
Modelling Patterns for Deep Web Wrapper Generation

Thomas Kabisch and Susanne Busse

University of Technology Berlin
{tkabisch and sbusse}@cs.tu-berlin.de

Abstract. Interfaces of web information systems are highly heterogeneous. Additionally to schema
heterogeneity they differ at the presentation layer. Web interface wrappers need to understand these
interfaces in order to enable interoperation among web information systems.
In contrast to the general scenario it has been observed that inside of application domains (e.g. air
travel) hetergeneity is limited. More in detail web interfaces share a limited common vocabulary and
use a small set of layout variants. Thus we propose the existence of web interface patterns which are
characterized by these two aspects: the used vocabulary on the one hand and the common layout
of pages on the other. These patterns can be derived from a domain model which is structured into
an ontological model and a layout model.
The paper introduces metamodels for ontological and layout models and describes a model driven
approach to generate patterns from a sample set of web interfaces. We use a clustering algorithm to
identify correspondences between model instances. This pattern approach allows for the generation
of wrappers of deep web sources of a specific domain.

1 Introduction

Web data sources offer a huge spectrum of information. The hidden web, which refers to all web
database sources, today contains more than 400 times of the amount of static web pages. Dynamic
web data sources are mostly accessible through two interfaces: a form-based query interface and a
result interface. Both offer an interface schema which does not need to be similar to the underlying
database schema.
In contrast to classical databases, web source interfaces are designed for human usage only. Thus
each interface schema is hidden behind a representation layer which tends to be unstructured and
changes frequently. In order to make these sources available for higher order applications or to
integrate them into federated information systems, a wrapping of these sources needs to be applied.
Web data sources offer their content only by a restricted query interface which is frequently sub-
ject to change. In order to achieve interoperability with such data sources wrappers need to be
constructed.

Fig. 1. General model for a deep web source

Deep web sources are only accessible in a multiple-step process via a query interface and different
result representation layers (cf. Figure 1). Results are distributed over many pages. Query interfaces
as well as result presentation may be spread over multiple pages, moreover sometimes a clear
distinction between query- and result pages is not possible. In complex web interaction scenarios
their exist pages which contain query forms as well as they present results.
The understanding of heterogeneity of web interfaces is a challenging problem and nearly impossible
to generalize domain independently.

In contrast to the general scenario inside of application domains deep web sources the heterogeneity
can be limited. An investigation of 100 deep web interfaces in the domain of air travel showed that
about 80% of all source interfaces can be classified into four general patterns.

(1,1) (50,1)

(1,30) (50,30)

(1,1)

(100,60)

(100,1)

(1,60)

Fig. 2. Examples for query- and result page fragments of airline web interfaces.

Consider the fragments of airline web interfaces given in Figure 2. Intuitively these fragments
represent common patterns for web interfaces in this domain. They are typical in two aspects:
first the used layout and second in terms of the vocabulary used to describe elements. The three
fields From, To, Date in the given query interface fragment are ordered vertically and layouted
closely connected. This layout usually is significant for semantically grouped elements. Similarly
the presentation of the results in a table with five columns is typical for the domain. On the other
hand, the terms used on both, query interface as well as result interface, will reappear in many
other source interfaces of the domain.
This paper proposes an approach to model patterns describing web interfaces of a domain such that
the wrapper generation problem can be reduced to a pattern matching problem. A method how to
learn these patterns automatically is also presented.
The remaining of the paper is structured as follows. Section 2 introduces domain metamodels which
help to describe ontological and layout aspects of source interfaces in a domain. Section 3 describes
the model driven learning process from a sample set of interfaces. Section 4 shows a clustering-
based approach to derive patterns. Finally in section 5 and 6 we discuss related work and give an
conclusion and outlook.

