequality is required for this root.

Observe that the function f(x) = x* is concave for x 20 and 0 < A < 1 due to its
negative second derivative. This implies that any line touching the curve must have a
tangent that is equal to the first derivative f(x) = Ax*1. Let us consider the line touching
the curve at x = 1. Then we know that x* < ax + b, that the tangent equals (1) =a = A and
that f(1) = 1 = a + b, so that b= 1 — A. Thus we have the following inequality

r<(1-A)+Ax, (3.16)

which was derived in a different way by Hardy, Littlewood, and P6lya (1952). Replacing
x by x/y yields the majorization equation

< (1—A)yr+ Ay, (3.17)

which is an example of linear majorization. The inequality (3.17) can be applied directly to
majorize the numerator of the tunneling function, which is done in the next section.
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3.24  The tunneling algorithm

The minimization method for the tunneling function (3.2) consists of two concepts. The
first one, parametric programming, is used to minimize a ratio of two functions by means
of a auxiliary function F(g,X). In section 3.2.1 it was shown that convergence is retained
when an X+ is found that yields a lower value of the auxiliary function. The concept of
majorization is used to find such X+. The numerator of the tunneling function is a product
of two functions, that can be majorized by the sum of the squares of each function (see
section 3.2.2). Therefore, we change to minimizing the square root of the tunneling
function, so that after majorization we have a sum of the two functions. Note that taking
the square root (or any other monotonic transformation) does not change the position of
the minimum t,(X) or, in other words, minimizing 1,(X) is equivalent to minimizing
\[T1(X). In the remaining part of this section we change to

%2

-d| +1
JuX) @Iggm_k(m—c(x‘)]x—l;ﬁ‘“'—, (3.18)

which results in the auxiliary function

F(g,X) = {NX)yT+ P(X) - ¢yP(X) , (3.19)

where g equals 1,1:1(Y) if Y is the previous configuration from the iterative process. In
the next sections, the various steps are taken that are needed to majorize (3.19).

3.24.1 Majorizing \/N(X)\/1+P(X)
The outer majorization of the product \/N(X)\/1+P(X) is given by (3.15) and can be
directly applied

INX){1+P(X) < % %%‘}Q NX)+3407 Ng‘), (1+P(X)) . (3.20)

Furthermore, the functions N(X) and P(X) need to be majorized themselves. Let us first
focus on the majorization of N(X), which can be expressed as (6(X) — o(X*))? raised to
the power A, with 0 < A < 1. From (3.17) the inequality

(o(X) -o(X" ))n <(1-M)o(¥)- cy(x‘))n + k(o(Y) = o(x‘))m'”(c(X) —o(X* ))2
<S(1-AM)N(Y)+ KN(Y)H”‘(G(X)—G(X'))z (3.21)
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is obtained. We are left with (6(X) — 6(X"))? which can also be majorized. Let us write it
as 02(X) + 02(X*) - 20(X)o(X*). The part —o(X)=—|5—dJ, is majorized by the
Cauchy-Schwarz inequality

(8-d) Dy (8-dy)
o(Y)

—-o(X)<- (3.22)

where Dy, is a diagonal matrix with elements given by the vector of weights w, and dy is
the vector with elements d;(Y). Using the majorization inequality (3.22) shows that
(o(X) - 6(X*))? is always smaller than (or at most equal to)

o?(X") +5- dff, -20(5-d) D (B-dy)=

2(X") +[BI2, +IdIZ, - 28 Dyd - 20([8f, ~8 Dydy - §Dyd + dyDyd)=

o?(X")+(1- 203, + 14}, —2(1— 6)5 D,d +2¢8 Dydy - 2¢dyDyd,  (3.23)
where ¢ denotes 6(X*)/o(Y) for convenience of notation. If 6(Y) 2 o(X*), then the
factor (1-— ¢) is nonnegative which implies that the term —2(1 — ¢)3'Dwd remains concave
and can be majorized using standard SMACOF theory (see section 1.3) by
2(1-¢)r X' B(Y)Y. The same holds for the term -2¢d'Dwydy =
-2 widi(Y)d;(X), for which a nice simplification occurs. Straightforward use of the

Cauchy-Schwarz inequality gives —d,-j(Y)d,-j(X) S—(x; =x;Y(y; —y;). Thus, we have
the majorization inequality

-2¢d'Dgdy < 20rX'VY. (3.24)

Combining these results with (3.23) leads to the following majorization inequality
(cs(X)—cs(x‘))2 <S¢ +oX VX-2(1-0)r X' B(Y)Y -20trX' VY,  (3.25)
where
o =02(X )+ (1-20)8f, +208 Dydy. (3.26)

To simplify the notation, we shall use constants c; to indicate all terms that are not a
function of X. The restriction 6(Y) 2 6(X*) does not impose an extra problem, because
where ever it is violated, the STRESS must be smaller than the STRESS of the previous
local minimum, which is the main goal of the tunneling step in the first place.

We continue with the majorization of N(X). Inserting (3.25) in (3.21) yields

N(X) S (1 - AM)N(Y) +
AN (o + X VX -2 - 9)u X B(Y)Y -2t X' VY).  (3.27)
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The majorization of P(X) is analogous to the majorization of the STRESS function
itself. We only give the result here and refer to section 1.3 for details. The function P(X)
can be majorized by the inequality

P(X) S rX*'VX"* + rX'VX - 2 X'B(D(X*),Y)Y , (3.28)

where B(D(X"*),Y) has off diagonal elements b; = —w,vjd,-j(X‘)/d,-j(Y) and diagonal
elements b;; = -X,.b;.

To conclude this section, the previous results are substituted in (3.20) so that
\/N(X)\/l + P(X) is majorized by a function that has only quadratic and linear terms in
X. The substitution yields

JNX)T+P(X) <
%X(l +P(Y)2N(Y) 2 A (X VX - 2(1- $)tr X' B(Y)Y - 20r X' VY) +
SN2+ P(Y) (X VX - 20X BIDX LYY ) + . (3.29)

This inequality is used in section 3.2.4.3 for the majorization of F(¢,X).

3.24.2 Majorizing —q~P(X)

The term -g/P(X) can be expressed as —gfjd* —d||. Such a negative Euclidean norm can
be majorized using the Cauchy-Schwarz inequality, i.e.,

(d* -d)Dy(d* -dy) < |d* —d]w [d* —dy|w . (3.30)

where dy is a vector of distances between the points of configuration Y. The inequality
becomes an equality if dy equals d. Dividing both sides of (3.30) by |d* — dy||w and
multiplying by -1 yields

(@' -d)Dy(d" ~dy) _-d'Dyd’ +d"Dydy +d Dyd" -d Dydy

Jo" - av], o° - av],

d'Dyd® — d'Dydy
"d‘ _ dy"w + C3 . (3.31)

_"d‘ - d"w <

The term d'Dyd", in sum notation 1/2 ¥;w;d;{X") d;(X), can itself be majorized. More
specifically, d;(X) is majorized by d;(Y)/2 + d%(X)/2d;(Y), using an inequality derived
from (3.16) for A = 1/2. Heiser (1991) notes that when dg{Y) is zero, this majorizing
function does not work. Therefore, he majorizes d;{X) by ef2 + d'{-}(X}/Zs whenever
d;(Y) is smaller than a small positive constant €. This problem frequently arises when
using quadratic majorization. In the sequel, we shall implicitly use this adaptation
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whenever necessary. Multiplying d;(X) and its majorizing function by d;(X*), and
summing over all ij, yields
i ] ) 1 d(X*)
= ¢4+ UX'BDX"),Y)X . (332)
We have already seen in (3.24) that the term —d'Dwdy can be majorized by —trX'VY.

Combining the inequalities (3.31), (3.32) and (3.24) shows that the term -V P(X) can be
majorized as follows:

X' B(D(X*),Y)X 2aX'VY
P <3¢ O e (3.33)

The results from this section and the previous one are combined in the next section to
present the update formula of the majorization algorithm for minimization of t;(X).

3.24.3 The update

From section 3.2.1 it is known that the tunneling function can be minimized iteratively by
finding an update that yields a lower value of the auxiliary function F(gq,X). The
majorization inequalities are used to find such an update. Expressing F(g,X) as \’N(X)
\fl+P(X) - q\lP(X), where ¢ equals 1/1:,()(), let us combine the majorization results
(3.29) and (3.33) into

e F(gX) < A[1+P(Y)IN(Y)!-IA [trX'VX - 2(1-9)uX'B(Y)Y — 2¢n rX'Y] +
+ N(Y) [uX'VX - 20X'B(D(X"),Y)Y] +
+ 11(Y) [rX'B(D(X"),Y)X -2trX'VY] + g, (3.34)

where e is the factor 2YN(Y) V 1+P(Y) introduced here to simplify the notation. Further,
let o equal A[1+P(Y)IN(Y)!-1A, B equal N(Y) and 7y equal 1,(Y). Then, the preceding
inequality can be rewritten as

eF(gX)S ofrX'VX — 2(1-9)rX'B(Y)Y - 20trX'VY]
+ BIrX'VX - 2uX'B(D(X*),Y)Y]
+YIrX'B(D(X*),Y)X -20X'VY] + c¢
= tX'[(o0+P)V +yB(D(X"),Y)IX
- 20X [B(a 1-0)A+BD(X*), Y)Y + (0d+y) VY] + cg
= rX'MX - 20X'Z + ¢4, (3.35)
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where

M = (o+B)V + yB(D(X"),Y), and (3.36)
Z = B(o(1-9)A + BD(X"),Y)Y + (a¢p+y)VY. (3.37)

Thus F(¢,X) is majorized by a quadratic function in X. When V is positive semi-definite,
the minimum of a quadratic function can be found in one step by setting the gradient to
Zero, i. e.

V(U X'MX - 2tX'Z + ¢g) =2MX - 2Z =0, (3.38)

which implies that MX = Z or X = M"Z. Note that M is of rank n—1, since 1 spans its
null space and thus we use Moore-Penrose inverse M~ = (M + 11')-! — n-211'. Moreover,
M is positive semi-definite, because it is the weighted sum of the positive semi-definite
matrices V and B(D(X*),Y), where the weights a+B and 1y are positive.

This leads us to the update formula needed in step 2 of the parametric programming
algorithm: the update X+, given by

X+ =[(0+B)V + yB(D(X"),Y)I" [B(o(1-)A+BD(X*),Y)Y + (0:4+y) VY], (3.39)

ensures a lower value of 7,(X) in every iteration until convergence is attained.

3235  Acceleration

The previous section showed how to get an update. However, the algorithm seriously
slows down whenever o(X) is close to o(X*). This is particularly a nuisance if we are
close to a zero point of the tunneling function. Here we shall adapt the tunneling function
once more to remedy this defect. The price of acceleration at the end of the tunneling step
is that some of the theorems stated above do not necessarily hold anymore.

The slow down of the tunneling algorithm near a zero point is caused by the factors
(1-¢) and ¢ in (3.39). For the moment we look at the situation that arises near the end of
the tunneling step: o(X) is close to o(X*), P(X) is sufficiently different from zero, and
therefore 1;(X) is also close to zero. Then, the update is dominated by the previous
configuration Y. This can be seen by examining the terms a(1-¢)B(A,Y)Y and 0¢VY of
(3.39) more closely. Since ¢ equals o(X*)/o(Y), we have for o(Y) close to 6(X*) that ¢
is close to one. Clearly, the term a(1-¢)B(A,Y)Y is dominated by the term apVY.
Further, it can be seen that o dominates the terms with B and v, by examining the size and
the ratio of a and B, and realizing that y equals 7;(Y), which is close to zero. Thus, the
update changes slowly and convergence to the zero point of the tunneling function is
unsatisfactorily slow.
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The factor ¢ originates from majorizing (o(X) — 6(X*))2. Clearly, using the
function |62(X) — 62(X"*)| instead does not change the main characteristics of the
tunneling function. It still has positive values everywhere and has zero points whenever
02(X) = 02(X*). Unfortunately, some of the other characteristics are lost. For example,
we can not prove anymore that |62(X) — 62(X*)| < P(X). However, the gain of
acceleration supersedes this slight disadvantage. The adapted form of the tunneling
function becomes

T5(X) =[o?(X)- <s2(x‘)|x 1 (3.40)

+—1—:“T
Jpoc-pec']

As an immediate consequence we have to change our minimization procedure. The
first change concems the majorization of |02(X) — 02(X*)|. Let 15(X) be defined by (3.40)
for all X in set X; for which 62(X) 2 62(X*) holds, and let 15(X) = —o everywhere else,
for X in the complementary set X,. This allows us to remove the absolute signs in (3.40),
since 02(X) - 62(X*) = |6%(X) — 02(X*)| holds for the set X; by definition. Remember
that we had the similar restriction o(Y) = o(X"*) for the majorization inequality of (o(X) —
o(X*))?, see (3.25). The accelerated tunneling function keeps all the characteristics
discussed before for X in set X;. Finding a point in set X, amounts to finding an X with
o62(X) < 02(X*). This may be seen as an extension of the original tunneling step, where
we searched for an X with 62(X) = 02(X"). Speaking in terms of the metaphor, when
minimizing 15(X) we dig the tunnel horizontally or downwards. Note that all the
majorization results remain true, as long as we stop whenever X is in set X5. Using the
previous results, an accelerated version of the update is

+=[(0+B)V + yB(D(X"),Y)I” [B(cA+BD(X"),Y)Y +7VY]. (341

The acceleration happens if the tunneling function is close to a zero point. In the sequel,
we shall use the accelerated version of the tunneling function t5(X) implicitly, whenever
we refer to the one pole tunneling function.

33 A tunneling function with multiple poles

Finding the zero points of the tunneling function is done by minimizing t5(X). However,
the majorization algorithm does not guarantee that the global minimum (the zero point) is
found. Therefore, the algorithm may stop whenever the tunneling function has a
stationary point with 15(X) > 0. To deal with this problem the tunneling function can be
extended with an additional pole as to avoid such undesired stationary points of the
tunneling function. Now we can proceed in two ways. First, we can follow Levy and
Gomez (1985) who used a moving pole that is placed at a current stationary point of the
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tunneling function not equal to zero. A second option is to introduce an additional pole at
each new stationary point with t5(X) > 0. Once a stationary point is found, it is always
avoided by the tunneling function. The surface of the tunneling function will have at least
as many peaks as there are poles. We shall develop the latter option in this section.

In the case of one pole, discussed in section 3.2.4, we had to minimize +/t,(X). For
multiple poles we minimize

N(X)H (1+P,x))"
V1g(X) = YN X) zd . (342)
i=1 P (X} HP (x)l/r

where r is the number of poles. As shown in section 3.2.1 such a fraction can be
minimized by majorizing the numerator of (3.42) minus q times the denominator. Thus,
we have to find a generalization for the majorization of a product of functions and a
generalization for minus the product of functions.

33.1  Majorization with multiple poles: the numerator

The numerator of the tunneling function with more than one pole can be regarded as the
product of several functions. In this respect it is a generalization of the product of two
functions. In section 3.2.2 a majorization inequality was found for the latter case. It tumns
out to be a special case of the inequality of the geometric mean and the ordinary mean.
The same inequality is used here to majorize the product of several functions.

The inequality for the geometric mean and the arithmetic mean can be expressed as
follows

r r
[ <ty . (3.43)
i=1 i=1

see, for example, Hardy et al. (1952). Note that this inequality assumes nonnegativity of
all x; since the root of a negative value is not defined in real space. For r equal to 2, (3.43)
reduces to \x;x, < (x; + x,)/2. Clearly, (3.43) is a strict equality when all x; are unity or
zero. However, the majorization theory requires equality when x equals y. This is achieved
by replacing x; by x;/y;. The obtained inequality can be multiplied on both sides by
IT:=1y;" which yields

1" < ]‘[ 21 (3.44)
i=1 "=t

i=171
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The majorization of a product of functions given by (3.44) can be applied directly to the
numerator of the tunneling function with multiple poles. In its current form (3.44) is an

example of linear majorization.

Majorizing the numerator of /14(X) and using the majorization results of the

mono pole case gives

VN(X) \f [T (1P X))V <

SAN(Y)V2UA [T [14PLY)]2r [(rX'VX - 2uX'B(Y)Y] +

IN(Y)I2 [To (4P, OV 2 £ S(14PAY))T [rX'VX — 20X'B(D(X,*),Y)Y]
=1

+C7 .

(3.45)

It is easy to see that for r = 1 this majorization results simplifies to the one derived for the

one pole case.

33.2  Majorization with multiple poles: the denominator

Majorization of the denominator amounts to the majorization of minus a product of r
functions. We can use the geometric-arithmetic mean inequality (3.43) again to find a

majorization inequality that is quadratic in x;.
In the previous section it was given that

0< i‘f[x,- < lix,- =-1-x' 1
i=1 = r

which is a strict equality if x equals 1. The inequality that we shall use is

- rx-_ ~Iex-[2-1 r—1),
@41 ’) (2 r)x’1+( 1)

which is an application of quadratic majorization. Thus we have to prove that

os‘(ﬂ+(1-})xx—(2—})x'1+(r—1)
i=1

holds. From the geometric-arithmetic mean inequality it must be true that

(3.46)

(3.47)

(3.48)
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0 <l[Tu+(1-ex-(a- e+ -
i=1

s;x'1+(1—})x'x—(z-})x'u(r—l) : (3.49)

with a strict equality when r equals one, or x equals 1. The second part of (3.49) may be
rewritten as

os(1-})x'x—z(l-})x'1+(1-})1'1
0< (1 - })(x ~1y(x-1), (3.50)

which is clearly always nonnegative, since (x — 1)'(x — 1) is a sum of squares and (1 - %)
is positive for 7 > 1. This proves that (3.47) holds. Equality occurs for x equal to 1. The
inequality can be easily transformed in a majorization inequality by applying the same
idea as in section 3.3.1 (replacing x; by x;/y; and multiplying both sides by []7., ¥; ). This

gives
r r 1 r xi2_ _l rﬁ "
R e

The inequality derived above is used to majorize the —g- IL,P,-(X)”’.
Substituting directly into (3.51), we get

4\ T PAX)V <
/PAX . [PX
NP0 [(1 hEp-e-DE\Fw - 1) (3.52)

From the majorization of t;(X) it is known that P(X) may be majorized by trX'VX —
2uX'B(D(X;*),Y)Y + ¢ and that —P‘-m(X) can be majorized by 1/2 rX'B(D(X;*),Y)X
—2P{Y)12aX'VY + ¢5. Thus

g\ Tl PAX)V <
q’\! TPV (1 —}) z P(Y)! [noX'X - 2uX'B(D(X;*),Y)Y] +
i=1

N T PAY)Vr %(2-}))':P,-(Y)—l [XBDX,),Y)X 2ntrX'Y] +¢.  (3.53)
i=1

Combining (3.53) and (3.45), multiplying both sides by e = 2N(Y)-1/2
" [1+PY)]-//2r and by using g = T(Y) we get
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eF(gX) <
AN(Y) 1A [orX'VX - 2trX'B(Y)Y]

+ LS4PAY))1 [X'VX - 20X BB, Y)Y]
i=1
¢ 20-HTBAY) XV - 25X BDX),Y)Y]
=1

+ @-Y )ﬁlp;‘(Y) [tX'B(DX,;"),Y)X 2trX'VY] + ¢ . (3.54)

An explicit update formula can be obtained similarly as in section 3.2.4.3 by solving the
system of equations obtained by setting the derivatives of the right hand part of (3.54) to
zero. Note that for r = 1 this formula simply reduces to the one we have found for the one
pole tunneling function.

34 Empirical results

After theoretical considerations in the previous sections, we present here the results of two
empirical studies. The examples are meant to illustrate the tunneling algorithm.

The first small example, studied extensively by De Leeuw (1988), concerns a 4x4
dissimilarity matrix, with all dissimilarities equal to l/\fg. He reports three stationary
two-dimensional configurations X, X,, and X4: X; has four points on a line with 6(X,)
= (0.4082482905, X, has three points in the comers of an equilateral triangle and a point in
the centroid with 6(X,) = 0.2588190451, and X, has four points in the corners of a
square with o(X;) = 0.1691019787. (Note that De Leeuw reports the square of the
STRESS value, i.e., 62(X).)

