
Web Service Mediation Through Multi-level Views

Manivasakan Sabesan and Tore Risch

Department of Information Technology, Uppsala University, Sweden
{msabesan, Tore.Risch}@it.uu.se

Abstract. The web Service MEDiator system (WSMED) provides general
query capabilities over data accessible through web services by reading WSDL
meta-data descriptions. Based on imported meta-data, the user can define views
that extract data from the results of calls to web service operations. The views
can be queried using SQL. The views are specified in terms of declarative que-
ries that access different web service operations in different ways depending on
what view attributes are known in a query. To enable efficient query execution
over the views by automatic query transformations the user can provide seman-
tic enrichments of the meta-data with key constraints. We evaluated the effec-
tiveness of our approach over multi-level views of existing web services and
show that the key constraint enrichments substantially improve query perform-
ance.

Keywords: web service views, query optimization, semantic enrichment

1. Introduction

Web services [4] provide an infrastructure for web applications by defining sets of
operations that can be invoked over the web. Web service operations are described by
meta-data descriptions of operation signatures, using the Web Services Description
Language (WSDL) [5]. An important class of operations is to access data through
web services, e.g. Google’s web page search service [12] and the United States De-
partment of Agriculture nutrition database of foods [27]. However, web services don’t
support general query or view capabilities; they define only operation signatures.

We have developed a system, WSMED – Web Service MEDiator, to facilitate effi-
cient queries over web services. The view definitions called WSMED views are de-
fined in terms of imported WSDL descriptions of web service operations. Further-
more, multi-level WSMED views can be defined in terms of other WSMED views.
Web services return nested XML structures (i.e. records and collections), which have
to be flattened into relational views before they can be queried with SQL. The knowl-
edge how to extract and flatten relevant data from a web service call is defined by the
user as queries called capability definitions using and object-oriented query language,
WSMED query language (WQL), which has support for web service data types.

An important semantic enrichment is to allow for the user to associate with a given
WSMED view different capability definitions depending on what view attributes are
known in a query, the binding pattern of the capability definition. The WSMED query

 2

optimizer automatically selects the optimal capability definition for a given query by
analyzing its used binding patterns. These view definitions enrich the basic web ser-
vice operations to support SQL data access queries.

A WSDL operation signature description does not provide any information about
which parts of the signature is a key to the data accessed through the operation. As we
show, this information is critical for efficient query execution of multi-level WSMED
views. Therefore, we allow the user to declare to the system all (compound) keys of a
given WSMED view, called key constraints.

This paper is organized as follows: Section two describes the architecture of
WSMED. Section three gives examples of WSMED view definitions using an exist-
ing web service and explains the capability definitions. Section four analyzes the per-
formance of a sample query to verify the effectiveness of query transformations based
on the semantic enrichments compared to conventional relational algebra transforma-
tions. Section five describes the strategies of the query processor. Section six dis-
cusses related work. Finally section seven summarizes the results and indicates future
work.

2. The WSMED System

Figure 1a, illustrates WSMED’s system components. Imported WSDL meta-data is
stored in the web service meta-database using a generic web service schema that can
represent any WSDL definition. The WSDL Importer populates the web service meta-
database, given the URL of a WSDL document. It reads the WSDL document using
the WSDL parser toolkits WSDL4J [24] and Castor [23]. The retrieved WSDL docu-
ment is parsed and automatically converted into the format used by the web service
meta-database. In addition to the general web service meta-database, WSMED also
keeps additional user-provided WSMED enrichments in its local store.

The query processor exploits the web service descriptions and WSMED enrich-
ments to process queries. The query processor calls the web service manager which
invokes web service calls using Simple Object Access Protocol (SOAP) [13] through
the toolkit SAAJ [19] to retrieve the result for the user query.

Figure 1b illustrates architectural details of the query processor. The calculus gen-
erator produces from an SQL query an internal calculus expression in a Datalog dia-
lect [18]. This expression is passed to the query rewriter for further processing to pro-
duce an equivalent but simpler and more efficient calculus expression.