2 Metamodels for Web Interfaces

This section introduces a model-based approach to describe interfaces of web information systems
in a given application domain. The model correspondences to the observation that information on a
web interface is carried by two paradigms: firstly by the used vocabulary and secondly by a specific
layout. Human interactors use both aspects to understand the semantic of the interface. First a user
interprets terms in their context to get knowledge about objects of interest, second the arrangement
of layout elements helps the user to understand the structure of information. As an example again
consider a typical flight booking interface as depicted in Figure 2. There are labels to understand the
semantic of adjacent fields (e.g. Date). Other pages miss labels, often the arrangement of elements
is sufficient for human understanding of the semantic of a field (e.g. the query interface for a date
field may be separated into three subfields (year, month, day) with no detail labels).
Our domain model reflects both aspects of web interface design. It is separated into two submodels
describing each one of these aspects.
In this section we define a Layout Metamodel which generalizes possible layout variants occurring
at web information systems of an application domain and an Ontological Metamodel describing
ontological structures by terms and semantic relationships between them.

2.1 Ontological Metamodel

The Ontological Metamodel as depicted in Figure 3 is the frame to instantiate simple ontologies in
the domain of interest. These ontologies are restricted to terms occurring on web interfaces in form
of labels, names or instances.
Relation types between terms are limited to the most common ones which are needed to understand
web interfaces: isA, isSynonymTo, isInstance. The isA-relation describes semantic hierarchies

Term

Name

TermRelation

type

*

(t,d)

isInstance isA isSyn

*

Fig. 3. Ontological Metamodel

among terms respectively terms and instances (if exact distinction to isInstance can not be per-
formed). The isInstance is more precise to assign instance terms to concept terms. Instance terms
are obtained from field domain information (e.g. predefined value lists). Finally the isSynonym rela-
tionship is used to group semantically similar terms. The cardinality of the relation in the model is
not restricted, thus a term can be in relation with many other by multiple types of term relations.

2.2 Layout Metamodel

In contrast to the Ontological Metamodel the Layout Metamodel is based on structures which group
information carried by a web interface. The Layout Metamodel is based on logical groups which
strongly correspond to specific structures in terms of visualization and presentation.
The Layout Metamodel is built up hierarchically. This reflects the hierarchical structure of web
interfaces. Our model is influenced from ideas of [17] and others, who have investigated primarily
query interfaces and noticed the hierarchical structure. We generalize the model to all kinds of pages
which are relevant for web information systems. More over hierarchies correspond to the HTML
data model. We identify three levels of structural layout building blocks in web interfaces: Page
Level, Group Level and Field Level the latter two will be denoted as PageElement Level. Elements
of a lower level compose elements of the next higher level. This is denoted by the AssociationClasss
Composition, whereas each composition is ordered, thus each subelement has a Position attribute.

(t,d)

(t,d)

*

(t,d)

(t,d)
1

Field

Domain

QueryFieldErrorGroup QueryGroup MixedGroup ResultGroup ResultField

GroupPage

URL

PageElement

Label

Shape

Coordinates

FormShape

Style

TabShape

RowNumber
ColNumber
Headertype

Composition

Position
0..1

first nextnext

*

1

first

Alignment

type

0..1

Alignment

type

Composition

Position

1 *

*

Fig. 4. Layout Metamodel

We now going to describe elements of each level in short.

Page Level The upper most logical unit is a page, whereas we do not distinguish at this level
query and result pages because of the existence of intermixed forms of pages which share properties
and behavior of query- and result pages (e.g. in the flight domain an additional refine selection page
which is dynamically created from first query step results). Thus the distinguishing is shifted to the
PageElement level.

PageElement Level PageElements are building blocks of pages. Each of them is characterized
by two main properties: Shape and Label. A Shape refers the primary layout aspects, thus it has a
surrounding bounding box and is specialized into (TabShape) for tabular layout of subelements and
(FormShape) for a form-style presentation.
A Label refers to a text element visible at the page which is logical assigned to that PageElement.
Moreover each PageElement is aligned to its neighboring PageElements (comp. Alignment). Possible
alignment types are horizontal or vertical.
Group Level Groups represent containers of fields which build up a higher semantic concept.

