
The xMem Project:
Semantic Memory of Web Interactions

Stefano Ceri, Florian Daniel, Maristella Matera, FrancescaRizzo
Dipartimento di Elettronica e Informazione

Politecnico di Milano
Via Ponzio 35/a, 20133 Milano, Italy

{ceri,daniel,matera,rizzo}@elet.polimi.it

Abstract

Finding a previously visited page during a Web navi-
gation is a very common and important kind of interac-
tion. Although most commercial browsers incorporate his-
tory mechanisms, such mechanisms are typically very sim-
ple indexes of visited pages, sorted according to the time di-
mension. They are not very effective and are quite far from
giving users the impression of a semantically aware, long-
term memory, as it is available to the human brain. In par-
ticular they lack associative, semantic-based mechanisms
that are essential for supporting information retrieval.

This paper introduces the xMem (Extended Memory
Navigation) as a new method to access users’ navigational
history, based upon semantic-based and associative ac-
cesses. Its aim is to imitate some of the features of the hu-
man memory, so as to give users a better understanding of
the context of their searches, by exploiting time-based or-
dering and semantic clues.

1. Introduction

As the amount of information on the World Wide Web
continues to grow, efficient hypertext navigation mecha-
nisms are becoming crucial. Among them, special attention
must be devoted to effective history mechanisms enabling
users to get back to information already met [18].

History tools are common components of Web site in-
terfaces. They aim to support users to go back to the pre-
viously used information. Three factors motivate the intro-
duction of these mechanisms in commercial browsers: (1)
they can help users to navigate through the huge quantity
of information provided by the Web, thus providing access
to information previously visited; (2) they can substitute
search engines for finding old pages and avoid the repli-
cation of navigations along intermediate pages to the desti-

Figure 1. FireFox history mechanism. The
“go” menu displays the last 10 visited URLs
in a stack from the most recent to the old-
est. FireFox also offers a history window that
organizes information in chunks per days.

nation one; (3) they can positively affect users’ activities by
reducing cognitive and physical navigation burdens: pages
can be retrieved with little effort, and users can easily locate
where they have been in the past.

Virtually, all commercial and experimental browsers pro-
vide users with methods to revisit pages of interest. We cat-
egorize them aspassiveandactive. Passive history mecha-
nisms (see Figure 1) are syntactic in nature, resulting from
the navigation actions taken by the user. Active re-visitation
mechanisms, such as bookmarks or the “back” button, have
a more semantic quality and are explicitly created by users
based on their interest level in the page [16].

Most of the results coming from the field of HCI [18,
12, 6, 13] show that more of the 30% of users’ activities

on the Web are based on the use of the “back” button or of
favorites, but they also show that reverse browsing mecha-
nisms are time consuming and cognitively difficult to use,
organize and envision. These reasons have lead us to intro-
duce a new method to access navigational history.

This paper introduces the xMem (Extended Memory
Navigation) project, which aims at providing advanced
memory mechanisms to Web users, intermixing semantic
aspects with the temporal dimension. The xMem solution
requires the classification of information being shown on
the Web according to predefined semantic categories, which
are next used for indexing and retrieving. Such classifica-
tion and indexing are effective for those Web applications
that are previously described to xMem, and in particular
those modeled at a high level of abstraction, by means of
primitives of a conceptual model. However, the xMem ar-
chitecture presented in this paper is quite general and ap-
plies as well to arbitrary Web pages, provided that these
pages being browsed by users are also analyzed in parallel
by the xMem tool by means of suitable wrappers.

The paper is structured as follows. Section 2 describes
the main idea underlying xMem and outlines the goals of
our research. Section 3 then introduces the functional ar-
chitecture of xMem, while Section 4 discusses some issues
concerning design and implementation of the current proto-
type tool. Section 5 provides insight into related work and
describes already collected experiences within the context
of history mechanisms in the HCI field. Finally Section 6
presents some conclusions and gives an outlook over ongo-
ing and future work.