The query rewriter calls the view processor to translate SQL query fragments over
the WSMED view into relevant capability definitions that call web service operations.
An important task for the query rewriter is to identify overlaps between different sub-
queries and views calling the same web service operation. This requires knowledge
about the key constraints. We will show that such rewrites significantly improve the
performance of queries to multi-level views of web services.

 3

The rewritten query is finally translated into an algebra expression by a cost-based

optimizer that uses a generic web service cost model as default. The algebra has op-
erators to invoke web services and to apply external functions implemented in WSDL
(e.g. for extraction of data from web service results). The algebra expression is finally
interpreted by the execution engine. It uses the web service meta-database to generate
a SOAP message when a web service operation is called.

3. WSMED Views

To illustrate and evaluate our approach we use a publicly available web service to
access and search the National Nutrient Database for US Department of Agriculture
[28]. The database contains information about the nutrient content of over 6000 food
items. It contains five different operations: SearchFoodByDescriptions, CalculateNu-
trientValues, GetAllFoodGroupCodes, GetWeightMethods and GetRemainingHits.
We illustrate WSMED by the operation SeachFoodByDescriptions to search foods
given a FoodKeywords or a FoodGroupCode. The operation returns NDBNumber,
LongDescription, and FoodGroupCode as the results. The WSMED view named food
in Table 1 allows SQL queries over this web service operation.

Table 1. WSMED view food

ndb keyword descr gpcode
19080 Sweet Candies 1900
……… ……… …………… ……….

WSDL
Importer

Web Service
Manager

SQL query

WSDL
document

Query
Processor

WSMED
enrichments

Web service
 schema

Web service
 meta-database

Results

Web
service

query
rewriter

cost-based
optimizer

execution
engine

calculus
generator

view processor

Figure 1b: Query Processor Figure 1a: WSMED components

 4

For example, the following SQL query to the view food retrieves the description of
foods that have food group code equal to 1900 and keyword ‘Sweet’:

select descr
from food
where gpcode=’1900’ and keyword =’Sweet’;

The view food is defined as follows:

create SQLview food (Charstring ndb,
 Charstring keyword,Charstring descr, Charstring gpcode)
as multidirectional
 (“ffff” select ndb, “”,descr, gpcode
 where foodDescr(“”,“”)= <ndb,descr,gpcode >)
 (“fffb” select ndb, “”,descr
 where foodDescr(“”,gpcode)= <ndb,descr,gp code>)
 (“fbff” select ndb,descr,gpcode
 where foodDescr(keyword, “”)= <ndb,descr, gpcode>)
 (“fbfb” select ndb, descr
 where foodDescr(keyword,gpcode)
 = <ndb,descr,gpcode>)

Figure 2: WSMED view definition

A given WSMED view can access many different web service operations in differ-
ent ways. When the user defines a WSMED view he can specify the view by several
different declarative queries, called capability definitions, using an object oriented
query language called WQL having special web service oriented data types. Each ca-
pability definition implements a different way of retrieving data through web service
operations using WQL. Different capability definitions can be defined based on what
view attributes are known or unknown in a query, called the capability binding pat-
terns. The query optimizer automatically chooses the most promising capability defi-
nitions for a given query to a WSMED view. Each capability definition provides a
different way of using the web service operations to retrieve food items. The capabil-
ity binding patterns of the view food are:
1. ffff- all the attributes of the view are free in the query. That is, the query does not

specify any attribute selection value. In this case the capability definition speci-
fies that all food items should be returned.

2. fffb- a value is specified only for fourth attribute gpcode. This means that the capa-
bility definition returns all food items for a given food group code.

3. fbff- a value is specified in the query only for the second attribute keyword, i.e. all
food items associated with the given keyword are retrieved.

4. fbfb- both the values keyword and gpcode are specified in the query, finding the
relevant food items.

