Optimizing Web Shop Facet Navigation

Damir Vandic, Flavius Frasincar, Uzay Kaymak

<u>vandic@ese.eur.nl</u> Erasmus University Rotterdam

- Terminology:
 - properties (e.g., Color)
 - values (e.g., Red)
 - facets, e.g.,
 - Color:Red
 - Color:Red
 - WiFi:true
 - Price:64.00

Assumptions

- Facets:
 - Qualitative (nominal, boolean)
 - Numeric (integer, double)
- Numeric facets treated differently

- Faceted search vs keyword-based search
 - browsing
 - progressive query refinements

- Faceted search vs keyword-based search
 - browsing
 - progressive query refinements
- Open issues
 - too many facets to be shown at once
 - usually fixed, manually curated, facet list
 - not optimal due to changing queries

Our approach

- ranks properties and their corresponding
- query dependent
- employs impurity measures
- weighting scheme for coverage bias

Intuition

Bob

Brand:Samsung

Audio Formats:MP3

Search sessions

- Selected facets is the query
- Disjunctive vs conjunctive semantics, e.g.
 - Brand:Apple
 - Brand:Samsung
 - Color:Black

Search sessions

- User can perform drill-down or drill-up
- Roll-up can occur when a user:
 - deselect last remaining facet
 - selects an additional qualitative facet
 - broadening numeric range

Property Scores (qualitative properties)

$$\operatorname{count}(f,q) = |D_q \cap D_f| = \sum_{d \in D_q} \begin{cases} 1 & \text{if } f \in F_d \\ 0 & \text{if } f \notin F_d \end{cases}$$
(1)
$$\operatorname{disjointCount}(f,q) = \sum_{d \in D_q} \begin{cases} 1 & \text{if } F_p \cap F_d \equiv \{f\} \\ 0 & \text{otherwise} \end{cases}$$
(2)

Property Scores (qualitative properties)

giniImpurity
$$(p,q) =$$

$$1 - \sum_{f \in F_p} \left(\frac{\text{disjointCount}(f,q)}{\sum_{g \in F_p} \text{disjointCount}(g,q)} \right)^2 \quad (3)$$

Property Scores (numeric properties)

- use distribution of values
- prefer properties with widely dispersed values
- we employ the Gini coefficient

 $\operatorname{giniCoefficient}(p,q) =$

$$\frac{1}{m} \left(m+1-2 \left(\frac{\sum\limits_{i=1}^{m} (m+1-i)f_i}{\sum\limits_{i=1}^{m} f_i} \right) \right)$$
(4)
$$= \frac{2 \sum\limits_{i=1}^{m} if_i}{m \sum\limits_{i=1}^{m} f_i} - \frac{m+1}{m}$$
given $f_i \in F_p^*$ for $i = 1$ to m
 $F_p^* = \{f_i \mid f_i \in F_p \cap F_d, \ d \in D_q, \ f_i \le f_{i+1}\}$
 $m = |F_p^*|$
 $p \in P_{\text{quantitative}}$

Product count weighting

propertyScore
$$(p,q) = gini(p,q) \cdot \sum_{f \in F_p} \frac{\text{disjointCount}(f,q)}{|D_q|}$$
(5)

1-24 of 2,353 results for Cell Phone

- 4.5 to 4.9 Inches (228)
- 5.0 to 5.4 Inches (258)
- 5.5 Inches & Over (160)

Color

Operating System

Facet scores computation

- For numeric properties, we ignore facet scores
 - usually represented with sliders in UI's
- For qualitative properties, rank descending on the facet count
 - increases chance that a facet matching the target product will be selected

Evaluation

Evaluation

- Tweakers PriceWatch data set
- 794 mobile phones
- 53 properties and 1,816 facets
 - 348 qualitative
 - 1,468 numeric
- Over 150,000 experiments run on a cluster
- Implemented demo application

COFFEE App									
▲ ► △ ☑ + = coffee.co:9000/#/products/	?count=10	C Reader							
[] IIII Apple Wikipedia Popular ▼ Tweakers		∫ +							
COFFEE App									
app version:	app version: v0.5.0 - API version: v0.5.2 - Angular version: 1.2.16 (badger-enumeration)								
Sort face	ets: - + Rank products: - +								
	# products: 794	show: 10 ‡							
# properties: 53 clear query	Title	Price							
Lowest price (€)	Huawei Ascend P2 White	€ 392.05							
12.99 1512.99	Samsung Galaxy S4 16GB Red	€ -							
Brand	Samsung Galaxy S4 16GB Blue	€ 540.00							
 Samsung (196) Nokia (174) 	Nokia Lumia 925 White	€ 599.00							
Sony (59)	LG Optimus G Pro White	€ 582.00							
more ↓	Archos 50 Platinum Black	€ 194.99							
Operating System (OS)	Archos 53 Platinum Black	€ 227.50							
Android (355)	Samsung Galaxy S4 Zoom Black	€ 462.00							
Windows Mobile / Windows Phone (71)	Samsung Galaxy S4 Zoom White	€ 461.00							
Symbian (42)	Sony Xperia M White	€ 215.00							
OS Version	« 1 2 3 4 5 6 7 8 »								
Google Android 4.1 (116)									
Google Android 2.3 (92)									
Google Android 4.0 (91)									
100 1									
show all properties ↓									