2. ThexMem Web Interaction Memory

The xMem project offers to users a specialized Web site
hosting a repository containing the individual user’s mem-
ory. The key idea of xMem is the “transparent” transmis-
sion to the memory Web site of the URLs of the pages being
browsed by the users. Then, suitable rules extract the infor-
mation from the URLs and populate the memory with se-
mantic content. In the light of the previous considerations,
the aim of our work becomes twofold:

(i) Providing easier and more intuitive navigation-history
retrieving mechanisms. Web navigation can be aided by
novel navigation history tools providing enriched memory
access mechanisms that build on semantics-based search
criterions categorizing available pieces of information.The
xMem approach further puts special focus on accessing the
long-term memory and thus fosters the active use of history
data.

(ii) Fostering ubiquitous accessibility of the navigation
history by making it accessible over the Internet. The gath-
ered and classified information must be always reachable in
order to become an active help facility that can be integrated

within the user’s browsing environment.
In order to provide users with some added value (with re-

spect to usual history mechanisms), besides chronologically
ordered lists of URLs, xMem also supports further seman-
tics in presenting history data. So-called semantic classes or
categories are associated to groups of URLs in order to pro-
vide high-level meanings for the contents of the related Web
sites. For associating URLs and categories, proper filters
can be defined, which allow specifying syntactic rules de-
scribing relationships between specific URL structures and
categories.

xMem also provides a mechanism for automatically de-
riving semantic classes starting from application specifica-
tions expressed through WebML conceptual models, and a
set of generic filters that apply to any WebML application.
WebML is a conceptual modeling language that provides a
set of primitives for the design of information content and
hypertext front-end of Web applications [17, 7].

Rules are particularly powerful when the pages being
browsed by the user have a known design, because the con-
tent can simply be derived from the URL; when instead the
design is not known, pages can be re-materialized and then
analyzed by suitable rules, which are capable of detecting
the main concepts being displayed by the pages themselves.
In any case, xMem maintains remote log data (with respect
to users and 3rd party Web servers) about navigation ac-
tions of users, by tracking the requested URLs. We adopt
an online logging mechanism that allows accessing history
data, classifying navigated contents and calculating related
statistics at runtime.

3. xMem Architecture

The software architecture of the xMem tool prototype
is primarily influenced by two goals of our approach: (i)
adopting remote logging mechanisms for (ii) providing on-
line access to logged data. Remote logging builds on the
client-server paradigm, online log access suggests split-
ting the overall tool into two logical components, one for
each communication direction. Figure 2 graphically depicts
the resulting functional architecture, roughly divided into
Client PC, 3rd party Web applicationsandxMem Server.

Users navigate the Internet by means of a common Web
browser by continuously requesting pages of Web sites or
applications residing on 3rd party Web servers. In order
to take advantage of the semantic navigation history facili-
ties of xMem, users must register themselves as new xMem
users and install the so-called xMemTracker Clienton their
client PCs. This component is in charge of monitoring user
navigation actions and communicating them to the xMem
Tracker Server, which is responsible for feeding the incom-
ing messages into theURL Repository. TheClassifiercom-
ponent parses syntactic filters with respect to logged page

Generic
Web sites

Instrumented
Web sites

WebML
sites

User

Client
PC

Tracker Client

Navigator

xMem Server

URL
Repository

User Repository

Classifier

3rd party Web applications

Tracker
Server

Semantics
Repository

Filter Repository

Figure 2. xMem functional Architecture.

requests and associates them to semantic classes stored in
theSemantics Repository. By means of the so-calledxMem
NavigatorWeb application, users can then access their per-
sonalized navigation history over the Internet and interac-
tively browse logged data at a comprehensible level of ab-
straction.

The box 3rd party Web applications is divided into
Model-based Web sites, Instrumented Web sitesandGeneric
Web sitesfor representing the different “semantic expres-
siveness” they enclose with respect to the xMem infrastruc-
ture. We will deepen this aspect later on.