In our example query the binding pattern is fbfb. The capability definitions are de-
fined as declarative WQL queries that all call a function foodDescr in different ways.
The function foodDescr is defined as a WQL query that wraps the web service opera-
tion SearchFoodByDescription given two parameters foodkeywords and foodgroup-
code. It selects relevant pieces of a call to the operation SearchFoodByDescription to
extract the data from the data structure returned by the operation.
 To simplify sub-queries and provide heuristics for estimating selectivities, it is im-
portant for the system to know what attributes in the view are (compound) keys.

 5

Therefore, the user can specify key constraints for a given view and set of attributes
by a system function declare_key, e.g.:
 declare_key(“food”, {”ndb”});
 Key constraints are not part of WSDL and require knowledge about the semantics
of the web service. In our example web service the attribute ndb is the key. The at-
tributes are specified as a set of attribute names for a given view (e.g. {“ndb”}) . Sev-
eral keys can be specified by several calls to declare_key.

The query optimizer may also need to estimate the cost to invoke a capability and
the estimated size of its result, i.e. its fanout. Costs and fanouts can be specified ex-
plicitly by the user if such information is available. However, normally explicit cost
information is not available and the cost is then estimated by a default cost model that
uses available semantic information such as signatures, keys, and binding patterns to
roughly estimate costs and fanouts. Key constraints will be shown to be the most im-
portant semantic enrichment in our example, and additional costing information is not
needed.

3.1 Capability definition function

The function foodDescr, used in the capability definitions in Figure 2, has the fol-
lowing definition:

1.create function foodDescr (Charstring fkw,
2. Charstring fgc)
3. ->Bag of <Charstring ndb,Charstring des cr,
4. Charstring gpcode>
5. as select re[“NDBNumber”],re[“LongDescription”],
6. re[“FoodGroupCode”]
7. from Record out, Record re
8. where out =
9. cwo(“http://ws.strikeiron.com/USDAData?WSDL ”,
10. “USDAData”,
11. “SearchFoodByDescription”,
12. {fkw, fgc})
13. and re in out[“SearchFoodByDescriptionResult ”];

Given a food keyword, fkw, and a group code, fgc, the function foodDescr returns a
bag of result rows extracted from the result of calling the web service operation
named SearchFoodByDescription. Any web service operation can be called by the
built-in generic function cwo (line 9). Its arguments are the URI of WSDL document
that describes the service (line 9), the name of the service (line 10), an operation name
(line 11), and the input argument list for the operation (line 12). The result from cwo
is bound to the query variable out (line 8). It holds the output from the web service
operation temporarily stored in WSMED’s local database. The system automatically
converts the input and output messages from the operation into records and sequences
where records are used to represent complex XML elements [7] and sequences repre-
sent ordered elements. In our example, the argument list holds the parameters Food-
Keywords and FoodGroupCode (line 12). The result out is a record structure from
which only the attribute SearchFoodByDescriptionResult is extracted (line 13). Ex-
tractions are specified using the notation s[k] , where s is a variable holding a record,
and k is the name of an attribute.

 6

The function foodDescr selects relevant parts of the result from the call to the op-
eration. In our example, the relevant attributes are NDBNumber, LongDescription,
and FoodGroupCode, which are all attributes of a record stored in the attribute
SearchFoodByDescriptionResult of the result record. Our example web service opera-
tion SearchFoodByDescription returns descriptions of all available food items when
both attributes foodkeywords and foodgroupcode are empty strings. On the other
hand, if foodkeywords is empty but foodgroupcode is known, the web service opera-
tion will return all food with that group code. Similarly, if foodgroupcode is empty
but foodkeywords is known, the web service operation will return all food with that
keyword. If both foodkeywords and foodgroupcode are non-empty, the operation will
return descriptions of all food items of the group code with matching keywords. This
knowledge about the semantic of the web service operation SearchFoodByDescrip-
tion is used to define the capability definition function in Figure 2.

