

Flexible Subspace Search for Outlier Detection and Description

Emmanuel Müller

University of Antwerp, Belgium

Karlsruhe Institute of Technology, Germany

Dutch-Belgian Database Day (DBDBD 2013), Rotterdam November 29th, 2013

Outlier Mining Examples

Today's applications provide large and high dimensional databases...

Challenging Databases (e.g. sensor networks)

- Millions of objects, thousands of attributes per object
- More and more attributes are measured and stored
- Loss of contrast: all objects become unique
- ⇒ Traditional techniques are insufficient for high dimensional data

Our Solution - Subspaces

Outlier mining in subsets of the given attributes

Subspaces: Relevant Attribute Combinations

- High contrast between outliers and clusters (enable detection)
- Indicate the reasons for high deviation (enable descriptions)
- ⇒ How to detect such high contrast subspaces?

Overview

- Problem Setting: Subspace Search
- Plexible Subspace Search (RefOut)
- 3 Evaluation, Application, and Extension
- Conclusion and Outlook

One of the Traditional Outlier Definitions

- Based on (dis-)similarity of objects w.r.t. all given dimensions
- Measure deviation of outlier w.r.t. all given dimensions

Density-Based Outliers

- Underlying density definition $den(o) = |\{p \mid dist(o, p) \leq \varepsilon\}|$
- Outliers have low density in contrast to their densely clustered neighborhood

Outlier Ranking (e.g. Local Outlier Factor^[1])

 Sorted list of objects according to local degree of deviation $\forall o \in DB : score(o) = 0 \dots 1$

[1] Breunia, Kriegel, Ng. Sander: LOF: Identifying density-based Local Outliers, in ACM SIGMOD, 2000

Subspace Outlier Definitions

Simple Subspace Definitions

 Utilize traditional definitions in random subspaces[2]

$$RS(o) \subseteq \mathcal{P}(D)$$

Aggregate scores:

$$r(o) = \prod_{S \in RS(o)} score(o, S)$$

$$dist_{\mathcal{S}}(o,p) = \sqrt{\sum_{i \in \mathcal{S}} (o_i - p_i)^2}$$

Enhanced Subspace Outlier Mining Techniques^{[3][4][5]}

[2] Lazarevic and Kumar: Feature bagging for outlier detection, in ACM SIGKDD, 2005.

[3] Müller, Schiffer and Seidl: Statistical Selection of Relevant Subspace Projections for Outlier Ranking, in IEEE ICDE 2011.

[4] Keller, Müller and Böhm: HiCS: High Contrast Subspaces for Density-Based Outlier Ranking, in IEEE ICDE 2012.

[5] Keller, Müller, Wixler and Böhm: Flexible and Adaptive Subspace Search for Outlier Analysis, in ACM CIKM 2013.

Related Work

• Subspace Outlier Mining (e.g. OutRes[3])

• Subspace Search (e.g. HiCS^[4])

Related Work

Subspace Outlier Mining (e.g. OutRes^[3])

• Subspace Search (e.g. HiCS^[4])

Flexible Subspace Search (RefOut^[5])

Flexible and Adaptive Subspace Search (RefOut)

- Outlier descriptions require an adaptive search w.r.t. outlier definition
- Steer the search with some external objective function

$$score_{LOF}(o,S) \rightarrow S_1$$

$$score_{NG}(o,S) o S_2$$

$$\mathit{score}_{\mathit{LOF}}(\mathit{o}, \mathit{S}) \rightarrow \mathit{S}_1 \qquad \mathit{score}_{\mathit{NG}}(\mathit{o}, \mathit{S}) \rightarrow \mathit{S}_2 \qquad \mathit{score}_{\mathit{ABOF}}(\mathit{o}, \mathit{S}) \rightarrow \mathit{S}_3$$

Flexible and Adaptive Subspace Search (RefOut)

- Outlier descriptions require an adaptive search w.r.t. outlier definition
- Steer the search with some external objective function

$$score_{LOF}(o,S)
ightarrow S_1 \qquad score_{NG}(o,S)
ightarrow S_2 \qquad score_{ABOF}(o,S)
ightarrow S_3$$

$$score_{NG}(o,S)
ightarrow S_2$$

$$score_{ABOF}(o,S)
ightarrow S_3$$

- RefOut is the first method that enables adaptive subspace search
- It opens a new research direction: **subspace ensembles**^[6]

[6] Aggarwal: Outlier ensembles: Position paper, in ACM SIGKDD Explorations 2012.

- For each object:
 Search the peak subspace with best discriminative power
- Flexible search steered according to an external objective function

Problem Setting in RefOut

- For each object:
 Search the peak subspace with best discriminative power
- Flexible search steered according to an external objective function

RefOut Solution I

Algorithm

- Apply outlier scoring to subspaces of an initial subspace pool
- For the most promising outliers: Refine subspaces by identifying the peaking subspace
- Apply outlier scoring to the refined subspace pool

RefOut Solution II

- Given pool of subspaces
- Measure outlier score (or any other objective function)
- Combine best scoring subspaces

Score Discrepancy Problem:

Given a pool of subspaces and outlier scores, which subspace causes a partitioning $(\mathcal{O}_{\mathcal{S}}^+,\mathcal{O}_{\mathcal{S}}^-)$ that maximizes:

$$\arg\max_{S}(E[\mathcal{O}_{S}^{+}]-E[\mathcal{O}_{S}^{-}])$$

Evaluation

- Enhanced outlier detection quality (synthetic data)
- Provide meaningful outlier descriptions (real-world data)

Application of Subspace Search

- As multi-view feature selection
- As multi-view correlation analysis

Open for Academia and Industry

- Ensure repeatability of experiments by OpenSubspace^[8]
- Provides outlier rules for outlier description^[9]
- Extensible repository of algorithms (for academia and industry)

[8] Müller, Schiffer, Gerwert, Hannen, Jansen and Seidl: SOREX: Subspace Outlier Ranking Exploration Toolkit, in PKDD 2010.

[9] Müller, Keller, Blanc and Böhm: OutRules: A Framework for Outlier Descriptions in Multiple Context Spaces, in PKDD 2012.

Conclusion and Outlook

Subspace search is an emerging research field ...

Theoretical Models

- Statistical selection of relevant subspaces
- → How to exclude even mores undesired subspaces?

Algorithms

- Development of pruning heuristics
- ⇒ How to ensure scalability for large and complex data?

Descriptions

- Subspaces provide first descriptions
- ⇒ How to enable verification of patterns?