3.1. Data Repositories

The xMem project consists of several components that
share the same data source. The implementation of the cor-
respondent database depends on the expected load at run-
time and can consist either in a single database on the xMem
server itself or in a freely distributed server architecture.
However, at a conceptual level, we distinguish mainly four
logical “repositories”, each dedicated to collect functionally
similar data:

• User Repository: gathers user profiles and prefer-
ences for registered xMem users and divide users
into different user groups for managing access rights.
These data are the basis for personalizing contents
and history data and allow fulfilling different func-
tional requirements with respect to user groups. The
User Repository must implement at least the follow-
ing user groups:xMem User, Site DeveloperandAd-
ministrator. xMem users are those that use the history
tool, developers are those providing xMem support for
their Web sites and administrators manage the overall
xMem tool.

• URL Repository: contains the actual log data for each

registered user; visited Web pages are stored as URL
strings. The xMem Tracker accesses the URL Reposi-
tory for adding HTTP requests, but also Navigator and
Classifier make active use of it. The URL Repository
masters the highest workload.

• Semantics Repository: collects the so-called seman-
tic classes, which provide high-level meanings for
classifying the contents of Web pages. Such classes
can be defined either automatically or manually by 3rd
party site designers. Each adhering Web application
is provided with its own set of classes. For WebML
applications, a subset of the application’s schema is
stored within the Semantics Repository for deriving se-
mantically relevant concepts.

• Filter repository : contains the set of filters that allow
matching URLs and semantic classes by means of syn-
tactic similarities. Each application has its own set of
filters. A default set of filters applying to WebML ap-
plications is provided by xMem, for all other applica-
tions filters can be specified manually or automatically,
as explained in section 3.6.

3.2. The xMem Tracker

The history tracking mechanism of xMem comprises two
components, one residing on thexMem Server, the other
running (as background process) on the client PC. At each
navigation action, theTracker Clientautomatically sends
a message to its server counterpart communicating xMem
user identifier, and requested HTTP URL. TheTracker
Serverinserts the request into the underlying URL Reposi-
tory, which terminates the tracking process for that URL.

3rd party Web applications

Developer

Filter
Repository

Semantics
Repository

WebML Schema

Import Filter

Analyzer

Model-based
sites

Instrumented
Web sites

Generic
Web sites

xMem

Class
Definer

Filter
Definer

Figure 3. Defining semantic classes for Web
sites.

3.3. The xMem Navigator

The interactive component of xMem, theNavigator, is a
Web application developed through WebML; as such, it is
accessible over the Internet, and can be deployed on arbi-
trary Web servers. Hence, for accessing their history data,
users do not need to get used to new interaction paradigms.

The Navigator provides the interface toward history data.
It allows users to choose between several mechanisms for
accessing navigated pages. Besides chronological and al-
phabetical lists of URLs, it also shows a hierarchical list
of the concepts (semantic classes) that summarize the con-
tents visited by a user. The finest granularity is given by the
tracked URLs themselves and allows users to comfortably
recall the actual page searched. Also, the Navigator allows
users to modify their user profiles.

3.4. The Classifier

One of the core components of xMem consists in the
Classifier. Its inputs are the tracked URLs and the set of
filters of the respective Web application. The Classifier
runs those filters over the tracked URLs for constructing
semantic associations betweenURL RepositoryandSeman-
tics Repository. It therefore acts as an interpreter of syntac-
tic filters, according to their definition in section 3.6.

3.5. Defining Semantics for Web Pages

For providing users with semantic clues about their past
navigation actions, xMem makes use of collection of se-
mantic classes contained in theSemantics Repositoryand
describing the navigated pages by means of a natural lan-
guage, easily comprehensible by users. In this section we
show how semantic classes are specified in xMem during
subscription of adhering applications.

Subscription in this context means providing, through an
appropriate user interface for Web designers, the descrip-
tion of core pieces of information about the application to
be added: a unique base URL identifying the application, a
set of semantic classes in an automated or manual way, and
the qualifying filters for each class. Designers need to sub-
scribe their Web sites in order to gather full xMem support.

