
Database Integration and Querying in the Bioinformatics Domain

Bob Myers1,2,5, Trevor Dix1,2, Ross Coppel1,3, David Green1,4

1:Victorian Bioinformatics Consortium.
2:School of Computer Science and Software Engineering, Monash University, Australia

3:Dept. of Microbiology, Monash University, Australia.
4:Faculty of IT, Monash University, Australia.

5:bob.myers@med.monash.edu.au

Abstract

Given the exponential growth in the amount of genetic
data being produced, it is more important than ever for
researchers to have effective tools to help them manage
this data. This paper describes a system that enables
users, generally biologists, to construct components to
answer specific questions in their field. The system allows
the creation of modules and submodules via top-down
decomposition. Concepts and terms can be defined
through conversation. These are then used when
composing base-level functions to produce code for
modules and for interfacing modules.

1. Introduction

For more than a decade the quantity of genetic data
produced each year has been growing exponentially.
GenBank's database has grown from just over 217 million
base pairs in 1994 to more than 44 billion in 2004 [1],
increasing on average by a factor of 1.7 each year.
PubMed now contains over 15 million citations [2] and is
growing by approximately 450,000 each year. Not only is
the quantity of data increasing but so too is the number of
databases, web-sites and other information sources that a
researcher must cope with. Also, given the ever increasing
number and speed of modern DNA sequencing machines,
micro-arrays and other devices, it seems unlikely that the
flood will abate any time soon. Faced with such an
information overload, researchers need computerized
tools to assist them in making best use of the available
data.

The basic problem is to build a system that enables
users, generally biologists, to construct components to
answer specific questions in their field. The following list
provides examples of questions in the context of the
malaria parasite Plasmodium falciparum:

• Find a list of all proteins that have predicted trans-
membrane anchor sequences and are expressed in
asexual blood stages.

• Find secreted proteins that have disulphide bonds.
• Find proteins with repeats.
• Find allelic variants of this surface protein that have

been identified in Thailand.
• Find homologs in other species and home-in on

conserved sequences.

The authors created a prototype of a system intended
to fulfill some of these needs. Based on a workflow style
graphical interface where the user drags modules from a
palette of tools onto a drawing frame and then connects
the outputs of some modules to the inputs of other, as
shown in figure below.

Sufficient modules were programmed to enable the
system to answer some real-life biological questions in the
domain mentioned above. In the course of developing the

Figure 1: Work flow representation

system some significant problems were encountered
including:
• Modules tend to be extremely complex, requiring

much time and expertise to build.
• Some of the modules were very fragile. A slight

change in a data source, for example, could cause the
module to fail.

• A new module has to be created for each new data
source.

This prototype is described in more detail in section 2.

To overcome these problems it was decided to break
the large modules down into many small units, each one
representing a very basic piece of functionality; for
example, read an HTML page, send an SQL query to a
relational database, find a substring of some text etc.
Because each module is now trying to do much less, it
requires fewer lines of code and is less complex. There
are fewer ways in which a small module can go wrong,
making it easier to trap errors. There will of course be
more modules. However, the system allows
decomposition of modules into submodules. Indeed most
common workflow modules will be sequential, permitting
a functional definition for each in terms of input(s) and
output(s).

The creation of modules and submodules is typical of
top-down decomposition. This allows consideration of
(sub)modules in isolation, thus keeping complexity
manageable. The coding within (sub)modules is a mixture
of top-down and bottom-up. The system allows concepts,
terms etc to be defined through conversation. However
the base-level functions are composed in a bottom-up
manner applying to the defined terms. Section 3 presents
the conversational process within the system.

2. Related Methods

The problem of data integration has been approached
in many ways, some of which are described below. There
is a degree of overlap between some of these approaches,
and many solutions to the problem of data integration
consist of combinations of these approaches.