Consider the introducing example in Figure 2. The table there presents a group, all fields which
are grouped together build up the semantic concept of a flight description. Commonly grouped
elements (e.g. fields) are layouted closely together, thus a group recognition by identifying layout
structures is possible.
The distinction between query interface and result representation is accomplished at group level.
Thus groups are specialized into the corresponding group types QueryGroup and ResultGroup.
Moreover an error detection is important for page recognition, thus an additional specialization
is ErrorGroup. Finally sometimes an exact distinction of query or result is not possible (e.g.
selecting of prior retrieved flights by the user) thus we define MixedGroups to carry out this
issue.

Field Level Fields are understood as smallest building blocks of pages. Most properties of fields
are similar to that of groups. Fields can be aligned to each other, composed to groups and do
have a label. We distinguish query interface fields (e.g. HTML input element) and result fields
(e.g. table cells). Moreover fields are associated to a bounding box and have an assigned shape.
In contrast to groups fields can have information about their domain of possible values.

2.3 Integrated Metamodel

The integration step of both submodels allows a unified view to a domain of deep web sources and is
the basis for the later derivation of patterns which are used to generate wrappers for the extraction
of information. The integration of both submodels is characterized by two aspects: Intermodel
Correspondences and PageElement Clusters.

Inter-Model Correspondences The Ontological Model and the Layout Model correspond by
their used terms. The Layout Model contains terms mainly in the form of labels. All PageElement-
instances do have a label which is known in the Ontological Model of the domain. Navigating
these correspondence relation brings together layout and ontological information. It also allows
to address synonymous terms, specialised terms (more precise terms) or instances for labels.
If we consider the query interface example given in Figure 2 we get the labels From, To, Date.
The correspondence into the Ontological Metamodel will relate these terms to their synonymous
and related terms, in this case e.g. Departure Airport.

PageElement Cluster Semantically similar PageElements will be aggregated to a cluster. This
idea is inspired from [17] where such clusters are generated for source query interfaces at field
level. Consider the examples from Figure 2. Suppose the query interface shown there is an initial
centroid for a clustering. We obtain three clusters cFrom, cTo and cDate. Fields at other query
interfaces are clustered relatively to these three initial clusters. In a next step groups will be
clustered aggregating information of field clusters. As clusters sum up variants of layout and
ontological extensions of web interfaces, the derivation of the desired web interface patterns can
be performed directly from them.

3 Model Instantiation from Sample Sets of Interfaces

The overall process of pattern learning is structured as follows:

1. Query Interface Analysis
2. Enrichment of the Ontological Model
3. Processing of Result Pages
4. Clustering of PageElements
5. Derivation of Patterns

This section describes the model instantiation by sample interfaces which is covered by the first
three points, the next section investigates the clustering and pattern derivation.

(t,d)

(t,d)

*

(t,d)

(t,d)
1

Field

Domain

QueryFieldErrorGroup QueryGroup MixedGroup ResultGroup ResultField

GroupPage

PageElement

Label

Shape

Coordinates

FormShape

Style

TabShape

RowNumber
ColNumber
Headertype

Construction

Position
0..1

first nextnext

*

1

first

Alignment

type

0..1

Alignment

type

Construction

Position

1 *

*

Term

Name

TermRelation

type

*

(t,d)

isInstance isA isSyn

*

Correspondence Cluster

*

(c)

(b)

(a)

Fig. 5. Integrated Metamodel: (a) inter-Model relations (b) Ontological Metamodel (c) Layout Metamodel

3.1 Query Interface Analysis

Starting points of source analysis are the query interfaces of a sample set of web interfaces. The
analysis is performed in two steps, a pre-processing step and the model initialization.

Pre-processing
Tokenization Similarly to [18] we propose a layout driven tokenization of HTML at the beginning.