4. Impact of key constraints

To illustrate the impact of key constraints we define two views in terms of the
WSMED view food. The view foodclasses is used to classify food items while food-
descriptions describes each food item:

create view foodclasses(ndb, keyword, gpcode)
as select ndb,keyword,gpcode from food;

create view fooddescriptions(ndb, descr)
as select ndb, descr from food;

This scenario is natural for our example web service that treats foodclasses differ-
ent from fooddescriptions. The following SQL query accesses these views.

select fd.descr
from foodclasses fc, fooddescriptions fd
where fc.ndb=fd.ndb and fc.gpcode=’1900’;

First the example query is translated by the calculus generator (Figure 1b) into a
Datalog expression:

Query(l) :- foodclasses(ndb,keyword,gpcode) AND fooddescrip-
tions (ndb,descr) AND descr=l AND gpcode=’1900’

The definitions of the views foodclasses and fooddescriptions are defined in
Datalog as1:

foodclasses(ndb, keyword, gpcode) :- food(ndb, keyw ord, *,
gpcode).

fooddescriptions(ndb,descry) :- food(ndb, *, descr, *).
Given these view definitions the Datalog expression is transformed by the view

processor (Figure 1b) into:
Query(l) :- food(ndb,*,*,’1900’) AND food(ndb,*,l,*).
Here the predicate food represents our WSMED view. At this point the added se-

mantics that ndb is the key of the view play its vital part. Two predicates p(k,a) and
p(k,b) are equal if k is a key and it is then inferred that the other attributes are also

1 ‘*’ means don’t care.

 7

equal, i.e. b=a [9]. If a key constraint that ndb is the key is specified, this is used by a
query rewriter to combine the two calls to food:

Query(l) :- food(*,*,l,’1900’).
Without knowing that ndb is the key the transformation would not apply and the

system would have to join the two references to the view food in the expanded query.
The simplification is very important to attain a scalable query execution performance
as shown in Section 5.

The next step is to select the best capability definition for the query. The heuristics
is that if more than one capability definition is applicable, the system chooses the one
with the most variables bound. Since l is the query output and gpcode is given, the
binding patterns ffff and fffb both apply, and the system chooses fffb because it is con-
sidered cheaper. The call to food then becomes:

Query(l) :- l=foodDescr(“”,”1900”).
Similar to relational database optimizers, given the definition of foodDescr, a cost

based optimizer generates the algebra expression in Figure 3a, which is interpreted by
the execution engine. The apply operator (γ) calls a function producing one or several
result tuples for a given input tuple and bound arguments [14]. By contrast, Figure 3b
shows an execution plan for the non-transformed expression where the system does
not know that ndb is key. It is using a nested loop join (NLJ) to join the capability
definitions. An alternative possible better plan based on hash join (HJ) that material-
izes the inner web service call is shown in Section 5. In case no costing data is avail-
able about the capability definitions (which is the case here), the system uses built in
heuristics, i.e. a default cost model. In our case the cost based optimizer produces the
plan in Figure 3a, which is optimal for our query.

5. Query Performance

To determine the impact of semantic enrichments on query processing strategies, we
have experimented with four different kinds of query execution strategies. They are:
1. The naïve implementation does not use any semantic enrichment at all and no bind-

ing pattern heuristics. That is, no key is specified for the food view definition and
no default cost model was used. This makes the capability definition be regarded as
a black box called iteratively in a nested loop join since the system does not know

Figure 3b: Naïve execution

<ndb, descr, gpcode> <ndb, descr, gpcode>
∞ NLJ

<gpcode>

γ foodDescr(“”,gpcode)

<ndb, descr, gpcode>

γ foodDescr(“”,””) γ foodDescr(“”,gpcode)

<gpcode>

Figure 3a: Full semantic en-
richment

<ndb, descr, gpcode>

 8

that foodDescr returns a large result set when both arguments are empty. The exe-
cution plan in Figure 3b shows the naïve plan.