• Data Warehousing: Data is extracted from its original
location and added to a common, centralized database.
The main problems with this approach is that the
quantity of data is so large that it would require
massive amounts of computing power to handle it, and
there are so many different types of information
sources that a vast programming effort would be
required to write the extraction routines.

• Standardised Databases: Several attempts have been
made to come up with a standard (relational) database
structure to suit all purposes within the Bioinformatics
field. Examples of this are GUS[3] (used for
PlasmoDB, AllGenes, EPConDB, GeneDB etc.),
ACEDB[4] (used for WormBase, DictyDB etc) and
GMOD[5] (used for WormBase, FlyBase, MGI, SGD,
Gramene, Rat Genome Database, EcoCyc, and TAIR).
The main problem with this approach is finding a
format that suits everyone, otherwise leading to a
proliferation of standards, defeating the original
purpose.

• Federated Databases: Data is not amalgamated into a
data warehouse, instead it remains in its original
location and is retrieved on demand. This approach
requires interfaces to each data source to be
constructed. This is manageable if all the data sources
are of a similar type, e.g. relational databases, but it
can become impractical if the data sources vary wildly
in type and structure, requiring expertise in both data
analysis and the subject matter of the data sources.

• Web Services: Applications are made available for
automatic use by other systems via a network. The
main problem here is that each data source would need
to provide its own services and make them generally
available.

• Database Wrappers: Similar to the idea of federated
databases, this consists of a piece of software that
interfaces between the user and the target database.
This software receives queries and returns replies in a
standard format, enabling the user to query multiple
data sources in the same way regardless of the target's
type. This concept requires the software to be
specifically built for each target, requiring expertise in
data analysis and the subject matter.

• Semantic Web: Consists of annotating data sources in
a standardized, machine readable way, so that systems
can extract meaning from them (e.g. the types of entity
represented in the data and how they relate to each
other). Contrast this to the World Wide Web, where
the data sources (web pages) have content, but little
machine readable meaning. Few bioinformatic data
sources have done this so far, although a few do
provide data in XML as well as HTML.

Our initial model for an information system was based
on a combination of the above approaches, and was
developed from the observation that people often draw
flow diagrams to describe the information flow and
processing that they wish to perform. The system interface
consists of a palette of tools and a drawing pane, as shown

in figure 1 above. This work-flow type of interface has
been used in a number of other systems, for example,
DiscoveryNet[6].

Each tool is written as a separate module to perform a
specific task, like read from a specific database or
combine two sets of data etc. Each tool may have data-
streams as inputs and outputs, and a set of parameter type
inputs used to tailor the specifics of its functionality. To
perform some work the user drags tools from the palette
onto the drawing frame, sets the values of any parameters
and then joins the output data-streams of modules to the
input data-streams of others to produce a work-flow type
diagram. When the work-flow is executed, all modules
with no input data-streams (generally functions like
reading from data sources) are run first, each in a separate
execution thread, and their output data-streams are passed
onto the appropriate modules as indicated by the arcs in
the diagram. When a module has received a sufficient
amount of its input data-streams, it too runs and so on
until all modules have been executed. The terminal
modules of the work-flow are generally those that produce
some sort of output for the user (writing a file, producing
a printout etc) and so do not pass their output data streams
onto another module. The example of a simple work-flow
in figure 1 shows two databases being read, their outputs
combined and displayed on the screen.

The initial system was set up with several
representative modules, including:

• Run a TMPRED query (Prediction of Transmembrane
Regions and Orientation) at EMBNet in Switzerland
(http://www.ch.embnet.org/software/TMPRED_form.h
tml).

• Run a SignalP query (presence and location of signal
peptide cleavage site prediction in amino acid
sequences) at the Center for Biological Sequence
Analysis at the Technical University of Denmark
(http://www.cbs.dtu.dk/services/SignalP-2.0/).

• Count amino acids in a protein and selecting proteins
with counts in specified ranges.

• Create the intersection of two sets of proteins.

• Read a number of protein sequences from a FASTA
format file.

• Format protein data for screen output.

