
Chapter 5

Query Optimization in Hera

While RDF and RDFS are widely acknowledged as a standard means for describ-
ing Web metadata, a standardized language for querying RDF metadata is still
an open issue. Research groups coming both from industry and academia are
presently involved in proposing several RDF query languages. Due to the lack
of an RDF algebra such query languages use APIs to describe their semantics
and optimization issues are mostly neglected. This chapter proposes RAL (an
RDF algebra) as a reference mathematical study for RDF query languages and
for performing RDF query optimization. We define the data model, we present
the operators to manipulate the data, and we address the application of RAL for
query optimization. RAL includes: extraction operators to retrieve the needed
resources from the input RDF model, loop operators to support repetition, and
construction operators to build the resulting RDF model.

5.1 Introduction

The Resource Description Framework (RDF) [Lassila and Swick, 1999; Brickley and Guha,
2004] is intended to serve as a metadata language for the Web and together with its
extensions lays a foundation for the Semantic Web. It has a graph notation, which can be
serialized in a triple notation (subject, predicate, object) or in an XML syntax [Beckett,
2004].

Compared to XML, which is document-oriented, RDF takes into consideration a knowl-
edge oriented approach that is designed specifically for the Web and that is extremely useful
for the Semantic Web. One of the advantages of RDF over XML is that an RDF graph
depicts in a unique form the information to be conveyed while there are several XML
documents to represent the same semantic graph. The central concept that RDF uses in
modeling the metadata is that of resource: resources act as the objects or entities that are
considered in the metadata. RDF’s purpose to express metadata is met by its ability to de-
fine statements that assign values to properties of resources. In this way RDF expressions
describe how resources are related to each other and to (concrete) values.

1



2 CHAPTER 5. QUERY OPTIMIZATION IN HERA

Object-oriented systems are object-centric in the sense that properties are defined in a
class context. On the contrary, RDF is property-centric, which makes it easy for anyone to
“say anything about anything” [Berners-Lee, 1998], one of the architecture principles of the
Semantic Web. In RDF, concepts from E-R modeling are being reused for the modeling of
Web ontologies. The concept of ontology is used to express a common understanding of re-
sources that allows application interoperability [Decker et al., 2000]: identifying a common
structure of resources supports the uniform understanding and treatment of metadata.

The language of RDF is composed from different parts. RDF Schema (RDFS) [Brickley
and Guha, 2004] can be used to define application specific vocabularies. These vocabularies
define taxonomies of resources and properties such that they subsequently can be used by
specific RDF descriptions. RDFS is designed as a flexible language to support distributed
description models. Unlike XML DTD or XML Schema [Thompson et al., 2001; Biron and
Malhotra, 2001], RDFS does not impose a strict typing on descriptions: for example, one
can use new properties that were not present in the schema, a resource can be an instance
of more than one class, etc. The set of primitive data types in RDF is left on purpose
poorly defined as RDFS reuses the work done for data typing in XML Schema [Klyne and
Carroll, 2004]. We do hope that future versions of RDFS will bring clarification regarding
RDF shortcomings of the present specification (e.g., missing set collection, difficult literals
handling, etc.).

In order to use metadata for application interoperability it is not sufficient to just
have a language to describe the metadata. A language for describing queries on that data
is also needed. In the XML world there is already a winner in the quest for the most
appropriate XML query language, i.e., XQuery [Boag et al., 2005]. As the Semantic Web
initiative started recently, its supporting technologies are still in their infancy. Research
groups coming from both industry and academia are presently involved in proposing several
RDF query languages (see the next section). We observe that such query languages often
use APIs to describe their semantics. Clearly, for a proper understanding and a sound
theoretical foundation of these query languages there is a lack of an algebra in the spirit of
the one we know from the relational model. As we also observe that optimization issues are
mostly neglected, an algebra for RDF could help to build a platform for finding efficient
rewritings of queries. This chapter identifies this need and proposes RAL, an RDF algebra
suitable for defining (and comparing) the semantics of different RDF query languages and
(at a later stage) for performing algebraic optimizations.