A token contains of a HTML source fragment and is enriched by layout information which is hold
in an attached bounding box. The coordinates of bounding boxes are obtained from rendering
by a HTML rendering engine.
Figure 6 gives an example of a simplified tokenization of a query interface.

(1,1) (50,1)

(1,30) (50,30)

<texttoken text = „From:“, pos = „1,1,20,10“>
<inputtoken name = „from“ pos = „20,1,50,10“>

<texttoken text = „To:“, pos = „1,10,20,20“>
<inputtoken name = „to“, pos = „20,10,50,20“>

<texttoken text = „Date“, pos = „1,20,20,30“>
<inputtoken name = „date“, pos = „20,20,50,30“>
...

Fig. 6. Simple query interface and result of tokenization

Logical Parsing using visual Grammar This tokenized presentation of HTML-page can be
transformed into a logical representation which is compatible to the given Layout Metamodel.
The transformation is achieved by using a visual grammar as introduced by [18]. Visual gram-
mars do not only recognize strings but also analyse layout structures. This part of parsing is
domain independent because grammar Productions analyse layout structures only.
Having obtained the logical representation of all pages in the sample set the Domain Model can
be initialized.

Initialization of Domain Model As described before the Domain Model is divided into two
submodels, the Ontological Model and the Layout Model, both get their initial instances from the
learning set of source interfaces.

Initialization of Layout Model Having transformed interfaces they can be inserted into layout
model. At first corresponding Elements are not grouped together. Thus after initialization the
Layout Model is a collection of pages.

Initialization of Ontological Model The Ontological Domain Model consists of concepts/terms
which constitute the domain of interest. Initially terms of interest are labels of PageElements,
Names of Elements or Instances (e.g. obtained from predefined Selection lists). These are nor-
malized (stemming, stop-word removal, sorting) and inserted. A heuristic divides uncommon
and common labels (if a label occurs only once in learning set it is not representative and thus
omitted in the Ontological Model). Common terms are saved and uncommon are pruned.

3.2 Enrichment of the Ontological Model

Acquiring Semantic Information from the Web
Application of Language Patterns Specific linguistic patterns in the English language guide

to semantic relationships among terms. This idea was first stated out by Hearst [11] for the
case of hyponymy. According to Hearst the following patterns describe hyponymy among noun
phrases (NP):

1. NP such as {NP , NP ,... (and | or) } NP
2. such NP as {NP ,}* {(or|and)} NP
3. NP {,NP}* {,} (and|or) other NP
4. NP {,} (including|especially) {NP,}*{or|and} NP

Hyponymy can be interpreted as instance-relationship. Thus the above given patterns can be
used to extract instances from the Web or to validate instance candidates. The approach is
based on [15]. If new instances are searched, a query containing the hyponym and an extraction
pattern is issued. In the case of the attribute airport code the query "airport codes such

as" would be issued to look up potential instances. The result snippets will contain sentences
which contain instance candidates near the pattern. In this example the first result contains
the phrase airportcodes, such as LAX where LAX can be extracted as potential instance.
The second option to use Google and linguistic patterns is the validation of instance candidates.
In this case a whole phrase containing a linguistic pattern is issued (Example query: "airport
codes such as LAX") The approach applies Pointwise Mutual Information (PMI) which is a
measure for co-occurrences of two terms in information theory. It is formally defined

PMI(x, y) = log2

Pr(x, y)

Pr(x) ∗ Pr(y)
(1)

In our context the probabilities will be approximated by the number of results returned by
Google. Thus the above equation is reformulated:

PMI(x, y) =
Num(x, y)

Num(x) ∗ Num(y)
(2)

where x denotes the concept term and x the potential instance.
Wikipedia The online encyclopedia Wikipedia provides a huge corpus of texts defining concept

terms. In the case Wikipedia contains an article that describes the concept term, there is a
high probability that instances are contained in the article. The structure of Wikipedia can
be exploited to find that instances. Many articles contain lists encounting related instances
explicitly. Consider again the example for airport code. The related Wikipedia article contains
a list of all known airports and their codes.
This issue has be subject to prior publication [12]

The Process of Semantic Enrichment In the process of semantic enrichment the above
summarized technologies are exploited in different ways. We use Web knowledge to construct the
Ontological Model as described in the following subsection.