The size and functionality of the modules were chosen
based on the level of breakdown that a biologist would
use when thinking of a real-world problem. For example,
a question might be: “Which secreted proteins have
disulphide bonds?”, and a biologist could break this down
into the following parts:

a) Get protein sequences from file x.fasta

b) Count the number of Cysteine amino acids in each
protein, keep only the proteins with 2 or more.

c) Feed those proteins into the SignalP service with
parameters:

i. Truncate at 50 residues
ii. Organism group = Eukaryotes
iii. Method = HMM

and keep only those proteins that return a positive
result.

d) Feed those proteins into TMPRED with parameters:

i. Minimum length of hydrophobic part of trans-
membrane helix = 17

ii. Maximum length of hydrophobic part of trans-
membrane helix = 33

and keep only those that return a negative result.

e) Display those proteins.

It is easy to see how the modules listed above
correspond to the steps in the process, which would be
represented graphically as in figure 2:

It might also be advantageous to perform some of the
steps in parallel to take advantage of distributed
processing if tasks run on remote processors (as in the
case of SignalP and TMPRED), in which case the process
could be represented as in figure 3:

Figure 2: Serial configuration

Although the system worked well, producing the
expected results in a reasonable time-frame, a number of
problems were found:

• Complexity: Many of the modules were very
complex, requiring much time, effort and knowledge
about the biological subject matter and computing
techniques, making them too difficult for a biologist
to produce.

• Fragility: Some of the modules (particularly those that
interfaced with external systems) were very
susceptible to minor changes in the target system,
causing it to either fail or yield incorrect results.
Because of the complexity of the module they also
contain many possible points of failure. The number
and variety of ways that a module could fail made
trapping the errors and taking appropriate action
difficult.

• Variability: A new module would need to be created
for each new data source, and even sometimes for
different questions posed to the same data source.
Given the explosion in the number and types of
bioinformatic data sources it would require a very
significant effort to keep up.

These problems indicate that the development and
ongoing maintenance load required for such a system
would be impractical to maintain.

3. A Solution: PolyOme

To overcome the problems listed in section 2, it was
decided to breakdown the high level modules, like “Run a
SignalP query...” into base-level modules like “Get an

HTML page” or “Run a remote CGI script”. Smaller,
simpler modules with limited functionality have the
advantage of being:

• easier, quicker and cheaper to build,

• reusable, only need to be written once but can be used
in many combinations with other small modules, and

• more robust, simpler modules have fewer ways in
which they can go wrong, making error trapping
easier.

However, having many small modules introduces
another problem. It became correspondingly more
difficult for the user to join together a large number of
small modules compared to a small number of large ones.
Essentially, the skill that the developer of the large
module had used in writing it, now had to be shown by the
user in linking the smaller modules together. Clearly
another method of linking the modules was required.

After considering a number of GUI type interfaces, it
was decided to use a text based interface, with English
words as input. A text based interface would be superior
in several ways:
a) It would be more flexible, allowing the system to cope

with a wide variety of questions, statements and data
sources.

b) Details of the workings of the functional modules
could be hidden from the user.

c) The system could resolve ambiguities or request
further information from the user via the same
interface, establishing a conversation with the user.

d) The system could use the same process to handle non
English type inputs such as HTML, XML, comma
delimited data etc. enabling it to not only handle user
input, but also to process the information returned
from a data source.

It was decided not to use a full-blown Natural
Language Processing (NLP) system because it would be
unnecessarily complicated. The domain is simpler, not
needing full NLP. Also, full NLP would not permit the
handling of HTML, XML and other non English
information.

PolyOme is essentailly a mechanism by which the user
can compose submodules from base-level units and higher
level modules from submodules by means of a
conversational process. The general architecture of
PolyOme consists of the user interface, a database, a

Figure 3: Parallel configuration

library of basic functions and a set of processes, see figure
4.

The system is implemented as a single user, single
database structure for the sake of simplicity.