The remainder of this chapter begins with discussing the related work on RDF query
languages. In Section 5.3 the definition of RAL starts by considering its data model. Sec-
tion 5.4 presents the definition of the basic operators of the algebra, while some additional
algebra features are presented in the next section. Section 5.5 also shows how the algebra
can be used to express queries from other query languages like RQL. Section 5.6 discusses
RAL equivalence laws and their application for query optimization. Section 5.7 concludes
the chapter and indicates further research.



5.2. RELATED WORK 3

5.2 Related Work

In the previous section we addressed the role of an algebra for the definition and comparison
of query languages and for query optimization. At present, there already exist a few
RDF query languages but to our knowledge there is no full-fledged RDF algebra. The
only algebraic description of RDF that we encountered so far is the RDF data model
specification from Stanford [Melnik, 1999]. This specification is based on triples and it
provides a formal definition of resources, literals, and statements. Despite being nicely
defined, the specification does not include URIs, neglects the RDF graph structure, and
does not provide operations for manipulating RDF models. Another formal approach,
which aims not only at formalizing the RDF data model but also at associating a formal
semantics to it, is the RDF Semantics (RS) [Hayes, 2004]. However, it does not qualify
as an algebraic approach but rather, as a model-theoretic one. As RS is currently being
considered a main reference when it comes to RDF semantics, we tried to make our algebra
(especially the data model part) compatible with RS.

As implementation of RDF toolkits started before having an RDF query language,
there are a lot of RDF APIs present today. Three main approaches for querying RDF
(meta)data have been proposed.

The first approach (supported in the W3C working group by Stanford) is to view RDF
data as a knowledge base of triples. Triple [Sintek and Decker, 2002], the successor of
SiLRI (Simple Logic-based RDF Interpreter) [Decker et al., 1998], maps RDF metadata
to a knowledge base in Horn Logic (replacing Frame Logic). A similar approach is taken
in Metalog [Marchiori and Saarela, 1998], which matches triples to predicates in Datalog,
a subset of Horn Logic. In this way one can query RDF descriptions at a high level of
abstraction: the querying takes place at a logical layer that supports inference [Guha et al.,
1998].

The second approach (proposed by IBM) builds upon the XML serialization of RDF.
In the “RDF for XML” project (recently removed), an RDF API is proposed on top of the
IBM AlphaWork’s XML 4 Java parser. In the context of the same project a declarative
query language for RDF (RDF Query) [Malhotra and Sundaresan, 1998] was created for
which both input and output are resource containers. One of the nice features of this query
language is that it proposes operators similar to the relational algebra, leaving the possibil-
ity to reuse some of the 25 years experience with relational databases. Unfortunately, the
language fails to include the inference rules specific to RDF Schema, loosing description
semantics.

Stefan Kokkelink goes even further with the second approach proposing RDF query
and transformation languages that extend existing XML technologies. Similarly to XPath,
he defines RDFPath [Kokkelink, 2001] for locating information in an RDF graph. The
location step and the filter constructs were present also in XPath, but the primary selection
construct is new in this language. With the RDF graph being a forest, one needs to specify
from which trees the selection will be made. RDFT is an RDF declarative transformation
language a la XSLT [Kay, 2005], while RQuery, an RDF query language, is obtained by
replacing XPath [Berglund et al., 2005] with RDFPath in XQuery [Boag et al., 2005].



4 CHAPTER 5. QUERY OPTIMIZATION IN HERA

However, this approach is not using the features specific for RDF, as the RDF Schema is
being completely neglected.