We start the tunneling algorithm from X, (see Figure 3.3a), which is a stationary
point in the unidimensional scaling solution and a saddle point in two dimensions. The
first objective for the tunneling algorithm is to find another configuration with STRESS
0.4082482905. The tunneling algorithm used a starting configuration that is a sum of the
unidimensional scaling solution and a random matrix. The latter is needed because we
have to start tunneling from a different point than X, (since t¢(X) is undefined) and
because we have to increase the rank of the solution from one to two. The pole strength
parameter A was set to 1/4. After 85 iterations a solution was found with the same
STRESS, as can be seen in Figure 3.2 that shows the history of iterations of the tunneling
function values 15(X), the subsequent STRESS values 6(X), and the values of the pole
P(X). After the first tunneling step, configuration b. of Figure 3.3 was found which has a
STRESS of 0.4082483676. This solution differs in the seventh decimal position from the
local minimum configuration X;. A local search from Figure 3.3b ended in the square
configuration (see Figure 3.3c) which has STRESS 0.1691019835 which differs only in
the eighth decimal place from the STRESS reported by De Leeuw. The small rise in the
tunneling function value at the end occurs in the final iteration, because an X is
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Figure 3.2  The sequence of tunneling function values t5(X), STRESS values 6(X) and
value of the pole P(X) against the iteration number.

a b c

Figure 3.3  Three configurations of the constant dissimilarity matrix: a. an
unidimensional starting configuration, b. a configuration with the same
STRESS as the unidimensional configuration, c. a lower local minimum of
the STRESS function.

found with STRESS lower than the previous local minimum. It has been pointed out in
section 3.2.5 that the majorization algorithm only fails when o(X) < o(X*), which does
not matter since the goal of the tunneling step has been reached.

The second stationary point, an equilateral triangle with centroid (the solution given
by classical scaling), is a local minimum. Starting the tunneling algorithm here yields also
the square configuration after one tunneling step and one local optimization step. This
leads to two conclusions: a. the tunneling algorithm seems to work for this small
example, and b. the square configuration attracts the algorithm strongly enough for both
starting configurations. We retum to this example in section 4.1.3.

The second example originates from Robinson (1951), and is also analyzed by
Hubert and Arabie (1986); the data come from the Mani collection of archaeological
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deposits. The dissimilarities are normalized to have sum of squares n2. A stationary point
was found with STRESS 0.88376265, and is shown in Figure 3.5a. Note that point 6, 7
and 8 are very close to each other. From a small perturbation of this point the tunneling
algorithm was started. After 119 iterations the tunneling algorithm reached a configuration
with STRESS 0.8557903127, which is indeed lower than the previous local minimum.
Figure 3.4 displays a summary of the iterations. The small rise in the tunneling function
value at the end happens here too.

w

{ PX)
id 1X)

0 T T T T T

0 20 40 60 80 100 120
Number of iterations

Figure 3.4  The sequence of tunneling function values 15(X), STRESS values o(X) and
value of the pole P(X) against the iteration number in the first tunneling
step on data of the Mani collection.

a b €

Figure 3.5  Three configurations of the Mani collection data: a. stationary starting
configuration, b. a configuration with the same STRESS as the starting
configuration, c. a new local minimum with lower value of the STRESS
Sunction.
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After the tunneling step, one local search step was performed that yielded the
configuration displayed in Figure 3.5c with STRESS 0.64722524. The tunneling algorithm
was not able to find another configuration with STRESS 0.64722524, The three
configurations in Figure 3.5 show two parts of the configuration: one group with points 1,
2 and 3 and the other group with points 4, 5, 6, 7 and 8. It seems that the second group
needed to be reflected along the horizontal axis to obtain lower STRESS.

3.5 Fine tuning of the tunneling function

In the previous section we have seen that the tunneling method and its minimization
algorithm works, at least for some small problems. In the examples, we used a pole
strength parameter of 1/4. However, we do not know a priori which pole strength would
be best. Another problem has to do with the normalization of §, i.e., ng = §'Dy8. When
minimizing STRESS this normalization does not matter, because one Guttman transform
automatically scales the configuration to the right size. This property does not hold
anymore in the updates of the tunneling algorithm. To see how the tunneling function
performs under various choices of pole strength and normalization, we do a small
experiment where these factors are varied systematically. From this experiment, we can
get a feeling for the usable values of these parameters.

The experiment has three factors: two different datasets of dissimilarities, various
values of the pole strength parameter A and different values of the normalization constant
n%. The tunneling algorithm is started from a local minimum configuration that is known
to be higher than the global minimum. To be more precise, for each combination of A and
11% the same, properly scaled, start configuration is used, which is the sum of the local
minimum and a fixed random perturbation. To rate the efficiency of the tunneling
algorithm we compare the number of iterations needed to end the tunneling step. If it took
more than 1000 iterations we stopped the tunneling step and regard it as having failed.

The first data set that is used was the Mani collection, also discussed in the previous
section. The second data set consists of distances between 9 points in a regular two
dimensional grid. We are focusing on the tunneling step that moves away from the local
minimum configuration given in Figure 3.5a. The pole strength parameter was varied in
18 steps from 1/1.5, 1/2, 1/2.5, ..., 1/10. The normalization ‘ng varied in steps of 2 from 1
to 65 for the Mani data and 1 to 81 for the grid data. A three dimensional graph of the
results of both data sets is shown in Figure 3.6. In the plot the number of iterations
needed to stop the tunneling step are given against different values of 1/A and the
normalization of the dissimilarities ng.
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Mani collection, those in plot b. from a regular two dimensional grid of 9
points.



CHAPTER 4

COMPARING SOME GLOBAL
OPTIMIZATION METHODS

In this chapter we compare the performance of some of the global optimization methods
that we have discussed in the previous chapters. Furthermore, we perform a number of
simulation studies to find factors that may influence the occurrence of local minima. In
particular, we study the effect of dimensionality, number of objects, and different error
levels on the local minimum problem. We also look at the differences between the local
minimum configurations themselves. The multidimensional case is treated separately in
this chapter from the unidimensional case, since we found in chapter 1 that the
unidimensional scaling can be reformulated as a combinatorial problem. We exclude full-
dimensional scaling from our discussion in this chapter, since in section 1.4 full-
dimensional scaling was expressed as a convex problem, which has only global minima.
This chapter is not intended to give an extensive simulation study treating all possible
factors influencing the local minimum problem. It merely tries to give some indication
which factors could be of influence.

For multidimensional scaling, we compare tunneling with the multi-level-single-
linkage (MLSL) clustering method. For unidimensional scaling, we compare four pairwise
interchange strategies and the tabu search. A small example illustrates that the tunneling
method still works for unidimensional scaling, albeit not perfectly.

4.1 Numerical experiments for multidimensional scaling

We start by investigating some of the factors that might influence the local minimum
problem. The factors we discuss are the number of objects r, the dimensionality p, and
the amount of error on the dissimilarities. Then we pick out some of the combinations for
which many local minima occur, and apply the tunneling method. In the last part of this
section we compare the tunneling method with the MLSL method on three specific
datasets. Note that, as indicated before, the dimensionality is restrictedtobe 2<p<n-1
in this section.
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4.1.1  Investigating the local minimum problem for p 22

Here, we report a numerical experiment on the seriousness of the local minimum
problem for dissimilarity matrices with a true underlying configuration for different
dimensionality p, number of objects n, and perturbation by error. Our hypothesis is that
as p gets larger (with respect to n) less local minima occur. This hypothesis is based on
the fact that for p = 1 many local minima occur, and for p = n — 1 no local minima occur.
We also expect that the number of local minima grows as the amount of error imposed
on the dissimilarities increases.

The experiment was performed as follows. For each combination of the first two
of the following three factors,

a size of n, i.e., 10, 20, 40 and 100,
b.  different values for the dimensionality p, i.e., 2, 3, 5 and 10,
c. different amount of error, i.e., 0%, 10%, 25%, and 100%,

a random configuration matrix of size nxp was generated. The resulting distance matrix
was perturbed by error and used as a dissimilarity matrix, with the amount of error
varying according to the levels of (c) above. We call such a dissimilarity matrix a gauge in
the sequel. For each gauge, the SMACOF algorithm is started a hundred times from
random nxp start configurations. We simply registered for each gauge which
configuration yielded the lowest STRESS, and how often a local search ended in this
candidate global minimum. In this way, we get an idea of the region of attraction of the
candidate global minimum. Clearly, if no error is imposed the lowest local minimum has
zero STRESS and hence is the global minimum.

It is not immediately clear how error should be added to the distance matrix to
obtain a proper gauge. Several forms of error and error distributions could be used. For
example, the dissimilarities could be a sum of true distances and error following some
error distribution. If the error distribution has zero mean, as is the case with the normal
distribution, this option has the disadvantage of possibly introducing negative
dissimilarities. Although the algorithm could be adapted to deal with negative
dissimilarities (see Heiser, 1991), we do not wish to introduce this latent factor in our
simulation study. Negative dissimilarities are avoided by imposing error as Ramsay
(1969) does, who assumes that the ;; is the Euclidean distance between a fixed part of
the configuration coordinates and a part that changes for every pair. One objection to this
model is that it produces dissimilarities which are always larger than the distances of the
fixed coordinates. This problem is also avoided by using multiplicative error from a log-
normal distribution as proposed by Wagenaar and Padmos (1971). True distances are
generated and subsequently multiplied by errors of a log-normal distribution, which are
positive so that no negative dissimilarities occur. In this study we have chosen the last
error model to generate our gauges.

The construction of the gauges can be summarized as follows. Given the
dimensionality p and the number of objects n, a configuration matrix is constructed with
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We see that a small normalization and a large pole strength parameter increases the
number of iterations needed to finish the tunneling step. Even an average pole strength
value of 1/5 is not strong enough to finish the tunneling step in a configuration with lower
STRESS in the Mani example. In both examples a small normalization of the
dissimilarities performs badly, irrespective of the pole strength parameter. It seems that
for stronger poles we also need to have larger normalization values. These examples
suggest the use of a moderate pole strength parameter, like 1/3, and a normalization that is
relatively large, for example n(n — 1)/2. We shall use these values in the sequel.

3.6 Conclusions

In this chapter the tunneling method was presented, which aims at finding an ever
decreasing series of local minima. The method iterates between a local search and a
tunneling step in which a configuration is sought with equal or less STRESS than the
previous local minimum. We changed the tunneling function used in the tunneling step,
partly to make it better behaved and partly to adapt it to the STRESS function. Several
problems have been solved so that the tunneling function does not lead to trivial solutions.
Furthermore, we presented a minimization algorithm for the tunneling function based on
majorization. The algorithm was extended to accommodate more than one pole, which
was needed to avoid unwanted stationary points in the tunneling function. We extended
the parametric programming algorithm to majorization. Several new majorization
inequalities were found.

Two examples showed that our tunneling algorithm works, at least for these small
problems. Experiments showed that a good value for the pole strength parameter is 1/3
and for the normalization is n(n — 1)/2. In chapter 4, we consider a simulation study in
which the tunneling method is compared to some other global optimization methods that
were presented before.
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uniformly distributed random coordinates in the interval [0, 1). The distances between the
points of this matrix are normalized to have n% = 1. The a% error gauge is formed by
multiplying each dissimilarity by e2¢/100, where e is standard normally distributed error
(mean O, variance 1). We normalize the gauge to have n% = 1. In Figure 4.1 we show the
distribution of a particular small, a middle and a large sized dissimilarity to give an
indication of the type of distribution that is obtained.

0 002 004 006 008 0.1 0 0.1 0.2 03
Small ; Middle §;

0 0.1 02 03 04 05
Large d;;
Figure 4.1  Distribution of dissimilarity gauges used in the experiment, for a small, a
middle and a large dissimilarity.

The computations of the experiment were done on a SUN SPARC station in the
interpreter language APL. For finding the number of different local minima we need to
compare the local minimum configurations with each other. The comparison is
complicated by the freedom of rotation. To decide whether two configurations are
different, two strategies were suggested in section 2.5.2. The first one fixes some of the
coordinates of all the configurations, so that the rotational freedom is removed. The
second one compares the distances between the two configurations, rather than the
coordinates. Implementations of the latter strategy turmed out to be unsatisfactory for this
experiment, because it was numerically not stable enough. Here, we used a third option.
The configurations are rotated towards each other by using Procrustes rotation. For more
details on Procrustes rotation we refer to Gower (1975) and Commandeur (1991). Here,
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we regard two configurations equal if after Procrustes rotation the sum of squared
differences between the coordinates is less than 0.01.

Table 4.1 Results of the simulation study on the number of local minima in MDS.
Reported are the number of different local minima found after 100 random
starts and, in parentheses, the number of starts that ended in the lowest

local minimum.

Number Dimen- Error level
of objects  sionality 0% 10 % 25 % 100%
10 2 5 (60) 5 (58) 2 (52) 2 (78)
3 1 (100) 1 (100) 1 (100) 1 (100)
5 1 (100) 1 (100) 1 (100) 1 (100)
10 35 (1) 6" (20) 4 (61) 3 (42)
20 2 7 9 10 (@2 6 (84) 6 (17
3 2 (99) 3 Q@3D 1 (100) 3 3y
5 1 (100) 1 (100) 1 (100) 1 (100)
10 1 (100) 1 (100) 3 (10) 1 (100)
40 2 11 (80) 1 (100) 6 (13) 10 (40)
3 1 (100) 2 (99 1 (100) 6 (24)
5 1 (100) 1 (100) 3 (74 1 (100)
10 1 (100) 1 (100) 3 (50) 1 (100)
100 2 3 (98) 1 (100) 3 (98) 6 (91)
3 1 (100) 1 (100) 1 (100) 2 @)
5 1 (100) 1 (100) 1 (100) 1 (100)
10 1 (100) 1 (100) 1 (100) 1 (100)

The results of the experiment are presented in Table 4.1.We have to interpret this
table with some care, since the experiment is limited in size and may depend on the
accuracy chosen. The most striking fact from Table 4.1 is that for most combinations all
100 random startconfigurations ended in the candidate global minimum. Apparently, the
SMACOF algorithm is quite capable in reaching the global minimum. Also, it seems that
the current procedure for constructing gauges does not produce many local minima for
moderate error levels. We also find that the number of different local minima is higher for
small p than for higher dimensionality. This effect seems to be stronger for higher error
levels. However, a different result was found for the combination n = 10 and p = 10, a
case of full-dimensional scaling. Here, we found a high number of local minima. One
reason for this could be that due to slow convergence of full-dimensional scaling the local
searches may have stopped too early.

The current experiment was computationally very intensive. It took about 3 weeks
CPU time to perform the entire experiment. One of the reasons for obtaining so few
different local minima for large n might be that too few start configurations were used.
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Obviously, with a larger number of start configurations like 1000 or 10000 we obtain a
more accurate estimate of the number of local minima, although we expect that region of
attraction to the candidate global minimum remains roughly the same. However, using so
many start configurations for each of the combinations of error level, p, and n would have
made the experiment impossible due to the computational effort.

This experiment lends support to the hypothesis that the local minimum problem is
more severe for small dimensionality (p = 2, or p = 3) than for a larger dimensionality.
Moreover, the amount of error imposed on the gauges led to more local minima, although
this effect is less strong for larger n. Here, we have focused mainly on the number of
local minima, but in section 4.1.3 we present some configurations of the local minima.

4.1.2  Performance of the tunneling method

In this section we investigate how the tunneling algorithm behaves for some of the
difficult gauges of the previous section. A gauge is regarded as difficult if it has a
moderate number of local minima, and a candidate global minimum with a small region
of attraction.

The gauges that we use in this section stem from the experiment in the previous
section (see Table 4.1) and have a small region of attraction to the candidate global
minimum. The first gauge has n = 20, p = 2, and error level of 10%. We found 10
different local minima. Only two of the 100 local searches ended in the candidate global
minimum. The second gauge has n = 20, p = 10, error level of 25%, 3 local minima, and
10 local searches out of 100 ended in the lowest local minimum. The third gauge has n =
40, p =2, error level of 25%, 6 local minima, where 13 of the 100 local searches ended in
the lowest local minimum. The tunneling method is used on these three rather difficult
gauges.

We used the tunneling algorithm with multiple poles as defined in section 3.3. The
pole strength parameter A was set to 1/3 and the dissimilarities were normalized to have
Mg = n(n — 1)/2, which are reasonable settings conform the fine tuning experiment in
section 3.5. The tunneling step stops if a configuration is found with a smaller STRESS
value than the previous local minimum. Otherwise, the tunneling step is stopped after
2000 iterations, or if the value of the auxiliary function F(q,X) is less than 10-7, which is
an indication for a stationary point of the tunneling function. Then, at this position a pole
is added to the tunneling function and the tunneling step is repeated. If more than 10 poles
were needed, the tunneling step is regarded as having failed and the previous local
minimum becomes the candidate global minimum. We started the tunneling algorithm
from the worst local minimum. The STRESS values reported here are given in high
accuracy, because the tunneling function is based on the STRESS values and hence is
sensitive to the accuracy.

For gauge one, the tunneling method was started at a STRESS value of 9.68230903.
The first tunneling step needed six poles to find a STRESS of 9.546557351. The next local
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search yielded the candidate global minimum of 1.40219957. The CPU time needed was
about 111 minutes. The tunneling method required six hours and 40 minutes to reach the
candidate global minimum of the second gauge. The algorithm was started at a local
minimum with STRESS value 5.30272142. Using at most 10 poles the tunneling method
reached in three tunneling steps with local minimum STRESS values 5.30272077,
5.30263994, and 5.30263722, the candidate global minimum with STRESS 5.30263612.
The small gains in STRESS could be due to the high dimensionality (p = 10) relative to the
number of objects (n = 20) in this gauge. The third gauge imposed an even more difficult
problem to the tunneling method, i.e., it needed 8 tunneling steps and about 19 hours of
CPU time. The tunneling method was started at a STRESS of 89.31092138, which led in
eight tunneling steps to 42.66376336 via the steps 89.29739523, 89.19337217,
89.14282561, 85.98388855, 85.82599954, 58.63553200, 42.66376437, and
42.66376435. Apparently there are at least three levels of local minima, one around
STRESS values of 89, the second one around 85.8 and one around 42.6. This experiment
suggests that for either large p (like gauge 2) and for large n (like gauge 3) the tunneling
method is very computationally intensive. One of the reasons is that the update of
tunneling step (3.54) requires the computation of an nxn inverse, which is of the
complexity of the order n3 (see also section 5.1.6). Another reason is that the tunneling
method terminates only after the tunneling step has failed. This happens after 10 poles are
added, which implies that at most 10 times 2000 iterations are performed. Therefore, the
current termination criterion costs considerable computation time, especially when n is
large. :

One of our conclusions from this experiment is that the tunneling method seems to
be capable of finding even local minima with a small region of attraction. However, in its
current implementation, it costs a huge amount of computation time, a feature that is
shared with most other global optimization methods. Moreover, the tunneling method
seems to be quite sensitive to the convergence criterion settings of the tunneling step. If
for example the convergence criterion is set too weak, the maximum number of poles is
not enough, or the maximum number of iterations is set too low, then the tunneling
method will fail to arrive at a proper solution. Especially for middle or large sized n, say
n > 60, the computational burden of the tunneling method seems to be prohibitive. For
small MDS problems with or without a large region of attraction, the tunneling method
could be applied readily.

4.13  Comparing multi-level-single-linkage and tunneling

Three different examples are presented to compare different aspects of multi-level-single-
linkage clustering and tunneling. These results have been presented earlier in Groenen
(1992). Here, we have a closer look at the different local minima themselves, to see in
what respect they differ. The examples have a decreasing region of attraction to the global
minimum, different number of objects, and one has a global minimum of zero. We
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present for each example the results of MLSL with hypercubes, MLSL with moved
hypercubes (see section 2.5), and of the tunneling method. Here, the dissimilarities are
standardized to have sum of squares n(n — 1)/2 and the configurations are of fixed
dimensionality p = 2. The rotation invariance was solved here by fixing the first point in
the configuration to be in the origin, and the second point to vary only on the nonnegative
part of the first dimension (see section 2.5.2). The number of configurations drawn by
MLSL is limited by the amount of memory available in the computer.

The first example is the 4 x 4 constant dissimilarity matrix discussed by De Leeuw
(1988), see also section 3.4. He notices four types of stationary points, two of them in
two dimensions: a configuration with three points at the corners of an equilateral triangle
and the remaining one at the centroid (‘triangle') and a configuration with four points at the
comers of a square ('square'). MLSL was started with the triangle configuration. 4300
random configurations were drawn with N = 100, which induced a total of 124 local
searches. With the exception of the first local search, all resulted in the square
configuration, albeit in the three different forms given in Figure 4.2.
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Figure 4.2  Four different local minima of the constant dissimilarity matrix found by

MLSL.