For the purpose of defining semantic classes, we distin-
guish several kinds of Web site implementations. Web ap-
plications can be developed using conceptual models, such
as WebML, and even automatically generated [19], or they
may be freely hand-coded without any particular design
method. The former are characterized by a certain degree of
already intrinsically modeled high-level semantics, whereas
the latter do not provide any additional information besides
plain HTML code. Thus, according to the availability of ad-
ditional semantics and the way this can be fed into xMem,
we distinguish three families of Web sites (see Figure 3):

• Model-based sites: are those designed by means of
WebML and implemented according to WebML de-
sign rules. Intrinsically, the WebML design primitives
already contain additional information with respect to
plain HTML (e.g. the name of content units within
pages, such asBook Detailsor Author) that can be fed
into the Semantics Repository and thus can be inter-
preted as semantic classes. In addition to the seman-
tics provided by the schemas, WebML applications
are characterized by coherent URL formats throughout
the whole application that easily can be translated into
syntactic filters, which can be generalized and applied
to any WebML application. Starting from WebML
schemas, it is thus possible to provide a basic set of
universal filters (permanently stored within theFil-
ter Repository) and to automatically extract semantic
classes associated to them. In Figure 3 this process is
expressed by means of theImport Filter block, which
takes in input a WebML schema and provides in output
the set of semantic classes describing the site’s con-
tents.

• Instrumented Web sites: are those sites that do not
rely on WebML schemas or other modeling languages,
but whose developers adhere to the xMem project any-
way. For this purpose, xMem provides theClass De-
finer andFilter Definer tools, which allow providing
the additionally needed semantics manually by means
of proper semantic classes and specifying a set of fil-
ters matching the peculiarities of the Web site’s URL
encoding conventions. Depending on the conventions
adopted within the site, filters may differ in their com-
plexity. Hence, the full features of xMem can also be
exploited by any Web site whose designer adheres to
xMem.

Target Type Condition
Schema string contains, doesn’t contain

User-Info string contains, doesn’t contain
Host string contains, doesn’t contain
Port int equals, differs from
Path string contains, doesn’t contain

Query string num. parameters, exists
parameter

Fragment string exists, contains, doesn’t
contain

Parameter string, float* contains, doesn’t contain,
equals, differs from,
greater than, less than

* Depending on the adopted condition expression, pa-
rameter types are assumed being either string or float.

Table 1. Target components and available
conditions.

• Generic Web sites: are those applications that do
not know about the xMem project and thus neither
provide WebML schemas nor other forms of addi-
tional information that could help classifying recorded
navigations. Tracked URLs of this category are re-
materialized by a specialAnalyzermodule (cf. Figure
3), which parses the respective HTML encoding for
automatically extracting significant “keyworks” sum-
marizing the contained contents as accurate as possi-
ble. Extracted keywords representsemantic classes,
and are associated to the analyzed URL by means of
proper filters, as well generated automatically by the
Analyzer. The keyword extraction algorithm devel-
oped so far is still based on pure syntactic heuristics;
semantic or ontology-based ones are under investiga-
tion and promise to enhance the accuracy of the key-
word extraction algorithm on the one hand, and to pro-
vide means for clustering and categorizing keywords
on the other one.

Although a good design of Web sites should allow cover-
ing with proper semantic classes most of their pages and
contents, we do not believe in the usefulness of a complete
coverage of all pages and contents by means of semantic
classes. A semantic classification of error pages, for exam-
ple, would be rather confusing to users. Therefore, even
within a subscribed application, there may be tracked pages
without any further associated semantics.

3.6. xMem Filters

According to their scope within xMem, we distinguish
two kinds of filters, global filters and local filters.Global

 URI syntax: [scheme:][//authority][path][?query][#fragment]

Scheme Authority* Path Query Fragment

P1 Name

Value

Host PortUser Pn Name

Value

…

* The component Authority is accessible through its sub-components.

Figure 4. Decomposing URL strings and
defining rules over its components.

filters are built upon the URLs of applications and check
whether incoming URLs belong to one of the subscribed
applications. Their scope is global within xMem and thus
they are applied to all tracked requests. Suitable global fil-
ters are automatically created during the subscription of an
application.

Conversely,local filters are only applied, once a URL
has been associated to a particular application. The mech-
anisms mentioned in the previous section are adopted for
deriving semantic classes covering the significant pages of
an application. For each of these classes proper filters must
be specified. Due to the fact that more different URL struc-
tures could lead to the same concept, several filters may be
defined for the same class. At least one of them must match
a particular URL in order to associate URL and class.

