

Adaptive parallelization in multi-core systems

Mrunal Gawade, Martin Kersten

CWI, Amsterdam

Erasmus University Rotterdam 29th Nov 2013

Why Parallelize Adaptively?

- Multi-core plan space is very large (as compared to a serial plan space)
- Statistics maintenance overheads (cost based optimizers)
- Optimal degree of parallelism is hard to find (resource variations)

Multi-core Plan Space

Join (Select(A), Select(B))

Intermediate optimal plan (Adaptation)

Contributions

Centrum Wiskunde & Informatica

Infrastructure

Design

- Query execution time is the decision metric
- Store profiled history of plans
- Mutate an old plan to generate a new plan
- Parallelize the most expensive operator (from previous query invocation)

Select Operator Mutation

X_1 = select (A, low, high);

- A1 = partition (A, 2, 0);
- A2 = partition (A, 2, 1);
- Y_1 = select (A1, low, high);
- Y_2 = select (A2, low, high);
- X_1 = pack(Y_1, Y_2);

Convergence Algorithm

Sample Convergence Case

Convergence Algorithm

- ROI = Rate Of Improvement
- CET = Current run Execution Time.
- PET = Previous run Execution Time.

ROI = (CET – PET) / MAX(CET, PET)

Credit = Credit + (ROI x Number Of Cores) Debit = Debit + (ABS(ROI) x Number Of Cores)

Convergence Runs = Credit - Debit = *f(ROI)*

Centrum Wiskunde & Informatica

Select Operator Analysis

Experiment platform

- Intel Xeon E5-2650@ 2.00GHz CPU (Dual socket)
 16 physical cores, 32 threads with hyper-threading
- Cache shared L3 = 20MB.
- 256 GB of 4 channel DDR3 RAM.
- MonetDB on Fedora Core 16.

Adaptive Parallelization of Select

Speed-up & Partitioning

Size(MB)	Selectivity		# Optimal Partitions		
	0.0001	0.04			
	Spe	ed-up			
3200	10	3.5	15		
2000	7.5	3	7		
640	4	2.5	3		

TPC-H queries

Queries	Adaptive Parallelization	Heuristic Parallelization
Q 3	21.6 seconds	36 seconds
Q 5	25	28
Q 8	17.7	24
Q 14	4.1	4.1
Q 17	240	250
Q 20	42.5	45

- 11 queries show lower performance (mostly short queries)
- 5 queries not considered

Summary

- Detailed analysis of Degree of Parallelism of plans
- Convergence algorithm adjusts dynamically
- High selectivity operator speed-up of an order of magnitude
- Long running TPC-H queries benefit

Centrum Wiskunde & Informatica

Thank you

Adaptive Parallelization of Join

Speed-up & Partitioning

Size (MB)	16	64	16	64	16	64	16	64	
	Case A Case B			Cas	Case A Case B				
	Speed-up					#Partitions			
3200	18.5	12	2.75	2.5	31	31	16	16	
2000	16	12	3	3	31	15	16	16	
640	11	6	2.5	3	15	15	28	16	

CWI

Convergence Runs Dynamic Adjustment

Work-flow

Select-Join Plan

Select-Join Degree of Parallelism

2000MB x 1MB selectivity 1.0 0.5 0.0001 0.04 36 27 18 9 0 16 32 48 80 96 112 128 64 0

2000MB x 16MB

2000MB x 64MB

monet db

CWI