Mining of Relationships First relationships between terms already in the initial Ontological
Model will be mined. Here the language pattern based approach is used in combination with
Google and Wikipedia (comp. [2], [12]). Queries containing the above described linguistic pat-
terns are issued against Google in order to validate instance relationships, the PMI measure as
described above is used to validate the assumed semantic relations.

Finding additional Synonyms Synonyms are essential to enable powerful patterns. Thus the
initial model is enriched by synonyms of initial terms from web. Synonyms are acquired from
WordNet.

Finding Instances The most important process is the enrichment of the model with new in-
stances. Here we combine both strategies described above. If Wikipedia articles to the retrieved
concept exist, first instances from associated lists are extracted. If no sufficient list of instances
can be extracted from Wikipedia, the linguistic pattern approach against Google is facilitated.

3.3 Result Processing

Having enriched the Ontological Model in the way described the analysis of result pages can be
executed.

Generating Queries Prior to analysing the result pages need to be obtained. Thus queries against
existing query interfaces need to be performed. If instances in the Ontological Metamodel or
domain information at query interface level allow an automatic query generation the process is
done automatically, otherwise a user is requested to provide useful query parameters.

Page Analysis The result analysis is different to the analysis of query interfaces because the
structure of result pages is of a higher degree of heterogeneity. Thus parsing of result pages is
more difficult than of query interface pages. Here a comparison-based approach such as [6] will
support the tokenization and visual grammar parsing process.
Having parsed result interfaces the model instance can be updated by layout representation
and new terms found while analysing result pages.
The model now is ready for the pattern derivation process, which is based on Clustering of
semantically close PageElements.

4 Pattern Generation

So far, we have instantiated the layout and ontological model with a sample set but do not have
analyzed relationships and similarities between these instances. Now, patterns are identified that
show similarities between different web sources (i.e. instances). The analysis consists of two steps:
firstly, model instances are clustered to identify similar elements, secondly, patterns are derived
from these clusters.

4.1 Clustering

After importing all sources of the learning set, the clustering can be accomplished. The clustering
algorithm identifies clusters on field level, on group level and on page level using a bottom-up
approach.

“Flight#”:Field

“From”:Field “Dep”:Field

“List of Flights”:Group

“To”:Field “Arr”:Field “Orign”:Field

“Destination”:Field “Arr”:Field

“Flights”:Group

“Dep”:Field “FlightNum”:Field

cFlight

cOrig

cDest

cDep

cArr

g1 g2

cGrp12

Fig. 7. Clustering between two Interfaces

Figure 7 shows an example of identifying a cluster on group level. Using a bottom-up approach field
level clusters are identified at first. In a second step, an aggregation to higher levels (group and
page-level) is processed.

Field-Level Clusters Field-level clustering is based on ideas in [17] and [7]: two fields belong
to the same cluster if they share similar names, labels or domains. Similarity is defined on
synonyms and on linguistic methods.

Group-Level Clusters Two groups belong to the same cluster if they share all field clusters or
at least if the set of fields is a real subset of the other.

Page-Level Clustering Two pages belong to the same cluster if they share all group clusters or
at least if the set of group clusters of the one page is a subset of the set of the other page.