Filters consist of one or more rules and one action. For
executing the action, which consists in associating URLs
and semantic classes, all rules of the filter must evaluate to
true. A rule is composed of target, condition and value; Ta-
ble 1 shows the possible instances for the first two, thevalue
is provided by designers (cf. Figure 4). Target elements are
derived from URLs according to [4], which classifies URLs
registered by thexMem Trackeras absolute, hierarchical
and server-based URIs (Uniform Resource Identifiers). Fig-
ure 4 graphically illustrates the applied decomposition of
URLs and also shows how, based on the resulting atomic
components, rules are defined by means of a proper Filter

Figure 5. The xMem prototype data source.

Wizard. TheFilter Wizard provides an interactive user in-
terface for defining rules for filters. The so collected user
inputs are translated at runtime into suitable regular expres-
sions, one for each rule of the filter, and evaluated for the
respective target component.

4. Prototype

We are currently working on a prototype tool for assess-
ing the usability and usefulness of the xMem concepts. The
following subsections provide insight into the state of the
art of xMem. For presentation purposes, the proposed Web
interface and the structure of the underlying data source are
a simplification of the actual prototype.

4.1. Data Model

Figure 5 shows the Entity-Relationship diagram of the
prototype data source containing the repositories outlined
in section 3.1 within a single database. The database is
shared among the various xMem components, but its design

is particularly tailored to the requirements of theNavigator
WebML application.

Entities and repositories can be matched as follows: The
entitiesUser, GroupandSiteViewimplement the user model
within WebML applications [17] and thus respond to the
needs of theUser Repository. The entitiesxMemUserand
Developerfurther refine the repository, representing spe-
cific properties of the two user classes. TheURL Repos-
itory can be associated to the entityRequest, that collects
navigated pages and request times. In addition, in case of
WebML applications, also references to the specific data in-
stances visited can be stored (entityData Instance). TheSe-
mantics Repositorycomprises the entitiesApplication, En-
tity, Pageand Unit for collecting the data extracted from
submitted WebML schemas. The entitiesCategory, Enti-
tyCategory, UnitCategoryandPageCategorythen build the
properSemantics Repository. Finally, theFilter Repository
consists of the entitiesFilter andRule. A filter can have one
ore more rules and is associated to its specific category. The
rule comprises the attributesTarget, ConditionandValue,
which reflect the rule structure introduced in section 3.6.
Each application has its own set of categories and thus its
own set of associated filters.

4.2. The xMem Tracker

The Tracker is a small Java HTTP sniffer program to be
installed on the client PC. Once launched, it operates in a
completely transparent manner in the background. Users
have the option to turn the tracker on and off, thus activating
and de-activating xMem. While running, it is accessible by
means of a small tray icon in the operating systems’ taskbar.
A mouse click on the icon opens the context menu and pro-
vides the user with facilities for managing his authentica-
tion data and for starting and stopping the tracking service.
No data is sent without the explicit permission of the user.
Tracked page requests and user identifier are encoded and
sent to the xMem Server via the Internet as common HTTP
requests.

The Tracker Server consists of a single Java servlet that
listens for incoming messages and, after successfully au-
thenticating the user, adds the request properly formattedto
the user’s log data.

4.3. The xMem Navigator

Figure 6 gives an idea of the Web interface of xMem
and outlines the basic functionalities offered by the Nav-
igator prototype. Two landmark areas (reachable through
the application’s main menu) are available, one concerning
user profile management, the other providing proper his-
tory browsing facilities. The home pageUser Detailsof
the site view (labeled with an “H”) also is the default page

Figure 6. WebML schema for the site view of
xMem users.

