
UNIVERSITY OF TWENTE.

EMPIRICAL CO-OCCURRENCE NETWORKS (CRN) FOR SEQUENCE LABELING

ZHEMIN ZHU, DJOERD HIEMSTRA, PETER APERS, ANDREAS WOMBACHER

DBDBD, 29-11-2013

ROTTERDAM, THE NETHERLANDS

OUTLINE

- 1. An example of sequence labeling
- 2. Co-occurrence rate factorization
- 3. CRN versus CRF
- 4. Experiments
- 5. Concluding remarks

APPLICATIONS OF SEQUENCE LABELING

Wide applications:

- 1. Information extraction
- 2. Natural language processing
- 3. Computer vision
- 4. Bioinformatics
- 5. ...

I am from Enschede and a member of Dutch Research School for Information and Knowledge Systems.

Potential tags: LOCATION TIME PERSON ORGANIZATION MONEY PERCENT DATE

> This colorful annotation was automatically generated by **Stanford Named Entity Tagger:**<u>http://nlp.stanford.edu:8080/ner/process</u>

UNIVERSITY OF TWENTE.

28/11/13 4

I am from Enschede and a member of Dutch Research School for Information and Knowledge Systems.

Potential tags:

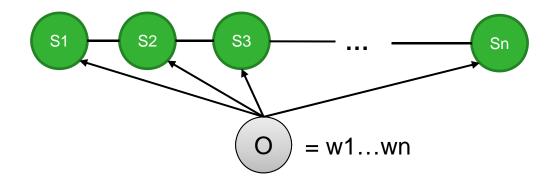
LOCATION
TIME
PERSON
ORGANIZATION
MONEY
PERCENT
DATE

Importance:

- 1. NER is the first step to extract structured information from unstructured free texts.
- 2. Named entities are minimum semantic units in many applications.

I am from Enschede and a member of Dutch Research School for Information and Knowledge Systems.

Potential tags:


LOCATION TIME PERSON ORGANIZATION MONEY PERCENT DATE

How

Two intuitions:

- Some words are more likely to be in NER. (Observation Evidence)
- 2. A word is more likely to be NER if its adjacent words are NER. (Dependence Relation)

Formalizing the tagging task by probabilistic graphical models:

 $\operatorname{argmax}_{s_1,s_2,...,s_n} p(S_1, S_2, ..., S_n | O) \quad p \text{ is probability mass function (pmf).}$ $\operatorname{argmax}_{s_1,s_2,...,s_n} f(S_1, S_2, ..., S_n | O) \quad f \text{ is probability density function (pdf).}$

Joint probability is not reusable, we need to factorize it.

Known: $p(S_1, S_2 | W_1 W_2) \quad p(S_2, S_3 | W_2 W_3)$

Predict: $p(S_1, S_3 | W_1 W_3)$

Joint probability is not reusable, we need to factorize it.

Known:
$$p(S_1, S_2 | W_1 W_2) = p(S_1 | W_1)p(S_2 | W_2)$$

 $p(S_2, S_3 | W_2 W_3) = p(S_2 | W_2)p(S_3 | W_3)$
Predict: $p(S_1, S_3 | W_1 W_3) = p(S_1 | W_1)p(S_3 | W_3)$

CO-OCCURRENCE RATE (CR) FACTORIZATION

Definition of co-occurrence rate (CR):

1. Discrete:

$$CR(X_1; X_2; ...; X_n) = \frac{p(X_1, X_2, ..., X_n)}{p(X_1)p(X_2)...p(X_n)}$$

2. Continuous:

$$CR(X_1; X_2; ...; X_n) = \frac{f(X_1, X_2, ..., X_n)}{f(X_1)f(X_2)...f(X_n)}$$

UNIVERSITY OF TWENTE.

28/11/13 10

CO-OCCURRENCE RATE (CR) FACTORIZATION

Partition Theorem

 $CR(X_1; ...; X_j; X_{j+1}; ...; X_n)$ = CR(X₁; ...; X_j)CR(X_{j+1}; ...; X_n)CR(X₁...X_j; X_{j+1}...X_n)

Cancellation Theorem

If $X \perp Y \mid Z$, then CR(X; YZ) = CR(X; Z).

