HANDLING SPATIO-TEMPORAL INFORMATION IN OWL
Semantic Web

- WWW: collection of distributed interlinked documents encoded in html
- Content written in natural language
- Computers don’t understand their meaning
- Machine readable annotations are added and web-pages are linked by virtue of similar content
- Content of Web-pages is encoded by special vocabularies called “ontologies”
Ontologies

- A method for representing items of knowledge (e.g., ideas, facts, thinks) in a way that defines the relationships (e.g., part-of, functional) and classifications of concepts within a specified domain of knowledge.
Typical Components of Ontologies

- **Terms** denote important concepts (classes of objects) of the domain
 - e.g., professors, staff, students, courses, departments

- **Relationships** between these terms: typically class hierarchies
 - a class C to be a subclass of another class C' if every object in C is also included in C'
 - e.g., all professors are staff members

- **Properties of relations, value restrictions**
OWL

- OWL (Web Ontology Language) is a language that can be used to describe the classes, relations and their properties.
- More expressive than XML, RDF and RDF-S.
- Allows to reason about the entities and check whether or not all statements and definitions are mutually consistent.
Dynamic Ontologies

- Represent concepts that occur and evolve in time
- A company will be established, hire personnel and develop products
- Relation “employs” and its inverse are ternary
OWL-Time Ontology

OWL-Time is an OWL ontology of temporal concepts. It provides a vocabulary for describing:

- relations between temporal entities (instants, intervals)
- information about durations
- provides no means of representing information that changes in time
Existing Approaches

- Temporal Description Logics, Temporal RDF, Named Graphs, Reification, Versioning, N-ary, 4D-fluents approach

Limitations:
- Require extending OWL with new constructs
- Qualitative information (using natural language) can't be represented
- No integration with spatial information
- Limited OWL reasoning support
- Querying of spatio-temporal information is also a problem (queries become complicated)
Proposed Solution [Batsakis 2011]

- **SOWL**: A framework for handling spatio-temporal information in OWL
 - Representation of quantitative and qualitative spatial and temporal information
 - Using a point or an equivalent, interval-based representation
 - Consistent with existing Semantic Web standards (OWL, Pellet, Protégé, etc.)
 - Sound, Complete and Tractable reasoning embedded within the ontology
 - Querying using SOWL and TOQL query languages
Time

- Temporal concepts by OWL-Time
- **Time instants**: “before”, “after”, “equals”
- **Intervals**: one of the 13 Allen relation
Spatial Directional Relations

Cone-shaped

Projection-based

- NW
- N
- NE
- W
- E
- SW
- SE
- S
- NW
- NE
- W
- SW
- SE
- S
Spatial Topologic RCC-8 Relations
Classes *TimeSlice*, *TimeInterval* are introduced

Dynamic objects become instances of *TimeSlice*

Temporal properties of dynamic classes become instances of *TimeInterval*

A time slice object is created each time a (fluent) property changes
4-D fluents example
N-ary approach [Noy & Rector 2006]

- Dynamic Properties are attached to reified objects representing events
- Dynamic properties are represented as properties
- Event objects
 - Attached to specific static objects
 - Connect to Time Intervals
N-ary Relations example
SOWL Spatial Representation

- **Static objects**: Locations are properties of objects
- **Dynamic (Moving) Objects**: Locations are properties of TimeSlices (4D-fluents) or of the reified relation object (N-ary approach)
Example with Spatial Relation
SOWL Reasoning

- Checks consistency, infers implied relations
- Reasoning over a mix of qualitative and quantitative information:
 - Extract qualitative relations from quantitative ones
 - Reasoning over qualitative information
- Assertions may be inconsistent or new assertions may take exponential time to compute
 - Restrict to tractable sets decided by polynomial algorithms such as “Path Consistency”
Path Consistency [VanBeek & Cohen 1990]

- Path Consistency suggests composing and intersecting relations until:
 - A fixed point is reached (no additional inferences can be made)
 - An empty relation is yielded implying inconsistent assertions
- Path Consistency is tractable, sound and complete for specific (tractable) sets of temporal relations
Implementation of the Reasoner