Only one triangle was found by MLSL due to the initial configuration; the three others
were not found. The triangle configuration is an example of a non-isolated stationary point
(cf. De Leeuw, 1988). The square configuration has the least STRESS and a very large
region of attraction, which suggests that it is the global minimum in two dimensions.
Repeating the experiment, with moved hypercubes and the same sample size, decreased
the number of local searches to 52 yielding the same local minima.

Tunneling was started with triangle configuration (i) of Figure 4.2 and with A = 1/3.
The start configuration of each tunneling step is a small perturbation of the previous local
minimum. In 85 iterations the tunneling step yielded a configuration with the same
STRESS as initial configuration and the subsequent local search yielded configuration ii of
Figure 4.2. A plot of the history of iterations was already presented in Figure 3.2. The
next tunneling step needed 307 iterations to emerge from the tunnel, after which the local
search reached configuration iii of Figure 4.2. When both of these configurations were
inserted as poles in T¢(X) then tunneling was able to find the remaining square
configuration.
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In the second example, the dissimilarity matrix is the Euclidean distance matrix of a
configuration of an equally spaced grid of nine points, see Figure 4.3 configuration (i). It
shows what kind of local minima may be expected when the dissimilarities are Euclidean
distances from a structured underlying configuration. MLSL generated 5800
configurations that were obtained from the uniform distribution. Using hypercubes 4070
local searches were started, which yielded 44 different local minima. The structure of the
data yielded only 6 different species of local minima as shown in Figure 4.3. A species of
local minima has one or more configurations that differ only in labelling of the points, not
in the form of configuration. Almost 72% of the local searches ended in the global
minimum indicating that it has a large region of attraction. With moved hypercubes, only
689 local were started from 5800 samples points, which led to 5 species of 22 local
minima. Except for configuration (iii), the same species were found. Tunneling was
started from the worst fitting configuration (vi) of Figure 4.3). After two tunneling steps it
found the equally spaced grid of nine points.
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Figure 4.3  The species of local minimum configurations obtained by MLSL of the
Euclidean distance matrix of configuration i. Also given is their STRESS
and the percentage of random points whose local search ended in this
configuration

The third example concems genetic dissimilarities of bacterial strains that are
reported in Mathar (1989) after experiments of Ihm (1986). Mathar (1991) obtained
many different local minima using MDS on this data set, which makes it an interesting
data set for the comparison of the two global optimization methods. The genetic
dissimilarities were obtained as follows. Bacterial strains were investigated with respect to
their phylogenetic similarity. DNA-sequences (chromosomes) of each two out of 17
different species have been brought together, heated and then annealed. If species are
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similar then a large portion of equal parts of the individual DNA-sequences are associated
in some way. This can be measured and gives the "percent-binding", which is a well-
known term for biologists. The raw data were transformed to dissimilarities in the
following way. If species i and j have a percent binding of a %, say, then §;; =1 - a/100.

The initial configuration of MLSL was the classical scaling solution (Torgerson,
1958; Gower, 1966) with STRESS 20.04914295. A local search starting from this solution
resulted in a local minimum with STRESS 4.46047935.
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Figure 4.4  Histogram of the number of local minima found with a certain STRESS
value of the genetic dissimilarity data.
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Of 3200 random points that were drawn for MLSL with hypercubes, 3084 local
searches were started that yielded 1098 different local minima. Although the convergence
criterion of the local search procedure was strict (10-8), we should not exclude that some
of the 1098 minima may be regarded as the same. A histogram of the number of local
minima with a certain STRESS value is presented in Figure 4.4. It shows that the majority
of the local minima have rather high STRESS values. For this data set a global
optimization method is clearly needed. In Figure 4.5 the five configurations with the
lowest STRESS are given representing the local minima of 14% of the local searches. The
differences between the configurations are small. Due to the rotation identification,
configuration (ii) is more or less reflected along the second axis when compared to (i), but
the main difference is the positioning of objects A, / and m. Comparing (i) with (iii),
objects p and h are interchanged; (i) with (iv), the difference is in objects p, h and m; (i)
with (v), the difference is in both the objects p, h, m and g, /. For this data set different
local minima are formed by more or less interchanging the position of a few points. The
experiment was repeated for moved hypercubes. With 6200 random points 29 local
searches were needed, that resulted in 27 local minima, the best two being (i) and (iii) of
Figure 4.5. Although only a very few local searches were started the assumed global
minimum was found. The tunneling method was started with the worst local minimum
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found by MLSL. After a series of 15 decreasing local minima and at most 7 poles, the
tunneling method found configuration (i) of Figure 4.5. In fact, the last five local minima
of tunneling coincided with the five configurations of Figure 4.5.
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Figure 4.5  The five best configurations of the genetic dissimilarity data obtained by
MLSL, their STRESS and the percentage of random points whose local
search ended in this configuration.

It is interesting to see to what extent the local minima differ in their distances. After
all, it is the distance matrix of a local minimum that determines the STRESS value. A two
dimensional graphical representation can be obtained when using MDS as a meta analysis
tool. To be more precise, we approximate the distance between the distance matrices of
the local minima and obtain a low dimensional representation of the local minima. Thus
the objects in the meta MDS analysis are the local minima, A dissimilarity &;; in the meta
MDS analysis contains the distance between the distance matrix of local minimum i and
that of local minimum j. Clearly, if two local minima have almost identical distance
matrices, their distance in the meta MDS analysis should be small. Such a meta MDS
analysis can be seen as a nonlinear approximation of a two dimensional plane that shows
as much difference between the local minima as possible. Here, we took the best 100
local minima of the bacterial strain example and computed their distance matrix.
Subsequently, each distance matrix was regarded as a point in n(n — 1)/2 dimensional
space. From these points a 100x100 meta distance matrix was constructed by computing
the interpoint distance. Then, an ordinary MDS analysis in two dimensions was
performed. The result is plotted in the horizontal plane of Figure 4.6, where vertically the
STRESS value is reported. In the figure we find near the right side of the candidate global
minimum a group of points with higher STRESS values of about 4.65. Other local minima
with small STRESS are found at some further distance from the candidate global
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minimum. This suggests that there is not a smooth valley of local minima leading to the
candidate global minimum. It may indicate that it will be rather difficult to discover this
minimum. In the figure we also see that the more distant we are from the candidate global
minimum, the higher the STRESS values of the local minima tend to be. Thus, local
minima that have a distance matrix that is rather different from the candidate global
minimum distance matrix have high STRESS values.
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Figure 4.6 A meta MDS analysis of the distances between the 100 best local minimum
distance matrices of the bacterial strains example. In the horizontal plane
the meta MDS solution is used, and the vertical axis gives the STRESS value
Jor each local minimum.

We now return to the comparison of MLSL and the tunneling method. From these
examples we may conclude the following. The differences in the number of local searches
of MLSL without moved hypercubes seems to depend on the number of parameters to be
estimated, i.e., nxp. In the first example with small n, relatively few local searches had to
be performed as compared to the last two examples with larger n. Using moved
hypercubes greatly reduced the number of local searches for all three examples, still
yielding the same candidate global minimum. Therefore, we regard MLSL with moved
hypercubes as a better version of multistart. In all examples, tunneling was successful in
discovering the candidate global minimum, even though it has a small region of attraction
in the bacterial strains example. The same example showed that the tunneling method still
performs well, if there are many local minima. However, both MLSL and the tunneling
method require heavy computations.
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4.2 Numerical experiments for unidimensional scaling

The combinatorial nature of the unidimensional scaling problem makes it necessary to
treat the numerical experiments separately from those for the multidimensional case, since
optimal algorithms are basically different. To compare some of the different
unidimensional scaling strategies (as discussed in section 2.2) in finding the global
optimum, we performed the following experiment. First, we generate dissimilarity
matrices with known optimal permutation. Then, we apply four pairwise interchange
strategies, and the tabu search to see if the optimal permutation can be recovered. We
compare their performance of reaching the global minimum and the effort that it takes.
The dynamic programming approach is excluded from the experiment, because it always
finds a global optimum and is therefore to be preferred if n is not too large.

In contrast to multidimensional scaling we are able for unidimensional scaling to
generate a dissimilarity matrix that has known optimal configuration. In this way we can
tell whether a unidimensional scaling strategy has reached a global minimum permutation
or not. Hubert and Arabie (1986) showed that for fixed coordinates the unidimensional
scaling problem can be viewed as a quadratic assignment problem, which is also a
combinatorial problem. This feature can be exploited to generate dissimilarity matrices A
with known (global) permutation. We use the test problem generator for Euclidean
quadratic assignment problems as proposed by Li and Pardalos (1992). Their generator
consists of the following four steps.

1. Compute a distance matrix D of a vector x with ordered coordinates, i.e., x; < x;
<...<x, Let N be the set {(i,/) | 1 £ <j <n} of new pairs that are not updated
yet. Set dissimilarities &;; = ¢ (with ¢ > 0) for (iy) eN and §;=0for 1 <i<n.

2. If the set N of new pairs is empty then stop.

3. Find pair (k,/) such that

dy(x) = max_difx).
(iy)eN

If I = k + 1 then remove pair (k,/) from N and go to 2.
Otherwise, choose randomly an integer s, with k < s </ and draw € from the
uniform distributign between 0 and ¢. Update A by

Ok = O + €, Ops = Oys — €, 8y = 8y — €.

4. Remove (k./), (k,s) and (s,/) from N and go to step 2.

Li and Pardalos (1992) prove that the identity permutation remains the globally optimal
permutation of the quadratic assignment problem. Therefore, the identity permutation is
also the global minimum permutation of the unidimensional scaling problem. Note that
the value of t2(y), that is maximized in unidimensional scaling, has the same value for
dissimilarity matrices generated by the algorithm above with equal n and c. The



Comparing some global optimization methods 87

corresponding STRESS values can be different, because the sum of the squared
dissimilarities M is usually different. Other test problem generators exist for this
problem, but they are much more computationally intensive, which makes it difficult to
generate large sized test problems.

In the following experiment, we only varied n, since the dimensionality p = 1. Error
on the dissimilarities is implied by the test problem generator, and is thus excluded as a
separate factor. We used the same four levels of » as in our multidimensional scaling
experiment in section 4.1.1, i.e., n is 10, 20, 40, and 100. The pairwise interchange
strategies (LOPI1, LOPI2, LOPI3, and LOPI4) and the tabu-search were started a hundred
times with random start permutations. The search procedure in the tabu search was
implemented with the LOPI1 pairwise interchange strategy. If the tabu step failed to reach
a better function value within 100 iterations with a maximum of 20 tabu permutations,
then the tabu step was terminated. For each of the 5 search procedures we report the
number of times the identity permutation has been reached, the number of times that any
permutation with global optimum value has been reached, and the average CPU time
needed for reaching a minimum. Again the CPU time was measured on a SUN-SPARC
workstation using the interpreter language APL. Therefore, the CPU time has to be
interpreted with care, because some overhead may be caused by non-optimal coding of
the interpreter especially for these programs. The results of the simulation study are
presented in Table 4.2,

In the table, we see that the consecutive local pairwise interchange strategy, LOPI1,
does not perform well when compared to the others. The LOPI2 strategy of Poole (1990),
that searches for the best position for an object given the order of the other objects, is a
good and relatively fast strategy in locating a globat optimum. LOPI3, that does a pairwise
interchange between any pair of objects if it increases t2(y), performs somewhat better,
but costs more computing power. The LOPI4 strategy, that searches for the best pairwise
interchange between over all object pairs, performs equally well as LOPI3, but needs
dramatically more CPU time. For n = 100, LOPI4 was terminated after one week of
computations. The tabu search in its current implementation did not perform much better
than LOPI1, particularly for high n. Implementations of the tabu search based on better
local search procedures (like LOPI2) might lead to better performance. A second
improvement could be obtained by making the termination criterion of the tabu step
dependent on #, i.e., terminate if after 10n iterations no better function value is found.

The current experiment indicates that Poole's (1990) LOPI2 strategy should be used
to recover a global optimum with a reasonable probability and within moderate CPU time.
If one wants to find a global minimum with a higher probability at the cost of extra
computing time, then Heiser's (1989) LOPI3 strategy seems favourable. Clearly, if 7 is
small enough, then the dynamic programming approach is always to be preferred, since it
yields a global optimum by definition.
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Table 4.2 Simulation results of 5 strategies for unidimensional scaling.

Optimal Identity Optimal VALUE Average
2(y) permutation t2(y) reached CPU time
recovered (%) (%)
n=10 LOPI1 3300 1 50 0.41
LOPI2 3.300 16 83 1.59
LOPI3 3300 0 89 1.03
LOPK4 3.300 2 88 2.00
Tabu 3.300 1 61 1.77
n=20 LOPI1 6.650 0 4 2.70
LOPL2 6.650 32 75 10.30
LorB3 6.650 0 85 8.21
LOPH 6.650 0 89 35.80
Tabu 6.650 0 9 9.81
n=40 LOPI1 13.325 0 5 28.04
LOPL2 13.325 0 97 40.79
LoPI3 13.325 0 100 94.78
LOPH4 13.325 0 99 845.37
Tabu 13.325 0 7 40.72
n =100 LOPI1 33330 0 6 59733
LOP2 33.330 0 100 560.13
LopP13 33.330 0 100 312454
LOPH 33.330 failed
Tabu 33.330 0 1 613.40

4.2.1  Performance of tunneling method with unidimensional scaling

As an illustration, we present a small example of the tunneling method for
unidimensional scaling. Although for p = 1 the tunneling method does not use
combinatorial structure, the procedure can be pursued just as if it concerned a
multidimensional scaling problem. We use the example of the Kabah collection of
archaeological deposits reported in Hubert and Arabie (1986), who took the example
from Robinson (1951). The dynamic programming approach yielded a global minimum
for the identity permutation with STRESS 4.73303773. The tunneling algorithm was
started with the random permutation 2, 7, 5, 16,17, 13, 15,3, 1, 6, 8,11, 12,9, 14, 10, 4
that has STRESS 25.16402989. After 24 tunneling steps the algorithm arrived at a local
minimum with STRESS 11.78850806 that has permutation 1, 2, 16, 17, 15, 13, 14, 12,
10,11,9,8, 7,6, 5, 4, 3. It is interesting to see that the relative order of many objects is
almost correct, except for the positioning of objects 1 and 2. Apparently the tunneling
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algorithm does not succeed in moving objects 1 and 2 to the other side of object 3. The
tunneling method took about two hours and 15 minutes CPU time to arrive at the final
permutation. Clearly, the combinatorial strategies of the previous section are much better
to deal with unidimensional scaling. However, this small example does illustrate that the
tunneling method still could be used even if p = 1.

4.3 Conclusions

We have treated the local minimum problem differently for unidimensional scaling and
multidimensional scaling. For multidimensional scaling, our experiment in section 4.1.1
suggests that increasing error enlarges the number of local minima. We also found less
local minima for higher dimensionality with respect to the number of objects. The
tunneling algorithm is equally capable of finding the candidate global minimum as is
multistart or MLSL clustering. However, all these methods are computationally very
demanding. The settings of the tunneling method (like maximum number of poles,
maximum number of iterations in a tunneling step, convergence criterion of the tunneling
function) need to be strong not to fail. For MLSL clustering the use of moved hypercubes
greatly reduces the number of local searches, and still recovered the same candidate global
minimum in our experiment.

For unidimensional scaling the first choice should be the dynamic programming
approach, since it guarantees a global optimum. For large n, say n 2 20, the dynamic
programming strategy is no longer feasible, so that we have to revert to other strategies,
like pairwise interchange. These local pairwise interchange strategies and the tabu search
were compared on their capability in recovering a global optimum that was generated
using an algorithm of Li and Pardalos (1992). In fact, the LOPI2 strategy of Poole (1990)
and the LOPI3 strategy of Heiser (1989) give a good performance within a reasonable
amount of CPU time. The LOPIl and LOPI4 strategies did not perform very favourably.
The former is fast, but often does not locate the global optimum, whereas the latter is able
to find the global optimum, but takes a huge amount of CPU time. The tabu search
performed only a little bit better than LOPII, but not as good as the other pairwise
interchange strategies. A small example showed that the tunneling algorithm still works
for unidimensional scaling, but is not successful in finding the global optimum.






CHAPTER 5

INCOMPLETE MDS

An important feature of the STRESS function is the inclusion of weights. One of the
advantages of having a weight for each pair of objects is that missing data are handled
more easily. A zero weight indicates absence of the dissimilarity and a non-zero weight
the presence. However, using weights most often requires extra computational effort.
Here, we shall look at specially structured designs, for which these computations can be
simplified. As a second advantage, it permits us to formulate MDS models, for which the
set of objects is split into two mutually exclusive sets. Within this framework we discuss
unfolding, extemal unfolding and (semi-)complete scaling. Furthermore, we apply semi-
complete MDS in a new method, called moving frame MDS. We present numerical
examples to see if moving frame MDS accelerates the computations of complete MDS.

51 Structured designs in MDS

For large dissimilarity tables in MDS two problems occur. The first problem consists of
the excessive number of dissimilarities to be gathered, since the total number of different
pairs of stimuli equals n(n-1)/2, where n is the number of stimuli. The second problem is
how to analyse them efficiently. Both problems can be handled by using incomplete
designs; i.e., each dissimilarity is weighted by zero or one indicating its presence or
absence in the incomplete design. The subset of dissimilarities in the incomplete design
thus reduces the number of dissimilarities to be collected. As well as simplifying the
respondents’ task, theoretical considerations suggest that incomplete designs can also be
used to accelerate computations even when all dissimilarities might be readily available
(or calculable). Spence and Domoney (1974) found a good recovery of the target
configuration by using designs that required only a small fraction of all possible
dissimilarities. The SMACOF algorithm needs the inverse of a square matrix of the order
of the number of stimuli, see section 1.3. As n gets large, computation of the inverse may
become a burden. For some structured designs Gower and Groenen (1991) and Groenen
(1993) discussed how the computation of such an inverse can be accelerated by making
use of arguments of the modified Leverrier—Faddeev algorithm. We summarize their
results in the following sections.
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An incomplete design can be described by the nxn matrix W where the weights
w;; = w;;, are restricted to be zero or one and w; is zero for all i = 1, ..., n. In section 1.3 it
was outlined that the SMACOF algorithm needs the Moore-Penrose inverse of

V =diag(1'W)-W. (5.1

If we assume that V is irreducible, then V is of rank n—1, since V has row and column
sums equal to zero and thus has the vector 1 in the null-space. Accordingly, the Moore-
Penrose inverse V_ is given by (V + 11')1 — n-211". If all weights are equal to one, then V
equals n times the centering operator, i.e., V =nl —11' and V"~ equals n-1(I - n-111"). In
SMACOF, V— is multiplied by a matrix that has zero column means and therefore we only
have to find (V + 11')-1, To simplify the computation of the inverse, we use a
combination of standard conditions on the inverse and arguments derived from the
modified Leverrier-Faddeev algorithm.

We discuss three classes of structured designs, which are displayed in Figure 5.1.
The first class is formed by the partitioned block designs that partition the dissimilarity
matrix into non-overlapping blocks, only some of which are to be used. The second class
is formed by the block tridiagonal designs, which is a special case of the partitioned block
designs. The third class we discuss are the (block) circular designs, where the matrix to be
inverted is a circulant matrix.

a. b.

Figure 5.1  Examples of a partitioned block design (a), a block tridiagonal design (b)
and a circular design (c).

The structure in these three classes of designs is exploited by the modified Leverrier
Faddeev algorithm to make the computation of the inverse more efficient. A simulation
study of partitioned block designs is presented to illustrate the gain in efficiency.