CO-OCCURRENCE RATE (CR) FACTORIZATION

Factorizing using CR

$$p(S_1, S_2, ..., S_n | O) = \prod_{i=1}^n p(S_i | O) \prod_{j=1}^{n-1} CR(S_j; S_{j+1} | O),$$

$$f(S_1, S_2, ..., S_n | O) = \prod_{i=1}^n f(S_i | O) \prod_{j=1}^{n-1} CR(S_j; S_{j+1} | O)$$

RELATION BETWEEN CR AND COPULA

(Bivariate) Copula

 $C_{F_X,F_Y}(u,v) = P(F_X \le u,F_Y \le v)$

 F_X and F_Y be the commutative distribution functions (cdf) of X and Y

Copula density function

$$c_{F_X,F_Y} = \frac{\partial^2}{\partial F_X \partial F_Y} C_{F_X,F_Y}$$

RELATION BETWEEN CR AND COPULA

Continuous CR is just the Copula density function
 Since:

$$f_{X,Y}(x,y) = c_{F_X,F_Y}(F_X(x),F_Y(y)) \begin{vmatrix} \frac{\partial F_X}{\partial X} & \frac{\partial F_X}{\partial Y} \\ \frac{\partial F_Y}{\partial X} & \frac{\partial F_Y}{\partial Y} \end{vmatrix}$$
$$= c_{F_X,F_Y}(F_X(x),F_Y(y))f_X(x)f_Y(y),$$
Then $\operatorname{CR}_{X;Y}(x,y) = \frac{f_{X,Y}(x,y)}{f_X(x)f_Y(y)} = c_{F_X,F_Y}(F_X(x),F_Y(y))$

Discrete CR: Do not know.

RELATION BETWEEN CR AND COPULA

Estimating Copula: Estimating every marginal distribution, then plug into the joint distribution.

We use a similar idea to estimate CR.

CRN VS. CRF

CRF:
$$p(S_1, S_2, ..., S_n | O) = \frac{1}{Z_O} \prod_{i=1}^n \phi_i(S_i, O) \prod_{j=1}^{n-1} \psi_j(S_j, S_{j+1}, O)$$

$$Z_{O} = \oint_{S_{1},S_{2},...,S_{n}} \left[\prod_{i=1}^{n} \phi_{i}(S_{i},O) \prod_{j=1}^{n-1} \psi_{j}(S_{j},S_{j+1},O) \right]$$

- 1. Global normalization.
- 2. Normalizer is very important because it implies constraints.

CRF

CRF:
$$p(S_1, S_2, ..., S_n | O) = \frac{1}{Z_O} \prod_{i=1}^n \phi_i(S_i, O) \prod_{j=1}^{n-1} \psi_j(S_j, S_{j+1}, O)$$

CRN: $p(S_1, S_2, ..., S_n | O) = \prod_{i=1}^n p(S_i | O) \prod_{j=1}^{n-1} CR(S_j; S_{j+1} | O),$

Global normalization vs Local normalization

- 1. ϕ and ψ are not probability distributions and cannot be locally normalized.
- 2. p is probability distribution, can be locally normalized. CR can be estimated locally using Copula techniques.

EXPERIMENTS

Dataset: Brown corpus for Part-of-speech tagging Software: CRF++ version 0.57, CRN is implemented by us.

TABLE III: Accuracy On POS Tagging

	Overall	Known	Unknown	Time (Sec.)
CRF++	95.4	96.1	71.7	4,571,807
ECRN	95.6	96.9	70.5	3.9

EXPERIMENTS

Dataset: Dutch part of CoNLL-2002 Named Entity Recognition Dataset Software: CRF++ version 0.57, CRN is implemented by us.

TABLE IV: Accuracy On NER

	Overall	Known	Unknown	Time (Sec.)
CRF++	96.13	98.2	77.4	794
ECRN	96.23	98.8	73.7	1.3

CONCLUSION

- We proposed the new Co-occurrence Rate factorization for undirected graphs.
- Local method can be trained much faster and obtain competitive or better results than traditional global methods.

THE END

Thanks you!

This work has been supported by COMMIT/.