### **Pattern Based Recommendation**

#### **Work in Progress**

Koen Verstrepen, prof. dr. Bart Goethals

DBDBD 29/11/2013 Rotterdam

# Binary, Positive-only data

|   |   | K K K K K K K K K K K K K K K K K K K |   |   | Ť. |
|---|---|---------------------------------------|---|---|----|
| 1 | 1 |                                       | 1 |   |    |
| 1 |   | 1                                     |   |   | 1  |
|   | 1 |                                       | 1 |   |    |
|   | 1 | 1                                     |   | 1 | 1  |

## What else does Anna like?

|      |     |   |   | K K K K K K K K K K K K K K K K K K K |   |   | Ť. |
|------|-----|---|---|---------------------------------------|---|---|----|
| Anna | B   | 1 | 1 |                                       | 1 |   |    |
|      | (B) | 1 | ? | 1                                     | ? | ? | 1  |
|      |     |   | 1 |                                       | 1 |   |    |
|      |     |   | 1 | 1                                     |   | 1 | 1  |



## **User-based Nearest Neighbors**

- Oldest
- Most intuitive





### **User-based Nearest Neighbors**





## **Item-based Nearest Neighbors**



- Different result
- can be better explained(?!)

# Explainability : state-of-the-art



# We propose: Unifying framework

Algorithm 1: Unifying, pattern based framework input :  $\mathcal{D}$ **output**:  $\mathcal{Q} = \{ \hat{p}(e_k | E_{u_i}) | u_i \in \mathcal{U} \land e_k \in (\mathcal{E} \setminus E_{u_i}) \}$ 1 compute  $\mathcal{P}$ ⊲s.1 determines the type of algorithm 2 for  $u_i \in \mathcal{U}$  do Select  $\mathcal{P}(u_i) \subseteq \mathcal{P}$  $\triangleleft s.2$ 3 for  $e_k \in (\mathcal{E} \setminus E_{u_i})$  do 4 Select  $\mathcal{P}(u_i, e_k) \subseteq \mathcal{P}(u_i)$  $\triangleleft s.3$ 5  $\hat{p}\left(e_k|E_{u_i}\right) \leftarrow 0$ 6 for  $P \in \mathcal{P}(u_i, e_k)$  do 7  $\hat{p}\left(e_{k}|E_{u_{i}}\right) \leftarrow \hat{p}\left(e_{k}|E_{u_{i}}\right) + w(P, u_{i}, e_{k})$  $\triangleleft s.4$ 8 different flavors of the same  $\mathcal{Q} \leftarrow \mathcal{Q} \cup \{ \hat{p} \left( e_k | E_{u_i} \right) \}$ 9 algorithm





![](_page_11_Figure_0.jpeg)

![](_page_12_Figure_0.jpeg)

![](_page_13_Figure_0.jpeg)

# **U** Further expansion of parameter space

![](_page_14_Figure_1.jpeg)

## **Remember: Explainability**

![](_page_15_Figure_2.jpeg)

#### Also user based algorithms are explainable

$$\mathcal{P} = \{ E_u | u \in \mathcal{U} \}$$

$$\hat{p}(e_k|E_{u_i}) = \sum_{P \in \mathcal{P}(u_i)} w(P, u_i, e_k).$$

•

$$\hat{p}\left(e_{k}|E_{u_{i}}\right) = \sum_{e_{i}\in E_{u_{i}}}\sum_{P\in\mathcal{P}\left(u_{i}\right)}F\left(P,u_{i},e_{i}\right)w(P,u_{i},e_{k})$$

## Summary

- Unifying framework
- Item-based  $\leftarrow \rightarrow$  User-based
  - 1. Novel algorithms
  - 2. Also user-based naturally explainable