- Compositions and intersections of relations in SWRL:
 - Before(x,y) AND Equals(y,z) \rightarrow Before(x,z)
 - (Before(x,y) OR Equals(x,y)) AND (After(x,y) OR Equals(x,y)) \rightarrow Equals(x,y)

- They are defined based on the composition of pairs of the basic (Allen or spatial) relations

- Composition tables for each type of representation are known to exist
Intervals: Composition Table

<table>
<thead>
<tr>
<th></th>
<th>B</th>
<th>A</th>
<th>D</th>
<th>Di</th>
<th>O</th>
<th>Oi</th>
<th>M</th>
<th>Mi</th>
<th>S</th>
<th>Si</th>
<th>F</th>
<th>Fi</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B,A,D,Di,O,Oi,M,Mi,Si,F,Fi,Eq</td>
<td>A</td>
<td>A,Oi,Mi,D,F</td>
<td>A</td>
<td>A,Oi,Mi,D,F</td>
<td>A</td>
<td>A,Oi,Mi,D,F</td>
<td>A</td>
<td>A,Oi,Mi,D,F</td>
<td>A</td>
<td>A,Oi,Mi,D,F</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>B</td>
<td>A</td>
<td>D</td>
<td>B,A,D,Di,O,Oi,M,Mi,Si,F,Fi,Eq</td>
<td>B,O,M,D,S</td>
<td>A,Oi,Mi,D,F</td>
<td>B</td>
<td>A</td>
<td>D</td>
<td>A,Oi,Mi,D,F</td>
<td>D</td>
<td>B,O,M,D,S</td>
</tr>
<tr>
<td>Oi</td>
<td>B,O,M,Di,Fi</td>
<td>A</td>
<td>Oi,D,F</td>
<td>A,Oi,Di,Mi,Si</td>
<td>O,Oi,D,Di,Si,Si,F,Fi,Eq</td>
<td>A,Oi,Mi</td>
<td>O,Di,Fi</td>
<td>A</td>
<td>Oi,D,F</td>
<td>Oi</td>
<td>A,M</td>
<td>Oi</td>
</tr>
<tr>
<td>M</td>
<td>B</td>
<td>A,Oi,Di,Mi,Si</td>
<td>O,D,S</td>
<td>B</td>
<td>B</td>
<td>O,D,S</td>
<td>B</td>
<td>F,Fi,Eq</td>
<td>M</td>
<td>M</td>
<td>O,D,S</td>
<td>B</td>
</tr>
<tr>
<td>Mi</td>
<td>B,O,M,Di,Fi</td>
<td>A</td>
<td>Oi,D,F</td>
<td>A</td>
<td>Oi,D,F</td>
<td>A</td>
<td>S,Si,Eq</td>
<td>A</td>
<td>Oi,D,F</td>
<td>A</td>
<td>Mi</td>
<td>Mi</td>
</tr>
<tr>
<td>S</td>
<td>B</td>
<td>A</td>
<td>D</td>
<td>B,O,M,Di,Fi</td>
<td>B,O,M</td>
<td>Oi,D,F</td>
<td>B</td>
<td>Mi</td>
<td>S</td>
<td>S,Si,Eq</td>
<td>D</td>
<td>B,O,M</td>
</tr>
<tr>
<td>Si</td>
<td>B,O,M,Di,Fi</td>
<td>A</td>
<td>Oi,D,F</td>
<td>Di</td>
<td>O,Di,Fi</td>
<td>Oi</td>
<td>O,Di,Fi</td>
<td>Mi</td>
<td>S,Si,Eq</td>
<td>Si</td>
<td>Oi</td>
<td>Di</td>
</tr>
<tr>
<td>F</td>
<td>B</td>
<td>A</td>
<td>D</td>
<td>A,Oi,Di,Mi,Si</td>
<td>O,D,S</td>
<td>A,Oi,Mi</td>
<td>M</td>
<td>A</td>
<td>D</td>
<td>A,Oi,Mi</td>
<td>F</td>
<td>F,Fi,Eq</td>
</tr>
<tr>
<td>Fi</td>
<td>B</td>
<td>A,Oi,Di,Mi,Si</td>
<td>O,D,S</td>
<td>Di</td>
<td>O</td>
<td>Oi,Di,Si</td>
<td>M</td>
<td>Oi,Di,Si</td>
<td>O</td>
<td>Di</td>
<td>F,Fi,Eq</td>
<td>Fi</td>
</tr>
</tbody>
</table>
Point Relations: Composition Table