2. With the default cost model the system assumes that the view food is substantially
more expensive to use when attribute gpcode is not known than when it is known,
i.e. it is cheaper to execute a capability definition where more variables are bound.
Still there is no key specified. Figure 5b illustrates the plan using nested loop join.

3. Figure 5a shows the execution plan with the default cost model and a hash join
strategy where the results from web service operation calls are materialized by us-
ing hash join to avoid unnecessary web service calls. This can be done only when
the smaller join operand can be materialized in main memory.

4. With full semantic enrichment the key of the view is specified. Figure 3a, shows
the execution plan. It is clearly optimal.

As shown in Figure 4a, the naïve strategy was the slowest one, somewhat faster than
using the default cost model with nested loop join. The default cost model with a hash
join strategy scaled significantly better, but requires enough main memory to hold the
inner call to foodDescr. Figure 4b compares the default cost model with hash join
with the performance of full semantic enrichments. The hash join strategy was around
five times slower. This clearly shows that semantic enrichment is critical for high
performing queries over multi-level views of web services.

0.00

1000.00

2000.00

3000.00

4000.00

5000.00

6000.00

0 100 200 300 400 500 600 700 800 900

Nu mbe r of Food Item s

R
es

po
ns

e
T

im
e(

se
c)

full semantic enrichment hashjoin strategy

default cost model naïve implementation

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

0 100 200 300 400 500 600 700 800 900

Number of Food Items

R
es

p
on

se
 T

im
e(

se
c)

 hash join strategy

full semantic enrichment

Figure 4a: Performance comparison of
four query execution strategies

Figure 4b: Performance com-
parison of hash join and full
semantic enrichment execution
strategies

The diagrams are based on the experimental results in Table 2 and the experiment
was made by using the real values to actually retrieve the results through web service
operations. VG, NF, S1, S2, S3, and S4 denote the value used for parameter gpcode,

 9

the number of food items (actual fanout), and the execution time in seconds for the
four different strategies.

With the naive strategy the system does not use any binding pattern heuristics and

will call foodDescr with empty strings (γfoodDescr(“”,””)) which produces a large
costly result containing all food items in the outer loop. This is clearly very slow.

 Table 2. Experimental results

VG NF S1 S2 S3 S4

0900 303 1985.14 1512.74 5.77 1.22

0600 390 3177.28 1848.28 5.55 1.33

1400 219 1831.05 1041.74 5.50 1.08

1100 779 4891.13 3785.30 6.22 1.69

2000 157 1655.48 777.31 5.41 0.94

0800 359 3114.28 1723.28 5.59 1.35

0400 201 1914.23 955.38 6.38 1.08

1800 517 3524.34 2452.22 5.93 1.33

2200 132 1741.51 645.03 5.62 0.93

With the default cost model strategy the system assumes that queries over the view
food produce larger results when the attribute gpcode is unknown than when it is
known. Based on this the call to foodDescr with a known gpcode value is placed in
the outer loop of a nested loop join. This clearly is a better strategy than the naïve im-
plementation.

Finally by utilizing key constraints in the WSMED view definition the system will

know that the two applications of foodDescr can be combined into one call. With this
full enrichment strategy only one web service operation call is required for execution
of the query and no hash join is needed. We notice that this is the fastest and most
scalable plan and that it needs no costing knowledge.

<ndb, descr, gpcode>

γ foodDescr(“”,””)

<ndb, descr, gpcode>
∞ HJ

<gpcode>

γ foodDescr(“”,gpcode)

<ndb, descr, gpcode>

<gpcode>

γ foodDescr(“”,gpcode) γ foodDescr(“”,””)

<ndb, descr, gpcode>

Figure 5a: Execution plan of hash join
strategy

Figure 5b: Execution plan with de-
fault cost model

<ndb, descr, gpcode>

<ndb, descr, gpcode>

∞ NLJ

 10

6. Related Work

Preliminary results for our method of querying mediated web services were reported
in [20].