The third approach (coming from ICS-FORTH in Greece) uses the RDF Graph Model
for defining the RDF query language RQL [Karvounarakis et al., 2002]. It extends previous
work on semistructured query languages (e.g., path expressions, filtering capabilities, etc.)
[Catell et al., 2000] with RDF peculiarities. Its strength lies in the ability to uniformly
query both RDF descriptions and schemas. Compared to the previous approach it exploits
the inference given in the RDF Schema (e.g., multiple classification of resources, taxonomies
of classes and properties, etc.) making it the most advanced RDF query language proposed
so far.

Other query languages for RDF have been proposed during the last years: we name Al-
gae [Prud’hommeaux, 2002] (W3C) and rdfDB Query Language [Guha, 2000] (Netscape) as
graph matching query languages. RDF query languages similar to rdfDB Query Language
are: RDFQL [Intellidimension Inc, 2002], David Allsop’s RDF query language [Allsopp
et al., 2002], SquishQL [Miller, 2002], and RDQL [Seaborne, 2001] (HP Labs) an imple-
mentation of SquishQL on top of the Jena RDF API [McBride, 2001] (HP Labs). Some
other proposed RDF APIs are: Wilbur [Lassila, 2001] (Nokia), the RDF API from Stan-
ford [Melnik, 2001], and Redland [Beckett, 2003]. DAML Query Language (DQL), a query
language for ontology knowledge expressed in DAML+OIL [Connolly et al., 2001] (built
on top of RDF), is currently under development.

We mention one characteristic aspect of all the languages. The proposed approaches
disregard the (re)construction of the output: they leave the output as a “flat” RDF con-
tainer of input resources. The focus is on the extraction of the proper resources for the
given query, not on building a new RDF data structure. For the purpose of an RDF al-
gebra we need to take into account also the construction part: deriving from the input
data structure a new RDF data structure as the consequence of the query implies that
the resulting RDF graph can contain new vertices and edges not present in the original
RDF graph. To express RDF queries both the extraction and construction parts should
be covered. The optimization of queries can be achieved not only in the extraction part,
finding efficient ways of extracting the relevant resources, but also in the construction part
when the actual output is produced.

5.3 Data Model

In this section we discuss the data model used with our algebra. We describe how the
RDF data structures are represented in the input or output of the expressions formulated
in RAL. We start by considering the concept of RDF model.

5.3.1 RDF Model

An RDF model is similar to a directed labeled graph (DLG) [Lassila and Swick, 1999].
However, it differs from a classical DLG since its definition allows for multiple edges between



5.3. DATA MODEL 5

two nodes. It also differs from a multigraph because the different edges between two
nodes are not allowed to share the same label. The graph does not necessarily have to be
connected and it is allowed to contain cycles.

The nodes in the graph are used to represent resources or literals. Literals (strings)
are used to denote content that is not processed further by the RDF processor. The nodes
that represent resources can be further classified as nodes representing URI references or
blank nodes. URI references are used as universal identifiers in RDF. Each blank node,
also called an anonymous resource, is considered to be unique in the graph despite the
fact that it has no (explicit) label associated to it. The non-blank nodes are (explicitly)
labeled with resource identifiers (URIs) or string values. The edges in the graph represent
properties. These edges are labeled by property names. Edges between different pairs of
nodes may share the same label and the same property can be applied repetitively on a
certain resource. This RDF feature enables multiple classification of resources, multiple
inheritance for classes, and multiple domains/ranges for properties. Both resources and
properties are first class citizens in the proposed RDF data model.

We identify the following sets: R (set of resources), U (set of URI references), B (set
of blank nodes), L (set of literals), and P (set of properties). At RDF level the following
holds for these sets: R = U ∪ B, rdf :Property ∈ U , P ⊂ R, rdf :type ∈ P , and U, B, and
L are pair-wise disjoint.

The property rdf :type defines the type of a particular resource instance. At RDF
level any resource can be the target of an rdf :type property. RDF supports multiple
classification of resources, because rdf :type (as any other property) can be repeated on a
particular resource.

