Identifying Users Stereotypes with Semantic Web Mining

José Palazzo Moreira de Oliveira Sandro José Rigo

0

Instituto de Informática – Universidade Federal do Rio Grande do Sul (UFRGS) {palazzo,sjrigo}@inf.ufrgs.br

Contents

- Introduction and motivation
- Related works
- Semantic Web Mining
- Developed architecture
- Experiments
- Conclusions

Introduction and motivation

Web cognitive overload

- Huge documents number
- Different Web systems
- User characteristics diversity

Improve user experience

- Personalized results
- General steps:
 - User profile acquisition
 - Adaptation rules
 - Interface modifications

Introduction and motivation

Web Usage Mining

- User profile acquisition
- Frequent access patterns mining

Problems:

- Patterns generated without semantic information
- User identification needed

User profile acquisition

Diversity of related works

- Observation of query terms and navigation sequence (Dummais, 2006)
- LIP based ontology (Razmerita, 2004)
- Cognitive aspects and usage information (Souto, 2005)
- Indication of interests and preferences (Sah e Hall, 2007)

Main Objectives

- Users classes identification
- Short term tasks
- Integration:
 - Web usage information
 - Semantic Information (application domain)

Related works

• Some related works:

- Web Usage Mining, clustering (Baraglia e Silvestri, 2007)
- Web Usage Mining, semantic annotation, association rules (Eirinaki, 2006)
- Domain Ontologies, clusters (Mobasher, 2005)
- Frequent access patterns mining, taxonomies (Esposito, 2004)
- Clustering, similarity relations (Vieira, 2005)
- Ontology acquisition (Staab, 2000; Stumme, 2002)

• General approaches :

- Ontology/taxonomy acquisition
- Integration of semantic information
 - patterns generation
 - adaptation

Semantic web mining approach

- Frequent access patterns generation
- Ontology with web site structure and other relations
 - Content type
 - Elements precedence
- Semantic integration with patterns
 - Ontology queries
 - Relations between frequent access patterns
- Patterns differentiation and similarities identification
- Adaptation resources

Million and Million

Semantic contexts

General view

- a) Pageviews, Pages IDs 3, 49, 50, 51
- b) Sequence: 2 IDs: 49, 50 (composed_by_topic) [type topic] Sequence: 2 IDs: 50, 51 [type - topic] [partOf - ID_49] [type_of_material - TM_Classes] [type_of_content - Programming_language]

N	Patterns	Semantic contexts
1	13, 12, 33	(composedBy)(requisiteOf)[type-topic][typeOfMaterial- TM_ORGANIZATION] (composedBy) [type-topic] [typeOfMaterial-TM_ORGANIZATION]
2	12, 33, 44	(composedBy) [type - topic] [typeOfMaterial - TM_ORGANIZATION] (composedBy) [type - topic] [typeOfMaterial - TM_ORGANIZATION]
3	49, 50, 51	(composedBy) [type - topic] [type - topic] [partOf - ID_49] [typeOfMaterial - TM_CLASS] [typeOfContent- linguagem_de_programacao]
4	20, 46, 47, 48	(composedBy) [type - topic] [typeOfMaterial - TM_CLASS] [type - topic] [partOf - ID_20] [typeOfMaterial - TM_CLASS] [typeOfContent- algoritmo] [type - topic] [partOf - ID_20] [typeOfMaterial - TM_CLASS] [typeOfContent- linguagem_de_programacao]
5	49, 50, 51, 52	(composedBy) [type - topic] [type - topic] [partOf - ID_49] [typeOfMaterial - TM_CLASS] [typeOfContent- linguagem_de_programacao] [type - topic] [partOf - ID_49] [typeOfMaterial - TM_CLASS] [typeOfContent- linguagem_de_programacao]
6	62, 64, 67, 72	(requisiteOf) [partOf - ID_13] [typeOfMaterial - TM_ORGANIZATION] (requisiteOf) [partOf - ID_13] [typeOfMaterial - TM_ORGANIZATION] (requisiteOf) [partOf - ID_13] [typeOfMaterial - TM_ORGANIZATION] [requisiteOf - ID_78]

Hillion.

Semantic contexts

Advantages and possibilities

- Navigation differentiated contexts
- Frequent access patterns similarities

Semantic annotation and ontology

Domain Ontology

- Identification of relevant relations
- Domain concepts
- Web site pages annotation

Adaptation

Adaptation rules possibilities:

- User session partial coincidence
- User session and semantic context similarity
- Ontology descriptions
 - Complementariety
 - Composition

Adaptation

• Adaptation examples:

Developed architecture

• Steps:

- Usage data acquisition
- Frequent access patterns
- Domain ontology description
- Web site semantic annotation
- Semantic integration
- Adaptation rules
- Adaptation generation

Experiments

- Experiment was carried out over a period of ten months
- Adaptive hypermedia application target to an programming language discipline
- Material available to students, with adaptations being generated
- The suggested adaptations are monitored
- Access to adaptations is compared to the normal Website items

Conclusions

- Approach for the acquisition of user stereotypes based on Web Usage Mining and domain ontology
- Adaptive hypermedia application
- Semantic information and usage information integration
- Discovering navigational behavior related to tasks executed in a Website
- The proposed method can generate valuable information by relating the Web usage data and the semantic information.

Future work

- Applying web page internal elements in the generation of patterns
- Study of integration possibilities with content information
- Experiments in applications other than educational
- Insertion of new relations in the domain ontology

Thank you.

Identifying Users Stereotypes with Semantic Web Mining

José Palazzo Moreira de Oliveira Sandro José Rigo

0

Instituto de Informática – Universidade Federal do Rio Grande do Sul (UFRGS) {palazzo,sjrigo}@inf.ufrgs.br