5.1.1  The modified Leverrier-Faddeev algorithm

The modified Leverrier—Faddeev algorithm can be used to find the inverse or the spectral
decomposition of a matrix. The actual numerical algorithm may be used, but Gower
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(1980) warns that the "... algorithm is inefficient and inaccurate and is clearly unsuitable
for numerical work". A strong feature of the algorithm lays in the theoretical arguments
that can be derived from the modified Leverrier—Faddeev algorithm, from which an
explicit spectral decomposition or an explicit inverse of patterned matrices may be
obtained. Here, we briefly explain the algorithm and show how to simplify the
computation of A-1 =(V + 11')-! by making use of the patterns arising from structured
incomplete designs.
The Leverrier-Faddeev algorithm can be summarized by the sequence

Yo=A
Y.=AY, 1 +piA, i=1,..,n 5.2)

where p; equals -%trY,-_l which is one of the coefficients of the characteristic polynomial
of A. The inverse is given by

Al=-(1/p XY, +Pppal) (5.3)

and similar expressions exist for the Moore-Penrose inverse and the eigenvectors
(Gower, 1980). This algorithm breaks down when A has repeated eigenvalues but a
modified version in which p; is replaced by g;, the coefficients of the minimal polynomial
of A, remains valid, except under unusual circumstances that are irrelevant to the current
discussion. The main characteristic of this algorithm that we use here is the following.
Suppose matrix A and Y are similarly patterned matrices and suppose that AY and A +
Y result in a matrix of the same pattern. Then, the modified Leverrier—Faddeev algorithm
implies that the inverse of A shares the same pattemn. This can be seen by inductive
reasoning and by inspecting (5.2) closely. Suppose A meets the assumptions and so does
Y, , then AY;; + p;A, yields a similar patterned matrix. The condition holds by
definition for Y. Therefore each Y; has the same pattern as A, and consequently so has
Al

5.1.2  Partitioned block designs

In a partitioned block design the objects can be partitioned in k groups of size ny, n,, ...,
ny. All the elements in the kxk blocks ij of size njxn; have equal values, either zero or one,
say é,-j. Consequently the matrix A, equal to V + 11, has associated blocks 5,-!-11' with &,-j
equal to one if a block is absent and &;; equal to zero if a block is present. Note that
throughout this section 11' and I are conformable to the block sizes of ij. The pattemn of
the partitioned block design is reflected in A, which has the form
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Yih Enll' gl - g1

o Y21, . . §21:11' ‘522:11' 521::11' (5.4)

Yele | (Gl &l o EL 1T

where because every row of A has sum n, y; = £ (1-§;)n,. Let Z be a matrix with a
similar pattern as A, defined by the diagonal blocks 6; I; and ¢;11'. The multiplication
AZ results in a similar patterned matrix, with block ij given by

k
(‘Yl(plj + ej if + zlnsgisq)sj )11' for l¢] (55)
5=
k
(Yigii + 0.8, + Zl”.\-gi.r(psi)l 1'+y,0]1; fori=j.  (5.6)
§=

Thus, the multiplication of two partitioned block matrices retains the pattern. It is easy to
see that the result of A + Z also keeps the pattemn. As a consequence of the Leverrier—
Faddeev algorithm, A-1 shares this same pattern. This important feature allows us to
compute the inverse of A more efficiently. In the following, let Z be the inverse of A, so
that AZ must equal I. Therefore (5.5) must be zero, and the coefficient of 11' in (5.6)
must also be zero. Further it follows directly that ¥,0.1; is equal to I, which implies 6;
equals 1/y;. Thus

k
'YI(PU + Jz_:ln.rgl'.rq’sj = —ejél.j (57)

must hold for all pairs ij. This set of kxk equations can be rewritten as ®NA,; = -OE,
where N is a diagonal matrix with elements n; and A; equals (TN-1+E), The only matrix
not known is ®, which is equal to -©EA - IN-1. Instead of computing the nxn inverse of
V + 11' it suffices to compute the kxk inverse of A, and do some matrix multiplications of
order k. As a consequence, a considerable gain in speed can be expected especially when &
is small. A simulation study to corroborate this claim is presented in the next section.

5.13  Block tridiagonal designs

A fast computational method for the inverse of block tridiagonal designs can be
formulated by making use of the structured sparseness of E. Such a design consists of
blocks on the diagonal and both adjacent subdiagonals. In this case, the elements of &
equal zero or one, indicating whether the block is present or absent. The second and
higher subdiagonals of A  have unit values. As a first step towards finding the inverse of
A, it is convenient to subtract the rank one matrix 11' to obtain a sparse tridiagonal matrix
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B, -1 - 0 0
-1 B - 0 0O
B=A,-11I= P (5.8)
0 0 - By -1
0 0 == =1 B,

with By = ny/ny, B; = (n+n;,)/n; and By = ny 1/n,. B is more sparse than A for k
larger than 3. However, because Bn = 0, the matrix A, = B + 11' cannot be inverted from
knowledge of B-1. To modify B to be of full rank, while retaining its tridiagonal form, we
may proceed as follows. Let e be the unit vector that has zero values everywhere except
for its final element which has value one. Then for any valid design e'n # 0 and we may
write:

A =11'-ee+T (5.9)
where T =B + ee'. T is tridiagonal and of full rank, with Tn = (e'n)e, so that
T-le=n/(em) . (5.10)

Using result (5.10) and after some manipulations:

Thus, to invert A, it is only necessary to invert the tridiagonal matrix T. The Cholesky
decomposition LDL' of T may be used to find T-1, where the lower triangular matrix L is

1 0. 0 0
Y4 1 - 0 0
0 0w 1 O
0 O « —Ydpy 1

and the diagonal matrix D has non-zero elements d, = ,, d; = B; - aﬁ_l] fori=2,3, .., k-
1 and d; = 1. The inverse of T is given by (L-1)'D-1L"! = M'D-'M, where the lower
triangular matrix M has diagonal elements unity and subdiagonal elements

m; = [iﬁdsjl : (5.12)

s=f
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One important characteristic of the block tridiagonal design is that the associated
inverse can be computed relatively fast. The gain in speed when using this method
depends on the number of blocks as well as their size, but the gain can be considerable.

5.14  Circular designs

An important class of designs is when E denotes a symmetric circulant design (see
Spence, 1982). A is a circulant if each subsequent row equals the previous one, provided
that all elements are shifted one position to the right and the final element is put in the first
position. If A is also symmetric then we call A a symmetric circulant. Thus, the first row
equals (aj, @y, as, ..., Gm, ..., 43, a2), the second (ay, a3, a4, ..., Am-1, ..., A4, a3) and so on.
A circulant is symmetric if and only if a; = a,,.j;2 for all j = 1, 2...., n. Note that the central
value a,, is repeated twice if n is odd, where m = (n + 1)/2 for n odd and m = (n + 2)/2 for
n even. Both matrix multiplication and addition of two symmetric circulant matrices result
in a symmetric circulant matrix. As a consequence of the modified Leverrier—Faddeev
algorithm, the (Moore-Penrose) inverse must also be a symmetric circulant. Gower and
Groenen (1991) gave an explicit result for the inverse of a symmetric circulant based on
the spectral decomposition. A symmetric circulant A has eigenvalues

. m-x
Aj=A,_j=a+x(-1Ya, +2 Y a cos((k—1))8), (5.13)
k=2

and inverse A-1 is a symmetric circulant with elements n-lc, where

m-x-1
=K + k(DAL +2 Y A cos((k-1)/8), (5.14)
j=1

and where 0 = 21, x = 0 when 2 is odd and x = 1 when 2 is even. Note that Spence
(1982) reported the eigenvalues (5.13) which he used to express the efficiency of circular
designs.

For a general partitioned block design, A; will not be a symmetric circulant because
the diagonal values of I'N-! are not constant and then A  seems to need full inversion.
However, there are two important cases where advantage can be taken of the explicit
result of (5.14). These are (i) when n = n/k 1, which requires that n is a multiple of &, and
(ii) when n, = 1 for all 5, so that o; = X (1-&;,), which is a constant because the rows of
the circulant £ have constant sum. Case (i) merely requires the inverse of the kxk
symmetric circulant A,. Case (ii) is especially important because, although the block-
structure is lost (all the blocks are of size 1x1), the &'s may be chosen such that E is a
symmetric circulant with &' equal to (1,1,0....,0,...,0,1), which gives a tridiagonal design
with a single element in positions (1,7) and (n,1) or we may choose a band design a
symmetric circulant E with &' = (1,1,1,...,1,0,...,0,...,0,1,...,1,1) supplemented by extra
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cells in the upper-right and lower-left comer. Other choices such as E being a symmetric
circulant with &' = (1,1,0,1,0,...,0.,...,0,1,0,1) determine a more interlocking type of design.
Note that, because 1 is an eigenvector of every circulant matrix, we may operate on A -
11' and then, omitting the term in A1, (5.14) gives the generalized inverse required by
MDS. All such designs may be analyzed very efficiently by the method presented here,
especially when many of the &'s are zero.

5.15  Simulation results

A simulation study was performed to evaluate the gain of speed in finding the inverse of
V + 11'. The study was limited to partitioned block designs only, because it is potentially
the most computationally intensive task, since it requires the calculation of a kxt inverse.
For block tridiagonal and circular designs this kxk inverse can be solved explicitly as
outlined above. The speed of computing the inverse of several partitioned block design
matrices was evaluated for each of two conditions, one using the information available
from partitioned block designs, condition 1, (thus inverting a kxk matrix) and the other
computing the full nxn inverse of V + 11', condition 2. Furthermore, the size of the
matrix was varied (n = 10, 25, 50, 100, 250) and the number of blocks was varied (k = 2,
4, 5, 10, 25). For each combination the CPU time needed in FORTRAN77 to find the
inverse on a SUN SPARC station for both conditions was recorded. Ordinary matrix
inverses were computed by LU decomposition. The average CPU time for both conditions
are reported in Figure 5.2 for each of the five different sizes of the matrix. The average
CPU time for each number of blocks for the two conditions can be seen in Figure 5.3. In
both figures the average CPU time is reported on a log scale.

Using ordinary inverse

CpPU

seconds |

0. Using block information

OO0 25 50 100 250

Size of the matrix
Figure 5.2  The number of CPU seconds it takes to compute the inverse of a partitioned

block design for various sizes of the design (averaged over the different
number of blocks).
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Using ordinary inverse

—

CPU
seconds
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Using bloci-u.,fo/mioo/o
0.1 = - tJ
) 2 4 5 10 25

Number of blocks

Figure 5.3  The number of CPU seconds it takes to compute the inverse of a partitioned
block design for various number of blocks (averaged over the size of the
matrix).

We clearly see that for small sized n there is not so much difference between the
two conditions. However, a practical gain in speed is obtained for larger sized matrices
(say n larger than 25). For example, the average CPU time needed to find the inverse of
the 250x250 design without using block information (condition 2) was around 148
seconds, in contrast to 0.37 seconds for condition 1. As the number of blocks increases
condition 1 outperforms condition 2 by far, though the average CPU time of condition 1
increases slowly too.

It is clear that condition 1 yields a significantly faster computation of the inverse
required for a partitioned block design than condition 2. This gain is of particular
importance for large sized designs.

5.1.6 Discussion and conclusions

The arguments from the modified Leverrier-Faddeev algorithm allow us to gain
efficiency in the computation of the inverse needed in MDS when using partitioned block
designs, block tridiagonal designs and circular designs. The simulation study for
partitioned block designs shows that this tailor-made method results in a considerable
decrease of computing time in finding the inverse. This is not surprising, because
inverting by LU decomposition is a process that is cubic in n (see Press, Flannery,
Teukolsky, and Vetterling, 1988). Thus, if the size of the matrix to be inverted can be
reduced to k, then the computation time can be expected to be of the order (n/k)3 times
faster. However, it must be noted that the SMACOF algorithm for MDS is an iterative
procedure that, in ordinary cases, needs to compute this inverse only once. Consequently,
the gain in speed is effective only once. The structure of the design can also be exploited
in computing the Guttman transform more efficiently by disregarding blocks that have
zero weight, thus obtaining an increase in speed in every iteration.
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52 Multidimensional scaling with two sets of objects

For some applications of MDS it is useful to partition the set of objects into two mutually
exclusive groups. By making use of special weights and keeping the coordinates in one of
the sets fixed, some known and unknown models can be obtained, i.e., (external)
unfolding, semi-complete MDS.

Let us assume that the first n; objects form group 1 and the last n; objects form
group 2. Note that if the objects in group 1 were not consecutive, we could always
permute both the objects and the dissimilarities, such that they become consecutive.
Remember from chapter 1 that STRESS can be written as

o2(X) =1+ oX'VX - 20X'B(X)X =1 + n%(X) - 2p(X), (5.15)

where for convenience ng is normalized to one without loss of generality. By majorization
it was shown that (5.15) is always smaller than

6%X,Y)=1+tuX'VX - 20X'B(Y)Y =1 +n2(X) - 2p(X,Y), (5.16)

which is minimized by taking the Guttman transform X+ =V B(Y)Y.
Since the stimuli fall apart into two groups, N%(X) and p(X,Y) may also be written
in terms of partitioned matrices X; and X5. Thus, n2(X) can be written as

\'% Vv X
2 f ' 11 12 1
1 X X, Vi2' Vol Xo (5.17)

= UX]’ V]]X] + trX2’ V22X2 + ZUX]' V12X2
and p(X,Y) may be expressed as

~ Bll(Y) B]z(Y) Yl
XY)=t{X; X,

p( ) u.[ 1 2 ][BIZ(Y)' B22(Y)][Y2}

=trX1'B11(Y)Y1 +tI'X1' BIZ(Y)YZ (5.18)
+tr X, By (Y)Y, +tr X, B, (Y) Y,.

Note that the assumption of irreducibillity of W from chapter 1 implies V5 # 0.
Combining (5.17) and (5.18) gives

oAX) < 82X, Y) =1 +tX,'V,,X; - 2uX,'B, (Y)Y,
+trX 'V 10X, - 20X, 'B (Y)Y,
+trX,'V X, — 20X ,'By(Y)Y,
+ X, VX — 20X,'B (Y)Y (5.19)
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To obtain some interesting models, we introduce four factors that vary for different
models in MDS with two groups of objects. First, W1 can have zero weights everywhere,
so that the dissimilarities of objects within group 1 are missing. Second, the
dissimilarities within the objects of group 2 are missing, i.e., W, equals zero. Thirdly,
provided that X, is updated, we may keep X, fixed or we may leave it free. Some
additional special cases occur if we distinguish between several group sizes of Xy, i.e.,
ni=1,1<n;<n-1and n =n- 1. Below, we discuss the models that can be formed
using these options. A summary is given in Table 5.1.

Table 5.1 Summary of different settings in MDS with two groups of objects.

ny=1 l<nm<n-1 n=n-1
Set II fixed
Wii=0 Wyp=0 cyclic update external unfolding trivial
Wi0 cyclicupdate  external unfolding trivial
W20 Wp=0 cyclicupdate  semicomplete MDS  fixed point MDS
W20 cyclicupdate  semi complete MDS  fixed point MDS
Set 11 free
Wi=0 Wp=0 trivial unfolding trivial
W20 complete MDS  almost complete MDS  trivial
W0 Wo=0 trivial almost complete MDS complete MDS
Wooz0 complete MDS  complete MDS complete MDS

An interesting application appears for Wy; = 0 and W= 0 where both X, and X,
are updated. This type of analysis is called unfolding and its connection with MDS is
elaborated in Heiser (1981). In unfolding the only interest is to find the optimal distances
between the points of the two groups, irrespective of the distances within each group.
There is a vast literature on (probabilistic) unfolding models that we do not discuss here.
We merely wanted to note the connection with incomplete MDS.

Some nice simplifications occur in the computation of the update for unfolding. The
matrix Vi; simplifies to a diagonal matrix with elements V;,1 and similarly V5, to a
diagonal matrix with elements 1'Vy,. A straightforward algorithm minimizing STRESS
for unfolding is obtained by alternatingly update X; while X, is kept fixed and
subsequently update X, while X is kept fixed. The updates can be derived from (5.19).
If we are prepared to compute the Moore-Penrose inverse of V then X and X, can be
updated simultaneously, which turns out to be simple when Wy, = 11' (see Heiser, 1981,
p- 177). Remember that for unidimensional unfolding we have to refer to combinatorial
optimization programs (see section 1.5) to get adequate minima. If X is kept fixed all the
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time, then unfolding reduces to external unfolding (see Heiser, 1987). Here, additional
points have to be fitted into a fixed configuration that may have come from a previous
analysis. Note that for extemal unfolding it does not matter whether only one object is
updated or all the objects in X simultaneously.

Another model is obtained if in addition to external unfolding we include
information on the distances and dissimilarities within group 1. We call this new model
semi-complete scaling, i.e., Wy 0 and X, is fixed. Semi-complete MDS is useful
whenever we know the coordinates of a set of objects given from another analysis (e.g., a
previous MDS analysis), the dissimilarities of these objects with a set of new objects, and
dissimilarities between the new objects themselves. Semi-complete MDS fits the new
objects optimally with respect to themselves, and the objects for which the coordinates are
known. This type of analysis is therefore particularly useful when different objects are
collected more than once. Another application of semi-complete MDS is moving frame
analysis, which is discussed in the next section.

If the coordinates of X are free, then semi-complete MDS turns into complete MDS
if Wop 20 and into almost complete MDS if Wo; = 0. The within group 1 distances and
the between group 1 and 2 distances are fitted in almost complete MDS, over both the
coordinates of group 1 and group 2. Thus the only difference between almost complete
MDS and complete MDS is that the distances within group 2 are not fitted.

Some overlap between these models occurs in the special cases that ny = 1 and ny =
n—1.If ny = 1 and X;, is fixed then both external unfolding and semi-complete scaling
only fit one point with respect to all the others. This could be used to for minimizing
STRESS by adjusting one point at a time in a cyclic point descent algorithm (cf.
Luenberger, 1973). However, if X, is kept free and W1, # 0 then we just have complete
MDS again. For X; free and Wy, =0 a trivial problem with perfect fit arises, since the
point of group 1 and n — 1 points of group 2 can always be placed on a line such that the
distances between the groups match the between group dissimilarities perfectly. In fact,
even if ny = p a perfect solution can be obtained, provided W11 = 0. This same trivial
problem occurs of the role of X; and X is reversed, i.e., if ny=n -1 and Wy = 0.
However, if W1; # 0 and n; = n — 1 then we deal with complete MDS if X is free and
with MDS with one fixed point if X is fixed. In the latter case the columns of X are not
necessarily centred anymore.

53 Moving frame multidimensional scaling

In this section we elaborate on a method proposed by Groenen and Heiser (1992) which
monotonically decreases STRESS with two groups of stimuli. Iteratively a set of objects is
selected by some criterion to form a frame. These objects, say in group 2, are kept fixed
and the other objects are updated optimally with respect to the objects in the frame set and
themselves using semi-complete MDS. Since the group of frame objects changes over the
iterations, we call this method moving frame MDS. Our aim is to investigate whether
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certain frame selection strategies can accelerate the computations when compared with
complete MDS. Some numerical examples are discussed in the next section.

Other methods of accelerating the minimization of STRESS exist. For example, we
could use the conjugate gradient method proposed by De Leeuw and Heiser (1980), their
relaxed update (a discussion follows shortly), approximate STRESS by a quadratic
function as done by Stoop and De Leeuw (1982), or use a second order minimization
method, like Newton's algorithm. The last two options have the disadvantage that the
property of monotone convergence of STRESS is lost. The conjugate gradient method
does decrease STRESS, but needs expensive inner iterations, except if its fixed version
—the relaxed update- is used. Convergence of STRESS is also retained in moving frame
MDS, since it uses semi-complete MDS.

The main idea of using moving frame MDS for accelerating computations of
complete MDS stems from the observation that one semi-complete scaling update requires
less computational effort than one complete MDS update, especially when n; is large.
Suppose that only a small group of points has changed substantially between two
subsequent MDS updates. Then, semi-complete scaling could have been used to obtain
almost the same reduction in STRESS, but would have been much faster. However, in
practice we do not know in advance which points will change substantially. Therefore, the
overall gain in efficiency of moving frame MDS cannot be assessed in advance. It may
depend on the selection rule used, the size of n;, the stop criterion of semi-complete MDS,
and the dissimilarities that are fitted. In the next section we perform some numerical
experiments to see to what extent different options in moving frame MDS results in a
faster algorithm when compared to complete MDS.

The moving frame algorithm for minimizing STRESS is summarized as follows:

1. Select r < n objects in group 1 to be updated, according to some selection rule.
Declare all other objects to form the group of frame points (group 2).

2. Perform semi-complete scaling to find optimal updates of the group 1 objects,
keeping the frame points fixed.

3. Stop if convergence is reached, otherwise go to 1.

Several rules can be used to select the frame points, three of which we discuss below. But
we start by discussing some aspects of semi-complete MDS.