• User Interface: The user interface is implemented as
a simple two part screen, the user types input at the
bottom and the system's reply appears at the top, as
shown in figure 5.

• Database: The database consists of two parts, a
relational database (RDB) and a logic database (LDB).
The LDB is used to contain facts about the subject
matter and the RDB is used to record part-of speech
tags and translation rules. Although the database could
have been constructed using either a LDB or a RDB
alone, a combination of the two was chosen so that
each could be used for the tasks to which it is best

suited. A LDB (implemented here in Prolog) is good
for storing a wide variety of information, having no
strict field/table structure, and the logic engine is good
at inferring information from the stored facts. Both of
these are difficult to do in a relational database.
However, Prolog tends to be slow, so tasks that
require little or no use of the inferencing engine and
have well defined data structures would be better
performed by the RDB.

• Basic Function Library: The basic function library
consists of a number of Prolog functions, and provides
the basic capabilities of the system, such as reading
relational databases, reading HTML pages etc. Some
of these are programmed as Java classes, which are
then registered with the Prolog engine as 'built-in'
functions, and some are written as pure Prolog.

These functions are purely for internal use within the
system. They are hidden from the user by the User
Interface and the process ProcessMsg, which is
described below.

The following two Java functions provide the system
with the ability to read any ODBC data source and to
add that information into the LDB.

readODBC/4, which reads an ODBC data source.
Given the data source name, table name and a list of
fields it returns a list of values corresponding to the
rows and columns extracted from the table.

factise/3, which converts a list of row and column
values (as returned by readODBC/4 for example) into
facts which are added to the LDB.

An example of a pure Prolog function is xisa/2:

xisa(X,Y):-isa(X,Y).

xisa(X,Y):-isa(X,Z),xisa(Z,Y)

The function isa(X,Y) corresponds to the English
statement “X is a Y”. xisa(X,Y) extends this to say
that if “X is a Z” and “Z is a Y” then “X is a Y”. For
example, if it is known that isa(human,mammal) and
isa(mammal,vertebrate) (i.e. “human is a mammal and
a mammal is a vertebrate) then the question “isa
(human,vertebrate)” gets the answer “No”, however
asking “xisa(human,vertebrate)” gets the answer
“Yes”.

Several other functions have been written in Java to
assist in the system's processing. These include:

Figure 4: PolyOme general architecture.

Figure 5: User interface

checkPoint/1, to take a snapshot of the LDB.

rollBack/1, to restore the LDB from a previous
checkPoint snapshot.

These functions are required to enable the system to
test sets of updates to the LDB and back them out if
required. checkPoint/1 is also used to ensure LDB
persistence from one user session to the next.

• Processes: The main process, Converse, is responsible
for conducting a dialog with the user, see figure 6
below.

The user enters some input, which may be a question
or a statement, and this is passed to a sub-process;
ProcessMsg (the workings of which are discussed
below). Having processed the input, ProcessMsg
returns either a statement or a question. If it is a
statement, it is passed to the user and the conversation
ends. If it is a question, it is also passed back to the
user, but in this case the system places the original
input on a stack and waits for a reply from the user.
When the system receives a reply it is passed to a new
invocation of ProcessMsg. This second invocation of

ProcessMsg can also return either a statement or a
question. If a question is returned, the (second) input
is stacked, the question is sent to the user, etc on down
through another level. If a statement is returned, this
too is sent to the user and the system pulls the top
message from the stack and passes it to ProcessMsg
where it is processed again from scratch.

In this way the system conducts a conversation with
the user, successively seeking clarification to anything
that it does not know how to handle.