Group- and Page-Level Clustering Consider the example in Figure 7. Supposing all fields
are clustered correctly as shown in the figure we can build up the group level clusters. Initially, the
following clusters exist at field level:
clusters = {cFlight = {”Flight#”, ”FlightNum”}, cOrig = {”From”, ”Origin”},
cDest = {”To”, ”Destination”}, cDep = {”Dep”}, cArr = {”Arr”′}}
We choose one page and try to build up higher order clusters based on groups existing on that
page. Suppose we start with g1 = (Field(”#Flight”),Field(”From”), Field(”To”), Field(”Dep”),
Field(”Arr”)). In this case our initial field clusters are all that which appear in g1.
Now, we check other groups whether their fields belong to one of the clusters which build up the
initial group and other way round. If there exist no fields that belong to clusters of fields of other
groups, a group-level cluster is found. In the given example we would check whether the fields of g2

are in a cluster of g1 and whether all clusters in g1 have corresponding elements in g2.
The algorithm in Figure 8 gives a detailed description on how to identify group-level clusters. It
consists of the following steps:
1. Take the groups of one page to initialize group-level clusters.
2. For each group of other pages check if it could be assigned to one of the initial group-level

clusters using the condition on the groups’ fields.
3. For the remaining groups that could not assigned yet, repeat step one and two to find clusters

in the remaining set.

groupClusters := ∅
restGroups := {g| ∈ Group}
// if there are remaining groups (step 3)
while restGroups 6= ∅
// initialise group-level clusters:
// all (remaining) groups of one selected page build group clusters (step 1)
choose pi from {pi|pi ∈ Page ∧ ∃g ∈ restGroups : g part of (pi)}
curCentroids := {cg|cg ∈ restGroups ∧ cg part of pi}
for each cg ∈ curCentroids

groupClusters := groupClusters ∪ {{cg}}
restGroups := restGroups − curCentroids
// for each other group check whether it can be associated to a group cluster (step 2)
for each rg ∈ restGroups

for each cg ∈ curCentroids
// curGroupCl is the set of all groups part of the cluster of cg
curGroupCl := {g ∈ gCl — gCl ∈ groupClusters ∧ cg ∈ gCl}
// it can be associated if no field belongs to another cluster
if ((∀fi ∈ rg, clfi ∈ {clfi|clfi part of cluster(fi) ∧ clfi part of pi} : clfi part of cg)

and (∀fj ∈ cg, clfj ∈ {clfj |clfj part of cluster(fj)∧ clfj part of pi} : clfj part of rg))
then curGroupCl := curGroupCl ∪ {rg}

restGroups := restGroups − {rg}
return groupClusters

Fig. 8. Algorithm for group level clustering

4.2 Patterns Extraction

We can now derive a grammar representing the identified patterns. Again, we construct the grammar
bottom-up. Considering our example in Figure 7 we derive the following productions representing
semantical patterns.

//Field Level Clusters

C_Flight ::= Field("#Flight") | Field("FlightNum")

C_Orig ::= Field("From") | Field("Origin")

C_Dest ::= Field("To") | Field("Destination")

C_Dep ::= Field("Dep")

C_Arr ::= Field("Arr")

//Group Level Cluster

C_Group12 ::= Group(C_Flight, C_Orig, C_Dest, C_Dep, C_Arr) |

Group(C_Orig, C_Dest, C_Dep, C_Arr, C_Flight)

This grammar extends the initial visual grammar toward domain specific tokens.

4.3 Discussion

The derived grammar gives a detailed description of query interfaces and result pages down to
the level of tokens. By analyzing a set of web sources of a domain and by clustering, we identify
similarities in layout and vocabulary. Thus, the grammar consists of many variants that can be used
to generate wrappers for other, unknown web sources.

But this is also a problem: The grammar also covers uncommon variants of patterns. This leads to an
undesirable complexity of the grammar causing an exhausting computation time when analyzing a
new page. Therefore, we make experiments on reducing the complexity on the basis of the clustering
results.
There are two possibilities for reduction:

1. a brute-force pruning of uncommon production rules: small-sized clusters indicate uncommon
patterns that should not be represented in the grammar. Thus, these production rules are
removed.