The update in semi-complete scaling can be determined in one step by setting the
gradient of 62(X},Y) in (5.19) equal to zero for X, = Y5. This gives

2V 1X; - 2B (Y)Y + 2V ,X, - 2B15(Y)Y, = 0
X1 = Vi (B (Y)Y, - V.Y, + By (Y)Y,), (5.20)

which is the update formula needed.
The semi-complete scaling algorithm exhibits one defect over the complete MDS
algorithm. The SMACOF algorithm is insensitive to normalization of the dissimilarities,
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because in each step of the algorithm an optimal normalization of X is computed
automatically. In semi-complete MDS X, is fixed, so that optimal normalization is not
possible. We could loosen this constraint by requiring that X, = BY,. Suppose X; is
obtained with (5.20). Then we search for a B that minimizes 62(B X1,3X,) for X; and X,
fixed. Since d;{X) is a positive homogenous function, we have

o%(pX) = n§ + BMA(X) — 2Bp(X) (5.21)

which has a minimum of n; - pAX)MAX) for B = p(X)M2(X) (see De Leeuw, 1977). If
B deviates from 1, STRESS is reduced even more, without much computational effort. For
B close to 1, the effort may be too large compared to the decrease in STRESS. Let B =
1 - o for some small |c| < 0.001. Then, (5.21) changes into

G2BX) = s + 12(X) - 2p(X) + (02 - 20)0%(X) + 2ap(X)
= 0%(X) + ofa — 2M2(X) + 2ap(X), (5.22)

which shows that only a marginal decrease of STRESS is obtained. Therefore, we shall use
this only when | — 1| > 0.001.

The efficiency of moving frame MDS is partly determined by the stopping criterion
of semi-complete MDS. If the stopping criterion is fixed and too loose, only one update is
obtained for each selection of group 1. If the selection procedure is computationally
intensive much of the advantage may be lost. A similar problem occurs when the
convergence criterion (difference in subsequent STRESS values) of semi-complete MDS is
larger than the one of the moving frame scaling: then too only one semi-complete update
is taken. Therefore, we set the convergence criterion of semi-complete scaling to be 0.1
times the average reduction in STRESS by the last five iterations of moving frame MDS.

Without trying to be complete we discuss three rational decision rules for selecting
frame objects. The first decision rule is based on the accumulation of badly fitting points.
For a given configuration X the STRESS accounted for by object i is given by

3 Tjr w8 — di(X))2 . (5:23)

The first decision rule selects points that contribute least to STRESS in the frame set, since
we do not expect to gain much by updating points that have a good fit. The second and
third decision rule are based on the (sub-)gradient of the configuration. A sharp decrease
of STRESS is expected of points that have a subgradient deviant from zero. The
subgradient of STRESS, presented by

Vo2(X) = 2nVX -2 B(X)X, (5.24)

equals the gradient whenever there are no two points i and j that have d;{X) =0. The
second and third decision rule amount to choosing the n; points that have the lowest sum
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of the absolute and the squared row values of Vo2(X), respectively. Taking the sum of
squared coordinates for each point emphasizes larger values of the gradient. The gradient
based decision rules exclude points that are expected to change little by being updated.

Finally, the majorization results remain valid if we use the relaxed update of De
Leeuw and Heiser (1980). They showed that the update X+ « X + oY — X),with X the
Guttman transform and Y the previous configuration, yields a decreasing series of
STRESS values for -1 < a < 1. For a = -1, the relaxed update, the number of iterations
was found to be approximately halved.

In the next section we discuss the effect of the options of moving frame MDS on
accelerating the computations for finding the minimum of STRESS.

5.3.1  Numerical experiments with moving frame MDS

Here, we report numerical experiments with moving frame MDS to see if it can accelerate
the computations of complete MDS. We compared several options on two datasets, the
Andrew's cross taken from Spence (1982) with n = 40 and a distance matrix derived
from the four independent variables of the Iris data of Fisher (1936) with n = 150. We
compared several options: complete MDS, cyclic point descent and moving frame MDS
with three different selection rules. Moreover, all the runs were computed twice, one time
with and one time without the relaxed update. For each option, the STRESS value is plotted
against the CPU time. Although we did additional experiments, they are left out here,
because the results did not differ from those reported here.

e @& o @ e & o ¢
L] L
L] L]

°® L] L
L] L]
[ 4 L]
L] L]
L) L}
L] L]
® @ o e @& @

Figure 5.4  The points of the Andrew’s cross used by Spence (1982).

The Andrew's cross consists of 40 points arranged as in Figure 5.4. The distances
between the points were used as dissimilarities, so that the global minimum has zero
STRESS. In Figure 5.5 the results of the analysis is given, where for convenience complete
MDS is reported in both plots. It turns out that complete MDS is the fastest method for
reducing STRESS. A good alternative is the cyclic point descent algorithm and the
maximum STRESS decision rule with moving frame MDS. The gradient based decision
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rules perform badly, using much more CPU than complete MDS to reach the same

minimum.

The analysis was repeated using the relaxed update. In Figure 5.6b we see that
complete MDS using the relaxed update stops too early with a very large STRESS. This
effect can be ascribed to the incapability of the relaxed update to scale the configuration to
the appropriate size, in contrast to the unrelaxed complete MDS update. Adjusting the scale
size for complete MDS analysis with the relaxed update shows fast convergence indeed.
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Figure 5.5  Results of moving frame MDS for example the Andrew’s cross, 40 objects.
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Figure 5.6  Results of moving frame MDS for example the Andrew’s cross, 40 objects,

using the relaxed update.
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Therefore, we used the scale size adjustment whenever the relaxed update was used (for
computational details, see the previous section). From this experiment we may conclude
that moving frame MDS using the gradient based selection rules does not accelerate the
computations. The maximum STRESS decision rule and the cyclic point update behave
better, but not as good as complete MDS. The fastest method reaching the minimum is
using complete MDS with the relaxed update where the configuration is scaled to the
appropriate size.

The second dataset, distances based on the 150 objects of Fisher's Iris data, was
used to see how moving frame MDS performs for a dataset with a large number of objects
and a non-zero STRESS at the minimum. The analysis was done in two dimension, while
the objects vary in four dimensions. In Figure 5.7, the results are presented for the
unrelaxed update. We excluded the gradient based selection rules for moving frame MDS,
because of their bad performance in the Andrew's cross example. In Figure 5.7a we have
plotted the difference of STRESS and the lowest STRESS value found against CPU time. In
Figure 5.7b we plotted the difference in STRESS between two subsequent iterations
against CPU, to show the acceleration and deceleration of the reduction in STRESS. We see
that the maximum STRESS decision rule with moving frame MDS stops too early with a
very high STRESS and again that complete MDS performs better than cyclic point update.
It seems that cyclic point descent algorithm follows the complete MDS algorithm at a
somewhat slower pace. Redoing the analysis using the relaxed update, reported in Figure
5.8, shows that the CPU time is approximately halved for all options.

From these experiments we may conclude that the moving frame MDS does not
accelerate computations for minimizing STRESS. A possible cause could be that moving
frame MDS does not provide enough freedom to model the relations between all
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Figure 5.7  Results of moving frame MDS for example of 150 objects.
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Figure 5.8  Results of moving frame MDS for example of 150 objects with the relaxed
update.

objects at the same time. Other reasons for failure could be that the selection rules take too
much time or that we simply need better selection rules.

Complete MDS is the fastest strategy available in this study. Furthermore, the
relaxed update may halve the CPU time. However, when using the relaxed update it is of
great importance to scale the configuration matrix properly, otherwise the algorithm may
stop at high STRESS values.

54 Discussion and conclusions

In this chapter we discussed several computational aspects of incomplete MDS. First, we
treated three structured designs —partitioned block design, the block tridiagonal design,
and the circular design— and showed how the computation of the inverse needed for these
designs can be accelerated dramatically. Then, we discussed a classification of models
based on splitting the set of objects into two parts. Using this classification some known
models (like (external) unfolding and complete MDS) and new models (cyclic point
descent, semi-complete MDS, almost complete MDS) were presented. Finally, we
discussed an application of semi-complete MDS aimed at accelerating the MDS algorithm.
We called this moving frame MDS, since we iteratively select a frame of well fitting
points, keep them fixed, and fit the other points using semi-complete MDS. Numerical
experiments showed that moving frame MDS was always much slower than complete
MDs. The fastest computations were reached for complete MDS using the relaxed update.
It tums out that when using the relaxed update we always have to adjust the scaling size of
the coordinates. Otherwise, the complete MDS algorithm may stop too early.






CHAPTER 6

CLUSTER DIFFERENCES
SCALING

Several problems exist with MDS of large datasets. In the previous chapter we discussed
some computational aspects of accelerating computations for some structured designs that
can be used to reduce the number of object pairs to be considered. In this chapter, we
focus on some interpretational difficulties that can arise when having a large number of
objects. Interpretation can become difficult if we have to inspect too many points at the
same time. One solution to this problem is to perform a cluster analysis on the
coordinates of the objects after an MDS analysis. However, this strategy ignores the
information on how well the distances fit the dissimilarities between the objects.
Therefore, we elaborate on a method proposed by Heiser (1992) which is called cluster
differences scaling (CDS) that performs simultaneously scaling of the clusters and
clustering of the objects such that the distances fit the dissimilarities as close as possible.
We propose a decomposition of STRESS into within and between cluster components. We
also show that CDS can be seen as MDS with cluster restrictions on the configuration.
Furthermore, we propose fuzzy cluster differences scaling, in which an object can be
assigned to more than one cluster. We also discuss the use of repeated fuzzy CDS to
diminish the problem of local minima that may occur with CDS.

6.1 Clustering with scaling of the clusters

The basic feature of CDS is that clusters of objects are scaled, not the objects themselves.
This may be done to reduce the number of different object points in the configuration, or
to provide a classification of similar objects. Objects are assigned to one of K clusters,
which are represented in a p-dimensional space by the Kxp coordinate matrix X in such a
way that STRESS is minimized. Let g;, = 1 if object i belongs to cluster k and g;, =0
otherwise, so that the indicator matrix G contains the cluster memberships. Note that each
object i belongs to only one of the clusters. Then STRESS can be written as

n n K K
RGCX) =YY S Y g (85— du(X))’ (6.1)

i=1 j=lk=1i=1
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where §; is the dissimilarity between object i and j, djy(X) is the Euclidean distance
between cluster point k and cluster point /. The sum of squares given by (6.1) can be
decomposed in an ANOVA-like way into four parts by making use of the weighted Sokal-
Michener distance 8, = (X0, X" 18wy T X _1g,kgj,w,,6 The decomposition is
given by

n

02(X) N ZZZZg,kg J,w,j( i Sk,) + between cluster object STRESS
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The first term gives the STRESS due to the differences between the object dissimilarities
and the average cluster dissimilarities. The second term shows how much STRESS can be
ascribed to the difference between an object pair and the average dissimilarity of the
cluster it belongs to. The within cluster-object STRESS measures the deviance of the
dissimilarities of the objects inside a cluster with the average cluster dissimilarity. The
third term gives the between cluster STRESS. It merely shows how well the distances
between the cluster points look like the intercluster dissimilarity. Since the points in one
cluster necessarily have zero distance but do not have (necessarily) zero dissimilarities, a
final term has to be included giving the STRESS within a cluster, due to the dissimilarities
being nonzero within a cluster. The within cluster STRESS measures the deviance from
zero of the Sokal-Michener distance of a cluster.

Heiser (1992) discusses the case in which the second and fourth term of (6.2), the
within cluster terms, are excluded by definition. The main reason for doing so, is to avoid
ball shaped clusters that are located in the centroid of their cluster members. In this
manner Heiser allows for other cluster shapes, like elongated forms or sausage shapes.
As a side effect the STRESS values are generally lower, because no within cluster STRESS
is included. Here, we include the within cluster terms so that the direct relation between
ordinary MDS and CDS is preserved.

The decomposition (6.2) implies that STRESS can be minimized in two steps: an
adjusted multidimensional scaling step and a clustering step. This outer algorithm is
solved in an alternating fashion. First, a (sub)optimal configuration X is found for fixed
clusters G. Then, we fix X and search for (sub)optimal clusters G. We return to the first
step until convergence is reached.
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The only term of (6.2) dependent on X is the between cluster STRESS. Clearly, for
fixed G this term is equivalent to a MDS problem with special weights, which may be
minimized by the ordinary SMACOF algorithm. The between cluster STRESS can be
expressed as

o2pc(X) = 5,222, gingiwidy + rX'VX - 2rX'B(X)X, (6.3)

where the matrix B(X) has off diagonal elements by = —(Z,-E_,-g;ggﬁw,j)sﬂfd“(x)2 and
diagonal elements by = —Xby, and V has off diagonal elements vy = XL ikgWij
and diagonal elements vy = -, vy. Conforming to the SMACOF theory, the update X+,
given by the Guttman transform, is

X+ =V BX)X 6.4)

where V~ is the Moore-Penrose inverse of V. If each cluster contains at least one point, V
has rank K-1 because the rows and columns add to zero.

Some nice simplifications occur if all weights w;; are equal to one. First, the
unweighted Sokal-Michener distance can be expressed as 8, = (n,n)) 135, 2% 1 8ikg itSijs
where n, is the number of objects in cluster k. Furthermore, the weight matrix can be
expressed as

V =diag(nn'l) - nn', (6.5)

where n is the vector with elements ny, the number of objects per cluster. With some
algebra a significant simplification of the computation of the inverse is obtained. In fact, it
suffices to compute S-1, where S denotes the diagonal matrix diag(nn'1). We have to
show that the Moore-Penrose inverse of V equals V™ = JS-1J, with J the centering
operator I — K-111', and that the usual conditions for a Moore-Penrose inverse apply. We
first show that

I - K11198- 10 - K11V = [ - K111, (6.6)
Using S1 = (1'n)n and S-1n = (1'n)-11 we obtain

(I - K-11)S (I - K-111'YS - rn') = (1 - K- 111)S1(S — nn') =
(I - K111 - }.ln) =1-K11'- }ln + -i—'l'—‘ =1-K-11, 6.7)

which proves V7V =]J. Similarly, VV~ = J. This proves that V-V and VV~ are
symmetric. Since JV =V J=V and JV=V]J =V, wehave VYV V=Vand VVV =
V™ so that JS-1] satisfies the conditions of the Moore-Penrose inverse of V. Since §-1 is
multiplied by B(X)X which is column centered, the update formula becomes X+ =
JS-IB(X)X in case all weights w;; are unity. Applying this formula greatly accelerates the
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computation of the inverse, especially when the number of clusters X is large. The effect
can be significant, since V™~ has to be computed whenever a change in the cluster
membership occurred in the other step of the outer algorithm.

The second step of the algorithm is to form optimal clusters. Let us focus on the
cluster membership of object i only, keeping the cluster memberships of the other objects
fixed. By writing STRESS as

0'2(va) = Z;Zkg,-k):jE,gj,w.-j(ﬁ.-j - d,d(X))z = Z,'zkgik'Yik (6.8)

it can be seen that the largest reduction in STRESS is obtained if object { is assigned to
cluster & with ¥;; = min;y;. This may be done for one object at a time, all the objects after
each other or more iterations over all the objects until no change occurs. We return to
these strategies shortly. If no extra constraints are set, clusters without objects may
appear. Clearly, this is not desirable as may be seen from (6.2) which shows that STRESS
will occur whenever two or more objects points belong to one cluster. Therefore, we
require that every cluster contains at least one object and has w;;;; > 0. The current
allocation procedure can be seen as a special application of the K-means algorithm of
MacQueen (1967); a loss function is minimized by assigning an object to the cluster that
gives the largest decrease in the loss function.

Since the clustering step is only one of the two steps in our alternating least squares
algorithm, several strategies are possible to stop the clustering step and continue with the
scaling step. The first strategy is to stop the clustering step if object i changes from one
cluster to another and continue with the MDS step. In the next clustering step we continue
cycling through the objects starting with object i+1. The second strategy is to cycle
through all objects once and reallocate them to the cluster that yields the lowest STRESS.
The third strategy is a simple extension of the second: continue the cycling until no
reallocation occurs. All three strategies should meet the restriction that each cluster
contains at least one object. Therefore, we do not change an object if it is the last one in a
cluster. Whatever strategy is used, we always have to base the computations on the most
recent partitioning in clusters. Thus, if object i is changed from cluster & to /, then the
computations for object i+1 are based on object i being in cluster /. With this convention
we can guarantee that every reallocation reduces STRESS.

The amount of reduction in STRESS may vary between the two steps. For example,
if the clustering step yields no reallocation, STRESS does not change either. During the
first few steps it is expected that the clustering steps decrease STRESS drastically. It seems
therefore wise to have a rather weak convergence criterion for the scaling step if large
drops in STRESS occur in the cluster step. The convergence criterion may be set more
tightly if the clustering step results in only small reductions. To smooth this process we
set the convergence criterion of the scaling step in our examples to 10-3 times the
reduction in the previous MDS step and clustering step. This prevents us from wasting too
much time in the MDS step at the beginning, while accuracy is obtained near the end.
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6.1.1  Approaching CDS as MDS with cluster restrictions on the configuration

An alternative way of looking at CDS is to regard it as MDS with clustering restrictions on
the configuration. Then, minimizing CDS is viewed as minimization of the ordinary
STRESS function where the configuration is restricted to be of the form GX. To see this
consider the following. Expression (6.1) of 62(G,X) can be rewritten as

oG X) =X 3 gugiwid;— dy(X))?
= 2w EiZ i8Sy — ZaXiginjidi(X))?
= XX wif(8;; - TuXgigjdu(X))? (6.9)

using the fact that 3., %,g;,8;; = 1. Also, we have

SiZigugidu(X) = LZgiugilxe — xil = |(ZiZigugixi) — EiZigugixd)l
= |CrgixiZig) - CagixiZigidll = |Erginxn) — Sigxp|
= gX ~gX| = di(GX), (6.10)

because 3,8 = 1. Using (6.9) and (6.10) allows us to write
oX(G X) = LXwi(8; - L Zigugidu(X))? = TLwi(d; - d(GX))? (6.11)

so that 02(G,X) = 62(GX). Here, we see that CDS can be seen as ordinary MDS with
cluster restrictions on the configuration. This formulation allows us to express CDS as

o2(GX) = n§ +tr X'G'VGX -2 rX'G'B(GX)GX, 6.12)
where as usual V is an nxn matrix with off-diagonal elements v;; = -w;; and diagonal

elements v;; = —Y,v;;. Note that many zero distances occur because of the cluster
restrictions. As shown in 1.3 the STRESS function can be majorized by

02(GX) < 62(GX,FY) = ng +tr X'G'VGX - 2 rX'G'B(FY)FY, (6.13)
where F is an indicator matrix giving the cluster memberships of the previous iteration,
and Y is coordinate matrix from the previous iteration. Then, the unrestricted Guttman
transform is given by

X = VB(FY)FY. (6.14)
We only have to find a G* and X+ such that

IG+x+ - X|Iy < |FY - X|3. (6.15)



114 Chapter 6

Such an G*X* can be found by weighted K-means clustering on the configuration X.
The weighted K-means algorithm is a slight adjustment of the ordinary K-means
algorithm, which can be computed as follows. We start as initial values for G and X, with
F and Y. Then |GX - X |% is minimized altematinglz over X for fixed G, and over G
for fixed X. The conditional minimum of ||GX — X | over X for fixed G is given by
(G'VG)"G'VX. How the reallocation should be done is less simple to see. The
minimization problem can be written as

IGX - X3 =t (GX-X)VGX - X)
=t X'VX +r X'G'VGX -2tr X'G'VX
=tr X'VX +tr G'VGXX' -2 r VXX'G". (6.16)

The vec and Kronecker product notation (see e.g., Magnus and Neudecker, 1988) allows
us to write tr G'VGXX' = vec(G')'(VOXX')vec(G'). Some rewriting shows that

tr G'VGXX' = XL, 2%, S5 ZK viigingjiXe X1, (6.17)

where x; is the kth row of X. Furthermore, let A = VXX', then tr VXX'G' =tr AG' =
Z,L,Zf:,g,-ka,-k. Now we can write for (6.16)

IGX-X|} =eXVX+ Z"-':lZJ'LlZf:]Zﬁ]Vijg.'kgjlxk'xl — 23 TN giaik
=tr X'VX + 30, 5n  gu((CL IN vigixex) - 2air)
=tr X'VX + Z?:lzll:(:lgikvik- (6.18)

Minimizing (6.16) over g;; keeping X and gj fixed for j # i is obtained by setting gx=1
if Yix = miny Y;; and g = 0 otherwise. In case all weights are equal to one, the allocation
procedure for finding optimal cluster memberships amounts to ordinary K-means
clustering. Once a reallocation of object i to a different cluster occurred, we could update
X again. Alternatively, we might also continue updating the other cluster memberships,
and then return to updating the X for fixed cluster memberships. We could either be
satisfied with one iteration, or could iterate until convergence of the weighted K-means
algorithm occurs. Either way, inequality (6.15) holds.