<table>
<thead>
<tr>
<th>Relations</th>
<th><</th>
<th>=</th>
<th>></th>
</tr>
</thead>
<tbody>
<tr>
<td><</td>
<td><</td>
<td><</td>
<td><=,=,></td>
</tr>
<tr>
<td>=</td>
<td><</td>
<td>=</td>
<td>></td>
</tr>
<tr>
<td>></td>
<td><=,=,></td>
<td>></td>
<td>></td>
</tr>
</tbody>
</table>
Topologic : Composition Table

<table>
<thead>
<tr>
<th></th>
<th>DC</th>
<th>EC</th>
<th>PO</th>
<th>TPP</th>
<th>NTTP</th>
<th>TPPI</th>
<th>NTPPi</th>
<th>EQ</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC</td>
<td>DC,EC,PO, TPP, NTPP, TPPI, NTPPi, EQ</td>
<td>DC,EC,PO, TPP, NTPP</td>
<td>DC,EC,PO, TPP, NTPP</td>
<td>DC,EC,PO, TPP, NTPP</td>
<td>DC,EC,PO, TPP, NTPP</td>
<td>DC</td>
<td>DC</td>
<td>DC</td>
</tr>
<tr>
<td>EC</td>
<td>DC,EC,PO, TPP, NTPPi</td>
<td>DC,EC,PO, TPP, NTPP</td>
<td>DC,EC,PO, TPP, NTPP</td>
<td>PO,TPP, NTPP</td>
<td>DC,EC,PO, TPP, NTPP</td>
<td>DC,EC,PO, TPP, NTPP</td>
<td>DC,EC,PO, TPP, NTPP</td>
<td>DC,EC,PO, TPP, NTPP</td>
</tr>
<tr>
<td>PO</td>
<td>DC,EC,PO, TPP, NTPPi</td>
<td>DC,EC,PO, TPP, NTPPi</td>
<td>DC,EC,PO, TPP, NTPPi</td>
<td>PO,TPP, NTPP</td>
<td>PO,TPP, NTPP</td>
<td>DC,EC,PO, TPP, NTPP</td>
<td>DC,EC,PO, TPP, NTPP</td>
<td>DC,EC,PO, TPP, NTPP</td>
</tr>
<tr>
<td>TPP</td>
<td>DC,EC,PO, TPP, NTPPi</td>
<td>DC,EC,PO, TPP, NTPPi</td>
<td>DC,EC,PO, TPP, NTPPi</td>
<td>TPP, NTPP</td>
<td>TPP, NTPP</td>
<td>DC,EC,PO, TPP, NTPP</td>
<td>DC,EC,PO, TPP, NTPP</td>
<td>TPP, NTPP</td>
</tr>
<tr>
<td>NTTP</td>
<td>DC,EC,PO, TPP, NTPPi</td>
<td>DC,EC,PO, TPP, NTPPi</td>
<td>DC,EC,PO, TPP, NTPPi</td>
<td>NTPP</td>
<td>NTPP</td>
<td>DC,EC,PO, TPP, NTPP</td>
<td>DC,EC,PO, TPP, NTPPi</td>
<td>NTPP</td>
</tr>
<tr>
<td>TPPI</td>
<td>DC,EC,PO, TPP, NTPPi</td>
<td>DC,EC,PO, TPP, NTPPi</td>
<td>PO,TPP, NTPPi</td>
<td>EQ,PO,TPPI, NTPPi</td>
<td>PO,TPP, NTPP</td>
<td>TPPI, NTPPi</td>
<td>NTPPi</td>
<td>TPPI</td>
</tr>
<tr>
<td>NTPPi</td>
<td>DC,EC,PO, TPP, NTPPi</td>
<td>PO,TPP, NTPPi</td>
<td>PO,TPP, NTPPi</td>
<td>PO,TPP, NTPP</td>
<td>PO,TPP, NTPP</td>
<td>NTPPi, NTPPi</td>
<td>NTPPi</td>
<td>NTPPi</td>
</tr>
<tr>
<td>EQ</td>
<td>DC,EC,PO, TPP, NTPPi</td>
<td>PO,TPP, NTPPi</td>
<td>PO,TPP, NTPPi</td>
<td>NTPP, EQ, TPPI, NTPPi</td>
<td>NTPP</td>
<td>NTPPi</td>
<td>EQ</td>
<td>NTPPi</td>
</tr>
</tbody>
</table>
Directional: Composition Table

