
I/O-efficient algorithms for localized bisimulation partition

construction and maintenance on massive graphs

Yongming Luo∗1, George H.L. Fletcher1, Jan Hidders2, Yuqing Wu3, and
Paul De Bra1

1Eindhoven University of Technology, The Netherlands †
2Delft University of Technology, The Netherlands ‡

3Indiana University, Bloomington, USA §

In this talk, we present, to our knowledge, the first known I/O efficient solutions for computing
the k-bisimulation partition of a massive graph, and performing maintenance of such a partition upon
updates to the underlying graph.

Bisimulation is a robust notion of node equivalence which is ubiquitous in the theory and
application of graph data. It defines an intuitive notion of nodes in a graph sharing fundamental
structural features. In data management, for instance, bisimulation partitioning (i.e., grouping
together bisimilar nodes) is often a basic step in indexing semi-structured datasets [6], and also
finds fundamental applications in RDF [7] and general graph data (e.g., compression [1, 3], query
processing [4], data analytics [2]). Inspired by these applications, in this talk, we consider the problem
of computation and maintenance of k-bisimulation, which is the standard variant of bisimulation
where the topological features of nodes are only considered within a local neighborhood of radius
k > 0.

The I/O cost of our partition construction algorithm is bounded by O(k · |Et| · dlogB−1d |Et|
B ee+

k · |Nt| + |Nt| · dlogB−1d |Nt|
B ee) , while our maintenance algorithms are bounded by O(k · |Et| ·

dlogB−1d |Et|
B ee+ k · |Nt| · dlogB−1d |Nt|

B ee). Here, |Et| and |Nt| are the number of disk pages occupied
by the input graph’s edge set and node set, resp., and B is the maximum number of disk pages
which can fit in internal memory. Empirical analysis on a variety of massive real-world and synthetic
graph datasets shows that our algorithms not only perform efficiently, but also scale gracefully as
graphs grow in size [5]. During the talk, we will explain the basic idea that leads to the design of
our algorithms by one running example, and will discuss some interesting observations during the
empirical study of the algorithms on massive graph datasets.

References

[1] P. Buneman, M. Grohe, and C. Koch. Path queries on compressed XML. In VLDB, pages 141–152,
Berlin, Germany, 2003.

[2] W. Fan. Graph pattern matching revised for social network analysis. In ICDT, pages 8–21, Berlin,
Germany, 2012.

[3] W. Fan, J. Li, X. Wang, and Y. Wu. Query preserving graph compression. In SIGMOD, pages 157–168,
Scottsdale, AZ, USA, 2012.

[4] R. Kaushik, P. Shenoy, P. Bohannon, and E. Gudes. Exploiting local similarity for indexing paths in
graph-structured data. In ICDE, pages 129–140, San Jose, CA, USA, 2002.

[5] Y. Luo, G. H. L. Fletcher, J. Hidders, Y. Wu, and P. De Bra. I/O-efficient algorithms for localized
bisimulation partition construction and maintenance on massive graphs. CoRR, abs/1210.0748, 2012.

[6] T. Milo and D. Suciu. Index structures for path expressions. In ICDT, pages 277–295, Jerusalem, Israel,
1999.

[7] F. Picalausa, Y. Luo, G. H. L. Fletcher, J. Hidders, and S. Vansummeren. A structural approach to
indexing triples. In ESWC, pages 406–421, Heraklion, Greece, 2012.

∗Yongming Luo is the prospective speaker
†{y.luo, g.h.l.fletcher, P.M.E.d.Bra}@tue.nl
‡{a.j.h.hidders}@tudelft.nl
§{yuqwu}@cs.indiana.edu