The minimization algorithm outlined in this section differs from the one of the
previous section. Here, we try to find a new configuration that is restricted to be of the
form GX. In the previous section we operated directly on the STRESS function and found
the update for G and X by working the constraints out directly in the STRESS formula. It
can be argued that the method from the previous section remains closer to the CDS
function, since the clustering step operates directly on the CDS function.

The advantage of the current formulation is that it shows the relation between CDS
and MDS quite clearly. However, it does not give insight in the decomposition of CDS in
within and between cluster STRESS.
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6.1.2  Residual analysis

The analysis outlined in the previous section results in clusters and coordinates for these
clusters. The only thing we know about the objects is their cluster membership. In some
situations we would still like to have a graphical representation of all objects. With
residual analysis such a representation can be obtained. Several aspects can be emphasized
by using different forms of residual analysis, as is discussed below.

We could fit the objects in a cluster separately for each cluster. The coordinates of
the objects in cluster &, Xy, are constrained to have their centroid in cluster point £. In this
way the objects are expected to be located quite near their cluster centre. First, the
residuals of the within cluster object STRESS can be decomposed. The square of the
residuals are given by

5 = ZeLigagimvifd; - S, (6.19)

which are used as dissimilarities for an MDS analysis for each cluster & separately. Note
that X, may be rotated in any way, since no information is used to attach them to other
cluster points. The rotation is fixed, if we additionally require that the Sokal-Michener
distance between the points of cluster k and the other cluster points / matches their
distances. This analysis can be done by using semi-complete MDS (see section 5.2). We
do not expect a good fit, because the residuals (6.19) generally are not Euclidean, since
some 6,7 - gkk may be negative, others positive. Another possibility for residual analysis
is to use only the Sokal-Michener distances, which may be fitted with external unfolding
(see section 5.2). Or, we might compute one iteration of MDS on the dissimilarities
starting from the configuration GX and use the resulting coordinates as supplementary
points. Finally, we may use the K-means distances that were used to allocate point i to
cluster /. The options are listed in Table 6.1.

Table 6.1 Some options for fitting original points in CDS solution

Used distances Analysis

Within cluster residuals MDS

Within cluster residuals and Sokal-Michener  semi-complete scaling
Sokal-Michener external unfolding
Dissimilarities one Guttman transform

K-means distances i external unfolding
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613 Irisdata

To illustrate CDS, we used the Iris data of Fisher (1936). Our objective is to see if CDS
finds the appropriate clusters that agrees with their species classification. We used 25
clusters instead of three (the number of species) to mimic elongated clusters. We took the
four descriptive variables in deviation from their mean and unit normalized. The
Euclidean distance matrix of the 150 leaves was used as dissimilarity matrix. We
generated a startconfiguration as follows. A classical scaling was performed to find the
150 coordinates in 2 dimensions. The leaves were allocated to the initial clusters by using
order: leave 1 in cluster 1, leave 2 in cluster 2, ..., leave 25 in cluster 25, leave 26 in cluster
1, and so on. Each cluster point in the initial configuration was set to the centroid of
classical scaling solution of the points belonging to that cluster. The convergence criterion
of the outer steps of CDS was set to 10-6 and the convergence criterion of the weighted
MDS step was set to 10-3 times the previous difference in outer steps. The total STRESS at
the minimum is 9.176373 and its decomposition is reported in Table 6.2. The largest part
of the STRESS is attributed by the between cluster object STRESS. The between cluster
STRESS is relatively

Table 6.2 Decomposition of STRESS for CDS with 25 clusters on the distance matrix
derived from the four descriptive variables of the Iris data.

Source of STRESS STRESS % total STRESS
Between cluster object 6561352 715
Within cluster object 0.465762 5.1
Between cluster 0.788571 8.6
Within cluster 1.360688 14.8
Total o 9.176373 100.0

low, which means that there is adequate fit of the cluster coordinates in Figure 6.1.
Clearly, three bands that coincide with the species membership can be distinguished in the
plot. Indeed, 25 clusters is enough to find elongated clusters. At the boundary of the
bands we find cluster points that have leaves from neighbouring species. The within
cluster STRESS, caused by the zero distance for a cluster point with itself, is relatively
high. Looking at Figure 6.1 it seems that CDS is quite successful in keeping the leaves
from the same species in the same cluster. We further see that species a is quite different
from the others, and that b and ¢ have leaves that seem to be more overlapping.
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Figure 6.1 Plot of coordinates of 25 clusters from CDS on distance matrix derived
from the four descriptive variables of the Iris data. The clusters are
labelled by the species of the leaves.

6.14  Journal to journal citation data

A second interesting example is the analysis of citation data by scientometric maps, e.g.,
see Tijssen (1992). The basic idea is that articles in a scientific journal in a specific field
tend to cite articles in other journals in the same field. In this way a map can be obtained
to find groups of journals that are cognitively linked. Clearly, adding clusters has the
advantage of finding distinct groups. We use the gravity model

dk(x) = % (6.20)
with n;; the number of citations between journal i and j, m;, the sum of the citations to
journal i. The gravity model is known from the relation between large masses in physics,
like moon and earth, their distance and the gravity force. Thus, the gravity force n;;
between two journals is inversely related to their distance, given their masses m;, and m,;.
Note that the gravity model corrects for the total number of citations of a journal. Clearly,
if a journal is cited very often the probability of another journal citing the first one is
larger. This model has been used in a similar context by Zielman (1991). Model (6.20)
translates easily into the framework of STRESS as
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oUX) = ¥; w,;,-['\f % - d,-,(X)T. (6.21)

Setting §;; = Vm;+m+j/n,-j translates the gravity model back to STRESS. If n;; is zero, 8 is
not defined and w;; is set to zero, otherwise wy; is set to one. We may perform CDS to
obtain clusters of journals.

The citation data stem from 72 intemationally renowned joumals in the field of earth
sciences. The original table gives the number of citations in journal i to journal j which
may differ from the number of citation in journal j to journal i. Here, we are interested in
the symmetric part of the data only, so n;; represents the average number of citations of
journal i in j and vice versa. Furthermore, the number of self-citations were excluded,
since they do not contribute to the structure of citations among journals.

Figure 6.2 Two dimensional representation of the 8 clusters of citation data of
Journals in earth sciences.

Table 6.3 Decomposition of STRESS for CDS with 8 clusters on citation data of
Journals in earth sciences.

Source of STRESS STRESS % total STRESS
Between cluster object 0.099943 802
Within cluster object 0017214 13.8
Between cluster 0.007478 6.0
Within cluster 0.0 00

Total 0.124635 100.0
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Table 6.4 Clusters obtained by CDS on citation data of journals in earth sciences.
Journals titles are abbreviated.

Cluster 1 Cluster 2 Cluster 3 Cluster 4
Am Mineral J Biogeogr Am J Sci Aust J Eart
Chem Geol J Paleontol B Soc Geol Coast Eng
Contr Min p Lethaia CrAcSIi Compt Rend
Earth Ptan Micropaleon Earth Sci r Geo-mar Let
Econ Geol b Palaeogeo p Geol Rundsc Geol Foren
Geoch Cos a Palaeontol J Geology Ian Sss Geo
J Petrology Paleobiol J Struc Geo Init R Deep
Min Deposit Quat Sci R T Geol S Sa J Foramin r
Precamb Res Quatern Res Tectonophys JGeol S In
Rev Palae p Okeanologiy
PIA S-ear
Phi T Roy a
Radiocarbon
Cluster § Cluster 6 Cluster 7 Cluster 8
B Marin Sci Boreas Cont Shelf Aapg Bull
Global Plan Eclog Geol Deep-sea A Can J Earth
J Marine Bi Geol Mag J Geo Res-o Geol S Am b
Mar Micropa Geol Soc M J Marine Re Geology
Nature J Hum Evol Mar Chem J Geol Soc
Neth J Sea Marine Geol Marine Biol J Sed Petro
Oceanol Act Phys E Plan Sediment Ge
Org Geochem Sedimentol
Science Tectonics

The configuration of clusters of CDS on the joumnal to joumal citation data is given in
Figure 6.2, the STRESS decomposition in Table 6.3, and the classification of journals into
clusters in Table 6.4. Some clusters have a clear interpretation, like cluster 7, that contains
journals involved with oceanography, and cluster 2, that consists of journals in
palaeontology. Cluster 5 also contains journals from oceanography, marine biology, and
multi-disciplinary journals. Clusters 1, 3 , and 8 consist of journals from geology,
geosciences and geography, that may be considered to be the "harder” geology sciences.
The interpretation of other clusters is sometimes difficult, like clusters 4 and 6, which
seem to have journals that cite in an interdisciplinary fashion. The advantage of CDs is that
from the positioning of the clusters in the configuration, something can be said about the
(dis)similarity of the clusters, while in conventional non-hierarchical cluster analysis this
information is frequently lost. It seems, for example, that cluster 1 has some similarity
with clusters 3 and 8 (as confirmed above). Furthermore, from Figure 6.2 we see that the
clusters involved in oceanography and palaeontology (clusters 2, 5 ,and 7) are located on
the upper left side, and that interdisciplinary journals (clusters 4 and 6) are in the middle.
These are the most striking aspects of journals in earth sciences considered here, that
could be revealed by CDS.
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6.2 CDS with fuzzy clusters

The cluster restrictions used above defines crisp clusters; an object belongs to one cluster
only. Sometimes this restriction is too rigid. Moreover, CDS with crisp clusters is more
prone to local minima as a result of the strong cluster constraints. In a less constrained
model the loss of an object is due to all clusters, with a weight between zero and one and
the weights per object summing to one. In the cluster analysis literature the use of this
type of constraints is termed fuzzy clustering. In this section we develop a version of
cluster differences scaling with fuzzy cluster membership. It is shown that under certain
conditions, fuzzy CDS reduces to the crisp CDS discussed in the previous sections.

Similar to crisp CDS, we can describe the problem as one of minimizing the loss
function

n n K K
26X)= Y TS ehetw;(8; - duX), (622)

i=1 j=lk=1i=1

where X is a Kxp matrix of coordinates of K clusters, g7 is a value denoting the strength
of the cluster membership of object i to cluster k, and g is a fixed fuzzy clustering
parameter. As indicated above, the main characteristic of fuzzy clustering is that the
elements g;; of the nxK matrix G can have any value between zero and one, provided
they sum to one for each object i, i.e., 0 < gi < 1 and X gix = 1. Thus, the STRESS for
object pair {j is caused by a weighted sum of the membership of object i to cluster k times
the membership of object j to cluster .. When comparing crisp CDS with fuzzy CDS we
have lost the simple interpretation of an object belonging to one cluster only and obtained
a large number of extra parameters to be estimated. However, the fuzzy cluster
membership parameters allow for a more diffuse object cluster relationship.

A convergent algorithm for fuzzy CDS can be obtained by minimizing 6%(G,X)
alternatingly over X and G. We first consider the minimization of (6.22) over X for fixed
G. We start by rewriting (6.22) as

n n K
oXGX) = EZZZg.kgﬂwu( 4+ djy(X) - 28 du(x))
i=1 j=1k=1l=1
n n K K
= 222 D ghefwyd] + ZZdMX)ZZg,kg,,w,,

1=1k=

—

I=

—

i
—
-,

k=11=1 i=1 j=1

-2 2 2 dk’(x)z zglkgjlwuau

k=1i=1 i=1j=1
= 12(G) +N%G,X) - 2p(G,X). (6.23)
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Let A(G) be the matrix with off diagonal elements ay = -X.} jgﬁg‘?,w,j if k#! and
diagonal elements ayx = —Xay. Then we have N2(G,X) = tr X'A(G)X. Due to
majorization we know that

—(G.X) =-H(G.X,X) S -H(GX.Y) =— tr XB(G,Y)Y (6.24)

where B(G,Y) is a matrix with off diagonal elements by = X7 ;&1 1Wij Ojj 8, /dy(Y) if
di(Y) 20, by =0 if d;(Y) = 0, and diagonal elements by, = —bu. Thls allows us to
majorize 6%(G,X) by

13(G) + %G X) -2p(G.X,Y)
n2(G) + r X'A(G)X — 2tr X'B(G,Y)Y. (6.25)

62(G,XY)

Setting the gradient of 62(G,X,Y) equal to 0 gives the update
X+« A(G)B(G,Y)Y. (6.26)

By majorization, (6.26) produces a convergent series of nonincreasing STRESS values.

The second step of the algorithm is to minimize 62(G,X) over G, for fixed X. In
fact, we may minimize one row i of G at a time. Let 02(G X) denote the contribution of
object i to STRESS

K n K K
FGX)= Y g > Y ew;(8y - duX)’ = X ehva 6.27)
k=1

k=1 j=1l=1

where ¥, = 2 124 ;3;.*"’:; (Su d,d(X)) and gj; restricted to the constraints indicated
above. Note that it is known in the literature how this can be done, but we give an
independent proof here, i.e., we prove that choosing

( ) 1/(¢—-1)
2 l l/(q-l
1=1 Yi

gives the optimal cluster membership for fixed X and ¢ 2 1. A necessary condition for a
minimum of c,?(G,X) under the constraint ¥ g;; = 1 is that the first derivative of the
Lagrangian function

K K X
GJ'Z(G,X)—)"[Z&'I: —1]=[27ik83c]—x[zgik - IJ (6.29)
k=1 k=1

k=1

8ix = (6.28)

to g;; and A must be zero. Solving this system of equations gives
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_ D

8x = gy and Zg.k—l (6.30)
Y k=1

which for A/q-D = (Zey;/ @ D)1 results in gix as defined in (6.28). It is not difficult to
verify that g;; = 0 and 3¢, = 1 and consequently the constraints hold. A similar result
derived for fuzzy clustering is already known since Bezdek (1981). For large ¢ the update
for gz (6.28) gives approximately equal values almost irrespective of y;, except for
values of ¥;, that tend to zero. Therefore, it seems wise to choose g between 1 and 2.

As g approaches 1, the current procedure amounts to setting g;; = 1 if y;; = miny y;
and g, = 0 otherwise, which is exactly what is done for crisp clustering, discussed in the
previous sections.

A serious drawback of fuzzy CDS is that a lot of extra cluster membership
parameters are obtained if the number of clusters is large. However, choosing ¢ close to
one, e.g., 1.2, may reduce the number of interpretable values of g; per object.
Furthermore, if the number of clusters is two or three, a simultaneous graphical
representation of G and X can be obtained. For example, in case of three clusters, we can
plot the cluster memberships inside the triangle formed by the cluster points, since G
span a two dimensional triangle because G1 = 1.

Fuzzy CDS (6.22) can not be expressed as an ordinary MDS problem with the
restriction that the configuration is of the form GX with G1 =1and 0 € gy < 1.
However, in such an analysis we expect that the cluster configuration forms a
hypersphere (or a circle in two dimensions), since all objects are weighted centroids of the
cluster coordinates. These restrictions can be incorporated in the general restricted MDS
framework by using Dykstra's cyclic projection algorithm (Dykstra ,1983). We do not
pursue this approach here.

A particularly useful application of fuzzy CDS is presented in the next section.

6.3 Obtaining a good start configuration for CDS by using fuzzy CDS

Unreported numerical experiments by the author have revealed a severe local minimum
problem with crisp CDS. Often we obtain a different local minimum by starting from a
different initial clustering assignment of the objects. The reason for this can be understood
by regarding CDS as an ordinary MDS with cluster restrictions on the configuration (see
section 6.1.1). Thus, every configuration can be written as GX where G is the matrix that
defines the cluster membership and X the matrix of cluster coordinates. All objects in the
same cluster are restricted to have equal coordinates. These equality constraints give rise
to the extra number of local minima in CDS.

In the previous section, we have seen that fuzzy CDS reduces to crisp CDS as g tends
to 1. We can exploit this feature to help reduce the local minimum problem of crisp CDS
by using the following algorithm to obtain a good start configuration for CDS. We start
with a fuzzy CDS analysis with a high value of g, say ¢ = 2. We can expect that all values
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8ix are approximately equal (cf. section 6.2). The resulting G and X are used as start
configurations for a fuzzy CDS analysis with a slightly smaller ¢. The latter step is
repeated for decreasing values of g approaching one. As g gets close to one, we start the
crisp CDS algorithm and obtain our final solution. The main rationale behind the
suggested procedure is that the equality constraints are gradually introduced, not at once.
At the beginning there is a lot of freedom in the optimization process of choosing G,
which diminishes as g gets smaller, and reduces to the strict equality constraints for g = 1.

To test this hypothesis, we did an experiment to compare this strategy (a) with two
other strategies. The first competing strategy is to do CDS using a start configuration
obtained from an ordinary MDS without any cluster constraints, followed by K-means
clustering (strategy b). The second alternative strategy is to do CDS 10 times with a
random start configuration X and random initial cluster assignment G and keep the best
result (strategy c¢). We compared these three strategies for 5 and 10 clusters, 20 and 40
number of objects. For each combination, we generated 25 random dissimilarity matrices
and noted the STRESS value for each strategy. For all 100 dissimilarity matrices generated,
strategy a yielded the lowest STRESS value 92 times, strategy b S times, and ¢ 3 times. A
more detailed description of these results is given in Table 6.5. In the table we clearly see
that strategy a is superior to the other strategies in many respects. It yields the best
STRESS values in 92% of the cases, in all 50 cases with 10 clusters, and it has STRESS
values close to the smallest ones in case it misses. The average difference with the lowest
STRESS value shows the relative performance of the methods. Strategies b and ¢ do not
seem to differ much from each other.

Table 6.5 Results of an experiment in which three strategies for generating a start
configuration for CDS are compared. In each cell we report the number of
times a strategy yielded the best STRESS values for CDS (top value), the
mean STRESS value, and the average difference with the lowest STRESS
value (in parenthesis).

Strategy a Strategy b Strategy ¢
(fuzzy CDS) (MDs/K-means) (10 random starts)
S clusters n=20 21 2 2
17.80 (0.03) 18.99 (1.22) 18.73 (0.96)
n=40 21 3 1
91.73 (0.10) 94.67 (3.07) 94.95 (3.33)
10clusters n=20 25 0 0
13.46 (0) 15.06 (1.59) 14.37 (0.91)
n=40 25 0 0
74.49 (0) 78.15 (3.66) 78.18 (3.69)

Total 92 5 3
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We may conclude that strategy a (using fuzzy CDS to generate a start configuration
for X and G) is far superior over the other two strategies. It seems to be a good strategy
to avoid local minima of CDS, since it out performs the multistart strategy c¢. However, we
must note that strategy a is computationally intensive, especially for large n and a large
number of clusters. This was the main reason for not including a level with a higher
number of objects and more clusters in our experiment. For moderate size n, the strategy
described here is very useful.

6.4 Concluding remarks

We have elaborated on a clustering method for MDS originally proposed by Heiser
(1992). The aim was to facilitate interpretation by imposing cluster restrictions on the
objects and still get a graphical representation of the clusters to model the dissimilarities.
We indicated how the STRESS in CDS can be decomposed into four additive components
of within and between cluster STRESS. We showed that CDS can be seen as ordinary MDS
with cluster restrictions on the configuration. Furthermore, we generalized CDS to deal
with fuzzy clusters. It was shown by an experiment that a start configuration for CDS
based on repeated fuzzy clustering with decreasing fuzzy cluster parameter g, gave the
lowest STRESS value. This is a particularly useful application of fuzzy CDS to obtain better
local minima in crisp CDS.