(label “D”) of the User Profilearea; thus it is presented
to users as first page once they enter the area. The area
Personal Historyhas as default page the pageWeb Sites
chronologically. That page and the pageWeb Sites alpha-
betically respectively show chronological and alphabetical
lists of navigated requests, personalized with respect to the
current user. The pageNavigated Concepts, at the other
hand, exploits the additional semantics stored in the data
source in form of different categories and associated by the
wrapper mechanism to the visited pages. This results in a
page that provides a hierarchical list (in form of a so- called
multidata unit) of navigated Web sites structured by mean-
ingful categories. From this point on, the user can browse
the concepts according to several criteria (similar concepts,
concepts seen during previous or subsequent visits, etc.).

Once a user has successfully retrieved the concept he was
searching for, the leaves of the hierarchical list show all
URLs that match the interactively specified access condi-
tions. By clicking on one of the URLs the user is forwarded
to the actual page (within a new browser window).

4.4. The xMem Administration Tools

Besides the site view for xMem users, the Navigator also
provides proper site views for 3rd party application design-
ers, administrators and a public site view for logging in.
The administrator’s site view serves mainly the purpose of
managing users, groups and applications. The designer’s
site view allows subscribing Web applications, being they
WebML applications or not. A detailed presentation of this
two site vies is out of the scope of this paper; however, sec-
tion 3.5 and Figure 3 provide little insight.

4.5. The Classifier

The Classifier is currently implemented as integrated
component of the Tracker Server. The URL decomposition
mechanism is based on the two Java classesURL andURI,
whereas the filter parsing mechanism makes extensive use
of the Javaregex package. Incoming URLs are instantly
categorized and stored into the database, by extracting se-
mantic information such as entity names or object instance
identities from them.

5. Related Work

Most commercial browsers incorporate history mecha-
nisms. However, users still do not extensively use them.
Catledge and Pitkow [6] state that these complex history
mechanisms are often not used; and the 40.6% of the user
actions involve the browser’s back button. In [12] results
show that “0,1% of page accesses were through the history
list, 42% of page accesses used the back button” for all of
the pages navigated by subjects.

These and many other findings suggest that current
browsers lack an efficient method for revisiting Web pages,
and that “current interface for browsing on the WWW are
still primitive... They do not aid users in accessing already
visited pages without much cognitive demand” [13].

History mechanisms can be distinguished inpassiveand
active. The first class works by maintaining some kind of
information about a particular Web session. The browser
stores some subset of the pages visited by the user, typi-
cally in a list. However, since most history mechanisms
store only the links on the last spoke traversed (i.e., the cur-
rent path in a depth-first traversal), by using this mechanism
the user may only reach a small portion of previously visited
pages. If, when deep in a search tree, the user finds an inter-
esting page (i.e., one to which she/he may wish to return), it
may be difficult to preserve that link while continuing with
the search.

Active mechanisms, such as bookmarks, provide users
with a method to mark interesting Web pages they would

like to return to. For most people, however, bookmarks cre-
ate a new difficulty: as users find a large number of pages
interesting, bookmark lists quickly become long and un-
wieldy. Although most browsers provide mechanisms for
editing and maintaining bookmark lists, they are not an
ideal mechanism for maintaining context within a single
browsing session. In general, it seems that active history
mechanisms such as the back button and bookmarks func-
tion are more effective to support short and long term in-
formation memories retrieval than what the passive mecha-
nisms do. In fact, if a user is navigating a Web site it is more
easy to him to go back to the pages he wants to revisit using
the back button then opening the history mechanism win-
dow, analyzing the information displayed as URL, choosing
one among them and click on it.

On the other side, users experience frustration in retriev-
ing already visited pages when a certain amount of time
is passed from the first visit. The reason is that the con-
text in which that page was being viewed is lost. The
path-following method (on which the most part of the his-
tory mechanisms are based) for retrieving long term his-
tory memories imposes users to traverse in reverse order
their previously visited pages. This method relies on users
remembering their navigational behaviors, either because
they must recall the page visited and their sequence or be-
cause they must realized that they can return to a page by
retracing a particular pathway. Indeed, the lack of efficient
mechanisms for maintaining context may be partially re-
sponsible for this phenomenon.

Few researchers have considered new metaphors for
browsing and collecting information on the Web; we next
briefly describe their work. Most of the methods introduced
in the following use a mix of graphical representations and
a sense of context. Some of them place on the end users
an extra request of cognitive effort. Most of them are fea-
tures of experimental browsers and are only able to show
syntactic information, not semantic information.