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>NE</th>
<th>E</th>
<th>SE</th>
<th>S</th>
<th>SW</th>
<th>W</th>
<th>NW</th>
<th>O</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>N</td>
<td>N,NE</td>
<td>N,NE</td>
<td>N,NE,E</td>
<td>N,NE,E,SE</td>
<td>N,NE,E,SE</td>
<td>N,NE,E,SE</td>
<td>N,NE,E,SE</td>
<td>N</td>
</tr>
<tr>
<td>NE</td>
<td>NE,N</td>
<td>NE</td>
<td>NE</td>
<td>NE</td>
<td>E,NE</td>
<td>E,NE</td>
<td>E,NE,SE</td>
<td>N,NE,SE,SW,W,NW,O</td>
<td>N,NE,SW,W,NW,O</td>
</tr>
<tr>
<td>SE</td>
<td>E,SE,NE</td>
<td>E,SE</td>
<td>E</td>
<td>SE</td>
<td>SE</td>
<td>SE</td>
<td>SE</td>
<td>S,SE,SW</td>
<td>S,SW</td>
</tr>
<tr>
<td>S</td>
<td>N,NE,E,SE,S,SW,W,NW,O</td>
<td>E,S,NE,SE</td>
<td>SE,E</td>
<td>SE,E</td>
<td>S,SE,SW</td>
<td>S,SW</td>
<td>S,SW</td>
<td>W,SW</td>
<td>SW</td>
</tr>
<tr>
<td>SW</td>
<td>W,SW,NW</td>
<td>N,NE,E,SE,S,SW,W,NW,O</td>
<td>S,SW</td>
<td>S,SW</td>
<td>S,SW,SE</td>
<td>SW,S</td>
<td>SW</td>
<td>SW,W</td>
<td>W,SW</td>
</tr>
<tr>
<td>W</td>
<td>N,W,NW</td>
<td>N,NW,NE,W</td>
<td>N,NE,E,SE,S,SW,W,NW,O</td>
<td>S,SE,SW</td>
<td>W,SW</td>
<td>W,SW</td>
<td>W,SW</td>
<td>W,SW</td>
<td>W</td>
</tr>
<tr>
<td>NW</td>
<td>N,NW</td>
<td>N,NW,NE,E</td>
<td>N,NW,NE,E</td>
<td>N,NW,NE,E</td>
<td>N,NW,NE,E</td>
<td>N,NW,NE,E</td>
<td>N,NW,NE,E</td>
<td>N,NW,NE,E</td>
<td>N</td>
</tr>
<tr>
<td>O</td>
<td>N</td>
<td>NE</td>
<td>E</td>
<td>SE</td>
<td>S</td>
<td>SW</td>
<td>W</td>
<td>NW</td>
<td>O</td>
</tr>
</tbody>
</table>

2/5/13 The SOWL Framework 25
Cardinality Restrictions

- Cardinality restrictions and preservation of property semantics (i.e., symmetric, transitive) need special attention.
- Are applied on the reified object rather than on the objects on which they were meant to be defined originally.
- Can no longer be handled by ordinary reasoners such as Pellet.
Interpreting their Meaning