The sub-process ProcessMsg is responsible for taking
one input at a time, converting it into a set of calls to
functions from the Basic Function Library and
executing these functions. This is done in the
following steps:

• The words are split up and associated with all
known part-of-speech tags from the RDB. For
example, the input:

“rip is a protein”

gives the combinations of patterns:

(rip,noun),(is,verb),(protein,noun)

(rip,verb),(is,verb),(protein,noun)

• Each pattern is then matched, word by word, to a
set of translation rules from the RDB. Each
translation rule associates a pattern of
words to one or more basic functions. E.g:

(%sub%,noun),(is,verb),(%obj%,noun) =
assert(isa(%sub%,%obj%))

The left side of the rule specifies the word patterns
to which it matches (note the use of named
variables, %sub% and %obj%) and the right side
specifies the corresponding basic functions.

It is possible to have several patterns for an input,
and for each of these to match to several
translation rules. Hence an algorithm is applied to
all the possible interpretations of the input to
decide which is the most appropriate. For example,
the second pattern would not match this rule. In
fact it is unlikely that a rule for a verb/verb/noun
pattern would exist, so this interpretation would be
discarded.

Figure 6: Converse.

After matching, the actual values from the pattern
are substituted for the appropriate variables in the
right side of the rule, giving a prolog statement:

assert(isa(rip,protein))

Note that for some patterns it is possible that a
series of more than one rule may apply, i.e. rule1
matches the first 4 words of the pattern and rule2
matches the next 5 and so on.

• The Prolog clauses are then passed to the Prolog
engine for processing. In this example it adds one
fact to the LDB.

Note that the system is not attempting to understand
the input. It is merely determining the most likely
association between the input and a set of basic
functions based on the rules it has in its database. The
system does not impose a specific syntax on the user.
It is also possible for the system to accept other forms
of input, for example, structured text such as XML or
HTML, by adding appropriate translation rules to the
database.

4. Future Work

The essence of the converstaional engine has been
presented. The following are yet to be investigated fully:

• Scaling: It is not yet clear how well the Prolog engine
will cope with a significant increase in the size of the
LDB.

• Scoring algorithm: As more and more translation rules
are added to the database the scoring algorithm may
need to be changed in order to adequately differentiate
between them.

• Automatic generation of translation rules: For the
system to 'grow and learn' it will be necessary for
ProcessMsg to be able to add appropriate translation
rules to the database.

• Fault tolerance: Improve the mechanism for handling
failure within a basic function.

• Bulk load part-of-speech tables and LDB: To give the
system a head start it is intended to bulk-load several
parts of the database from various online dictionaries
and ontologies.

• Build primitive function library: What the system is
able to do is limited mainly by the contents of the
basic function library. It will be necessary to write an
extensive set of routines.

• Make the system available to a number of biologists to
assess its usefulness.

5. Conclusion

The outline of a system for the integration and
querying of data sources in the bioinformatic domain has
been given. It has a simple, intuitive user interface, and is
capable of being extended to cope with new data sources.
A mechanism for the composition of high level modules
from base-level units using a conversational process has
also been presented. The full system is still under
development. It already performs reasonably well on
simple tasks and statements like learning facts from
conversation to add to the LDB where appropriate, being
able to read data from a (relational) data source and
integrate it into the LDB, and to answer simple user
queries on that data. Further development is required to
demonstrate the system's full potential and to investigate
the effects of increases of scale.

6. References

[1] NCBI, "GenBank Growth", http://www.ncbi.nlm.nih.gov/
Genbank/genbankstats.html, 2005

[2] NCBI, "Entrez PubMed", http://www.ncbi.nlm.nih.gov/
entrez/query.fcgi?db=PubMed, 2005

[3] CBIL and others, "The GUS Platform",
http://www.gusdb.org, 2005

[4] Sanger-Institute, "The Sanger Institute: AceDB Database",
http://www.acedb.org, 2005

[5] GMOD, "Generic Model Organism Database Construction
Set", http://www.gmod.org/, 2005

[6] A. Rowe, D. Kalaitzopoulos, M. Osmond, M. Ghanem, and
Y. Guo, "The discovery net system for high throughput
bioinformatics," Bioinformatics, vol. 19, pp. 225i-231,
2003.