IBM’s Web Browser Intelligence (WBI) tool [1] is a
browser companion with personal history functions in-
tended to make Web browsing more efficient by annotating
hyperlinks on all Web pages with traffic signals, and this
performs well for functions such as: remembering visited
pages, providing a keyword search through the text of pages
already visited, noticing patterns in the Web browsing be-
havior and suggesting shortcuts, and automatically check-
ing favorite Web pages for change.

Some types of systems present graphical maps through
which a user may navigate. Some are like HTML frames in
that they are created once by the content provider. Others
are created on the fly by the Web browser. For example,
WebTOC [15] is an automated system for creating table of
contents (TOC) frames for sets of Web pages. The TOC
frame can be quite useful, and having that frame actually

run a Java program allows it to more dynamically present
the desired information. Its main drawback is that it occu-
pies a large portion of the screen. WebNet [8] is a browser
extension that displays a graphical representation of the hy-
perspace being explored. It does so dynamically, and inde-
pendent of the content provider. In fact it can do so across
many sites. It is a challenge, however, to present the graph
in such a way that the contextual information is highlighted.

DeckScape [5] is an experimental browser based on the
concept of deck. Each deck is a linear stack of pages that
the user can leaf through. As with history mechanisms, if
a user starts from page A and goes to B, B is added to that
stack or deck. However, unlike history mechanisms, if the
user goes back to A and then traverses a link to C, B is not
lost; it remains in the deck of pages. Also, the user can al-
ways revisit any page since no page is ever lost. However,
users are cognitively loaded with the responsibility of main-
taining pages logically in different stacks unless decks are
pruned regularly.

Elastic Windows [13] also provides a mechanism that il-
lustrates graphically the hyperspace in which a user is nav-
igating, but it does so more interactively. If the user selects
a link using this system, the contents of the corresponding
page do not replace the currently displayed page; instead,
the new page is displayed alongside its parent. Selecting
multiple links from a page results in all the new pages being
displayed alongside the parent, but in a smaller size. The
same operations may be performed on any window in the
browser. Users are provided with functionality to manage
the windows by collapsing some sections of the hierarchy,
while maximizing the size of others. Since the complete hi-
erarchy is visible at anytime, users can easily move in the
hierarchy while not losing their search context. The simul-
taneous display of multiple pages again places a manage-
ment burden on the user; screen real estate can easily be-
come cluttered if not managed efficiently. Cyclic links are
not dealt with very well; the same page may be displayed
multiple times, further wasting screen real estate. Elastic
windows enables users to look at many Web pages at once,
whereas a breadth first navigation technique provides a lin-
ear order for web visitations.

Scratchpad is a prototype incorporated in Chimera 1.70
[14], an experimental browser. Scratchpad introduces two
mechanisms to support web navigation: a re-visitation
mechanism called Dogears serves as a set of temporary
bookmarks, and a breadth-first traversal mechanism is
adopted as alternative navigation strategy to depth-first
traversal. Scratchpad is not a history mechanism, but a
navigational planning tool, applied to support users’ visits
of new pages. The information gathered by the breadth-
first search and regarding possible future page visitations
opens new ways for intelligent pre-fetching of those pages,
thereby allowing faster navigation. Both mechanisms may

be added to existing browser technologies [16].
More recently [11] the Microsoft research center has

worked on the systemtuff Ive Seen(SIS), which is able to
support users in retrieving and reuse information already
seen locally on the PC. The system aim at facilitating the
information seeking behavior by providing an index of in-
formation that a user has seen (email, web page, document,
appointment) and, in addition a set of rich contextual cues
about the searched information, made available from the
previous accesses.

All solutions described above respond to the need to
record users’ navigational history (URL lists) for allowing
the successive re- access of visited pages. xMem works
beyond these mechanisms analyzing and interpreting the
structure of recorded URLs and making available the results
of this process to end users. This is obtained independently
from the browser in use.