1st Interpretation: Restrictions are imposed over the whole lifetime of an object thus restricting related objects for their entire lifetime

A person cannot work for two companies during his lifetime

2nd Interpretation: Restrictions are imposed only on time intervals for which the property holds true

A person cannot work for two employers during summer
Querying in SOWL

- SPARQL queries become complicated
- The user must be familiar with the underlying spatio-temporal representation
- The SOWL Query Language extends SPARQL with spatial and temporal operators
- SOWL queries are translated to SPARQL
SOWL Query Language

- SPARQL like Syntax

 SELECT <variable>
 WHERE <conditions>

- Conditions may involve Spatial and Temporal Operators
 - AT operators
 - Allen operators
 - Topological and Directional
SOWL Temporal Queries

- SPARQL-like query language supporting temporal operators

```
SELECT ?x, ?y...
WHERE { ?x property ?y...
AT(date)...
}
```

- Additional operators are introduced to SPARQL
 - AT, ALWAYS_AT, SOMETIMES_AT
 - Allen operators
Temporal Operators

- **AT**: search for time instants for which fluent properties hold true

- **ALWAYS_AT, SOMETIMES_AT**: search for overlapping temporal intervals

- **Allen’s operators**: BEFORE, AFTER, MEETS, METBY, OVERLAPS, OVERLAPPEDBY, DURING, CONTAINS, STARTS, STARTEDBY, ENDS, ENDEDBY

and **EQUALS**
AT Temporal Operator Example

```
SELECT ?x, ?y
WHERE
{?x employees ?y
AT "2-5-2007" }
```

- The reasoner is invoked when querying for specific temporal invervals
Allen Operator Example

SELECT ?x, ?y
WHERE
{?x has-employee ?y
BEFORE
company1 has-employee ?y }
SPARQL Translation

```sparql
SELECT ?x ?y WHERE {
  { _timeSlice_0 ex1:tsTimeSliceOf ?x.
    _timeSlice_0 ex1:tsTimeInterval _interval_0. _timeSlice_0 ex1:Employs _timeSlice_1 .
    _timeSlice_1 ex1:tsTimeSliceOf ?y. _timeSlice_1 ex1:tsTimeInterval _interval_0.
    _atTimeInstant_0 time:inXSDDateTime "2007-02-05T00:00:00"^^xsd:dateTime.
    _interval_0 time:hasBeginning _instant_1. _interval_0 time:hasEnd _instant_2.
    { _instant_1 time:before _atTimeInstant_0. _instant_2 time:after _atTimeInstant_0.}
    UNION
    { _instant_1 ex2:equals _atTimeInstant_0.}
    UNION
    { _instant_2 ex2:equals _atTimeInstant_0.}
  }
  union {
    optional { _temporalVar rdf:type ex1:TimeSlice. ?x rdf:type ex1:TimeSlice }
    filter( !bound(_temporalVar) )
  }
}
```
Allen Operator Example

```
SELECT ?x, ?y
WHERE
{?x has-employee ?y
BEFORE
company1 has-employee ?y }
```
SOWL Spatial Queries

- All 8 topologic (RCC-8) and 9 Directional operators are supported
- Can be combined with temporal operators

select ?x, ?y
where {?y North-of ?x AT “date”}
For crafting, editing temporal ontologies in Protégé
Handles temporal ontologies as static ones
Interface consistent with that of Protégé
The user need not be familiar with the peculiarities of the representation
Supports reasoning, restriction checking
Available at http://www.intelligence.tuc.gr/prototypes.php
CHRONOS User Interface

The SOWL Framework
Conclusion

- SOWL spatio-temporal information handling building-upon existing standards and tools
- Extends 4D-fluents and N-ary relations for representing evolution of qualitative (in addition to quantitative) temporal information in OWL ontologies
- Reasoning support over qualitative and quantitative relations
- Querying support by extending SPARQL with additional temporal and spatial operators
Future Work

- Addressing scalability issues, optimization of reasoning and querying
- Support for qualitative distance information ("further", "near")
- Optimizations for large scale applications
- Extension for 3Dimensions
Thank you

Questions ?