	Ordering Scheme			
	Expert-Based	Greedy Count	Kim et al.	Our approach
user effort:				
$\frac{1}{\# \text{ clicks } (X_c)}$	4.0	28.2	19.7	2.3
# clicks std dev	1.24	18.65	14.04	0.68
prop scan effort (X_p)	0.0538	0.1914	0.0630	0.0267
prop scan effort std dev	0.0273	0.0891	0.0351	0.0124
facet scan effort (X_f)	0.1462	0.2438	0.4550	0.2111
facet scan effort std dev	0.0908	0.0952	0.1516	0.1718
other measures:				
computation time (ms)	4	23,386	49,818	187
computation time std dev	3.7	26,832.4	45, 129.9	74.9
successful sessions $(\%)$	100.00%	100.00%	100.00%	100.00%

(a) Least Scanning Drill-Down Model

	Ordering Scheme			
	Expert-Based	Greedy Count	Kim et al.	Our approach
user effort:				
$\#$ clicks (X_c)	1.5	1.5	1.5	1.5
# clicks std dev	0.52	0.52	0.52	0.52
prop scan effort (X_p)	0.3474	0.7232	0.5804	0.2399
prop scan effort std dev	0.2607	0.2091	0.1939	0.2257
facet scan effort (X_f)	0.4659	0.4796	0.4946	0.4547
facet scan effort std dev	0.2730	0.2736	0.2695	0.2764
other measures:				
computation time (ms)	2	25	1,507	160
computation time std dev	0.9	213.2	638.1	61.9
successful sessions (%)	100.00%	100.00%	100.00%	100.00%

(b) Best Facet Drill-Down Model

	Ordering Scheme			
	Expert-Based	Greedy Count	Kim et al.	Our approach
user effort:				
$\#$ clicks (X_c)	30.7	62.9	59.8	18.8
# clicks std dev	20.05	27.98	20.01	9.77
prop scan effort (X_p)	0.1220	0.1681	0.1524	0.2268
prop scan effort std dev	0.0232	0.0255	0.0297	0.0261
facet scan effort (X_f)	0.3904	0.4842	0.5443	0.3075
facet scan effort std dev	0.0599	0.1100	0.0325	0.0308
other measures:				
computation time (ms)	16	118,155	113,336	2,843
computation time std dev	12.6	72,772.1	53,871.0	2,094.0
# rollups mean	10.7	10.0	16.6	6.2
successful sessions $(\%)$	90.96%	64.00%	79.53%	99.07%

(c) Combined Drill-Down Model

	Ordering Scheme			
	Expert-Based	Greedy Count	Kim et al.	Our approach
user effort:				
$\#$ clicks (X_c)	4.0	28.2	19.7	2.3
# clicks std dev	1.24	18.65	14.04	0.68
prop scan effort (X_p)	0.0538	0.1914	0.0630	0.0267
prop scan effort std dev	0.0273	0.0891	0.0351	0.0124
facet scan effort (X_f)	0.1462	0.2438	0.4550	0.2111
facet scan effort std dev	0.0908	0.0952	0.1516	0.1718
other measures:				
computation time (ms)	4	23,386	49,818	187
computation time std dev	3.7	26,832.4	45, 129.9	74.9
successful sessions $(\%)$	100.00%	100.00%	100.00%	100.00%

(a) Least Scanning Drill-Down Model

	Ordering Scheme			
	Expert-Based	Greedy Count	Kim et al.	Our approach
user effort:				
$\#$ clicks (X_c)	1.5	1.5	1.5	1.5
# clicks std dev	0.52	0.52	0.52	0.52
prop scan effort (X_p)	0.3474	0.7232	0.5804	0.2399
prop scan effort std dev	0.2607	0.2091	0.1939	0.2257
facet scan effort (X_f)	0.4659	0.4796	0.4946	0.4547
facet scan effort std dev	0.2730	0.2736	0.2695	0.2764
other measures:				
computation time (ms)	2	25	1,507	160
computation time std dev	0.9	213.2	638.1	61.9
successful sessions $(\%)$	100.00%	100.00%	100.00%	100.00%

(b) Best Facet Drill-Down Model

	Ordering Scheme			
	Expert-Based	Greedy Count	Kim et al.	Our approach
user effort:				
$\#$ clicks (X_c)	30.7	62.9	59.8	18.8
# clicks std dev	20.05	27.98	20.01	9.77
prop scan effort (X_p)	0.1220	0.1681	0.1524	0.2268
prop scan effort std dev	0.0232	0.0255	0.0297	0.0261
facet scan effort (X_f)	0.3904	0.4842	0.5443	0.3075
facet scan effort std dev	0.0599	0.1100	0.0325	0.0308
other measures:				
computation time (ms)	16	118, 155	113,336	2,843
computation time std dev	12.6	72,772.1	53,871.0	2,094.0
# rollups mean	10.7	10.0	16.6	6.2
successful sessions $(\%)$	90.96%	64.00%	79.53%	99.07%

(c) Combined Drill-Down Model

Conclusions

- We proposed an facet ordering approach
- Two Gini-based measures for qualitative and numeric properties
- Compared to other (automatic) approaches:
 - faster
 - needs less roll-ups
 - higher % successful sessions