2. enhancing the grammar by prioritization of production rules: rules representing large-sized
clusters are checked at first when analyzing a new page, rules determined from small-sized
clusters not until a possible rule could not be found before.

This process is accomplished in a top-down manner: A pruning of higher level productions allows
for a pruning on lower levels. As already said, the size of the clusters controls the reduction process.
Thereby, a fixed number can be used as the threshold of a small cluster or a relative distinction can
be done eliminating rules determined from the k smallest clusters.

5 Related Work

Early work in the field of web wrapper generation investigates the extracting structures [4], [3], [1],
[5] and others. The main focus of these works is to recognize regular structures at result pages.
Other approaches use domain specific extraction ontologies [8].

Another direction of research concentrates on query interfaces with focus of source integration [9],
[17]. Whereas [17] develops a measure how to integrate fields by clustering them to semantically
close groups. [7] investigates the special aspect of choosing a right label for fields in integrated query
interfaces.

[14] brings both interfaces together, reuses information which reappears in both interfaces in order
to infer schemes.

An interesting aspect is the supposing of an “hidden” visual grammar, which was first published
by [18].

The idea to use language patterns to mine semantic relations was first published by [11], [2] first
uses these ideas in the web context, finally [15] analyses query interfaces for integration by language
patterns.

Related to these approaches are ontology generation tools, like the Ontobuilder [13] or the DeepMiner-
System [16], which takes query interfaces as basis to generate domain ontologies. This part is related
to the semantic enrichment in our approach.

All of related work delivers solutions for aspects of the wrapping of web information systems. They
all concentrate to specific detail problems. Some of the solutions are part of bigger systems such as
the WISE-Integrator [10], but the general focus of the work is different to our approach. To the best
of our knowledge no one presents a model based solution and a clustering based pattern generation
approach.

6 Conclusion

Even if interfaces of web sources in general are highly heterogeneous, the interfaces and result pages
of deep web sources of a specific domain share both common layouts and vocabulary. This paper
has shown how we can use this fact to identify patterns at layout and ontological level to make web
source wrapping easier. We presented a model-based approach for the recognition of patterns for
web wrapper generation. The main contributions are

– an integrated view to ontological and layout-based aspects of web query interfaces and result
pages

– a clustering-based approach to learn semantic web patterns from a given set of web sources

The patterns allows for generation of a grammar useful for the wrapping of unknown sources by
pattern matching. Moreover, it becomes easier to handle changes of web interfaces due to design
or schema adoptions as this evolution can be understood as pattern transformation. Thus, the
re-adjustment of a wrapper is no big effort.
Currently, the pattern grammar is directly discovered from clusters. As the clustering algorithm
produces clusters for all fields of the web sources, the grammar can contain many alternative rules,
even if some of these rules only represent a small amount of web sources. We proposed to improve
the grammar complexity by pruning strategies, that identifies rules representing such outliers.
The next steps of work will contain

– more experiments with different pruning strategies for grammar reduction;
– the analysis of grammar transformations to integrate a precedence of production rules;
– the integration of algorithms that allows for inference of more semantic relationships between

terms resulting in a better ontological model of the domain;
– the identification of patterns on a higher abstraction level than fields or groups. Particularly,

we want to learn patterns on a dialog level.

References

1. Arvind Arasu and Hector Garcia-Molina. Extracting structured data from web pages. In
SIGMOD ’03: Proceedings of the 2003 ACM SIGMOD international conference on Management
of data, pages 337–348, New York, NY, USA, 2003. ACM Press.

2. Philipp Cimiano and Steffen Staab. Learning by googling. SIGKDD Explorations, 6(2):24–34,
DEC 2004.

3. William W. Cohen. Recognizing structure in web pages using similarity queries. In AAAI/IAAI,
pages 59–66, 1999.

4. William W. Cohen, Matthew Hurst, and Lee S. Jensen. A flexible learning system for wrapping
tables and lists in html documents. In WWW ’02: Proceedings of the eleventh international
conference on World Wide Web, pages 232–241. ACM Press, 2002.