CHAPTER 7

STRESS WITH MINKOWSKI
DISTANCES

In the previous chapters, we limited the majorization method for multidimensional scaling
to Euclidean distances only. Here, we extend the majorization algorithm to deal with
Minkowski distances with 1 < ¢ <2 and suggest an algorithm, which is partially based on
majorization, for ¢ outside this range. We give some convergence proofs and extend the
zero distance theorem of De Leeuw (1984) to Minkowski distances with ¢ > 1. We
illustrate the algorithm by an example. The results presented here are for a large part
published earlier in Groenen, Mathar, and Heiser (1992).

Most frequently, Euclidean distance is used in MDS, but this need not be so. An
important family of distance measures is formed by the Minkowski distances of which
the Euclidean distance is a special case. In the latter case, we simply can use the SMACOF
algorithm from section 1.3. An attractive feature of SMACOF is that it produces a
monotone nonincreasing sequence of values of the loss function by using the concept of
iterative majorization. De Leeuw (1977) treats multidimensional scaling in the framework
of convex analysis. He, for the first time, gave a convergence proof for Euclidean
distances, and discussed extensions for general ¢, without giving an explicit algorithm.
Using a similar approach, Mathar and Groenen (1991) give a convergence proof of a
nested algorithm for MDS, assuming that the inner optimization problem has a unique
solution. They also give interpretations in terms of directional derivatives and subgradient-
projection methods. For p = 2 this algorithm was made explicit. Considering STRESS as a
DC-function (difference of convex functions) Mathar and Meyer (1992) obtain
subgradients for arbitrary g. This approach leads to an eigenvector problem that is solved
by inverse iteration (see e.g., Peters and Wilkinson, 1971). Interestingly enough, in the
Euclidean case this reduces to SMACOF again.

Here we extend the majorization approach to least squares scaling with Minkowski
distances for 1 < g < 2. For g outside this range, algorithms that are partially based on
majorization are developed. Kruskal's (1964a,b) method also covers Minkowski distances
but works with a complicated step-size procedure which makes convergence uncertain.
We think that the majorization approach has at least two advantages. By definition it
generates a nonincreasing sequence of STRESS values, which immediately yields
convergence. Moreover, without applying gradients or subgradients, it gives insight into
the behaviour of the STRESS surface by a local model at supporting points.

As elsewhere in this monograph, we minimize the STRESS function,
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dl 2
0% (X)= Y w;(8; —d; (X)), (7.1)
i<jf

over all configurations X (an nxp matrix with coordinates of n objects in p dimensions).
However, throughout this chapter the distance

3

s=1

Xis — X

1/q
dﬂxﬁ{ ﬁqJ , 1£g<e, (7.2)

denotes the Minkowski distance. As usual, we assume that the quantities w;; are fixed
nonnegative weights, 8,-,- are nonnegative dissimilarities and that the weight matrix is
irreducible (see section 1.3). Some well known metrics and corresponding norms are
obtained by proper choices of g, like the city-block metric (or Manhattan metric) for
q = 1, the Euclidean for g = 2 and the max norm for g = . For a recent review article on
Minkowski distances in multidimensional scaling we refer to Arabie (1991).

Let us rewrite (7.1) in the familiar form

o2(X) =Y w;d% + X w; d5(X) -2 w;d; d;:(X)
i<j i<j i<j (7.3)

=1} + 1 (X)-2p(X).

We shall see that for 1 < g <2 a convergent algorithm for minimizing (7.3) can be
obtained by using majorization. For ¢ < 1 or g > 2 a convergent majorization algorithm is
obtained by using an inner minimization step of a convex function. However, in the case
of unidimensional scaling, p = 1, the Minkowski distance is independent of g and gradient
based algorithms run into a local minimum within a few steps. Here, more powerful
combinatorial optimization methods are available (see section 2.2).

In the next section we apply the principle of majorization to —p(X) and n2(X). From
this result a convergent majorization algorithm for 1 < ¢ < 2 is derived and some
convergence propetties are given. Then, we discuss two algorithms for g values outside
this range. Next, we show differentiability of STRESS at a local minimum for g > 1.
Finally, as an illustration of our procedure, we present a small example and compare our
algorithm to the one of Kruskal (1964a,b).

7.1 Majorizing STRESS

Here we propose majorizing functions for the separate parts of 62(X) in (7.3). We show
that for certain ranges of g, -p(X) can be majorized by linear majorization and n2(X) by
quadratic majorization. For a more detailed discussion of minimizing a function by
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iterative majorization, we refer to section 1.1. Note that a majorization algorithm stops at
any point where the necessary condition for a stationary point is satisfied. Other
information has to be used to check if the point is a global minimum, a local minimum or
even a saddle point. If we want to find the global minimum, we could use any of the
global optimization methods discussed in chapters 2 and 3.

7.1.1  Majorization of p(X)

The cross product term —p(X) in (7.3) is majorized by applying Holder's inequality to
—d,{X) for ¢ 2 1. If the denominator is positive, then for any X and Y,

g-1

1/q ? . —x.ly. =y,
_dU(X) = _( f=1 Xis — Xjs q) <- zs:lpx‘s xj.i‘l y‘; (q)-’-f)."q
(zs=] is _yjsl ) )
(7.4)
-2
<l Zf:](x‘.‘r B x,id‘) (yis 2 yjsHyis - )’j;r
B (q-Nlq ’
(ZL Yis — yjslq)

with equality if x;; = y;; for all i and s. The second part of the inequality (7.4) holds,
because _lxis - xj.r”yi.\' _yj_‘_lq—l S - (xs— xjs)(yi: - yjs)lyis - yjslq-z' If diJ(Y) =0 we
simply define the right hand side as 0, which preserves the validity of inequality (7.4).
Furthermore, we use the conventions 0° = 1 and 0.* = 0. Multiplying both sides of (7.4)
by w;d;; and summing over all i</ we obtain the following inequality

_p(x) < _2 spzle'Bs(Y) Ys= _ﬁ(xvY)’ (7-5)

where x; and y, denote the columns of X and Y, respectively. B(Y) has off-diagonal
elements

(¢-2)

wt'jax}' I-Vis = Vs

pl) = —
if dg_l(Y)

, i#], (7.6)

if d;(Y) >0 and bif) =0 otherwise, and diagonal elements bff) = —Xjai bf-js). Obviously
p(X) = p(X,X) holds for all X.
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7.1.2  Majorization of \A(X)

Now, consider n2(X) and more specifically its elements d,%(X). This expression is the
square of the Minkowski distance, which can be rewritten as

q 2/q _
- s=1

for r = /2. Using Holder's inequality for r < 1, thus ¢ < 2, gives

Xis — X

Js Xis = Xjs

¢x=(27, ") a7

|2(r—-l)

s -xjs

2r)1 Ir . Z:=1(xis - )cjs)2 ly;s ~Yjs (7.8)

s U
(ZLbsnl’)

is = Yjs

aix=(T7,

for all positive |y;, — ;| with equality if x;, = y;, for all i and s. Since x'Ay =
Yicj@ij(Xis = Xjs) (is = ¥je) holds for any symmetric matrix A having off-diagonal
elements —a;; and diagonal elements ij-ag-, after multiplication of both sides of (7.8) by
w;; we get the following expression

M2X) < 201 x/ALY) x, = A2X,Y), (7.9)

where A (Y) has off-diagonal elements

w-,y- —y. (q_z}
a‘(j-") =_.’J_["_1£|_, i#j, (7.10)

af(Y)

and diagonal elements @ = -3 aE;). Using the same conventions as above we obtain
12(X) = 1%(X,X) for any configuration X.

If y;; — yjs = O for some iJ,s, inequality (7.8) may not be true. In that case we
simply replace (y;; — yjs)2 by some small positive constant g, in much the same way as
Heiser (1991) treats this when dealing with negative dissimilarities. Note that we needed
the same adaptation in the tunneling algorithm of chapter 3. The majorizing function
remains larger than 12(X), but does not touch n2(X) for X =Y, although we may get
arbitrarily close by letting € approach zero.

The majorization inequality (7.9) derived here holds for any ¢ < 2 and the
majorizing function 12(X,Y) is a quadratic function in X. For ¢ > 2 all inequalities in this
section have reversed sign.
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7.2 The majorization algorithm for 1< g<2

The two majorization inequalities can be used simultaneously for 1< g < 2. This strategy
results in an algorithm that produces a monotone decreasing series of function values and
hence is convergent in this sense. Note that at best a local minimum is reached.

The majorization algorithm is derived from the stationary equation of the majorizing
function, which is quadratic in X. Thus, we have

oxX) <ni+AAXY)-2p(X,Y)
=n3+ 20 X A(Y)X -22F xB(Y)y,  (7.11)

Setting the gradient of the majorizing function (7.11) equal to zero implies for all s
Xs = A(Y) B(Y)y;, (7.12)

where A (Y)™ is any generalized inverse of A (Y). The update may be computed
simultaneously or dimensionwise. It can be shown that for g = 2, the proposed algorithm
with update (7.12) simply reduces to the SMACOF algorithm.

Fortunately, almost all convergence theorems known from SMACOF still hold. Here
we follow the proofs of De Leeuw (1988). The notation is si;nzpliﬁed whenever it can be
done without introducing ambiguity; at iteration m we write o}, = 62(X™), p,,, = p(X™),
T]f,, =n2(Xm), B =By(X™), A" = A(X™). For convenience, we assume without loss of
generality, ng = 1. Observe that by applying the above e-procedure, all AT may be
assumed to have rank n — 1 (cf. Mathar and Meyer, 1992).

Since STRESS is the sum of squared differences, we may use the Cauchy-Schwarz
inequality to obtain p,, <1,,. Because of B]' = ATA" "By, by Cauchy-Schwarz we get
TXTBIXT < (ST ATXMIR (T X ATX™ 1R, o

P(X™) < M(Xm)F (Xm+1,Xm) . (7.13)
Furthermore, we have
NAXm+1) < H2AX7LXM) = T, x"BIA] B x('= f(XLXM) < p(XmHl), (7.14)
which holds because of the majorization inequalities. Combining (7.13) and (7.14) gives

Xm
n(xm) S%(xﬁ < (X Xm) (1.15)

These inequalities let us form the following chain:

2 < P S M AX™LX7) € AAX71,Xm) = XM+ Xm) S p, 1 <,. S 1. (7.16)
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Further, define the measure of difference in squared distances as

€2 = N2Xm - X+ Xm) = 3, (77— AT BIX])AT (7" - AT B xT)
=N2X™m) + N2(Xm+1 Xm) - 2p(Xm). (7.17)

These inequalities lead to the following observations:

L Py T Pe

2. mitnl=pa
3. 0,2,,¢01=1—p,°,
4. € -0.

The last assertion is groved by filling in the limiting values of 11.2,, N2(Xm+1 Xm) and p,,,.
Since the metric of &, depends on m, the convergence of e,f, is hard to interpret with the
exception of g = 2 when A is a matrix that is fixed and does not depend on X",
Although these observations are comforting, we do not have proofs about the
convergence behaviour of X, except for the case ¢ = 2, which are given by De Leeuw
(1988).

For g = 2, the current algorithm has a linear convergence rate at isolated local
minima (see De Leeuw, 1988). Due to the convergence theorem 1.1 given in chapter 1,
we also expect that the present majorization algorithm for 1 < ¢ < 2 has a linear
convergence rate. This can be seen as follows. To establish the convergence rate of the
quadratic majorization algorithm, we have to find the largest eigenvalue of the derivative
of the mapping (7.12) at a local minimum X* conforming to theorem 1.1. Using similar
arguments as in theorem 1.1 it can be shown that the derivative of (7.12), if it exists,
equals A(X*)"V2p(X*) and has real eigenvalues. Moreover, the eigenvalues are
nonnegative, because the eigensystem can be written equivalently as V2p(X*)z =
AA(X")z, where VZp(X*) is positive semi-definite because p(X*) is a convex function,
and z is an eigenvector. Consider the Hessian V202(X*) of 02(X) at a local minimum X*,
Then V262(X*) = V2n2(X*) - 2V2p(X*) must be positive semi-definite. Due to
quadratic majorization of n2(X), we know that vec(X)'V2n2(X)vec(X) < Y xg' A (Y)x; =
vec(X)'A(Y)vec(X), where A(Y) is a blockdiagonal matrix with diagonal blocks A(Y).
This implies that V2n2(X*) has eigenvalues that are smaller than or equal to those of
2A(X"). Consequently, A(X*) - V2p(X*) is also positive semi-definite, or, equivalently I
— A(X*)yV2p(X*) is positive semi-definite. Therefore, the largest eigenvalue A of A(X*)~
V2p(X*) must have 0 <A < 1. Theorem 1.1 tells that if X converges to X*, then we have
linear convergence. If A is smaller than 1, the convergence rate is equal to A.

Near a local minimum many functions (including STRESS) tend to behave like a
quadratic function. Since we only use first order information, i.e., gradient information if
STRESS is differentiable, our algorithm can be viewed as a steepest descent algorithm.
Such algorithms are known to have orthogonal subsequent search directions near the local
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minimum that causes slow convergence, especially for almost quadratic functions. To
avoid this undesirable behaviour, De Leeuw and Heiser (1980) proposed the use of a
relaxed update X+ = (1 — o)X + X with 0 < @ <2, and X is the update as defined in
(7.12). They reported that a fixed value of o = 2 approximately halved the number of
iterations. Here, we prove that the relaxed update also retains convergence for the general
algorithm proposed above.

Let us start by noting that STRESS may be written alternatively as

oX(X)=n3+ A2AX - X X) - 42X X). (7.18)
Further, using 62(X*) < 62(X+,X) and some reformulation we have

o2(X*) <m3+ A2 - WX +aX X) - 2p((1 - )X + aX X)
=N+ -0)272X - X, X)- 72X X)
=n2+ 72X - X,X) - AAX.X) + o (0 - 2)72(X - X, X)
= o2(X) + oo - 2)H2(X - X, X). (7.19)

So for 0 < a. < 2, the relaxed update indeed reduces STRESS.

73 Minkowski distances with g <1 or g > 2

De Leeuw (1977) discusses how STRESS for general Minkowski distances could be
handled, but he indicates that generally there is a nontrivial inner optimization problem.
Mathar and Groenen (1991) gave an algorithm for the maximization of a convex function
over a convex set to which the problem of minimizing STRESS can be restated. Here, we
elaborate on the majorization approach. Clearly, for g outside the range [1,2] the
majorizing function (7.11) is not valid anymore. Nevertheless, we could still use it as a
local quadratic approximation of STRESS and use the update defined by (7.12). Although
the convergence results are no longer valid, we might end up with a solution satisfying the
stationary equations. However, since we wish to retain convergence, we use the
majorization inequalities, which suggest different approaches for ¢ < 1 and ¢ > 2.

73.1  Minkowski distances with q > 2

For any g =2 2 we can majorize STRESS by

o%(X) M2 +1n2AX) - 2p(X.Y). (7.20)
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The squared Minkowski distance is a convex function, hence so is N2(X). Consequently,
the majorizing function (7.20), which is the sum of a convex function and a linear
function, is convex itself. The basic majorization algorithm can be applied, i.e., find
iteratively the minimum over X of the majorizing function. Here, this amounts to finding
the minimum of a convex function, which may be done by standard (convex)
optimization techniques. The updates are given by

Xm+1 = argmin (N2(X) - 2 p(X,X™)), (7.21)
X

and because of majorization inequality (7.20) a nonincreasing sequence of function values
o2(Xm) is obtained.

To derive convergence results, we need an expression for the stationary equation for
a minimum point of (7.21). Note that if (7.20) is differentiable at X™+1, the gradients of
N%(X) and p(X,X™) at X™+1 are given by

2A (X )x ™! and B(Xmx™, (7.22)

respectively. Thus, the stationary equation for a minimum point of (7.21) is
A(Xm+1)x ™1 = B(X™)x ™ for all s, or equivalently

x™ = A (Xm+1)"B(Xm)x ™, (7.23)

The convergence proof is based on (7.23) and follows the arguments in the
previous section closely. Here too we have p, <1,. Since by Cauchy-Schwarz
TXTBTX™ < (Tx™MATHMIR (T x ™A MmN or

p(Xm) < HXm Xm+Iyn(Xm+1) €0, Mo 1- (1.24)

The last inequality follows from (7.9) with reversed inequality sign for ¢ > 2. Finally, we
need

n2(xm+1) - ﬁ(X"’”,X"‘) < p(X’"”), (7_25)

which follows from majorization (7.5). (7.24) and (7.25) yield M, < p,,/M,, < Nny1 and
Nm < 1. Altogether we have the chain

?n = m < MNm+1Mm < n ?n+l < Pm+1 < Nm+1 <1, (7-26)

that proves the convergence properties of p,, nf,, and 0 2. We can also obtain a
converging sequence of ef,, by defining its metric to be AT*" for each dimension s. A
relaxed version of algorithm (7.21) can be obtained by searching for a configuration
which has lower value of the majorizing function in (7.20), but not necessarily the
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minimum value as in (7.21). For this relaxed procedure STRESS never increases, but we
were not able to confirm the convergence result of p,,, and n,z,,

Note that for g > 2 zero distances are not replaced by € in A (X). This is valld since
for g > 2, Holder's inequality (7.8) has opposite sign, and simply states that d ,j(X) 20,
which is clearly true.

73.2  Minkowski distances withq < 1

There is no metric interpretation for d;{X) when ¢ < 1, since the triangle inequality no

longer holds, but the method can be applied along the same lines. It could be noted that

the gth power of d;{X) with g < 1 is metric (Carroll and Wish, 1974), but these so-called

"extended" Mmkowslu metrics are not considered here. For g < 1 the role of n2(X) and
p(X) is reversed. We can majorize STRESS by

c2(X) <ni+ 42AX,Y) - 2p(X) . (1.27)

The Minkowski distance for g < 1 is a concave function in X, which makes — p(X)
convex. Being the sum of two convex functions, the majorizing function (7.27) is also
convex. The partial majorization algorithm for ¢ < 1 consists of two steps: (1.) compute
the majorizing function (7.27), (2.) compute the minimum of (7.27) for fixed Y and
return to 1 unless convergence occurred. The solution of Step 2 is a global minimum
since the right hand side of (7.27) is a convex function, although this need not be a unique
solution. It can be computed by using a standard (convex) optimization technique.
Furthermore, it can be proved that (7.27) is differentiable at a global minimum.
It seems much harder to derive convergence results on the sequence of n2 m and p,.

The sequence of o2 - converges trivially because of majorization.

7.4 Differentiability at a local minimum

For Euclidean distances, De Leeuw (1984) proved that STRESS is always differentiable at
a local minimum for usable data. He calls data usable if w;;; > O holds for all pairs i,/.
Here we extend this result to Minkowski distances with g > 1.

The proof follows the one of De Leeuw (1984) closely. Although STRESS is not
differentiable at points X where some d;{X) are zero, it has directional derivatives in all
directions at any point, The directional derivative of STRESS at X in direction Y is defined

by

2 12
VoX:Y) = lim oo E:) cat (7.28)
E
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The directional derivative in direction y of a function f(x) with gradient g(x) equals g(x)'y
if g(x) exists at x. The directional derivatives of the (squared) Minkowski distances are
given by

p q-1) .
Z,z,(y;, - y,-s) is x;sl‘ sign(x;; — ;) i£d..(X)#0
Vdu(x;Y)=< dz—i(x) ’ i J
d;(Y), ifd;j(X)=0,
) (7.29)
:zl(yis _yjs) Xis _xj.s]( ﬁl)Sign(xi.\' _xjs) g
Vdg(X;Y)=42 dg,-z(x) ’ lfdij(x);to’
o, if d;;(X) =0,

For fixed X, let P = {(iy) | i</, d;(X) >0} and Q = {(iy) | i<j, d;i(X) = 0}. Then the
directional derivative of STRESS can be written as

VOAXY) = DigwVAA(XY) - 22 w8,V (X;Y)
_ ZZ(iJ')e , Wy 210y - yjs)'xis_'z' x|V sign(x;; — x;,)
572 (X)
—22(:",)5 , Wiy 281 (is = ¥is) |xi~:l— xjs|(@D sign(x;; - x;,)
457 x%)
—22(.;,')& o widdi(Y). (7.30)

If X is a local minimum, the directional derivative in all directions is nonnegative,
which implies that for any Y we must have

VOAX:Y) + VOAX-Y) = - 4. e 0 w;8,9,(Y) 2 0. (7.31)

Now choose Y such that d;(Y) > O for all i,j. Whenever w;;8;;> 0 it follows that
di{X) > 0. If w;5;;> 0 for all i,j then Q = @. Hence, for usable data the STRESS function
with Minkowski distances g 2 1 has d;{X) > 0 for all ij. A zero distance can occur at a
local minimum if and only if w;d;; = 0. Moreover, if ¢ > 1, or p = 1, this yields
differentiability at each local minimum X.

