Mining Large Single Networks under Subgraph Homomorphism

DECLARATIVE LANGUAGES & ARTIFICIAL INTELLIGENCE Mostafa H. Chehreghani Jan Ramon Thomas Fannes

12/13/13

Overview

- Introduction
- Problem definition and preliminaries
- Related work and motivation
- Our contributions and the proposed algorithm
- Conclusion

Frequent Patterns

- Frequent patterns = pattern which occurs in a database more often than a user-defined threshold
- Two settings:
 - Transactional
 - Single-network
- Applications:
 - Web mining
 - Social network analysis
 - Biological & chemical interaction networks

Problem Definition

- Given:
 - a network graph H
 - a pattern language L
 - − a matching operator ≤
 - a threshold $minsup \in R^+$
- Find (a condensed representation of) all patterns such that their frequency is at least *minsup*

Homomorphism

- Graph homomorphism *f* from *P* to *H*:
 - Label preserving
 - If u and v of P are adjacent in P, then f(u) and f(v) are adjacent in H

Subgraph Homomorphism:
Homomorphism from P
to (a subgraph of) Huf(u)PH

- Subgraph homomorphism is easier than subgraph isomorphism
 - Polynomial algorithms for bounded treewidth graphs

Related Work and Motivation

- Most approaches use any graph patterns
 - e.g. Kuramochi&Karypis ICDM'04
 - NP-hard under normal matching operators
 - We will limit ourselves to bounded treewidth graphs

 This is not a strong restriction
- Most approaches use subgraph isomorphism
 - e.g. Zhu et. al., VLDB'11
 - Computationally expensive
 - A few methods use subgraph homomorphism
 - e.g. Dries&Nijssen, SDM12 (Only for trees)
 - e.g. J.Van den Bussche, (No antimonotonic pruning)

Related Work and Motivation Cont.

- Matching operator \leq
 - We use subgraph homomorphism
 - Candidate generation under homomorphism is challenging
 - Our solution: root embedding equivalent classes
- The frequency measure
 - Wang&Ramon, DMKD'13: s-measure: linear program
 - LP with one variable per embedding of pattern
 - Describes statistical power of the pattern
 - But: needs to construct overlap graph (exponential amount of embeddings)
 - We avoid overlap graph using bounded treewidth homomorphism!

A Summary of Our Contributions

- We consider the class of rooted graphs
 - We present an efficient method to generate them from data
- We present a new notion for compactly representing all frequent patterns
 - It gives a closure operator
- Two frequency counting settings:
 - Mining patterns with frequent root embeddings

(= embeddings of the root of the pattern)

- Mining s-measure-frequent patterns
 - Linear program to compute s-measure

Rooted Patterns and Root Embeddings

- A rooted graph P^X , is a graph P where the set $X \subseteq V(P)$; distinguished.
- Let *H* be a database graph
- Let φ be a subgraph homomorphism mapping from P to H
- $\varphi|_X$: φ restricted to the vertices in X
- $\varphi|_X$ is called a *root embedding* of P^X in H
- Two rooted graphs are equivalent under root embedding iff they have the same set of root embeddings

Generating Rooted Patterns

Mostafa H. Chehreghani – Single Network Mining under Subgraph Homomorphism

Closed Pattern

- f: maps a root embedding equivalence class eq to a finite set $\{P_1^{X_1}, \ldots, P_n^{X_n}\} \subseteq eq$ which contains all rooted cores of eq
- P^X is defined as $\rho_{join}(\dots,\rho_{join}(P_1^{X_1},P_2^{X_2}),P_3^{X_3}),\dots,P_n^{X_n})$
- The operator σ_f maps every member of eq to P^X
- P^X is a closed pattern
- σ_f is a closure operator
 - It is *extensive*, *increasing* and *idempotent*

s-measure

- Let P^X be a rooted pattern and H be a database graph
- To every embedding φ of P^X in H a weight ω_{φ} is assigned
- Feasible assignment:

$$- \forall \varphi \in Emb(P^X, H) : \omega_{\varphi} \ge 0$$

$$- \forall v \in V(H), u \in V(P^X) : \sum_{\varphi \in Emb(P^X, H) | \varphi(u) = v} w_{\varphi} \le 1$$

- s-measure: minimum feasible assignment
- Can be computed efficiently for rooted graphs when matching operator is subgraph homomorphism
 - Without forming overlap graph

Conclusion

- A new class of patters: rooted patterns
- Mining patterns with frequent root embeddings
- Mining patterns with minimal s-measure
- A new notion for compactly representing all frequent patterns under homomorphism
 - It gives a closure operator