6. Conclusions

We have argued that current browsing functionalities do
not adequately support retrieving information from a user’s
navigation history. xMem improves passive history mech-
anisms by making use of new semantic criteria to organize
and show the navigational history instead of simply exploit-
ing time-sorted history mechanisms that prevail today. This
retrieving strategy makes navigation to already visited in-
formation easier and more effective because it provides a
much richer notion of semantic context in which informa-
tion has been seen. Context-dependent history mechanisms
sustain users’ episodic memory of the visited web pages.

Further investigations are necessary to refine our proto-
type, especially for what concerns the analysis of generic
Web applications. We are currently studying wrapping tech-
nologies such as LIXTO [2, 3] and RoadRunner [9, 10] to
see if their functionalities apply to the xMem context. We
will also extensively experiment the use of the prototype, so
as to assess its usefulness and usability. We also are inter-
ested to gain insight into the aspects of the history mecha-
nisms that are most frustrating to users in an effort to sug-
gest improvements for such features for future implementa-
tions.

References

[1] R. Barrett, P. Maglio, and D. Kellem. Web browser intel-
ligence: Opening up the web. InProc. of COMPCON’97,
1997.

[2] S. Baumgartner, S. Flesca, and G. Gottlob. Supervised wrap-
per generation with lixto. InProc. of VLDB’01, Rome, Italy,
2001.

[3] S. Baumgartner, S. Flesca, and G. Gottlob. Visual web in-
formation extraction with lixto. InProc. of VLDB’01, Rome,
Italy, 2001.

[4] T. Berners-Lee. Uniform resource identifiers (URI): Generic
syntax. RFC 2396, 1998.

[5] M. Brown and R. Shillner. Deckscape: An experimental
web browser. Proc. of WWW’95: Technology, Tools and
Applications, April 1995.

[6] L. Catledge and J. Pitkow. Characterizing browsing strate-
gies in the world-wide web. Proc. of WWW’95: Technol-
ogy, Tools and Applications, April 1995.

[7] S. Ceri, P. Fraternali, A. Bongio, M. Brambilla, S. Comai,
and M. Matera.Designing Data-Intensive Web Applications.
Morgan Kauffmann, 2002.

[8] A. Cockburn and S. Jones. Which way now? analysing and
easing inadequacies in www navigation.Int. J. of Human-
Computer Studies, 45(1):105–129, July 1996.

[9] V. Crescenzi, G. Mecca, and P. Merialdo. Automatic web
information extraction in the roadrunner system. Proc. of
the DASWIS’01 ER Workshop, 2001.

[10] V. Crescenzi, G. Mecca, and P. Merialdo. Wrapper-oriented
classification of web pages. Proc. of ACM SAC’02), 2002.

[11] S. Dumais, E. Cutrell, J. Cadiz, G. Jancke, R. Sarin, and
D. Robbins. Stuff ive seen: A system for personal infor-
mation retrieval and re-use. InProc. of SIGIR03, July 28
August 1, 2003, Toronto, Canada, 2003.

[12] GVU’s WWW Surveying Team. Gvu’s 10th www user sur-
vey, 1998.

[13] E. Kandogan and B. Shnaiderman. Elastic window: A hi-
erarchical multi-window world wide web browser. InPro-
ceedings of UIST’97. ACM, 1997.

[14] J. Kilburg, G. Niklasch, and W. Edmond.
Chimera-1.70, x11/athena world-wide web client.
http://www.unlv.edu/chimera.

[15] D. Nation, C. Plaisant, G. Marchionini, and A. Komlodi.
Visualizing websites using a hierarchical table of contents
browser: Webtoc. Proc. of Human Factors and the Web’97,
Denver, June 1997.

[16] D. Newfield, B. Sethi, and K. Rayll. Scratchpad: Mecha-
nisms for better navigation in directed web serarching. In
Proc. of UIST’98. ACM, 1998.

[17] Politecnico di Milano. The web modeling language.
http://www.webml.org.

[18] L. Tauscher and S. Greenberg. How people revisit web
pages: Empirical findings and implications for the design
of history systems.Int. J. Human Computer Studies, 1997.

[19] WebModels. Webratio site development studio.
http://www.webratio.com.