1.5 An example of MDS with Minkowski distances

To give an illustration of our algorithm we present a small example. Green, Carmone, and
Smith (1989) reported preferences of 38 students for 10 varieties of cola. Every pair of
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colas was judged on their similarity on a nine point rating scale. The dissimilarities were

accumulated over the subjects and the result is reported in Table 7.1.

Table 7.1 The dissimilarities between 10 colas reported by Green et al. (1989)
accumulated over 38 judges.

Pepsi Coke Classic Diet Diet Diet Dr. Slice 7-Up
Coke Pepsi Slice 7-Up Pepper

Coke 127

Classic Coke 169 143

Diet Pepsi 204 235 243

Diet Slice 309 318 326 285

Diet 7-Up 320 322 327 288 155

Dr. Pepper 286 256 258 259 312 306

Slice 317 318 318 312 131 164 300

7-Up 321 318 318 317 170 136 295 132

Tab 238 231 242 194 285 281 256 291 297

Without loss of generality these values are normalized to have 'q; = 1. The cola data were
analyzed in two dimensions with four different values of g, i.e., 1, 1.33, 1.66 and 2. For
each value of ¢ we used 25 different starting configurations. The iterations stopped
whenever STRESS changed less than 10-8 in two subsequent iterations. Furthermore, we
repeated the experiment using the relaxed update (that is, with o = 2). The results of both
experiments are given in Table 7.2. The third column in the table presents the best STRESS
values given g. The best fit was obtained for ¢ = 1.33. Inspection of the configuration
corresponding to the best STRESS value suggested a diet non-diet dimension and a cola
non-cola dimension. However, there was an inconsistency of the position of Diet 7-up on
the diet non-diet dimension. Therefore, we positioned Diet 7-up in between Diet Slice and
Diet Pepsi on the first dimension and restarted the algorithm. After 272 iterations a
configuration was reached with lower STRESS value 0.03175500. This configuration is
given in Figure 7.1. We deliberately do not display a two-dimensional representation,
since it may lead to interpretations based on Euclidean distances. The first dimension
appears to be a diet non-diet dimension. There is a large difference between Dr. Pepper
and Tab, which is absent in the second dimension. The other beverages are separated in
the second dimension into the group Pepsi, Coke, Classic Coke and Diet Pepsi and the
other group of (Diet) Slice and (Diet) 7-Up. This dimension could be interpreted as a cola
non-cola dimension.
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Table 7.2 The results of MDS of the cola data of Green et al. (1989) for different

values of q.

Average Average no Lowest STRESS No of iterations

STRESS of iterations o2(X*) of 62(X")
normal update
g=1 0.11713930 233.36 0.04785617 696
g=1.33 0.05160195 251.96 0.03199579 284
q=1.66 0.04086771 360.44 0.03491206 758
qg=2 0.04145104 145.92 0.03678052 141
relaxed update
g=1 0.11787413 100.40 0.04193646 232
g=1.33 0.05483608 149.60 0.03425142 178
q=1.66 0.04111878 24332 0.03467676 350
q=2 0.04070994 92.08 0.03685458 95
KYST
g=1 0.09727377 26.12 0.03697749 33
q=1.33 0.05411852 29.60 0.03222712 26
q=1.66 0.04333000 45.16 0.03469871 25
g=2 0.04113443 38.68 0.03685562 39

— Dr. Pepper e E‘Eﬁzi
— Classic Coke
= C_lﬁssic Coke |-Diet Pepsi
=Sk |-Dr pepper
= Bexgts blice
—Diet 7-Up
—DietPepsi | piet Slice
—Tab = bies-Up
—Slice
Dim 1 Dim 2

Figure 7.1  The configuration of the best solution of the cola data, with q = 1.33 and
having STRESS 0.03175500 .
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The second block in Table 7.2 suggests that the relaxed update needs less iterations than
the normal update, as was expected. The average STRESS of 25 runs was generally larger
for the relaxed update than the normal update, except for ¢ = 2.

We also applied the KYST-2 program of Kruskal, Young, and Seery (1977) to this
example. We specified Kruskal's STRESS formula 1 using linear regression without an
intercept. This specification implies that up to a multiplicative constant f local minima
coincide for both criteria. For the values reported in the third block of Table 7.2, we
choose the optimum f, so that the STRESS values between the two methods are
comparable. We see that the average STRESS values are similar for both algorithms, while
the number of iterations is significantly smaller for KYST. Of course, this depends on the
stopping criteria, which are weaker and more complicated to control in KYST. The lowest
STRESS values of the majorization algorithm with and without relaxed update are
generally lower, except in the case g = 1. Of course, the reason for our algorithm to find
better STRESS values might be due to the difference of the stopping criteria. In fact, it is
our experience that under standard choice of stopping criteria KYST frequently stops, even
though the individual values of the gradient are significantly different from zero. Although
nonzero gradients values also happens for the majorization algorithm with ¢ = 1, the
average squared sum of gradient values was roughly a factor 1000 smaller for the other g
values. This phenomenon also accounts for the fact that the number of iteration is smaller
for KYST. In summary, we conclude from this example that both algorithms perform
comparably, with a slight advantage for the majorization algorithm in the intermediate g-
range.

The differences between the average and minimum value of 62(X) in the example
show that the local minimum problem is quite severe, especially for g near to 1. Hubert,
Arabie, and Hesson-Mclnnis (1992) seem to obtain better results by a combinatorial
approach for the special case of the city-block metric in two dimensions.

7.6 Concluding remarks

In this chapter, we discussed the extension of the majorization approach to MDS using
Minkowski distances. We presented an algorithm for Minkowski distances with
1 < g £ 2 that reduces STRESS at every iteration. For g outside this range an algorithm
based on majorization was proposed that uses an inner optimization step in every
iteration. Apart from a converging sequence of STRESS values, we could also prove some
convergence properties of the separate components of the STRESS function. Further, we
proved that at a local minimum the STRESS function with ¢ > 1 is differentiable if all
weights and dissimilarities are non-zero, which is an extension of the proof of De Leeuw
(1984).

The current algorithm can be easily extended to deal with non-metric MDS. In that
case, the procedure can be incorporated in an alternating least squares algorithm where the
majorization step finds a better configuration and the optimal scaling step yields optimal
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pseudo-distances, given the distances. For details we refer to Kruskal (1977) and De
Leeuw and Heiser (1977).

The current algorithm gives an alternative for the approach that accommodates the
possibility of negative dissimilarities discussed by Heiser (1991). Negative dissimilarities
occur (among other situations) when city-block distances are fitted dimensionwise, as
was done in Heiser (1989).

Some open questions with regard to the current algorithm remain. We have an
indication that the local minimum problem is dependent on ¢ and is especially severe for
q = 1. Another interesting topic is how to incorporate constraints on the configuration (cf.
De Leeuw and Heiser (1980), or section 1.7) in the majorization algorithm for STRESS
with general Minkowski distance. These issues remain to be investigated.



APPENDIX

NOTATION

For convenience we summarize the notation used throughout this monograph. We use the
following conventions: a lower case italic character denotes a scalar, a lower case bold
character denotes a vector, and a uppercase bold character denotes a matrix. Elements of
vectors or matrices are denoted by a subscripted scalar. A function is usually denoted by a
character followed by an argument in parentheses, e.g., f(x) is a scalar function of the
vector X, and A(x) is a matrix function of the vector x. Some explicit notation follows

below.

n
iy

|>ooco_o><><h'u

d;(X)

Number of objects.

Running index for objects, i,j = 1,...,n.

Number of dimensions.

Running index for dimensions, s = 1,...,p.

Matrix of coordinates x;; of n objects in p dimensions.

A matrix of coordinates belonging to a local minimum.

Nonnegative dissimilarity between object i and j.

Vector of all dissimilarities, of order n(n — 1)/2.

Symmetric matrix of nonnegative dissimilarities 8;; of size nxn, with §;; = 0.
Usually the Euclidean distance between row i and row j of X, i.e.

dﬁ{ X) =3 (xis— Xjs)%, except in chapter 7, where it denotes the
Minkowski distance with df{(X) = 3f_; Ix;; — ;4.

Vector of all Euclidean distances between the rows of X, of order n(n - 1)/2.
Vector of all Euclidean distances between the rows of X*, of order n(n — 1)/2.
A nonnegative weight used to (down)weight the residual in the STRESS
function,

Symmetric matrix of weights w;; with zero diagonal.

Matrix of Euclidean distances between the rows of X.

Matrix with off diagonal elements b;; = —;;/d;(X) if d;{X)# 0 and b;; = 0
otherwise and diagonal elements b;; = —X,;,.b;;.

Short form of the matrix B(A;X).

The transpose of A.

The inverse of a square matrix A assuming that A is of full rank, so that
AIA=AA1=L
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A-

AX)
tr A
diag(a)
P(x.y)

o(X)
A
m(A)
IX|
IXJv

Appendix

A generalized inverse of a square matrix A where A may be rank deficient,
for which we usually take the Moore-Penrose inverse so that

AA™A = A and A"TAA™ = A" holds.

Any matrix function of X.

The trace operator sums the diagonal elements of A, i.e. tr A = Y, a;;.

A diagonal matrix with diagonal elements equal to the elements of vector a.
Majorizing function of ¢(x) for which @(x) < ¢(x.,y) and ¢(y) = ¢(y,y) holds
for all feasible x and y.

The square of the STRESS function, i.e. 6%(X) = Tigw;(8;; — di(X))2.
Denotes a (possibly empty) set.

The Lebesque measure gives a high dimensional volume measure of set A.
The Euclidean norm of matrix X, i.e. |X[|2 = X7: x%.

The weighted Euclidean norm of matrix X, i.e. |l'x |[% =tr X'VX.
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SUMMARY

This monograph is concemed with technical aspects of multidimensional scaling (MDS).
MDs is a technique that aims at representing objects as points in a low dimensional space
such that the distance between each pair of points matches the interobject dissimilarities as
closely as possible. Usually, the dissimilarities —a measure indicating how dissimilar each
pair of objects is— are gathered directly or derived indirectly. In this monograph we
assume that the dissimilarities are given. One way to do MDS is to minimize the sum of
squared differences of dissimilarities and distances over the coordinates of the points.
This function is called Kruskal's STRESS and is used throughout this monograph. We
minimize STRESS using iterative majorization, which guarantees that the STRESS values
become lower, or remain the same. However, some issues remain open. While
majorization guarantees lower (or equal) STRESS values and almost always stops at a
local minimum, the minimum need not be the overall best local minimum, the global
minimum. This problem is especially severe for unidimensional scaling, where the points
are forced to be on a line. Therefore, an important part of this monograph is devoted to
methods that aim at finding the global minimum of STRESS. One such method, the
tunneling method, is discussed in great detail in chapter 3. In chapter 4 we try to find
indications when local minima may be found, and get an idea of the performance of some
global optimization methods. Another aspect discussed in this monograph is the inclusion
of weights in the STRESS function. It allows for missing patterns with multidimensional
scaling. We discuss several structured missing data patterns, for which some
computations can be accelerated. Also, we indicate how missing data pattems can be used
for (extemal) unfolding and semi-complete scaling. To facilitate the interpretation of
multidimensional scaling solutions with a large number of objects, we elaborate on a
method called cluster differences scaling that does clustering and MDS simultaneously.
The final topic in this monograph is concerned with the extension of the majorization
method for STRESS with Minkowski distances. We continue with a more detailed
overview of the chapters.

In the first chapter we give a brief introduction to multidimensional scaling. We
discuss several aspects of iterative majorization, which is the prime minimization method
used in this monograph. Majorization is used to approximate a complicated function by a
more simple auxiliary function, the majorizing function. This function touches the
complicated function at the current estimate, the suppporting point, and is located above it
everywhere else. At the minimum of the majorizing function, the original function value
must be lower than or equal to the value at the supporting point, since the majorizing
function is by definition located above the original function. This point becomes the
supporting point for the next majorization function. Iterating this process gives
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increasingly better estimates and nearly always leads to a local minimum. Two useful
types of majorizing functions are distinguished: linear majorization and quadratic
majorization. Then we show how majorization is used to obtain a convergent algorithm
for minimizing STRESS, give its rate of convergence, and present an algorithm based on
distances only. Although the majorization algorithm usually leads to a local minimum, it
need not be the global minimum. We split the problem into three cases: unidimensional
scaling, multidimensional scaling, and fulldimensional scaling. We show that
unidimensional scaling is a combinatorial problem with many local minima. For
fulldimensional scaling we prove that STRESS only has local minima that are global
minima. For multidimensional scaling we may have multiple local minima.

Chapter 2 starts with a classification of global optimization techniques. Some of
them are discussed in more detail and applied to the STRESS function. The combinatorial
problem of unidimensional scaling can be solved globally by dynamic programming, or
solved locally by using heuristic strategies like simulated annealing, the tabu search, and
pairwise interchange strategies, of which four are discussed. For multidimensional scaling
we discuss several techniques, like space covering methods, multistart, and multi-level-
single-linkage clustering. We adapt the multi-level-single-linkage clustering algorithm to
make it usable with STRESS. We prove that STRESS has a Lipschitz constant,

In chapter 3 the tunneling method for finding a global minimum is presented. It
aims at finding an ever decreasing series of local minima. The method alternates between
a local search and a munneling step in which a configuration is sought different from the
previous local minimum, but with equal or less STRESS than the previous local
minimum. The latter step is performed by minimizing the tunneling function, which is
modelled such that trivial solutions are excluded and that it behaves well for the STRESS
function. Furthermore, we present a minimization algorithm for the tunneling function
based on majorization. An extension of the algorithm is given to accommodate more than
one pole, which is needed to avoid unwanted stationary points of the tunneling function.
The algorithm uses parametric programming, which is extended to deal with
majorization. Several new majorization inequalities are presented. In two examples we
show that the tunneling algorithm works, at least for these small problems. An
experiment is presented to find proper tuning of the parameters that need to be set in the
tunneling function. More numerical experiments of the tunneling method are given in
chapter 4.

In the fourth chapter we study how the algorithms succeed in finding the global
minimum. For multidimensional scaling, our experiment suggests that the number of
local minima increases as the error increases, decreases as the number of objects
increases, and decreases as the dimensionality gets higher. Numerical experiments
indicate that the tunneling algorithm is equally capable in finding the candidate global
minimum as is multistart or multi-level-single-linkage clustering. However, all these
methods are computationally very demanding. The settings of the tunneling method (like
maximum number of poles, maximum number of iterations in a tunneling step,
convergence criterion of the tunneling function) need to be strong not to fail. For multi-
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level-single-linkage clustering the use of moved hypercubes greatly reduces the number
of local searches, and still recovers the same candidate global minimum in our
experiment. For unidimensional scaling the first choice should be the dynamic
programming approach if all weights are constant, since it guarantees a global optimum.
For a large number of objects (say larger than 20), or with non-identical weights, the
dynamic programming strategy is no longer feasible, and heuristic strategies, like
pairwise interchange, are to be used. These local pairwise interchange strategies (LOPI)
and the tabu search are compared on their capability in recovering a generated global
optimum. In fact, the LOPI2 strategy (that compares the interchanges formed by inserting
one object keeping the order of the other objects fixed) and the LOPI3 (that accepts any
pairwise interchange with a better fit) give a good performance within a reasonable
amount of CPU time. The LOPI1 (adjacent pairwise interchanges) and LOPI4 (that accepts
the pairwise interchange of all with the best fit) strategies did not perform very
favourably. The former is fast, but often does not locate the global optimum, whereas the
latter is able to find the global optimum, but takes a huge amount of CPU time. The tabu
search performed only a little bit better than LOPI1, but not as good as the other pairwise
interchange strategies. A small example shows that the tunneling algorithm still works for
unidimensional scaling, but is not successful in finding the global optimum.

In chapter 5 we discuss several computational aspects of incomplete MDS, where
some of the weights for the pairs are set equal to zero. First, we treat three structured
designs —partitioned block design, the block tridiagonal design, and the circular design—
and show how the computation of the inverse needed for these designs can be accelerated
dramatically. Then, we discuss a classification of models based on splitting the set of
objects into two parts. Using this classification some known models (like (extemal)
unfolding and complete MDS) and new models (cyclic point descent, semi-complete MDS,
almost complete MDS) are distinguished. Finally, we discuss an application of semi-
complete MDS aimed at accelerating the MDS algorithm. We call this moving frame MDS,
because we iteratively select a frame of well fitting points, keep them fixed, and fit the
other points using semi-complete MDS. Numerical experiments show that moving frame
MDS is always much slower than complete MDS. The fastest computations are obtained
for complete MDS using the relaxed update. It tums out that when using the relaxed update
we always have to adjust the scaling size of the coordinates. Otherwise, the complete MDS
algorithm may stop too early.

In chapter 6 we elaborate on cluster differences scaling (CDS) for MDS originally
proposed by Heiser (1992). The aim is to facilitate interpretation and reduce the number
of parameters by imposing cluster restrictions on the objects and still get a graphical
representation of the clusters to model the dissimilarities. We indicate how the STRESS in
CDS can be decomposed into four additive components of within and between cluster
STRESS. We show that CDS can be seen as ordinary MDS with cluster restrictions on the
configuration. Furthermore, we generalize CDS to deal with fuzzy clusters, which has CDs
as a special case. By an experiment we show that a start configuration for CDS based on
repeated fuzzy clustering with decreasing fuzzy cluster parameter g, gives the lowest
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STRESS value. This is a particularly useful application of fuzzy CDS to avoid local minima
in CDS.

In the last chapter we discuss the extension of the majorization approach to MDS
using Minkowski distances, which has the city-block distance, the Euclidean distance, and
the max distance as special cases. We present an algorithm for Minkowski distances
between city-block and Euclidean distances that reduces STRESS at every iteration. For
other Minkowski distances a majorization algorithm is proposed that uses an inner
optimization step in every iteration. Apart from a converging sequence of STRESS values,
we prove some convergence properties of the separate components of the STRESS
function. Furthermore, for Minkowski distances with power parameter larger than city-
block distances we prove that at a local minimum the STRESS function is differentiable if
all weights and dissimilarities are positive. This new algorithm is compared with a
standard algorithm, i.e., KYST. It seems that both algorithms behave similar, with a slight
advantage for the majorization algorithm for some Minkowski distances.



THE MAJORIZATION APPROACH TO
MULTIDIMENSIONAL SCALING

SOME PROBLEMS AND EXTENSIONS

Multidimensional scaling (MDS) methods fit a distance model to one or more
tables of dissimilarities. Associated with the distance model is a spatial
representation of the objects of analysis, the objective being that the interpoint
distance in space should match the interobject dissimilarity in the table as
closely as possible. Usually, the distance model is Euclidean, but in this
monograph there is one chapter in which non-Euclidean metrics are con-
sidered as well.

Working in a least squares framework, a number of unsolved technical
problems in this area are discussed and some of them resolved. The technical
apparatus used is the iterative majorization approach, developed in the late
seventies by De Leeuw and Heiser, supplemented here with several other
state-of-the-art optimization methods. The most important topic discussed is
the well-known problem that the MDS badness-of-fit function generally has
multiple local minima, in which the usual search procedures may easily get
trapped (especially in the one-dimensional case). To resolve this problem, an
existing global search procedure, the tunneling method, is fully integrated in
the iterative majorization framework, and compared with a stochastic method
of global optimization. In terms of performance in unconstrained MDS, they
are about equal, but the tunneling method is more flexible and could easily
be adapted for constrained MDS models. Special methods for the one-
dimensional case, such as dynamic programming and several pairwise
interchange strategies, are also discussed and evaluated. :

Apart from the global minimum problem, three other topics are covered in
detail: efficient ways to perform different forms of incomplete MDS; the use of
fuzzy memberships in cluster differences scaling, a form of MDS with cluster
constraints; and the extension of the iterative majorization approach to fitting
models with a Minkowski metric. In sum, this monograph covers the current
state of algorithmic affairs in least squares MDS, but it should also be valuable
for readers interested, more generally, in global and convergent optimization
of objective functions with many variables.
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