Declarative Networking

Tom J. Ameloot

Frank Neven Jan Van den Bussche

Hasselt University & Transnational University of Limburg

Introduction

Declarative

- high-level languages
- hide technical details, do optimization

Networking

- distributed programs
- cloud computing, increase parallellism

Recently combined

Introduction

Asynchronous communication

unpredictable message delays

(Eventual) consistency

output the same regardless of delays

CALM Conjecture

Problem Description

Desire to increase parallellism

Monotone operations

embarrassingly parallel, coordination-free

Problem Description

Desire to increase parallellism

Monotone operations

embarrassingly parallel, coordination-free

[Hellerstein] CALM Conjecture:

A program has an eventually consistent, coordination-free execution strategy if and only if it is expressible in (monotonic) Datalog.

Verify conjecture

formalize: program, eventual consistency, coordination-freeness

Programs

Transducer Π

- Local state: input, output, memory, system
- Messages

.

Driven by database queries

Programs

Transducer Π

- Local state: input, output, memory, system
- Messages
- Driven by database queries

Transducer Network

- Homogeneous
- Input distributed database
- Runs: nondeterministic, asynchronous, fair

Consistency

Output of run: union of local outputs

Consistent transducer network:

Transducer Π distributedly computes query Q if all transducer networks for Π express Q

Consistency

Output of run: union of local outputs

Consistent transducer network:

Transducer Π distributedly computes query Q if all transducer networks for Π express Q

Coordination-freeness

Coordination

distributed consensus, communication, waiting

Transducer network is **coordination-free** if

for all input instances I, the output can already be produced without communication on some partition of I

Transducer Π is **coordination-free** if all transducer networks for Π are coordination-free

CALM Conjecture

A program has an <u>eventually consistent</u>, <u>coordination-free</u> <u>execution strategy</u> if and only if it is expressible in (monotonic) Datalog.

A <u>query</u> can be <u>distributedly computed</u> by a <u>coordination-free transducer</u> if and only if it is expressible in (monotonic) Datalog.

∜

CALM Conjecture

A program has an eventually consistent, coordination-free execution strategy if and only if it is expressible in (monotonic) Datalog.

A <u>query</u> can be <u>distributedly computed</u> by a <u>coordination-free transducer</u> if and only if it is expressible in (monotonic) Datalog.

 \downarrow

If direction: holds

All monotone queries computable by coordination-free transducer

Only-if direction: fails

Monotone queries outside Datalog (Afrati et al. 1995)

The following are equivalent for any query $\mathcal{Q}:$

- 1. \mathcal{Q} is monotone
- 2. ${\cal Q}$ can be distributedly computed by a coordination-free transducer

The following are equivalent for any query $\mathcal{Q}:$

- 1. Q is monotone
- 2. \mathcal{Q} can be distributedly computed by a **coordination-free** transducer
- 3. Q can be distributedly computed by a transducer that is given no node identifiers (obliviousness)

Directions for Further Work

Quantify coordination

Data initialization strategies reduce need for coordination

Thank you