
Adaptive parallelization in multi-core systems

Mrunal Gawade
CWI, Amsterdam

mrunal.gawade@cwi.nl

Motivation: With the presence of multi-core CPUs even
in desktop computers the opportunities for query parallelism
exploitation in database systems are manifold. Exploiting
these opportunities calls for a re-look at the optimal parallel
plan generation problem. An optimal parallel plan genera-
tion in a multi-core CPU setting however is very hard.

Hypothesis: The conventional parallel plan generation meth-
ods use cost based or heuristic based optimizations. We en-
vision an alternative approach for parallel plan generation
using the actual query execution time as the parallelization
decision metric. During successive query invocations an old
query plan is morphed into a new query plan by parallelizing
the most expensive operator. The parallelization step intro-
duces two new operators which operate on two equi-range
partitions. We term this approach the adaptive paralleliza-
tion. The explosion of parallel plan search space is thus
controlled by selective parallelization of the most expensive
operator. Adaptive parallelization is evaluated by an imple-
mentation in MonetDB, the open source columnar database
system. We show an optimal parallel plan generation from
a large parallel plan search space within bounded time con-
straints.

Research challenge: A multi-core CPU setting increases
the query optimization problem complexity by expanding
the already large query plan space. To illustrate one such
simple case consider a relational algebra plan.

Join(Select(A), Select(B)).

The plan needs to be executed in an n-core CPU setting. In
the case of intra-operator parallelism of the Select operator,
the query optimizer could range partition the column from
table A and B, and assign one Select operator per range.
The number of partitions could vary based on different pos-
sibilities such as data type, data range, data distribution,
query selectivity, presence of access optimization structures
such as indices, size of data being merged after partitions,
and position in the plan where the merging occurs.

Assume a case where the upper bound on the maximum
number of partitions for both Select operands in an n-core
CPU is n. Consider the most simple case of equi-range dis-
joint partitions over both Select operands. Let m1 and
m2 represent the number of partitions of each operand.
The minimum equi-range disjoint partitions are m=2 (m1=1
and m2=1), and the maximum equi-range disjoint partitions
are m=n, where m = m1 + m2. Possible options for m1

Figure 1: Adaptive parallel plan generation as a
black box view.

and m2 when m <= n are m1 = 1,m2 = 1, 2...(n − 1),
and m1 = 2,m2 = 1, 2...(n − 2) continuing upto m1 =
n − 1,m2 = 1. Hence, the total number of partitioning op-

tions are (n)(n−1)
2

. Each partitioning option represents one
parallel plan. Hence, the total parallel plan space size is
(n)(n−1)

2
.

One of the challenges is to enumerate the parallel plan space
in the most efficient manner in order to search for an opti-
mal parallel plan. Enumeration of the plan space should be
coupled with a learning mechanism, so that a future search
could be improved based on the feedback from the already
explored plan space. A good learning system should be able
to handle issues such as a slow rate of learning and a long
time for convergence. The ability to detect the global mini-
mum execution time from many local minima influences the
rate of learning. The rate of learning influences the ability of
the system to converge as the longer the learning time, the
longer is the time for convergence to find an optimal parallel
plan.

Progress: We have developed a basic prototype infrastruc-
ture for adaptive parallelization in MonetDB. Each succes-
sive query invocation generates a new parallel plan. The sys-
tem maintains a history of the execution plans. We have also
developed a convergence algorithm that guarantees conver-
gence in minimal runs while detecting a global minimum ex-
ecution. The convergence algorithm guarantees convergence
in different scenarios such as variations in the operator’s ex-
ecution time due to the operating system noise. We use
microbenchmarks to study the feedback based behaviour of
the individual operators such as select and join. We also ex-
periment with simple queries from TPC-H benchmark with
plans having select and join operators as prominent expen-
sive operators.


