DRule: A Density-based Approach to Discovering Quantitative Association Rules

Thomas Van Brussel Bart Goethals

Universiteit Antwerpen

Introduction

Intuition

Algorithm

Conclusion & Future work

Association Rules

Association rules used to discover relations between attributes

 $\{\mathsf{Beef},\mathsf{Onion}\} \Rightarrow \{\mathsf{Bun}\}$

TID	Beef	Onion	Bun	Eggs
1	\checkmark	\checkmark	\checkmark	
2	\checkmark	\checkmark		\checkmark
3	\checkmark	\checkmark	\checkmark	\checkmark
4	\checkmark			\checkmark

- Support = $^2/_4$ and Confidence = $^2/_3$
- Well-researched

Quantitative Association Rules

Numerical data

$\label{eq:lasses} \begin{array}{ll} \mbox{Latitude}[49.72, 50.05] & \wedge & \mbox{Longitude}[77.76, 79.1] \\ \\ \Rightarrow \mbox{Focal depth}[0.0, 9.0]. \end{array}$

Quantitative Association Rules

Numerical data

 $\label{eq:lasses} \begin{array}{ll} \mbox{Latitude}[49.72, 50.05] & \wedge & \mbox{Longitude}[77.76, 79.1] \\ \\ \Rightarrow \mbox{Focal depth}[0.0, 9.0]. \end{array}$

Other Approaches

Discretization

- Overlapping regions cause issues
- Can cause loss of information

Other Approaches

Mostly optimization strategies

- Image segmentation algorithms
 - Limited in the number of dimensions
- Genetic algorithms
 - Follow a rule template

Not capable of finding all rules in the data. Restrictions might be very severe.

Intuition

Rules of the form

$A_i[I_i, u_i] \wedge \ldots \wedge A_k[I_k, u_k] \Rightarrow T[I_t, u_t]$

Support, confidence not enough

- Use all points to maximize
- Apply different measure: density

 $|N(x) = \{y \mid d(x,y) \le \epsilon\}| \ge \texttt{min_pts}$

- Only require density for dimensions seperately
 - Density in all dimensions can miss good rules

Every rectangle is a dense region

Every rectangle is a dense region

1. Find all regions in dimension A_i

Every rectangle is a dense region

- 1. Find all regions in dimension A_i
- 2. Find all regions in dimension A_j

Found three regions for rule generation (What if we want them all?)

Repeat starting from A_j

6

Algorithm – Simple Example

Repeat starting from A_j

1. Find all dense regions in dimension A_j

Repeat starting from A_j

- 1. Find all dense regions in dimension A_j
- Scan resulting regions for dense regions in dimension A_i

Finds all smaller regions

Algorithm – Overlap

- Overlap in horizontal dimension
- Regions easily separated by algorithm
- Difficult for discretization

Algorithm – Overlap

- Overlap in horizontal dimension
- Regions easily separated by algorithm
- Difficult for discretization

Example rules:

- $Y[2.5, 3.5] \Rightarrow X[2, 5]$ (red points)
- $X[0,3] \Rightarrow Y[1,2]$ (blue points)

Conclusion

Novel method:

- exhaustively mine quantitative association rules
- ▶ while not having to preprocess the data (discretization) or
- specify what rules we want in advance and
- allowing for overlap between rules.

Future work

- Not enough pruning (yet)
 - Many patterns
 - Techniques from classical association rule mining might prove effective
- Efficiency is still a concern
 - Search through dimensions can be exponential