5. Valter Crescenzi and Giansalvatore Mecca. Automatic information extraction from large web-
sites. J. ACM, 51(5):731–779, 2004.

6. Valter Crescenzi, Giansalvatore Mecca, and Paolo Merialdo. Roadrunner: Towards automatic
data extraction from large web sites. In VLDB ’01: Proceedings of the 27th International
Conference on Very Large Data Bases, pages 109–118, San Francisco, CA, USA, 2001. Morgan
Kaufmann Publishers Inc.

7. Eduard C. Dragut, Clement Yu, and Weiyi Meng. Meaningful labeling of integrated query
interfaces. In VLDB’2006: Proceedings of the 32nd international conference on Very large data
bases, pages 679–690. VLDB Endowment, 2006.

8. David W. Embley, Douglas M. Campbell, Randy D. Smith, and Stephen W. Liddle. Ontology-
based extraction and structuring of information from data-rich unstructured documents. In
CIKM ’98: Proceedings of the seventh international conference on Information and knowledge
management, pages 52–59. ACM Press, 1998.

9. Bin He, Kevin Chen-Chuan Chang, and Jiawei Han. Discovering complex matchings across web
query interfaces: a correlation mining approach. In KDD ’04: Proceedings of the 2004 ACM
SIGKDD international conference on Knowledge discovery and data mining, pages 148–157.
ACM Press, 2004.

10. Hai He, Weiyi Meng, Clement Yu, and Zonghuan Wu. Automatic integration of web search
interfaces with wise-integrator. The VLDB Journal, 13(3):256–273, 2004.

11. Marti A. Hearst. Automatic acquisition of hyponyms from large text corpora. In Proceedings of
the 14th conference on Computational linguistics, pages 539–545, Morristown, NJ, USA, 1992.
Association for Computational Linguistics.

12. Thomas Kabisch, Ronald Padur, and Dirk Rother. Using web knowledge to improve the wrap-
ping of web sources. In ICDE Workshops, page 4, 2006.

13. Haggai Roitman and Avigdor Gal. Ontobuilder: Fully automatic extraction and consolidation
of ontologies from web sources using sequence semantics. In Advances in Database Technol-
ogy - EDBT 2006, 10th International Conference on Extending Database Technology, Munich,
Germany, pages 573–576, 2006.

14. Jiying Wang, Ji-Rong Wen, Fred Lochovsky, and Wei-Ying Ma. Instance-based schema match-
ing for web databases by domain-specific query probing. In VLDB ’04: Proceedings of the 2004
Conference on Very Large Databases, 2004.

15. Wensheng Wu, AnHai Doan, and Clement T. Yu. Webiq: Learning from the web to match deep-
web query interfaces. In Proceedings of the 22nd International Conference on Data Engineering,
ICDE 2006, 3-8 April 2006, Atlanta, GA, USA, page 44, 2006.

16. Wensheng Wu, AnHai Doan, Clement T. Yu, and Weiyi Meng. Bootstrapping domain ontology
for semantic web services from source web sites. In Technologies for E-Services, 6th International
Workshop, TES 2005, Trondheim, Norway, September 2-3, 2005, Revised Selected Papers, pages
11–22, 2005.

17. Wensheng Wu, Clement Yu, AnHai Doan, and Weiyi Meng. An interactive clustering-based
approach to integrating source query interfaces on the deep web. In SIGMOD ’04: Proceedings
of the 2004 ACM SIGMOD international conference on Management of data, pages 95–106.
ACM Press, 2004.

18. Zhen Zhang, Bin He, and Kevin Chen-Chuan Chang. Understanding web query interfaces: best-
effort parsing with hidden syntax. In SIGMOD ’04: Proceedings of the 2004 ACM SIGMOD
international conference on Management of data, pages 107–118, New York, NY, USA, 2004.
ACM Press.