SOAP [12] and WSDL [5] provide standardized basic interoperation protocols for
web services but no query or view capabilities. The SQL 2003 standard [8][26] has
facilitates to combine SQL with XML Query language (XQuery) [3] to access both
ordinary SQL-data and XML documents stored in a relational database. By contrast,
we optimize SQL queries to views over data returned by invoking web services and
we use semantic query transformations to improve the performance.

The formal basis for using views to query heterogeneous data sources is reviewed
in [10][15][25]. As some other information integration approaches, e.g. [11][29], we
also use binding patterns as one of our semantic enrichments to access data sources
with limited query capabilities. We define semantically enriched declarative views ex-
tracting data from the results of each web service operations in terms of an object-
oriented query language. In [1] an approach is described for optimizing web service
compositions by procedurally traversing ActiveXML documents to select embedded
web service calls, without providing view capabilities.

WSMS [22] also provide queries to mediated web services. However, they concen-
trate on optimizing pipelined execution of web service queries while we utilize se-
mantic enrichments for efficient query processing over multi-level views of web ser-
vices. XLive [6] is a mediator for integrating heterogeneous sources including web
service sources with specific wrappers based on XML standards. In contrast we de-
ploy a generic wrapper that can call any web service.

In particular, unlike the other works, we show that key constraints significantly
improve performance of queries to multi-level views of web services with different
capabilities.

7. Conclusions and future work

We devised a general approach to query data accessible through web services by
defining relational views of data extracted from the result SOAP messages returned
by web service operations. Multi-level relational views of web service operations can
be defined. The system allows SQL queries over these WSMED views. The view ex-
tractions are defined in terms of an object oriented query language. The query per-
formance is heavily influenced by knowledge about the semantics of the specific web
service operations invoked and all such information is not provided by standard web
service descriptions. Therefore the user can complement a WSMED view with se-
mantic enrichments for better query performance. Our experiments showed that bind-
ing patterns combined with key constraints are essential for scalable performance
when other views are defined in terms of WSMED views.

 11

Strategies for parallel pipelined execution strategies of web service operation calls
as in WSMS [22] should be investigated. The pruning of superfluous web service op-
eration calls is crucial for performance. The adaptive approaches in [2][17] should be
investigated where useless results are dynamically pruned in the early stage of query
execution. Currently the semantic enrichments are added manually. Future work
could investigate when it is possible to automate this and how to efficiently verify that
enrichment is valid. For example, determination of key constraints is currently added
manually, and this could be automated by querying the source. Another issue is how
to minimize the required semantic enrichments by self tuning cost modeling tech-
niques [16] based on monitoring the behavior of web service calls.

The semantic web is an emerging prominent approach for the future data represen-
tations where WSDL working groups are proposing standards to incorporate semantic
web representations [21]. It should be investigated how mediate of web services based
on such semantic web representations.

Acknowledgements
This work is supported by Sida.

References

[1] S. Abiteboul et al., Lazy query evaluation for active XML, Proc. of the 2004 ACM
SIGMOD Intl. Conf. on Managementof Data, 227–238, 2004.

[2] R. Avnur, and J. M. Hellerstein, Eddies: Continuously adaptive query processing, Proc.
SIGMOD conference, 2000.

[3] S.Boag, D.Chamberlin, M.F. Fernández, D.Florescu, J.Robie, and J.Siméon, XQuery 1.0:
An XML Query LanguageW3C Candidate Recommendation, published online at
http://www.w3.org/TR/xquery/, 2006

[4] D.Booth, H.Haas, F.McCabe, E.Newcomer, M.Champion, C.Ferris, and D.Orchard, Web
Services Architecture,W3C Working Group Note, published online at
http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/ , 2004

[5] E.Christensen, F.Curbera, G.Meredith, and S. Weerawarana, Web services description
language (WSDL) 1.1., W3C, http://www.w3.org/TR/wsdl, 2001.

[6] T.Dang Ngoc, C.Jamard, and N.Travers , XLive : An XML Light Integration Virtual En-
gine, Proc. of BDA, 2005

[7] D.C. Fallside, and P.Walmsley, XML Schema Part 0: Primer Second EditionW3C Rec-
ommendation, published online at http://www.w3.org/TR /xmlschema-0/, 2004

[8] A.Eisenberg, and J.Melton, SQL/XML is Making Good Progress, ACM SIGMOD Re-
cord, 31(2), June 2002

[9] G. Fahl, and T. Risch, Query Processing over Object Views of Relational Data, The
VLDB Journal , 6(4), 261-281, 1997.

[10] H. Garcia-Molina, Y. Papakonstantinou, D. Quass, A.Rajaraman, Y. Sagiv, J.D. Ullman,
V. Vassalos, and J.Widom, The TSIMMIS Approach to Mediation: Data Models and
Languages, In Journal of Intelligent Information Systems, 8(2): 117-132, 1997

[11] H.Garcia-Molina, J.D Ullman, and J.Widom, Database Systems: The Complete Book,
ISBN 0-13-098043-9, Prentice Hall, 1047-1069, 2002.

[12] Google SOAP Search API (Beta), published online at http://code.google.com/apis
/soapsearch/

 12

[13] M.Gudgin, M.Hadley, N.Mendelsohn, J.Moreau, and H.Frystyk Nielsen, SOAP Version
1.2 Part 1: Messaging Framework,W3C Recommendation, published online at
http://www.w3.org/TR/soap12-part1/ ,2003

[14] L.M.Haas, D. Kossmann, E. Wimmers, and J .Yang, Optimizing queries across diverse
data sources, Proc. Very Large Database Conference(23rd VLDB), 1997

[15] A.L.Halevy, Answering queries using views: A survey, VLDB Journal, 4(10), 270-294,
2001.

[16] Z.He, B.S.Lee, and R.Snapp, Self-Tuning Cost Modeling of User-Defined Functions in
an Object-Relational DBMS, ACM Transactions on Database Systems, 30(3), 812-853,
2005.

[17] Z.G.Ives, A.Y.Halvey, and D.S.Weld, Adapting to Source Properties in Processing Data
Integration Queries, Proc. SIGMOD conference, 2004

[18] W. Litwin, and T. Risch, Main Memory Oriented Optimization of OO Queries using
Typed Datalog with Foreign Predicates, Proc. IEEE Transactions on Knowledge and
Data Engineering, 4(6), pp. 517-528, 1992

[19] SAAJ Project, published online at https://saaj.dev.java.net/
[20] M.Sabesan, T.Risch, and G.Wikramanayake, Querying Mediated Web Services, Proc. 8th

International Information Technology Conference (IITC 2006), 2006
[21] Semantic Web Activity, W3C Technology and Society domain, published online at

http://www.w3.org/2001/sw/
[22] U.Srivastava, J.Widom, K.Munagala, and R.Motwani, Query Optimization over Web

Services, Proc Very Large Database Conference(VLDB 2006), 2006
[23] The Castor Project, published online at http://www.castor.org/index.html
[24] The Web Services Description Language for Java Tool kit(WSDL4J), published online

http://sourceforge.net/projects/wsdl4j
[25] J.D.Ullman, Information Integration Using Logical Views, Proc. 6th International Con-

ference on Database Theory (ICDT ’97), 19-40, 1997.
[26] XML-Related specifications (SQL/XML), published online at http://www.sqlx.org/SQL-

XML-documents/5FCD-14-XML-2004-07.pdf, 2005
[27] Web Service USDAData, published online http://ws.strikeiron.com/USDAData?

DOC&page=proxy
[28] WSDL document for USDAData web service, published online http://ws.strikeiron.com/

USDAData?WSDL
[29] V.Zadorozhny, L.Raschid, M.E.Vidal, T.Urban, and L.Bright, Efficient Evaluation of

Queries in a Mediator for WebSources, Proc. of the 2002 ACM SIGMOD international
conference on Management of data, 85-96, 2002.