Definition 1 An RDF model M is a finite set of triples (also called statements)

M ⊂ R × U × (R ∪ L)

Each triple or statement in an RDF model contains a resource, a URI reference (which
stands for a property), and a resource or literal.

Definition 2 The set of properties of an RDF model M is

P = { p | (s, p, o) ∈ M ∨ (p, rdf :type, rdf :Property) ∈ M}

The properties in an RDF model are the middle element of a triple in the model, or
they are a resource with an rdf :type property to the rdf :Property resource.

Definition 3 Formally the data model (graph model) corresponding to an RDF model M
is

G = (N, E, lN , lE)

lN = N → R ∪ L

lE = E → P



6 CHAPTER 5. QUERY OPTIMIZATION IN HERA

using the following construction mechanism (N and E denote the nodes and edges, lN and
lE their labels). For each (s, p, o) ∈ M , add nodes ns, no to N (different only if s 6= o) and
label them as lN(ns) = s, lN(no) = o, and add ep to E as a directed edge between ns and
no and label that as lE(ep) = p. In the case that s and/or o are in B, then lN(ns) and/or
lN(no) are not defined: blank nodes do not have labels.

The function lN(.) is an injective partial function, while lE(.) is a (possibly non-injective)
total function: nodes that have a label have a unique one, edges always have a label but
can share it with other edges.

We use quotes for strings that represent literal nodes to make a syntactical distinc-
tion between them and URI nodes. A URI can be expressed using qualified names (e.g.,
s:Painting) or in absolute form (e.g., http://example.com/schema#Painting). Blank
nodes do not have a proper identifier which implies that they can be queried only through
a property related to them. Compared to XML, which defines an order between subele-
ments, in RDF the properties of a resource are unordered unless they represent items in
a sequence container. We remark that not having the burden of preserving element order
eases the definition of algebra operators and their associated laws.

5.3.2 Nodes and Edges

As we describe in Table 5.1 each node has three basic properties. The id of a node represents
the (identification) label associated to it. The nodes from the subset of resources that
represent the blank nodes do not have an id associated to them. There are two types of
nodes: rdfs:Resource and rdfs:Literal. The nodeID gives the unique internal identifier
of each node in the graph. nodeID has the same value as id for the nodes that have a
label, but in addition it gives a unique identifier to the blank nodes. The internal identifier
nodeID is not available for external use, i.e., it is not disclosed for querying.

Basic property Result for Result for
resource u ∈ U literal l ∈ L

id lN(u) lN(l)
type rdfs:Resource rdfs:Literal
nodeID internal ID internal ID

Table 5.1: Basic properties for nodes.

Each edge has three basic properties as described in Table 5.2. Compared with nodes,
which have unique identifiers, edges have a name (label), which may be not unique. There
can be several edges sharing the same name but connecting different pairs of vertices. The
name of an edge is (lexically) identified with the id of the resource corresponding to the
property associated with the edge. The subject of an edge gives the resource node from
which the edge is starting. object returns the resource or literal node where the edge ends,
i.e., the value of the property.



5.3. DATA MODEL 7

Basic property Result for
edge e
from r ∈ R to o ∈ R ∪ L

name lE(e)
subject r
object o

Table 5.2: Basic properties for edges.

Definition 4 Two non-blank nodes are considered to be equal if they have the same id.
Two blank nodes are considered to be equal if they have the same (RDF) properties and
the corresponding (RDF) property values are equal (in case of loops, pairs of blank nodes
already visited are not further tested for equality).

All non-blank nodes that are considered equal are internally mapped into one node in the
graph.

Definition 5 Two graphs are considered to be equal if they differ only by re-naming the
nodeIDs of their blank nodes.

Note that two graphs for which all their nodes are equal (in terms of node equality)
may be not equal themselves (in terms of graph equality) if some corresponding non-blank
nodes have different properties and/or different property values.

5.3.3 RDFS

RDF Schema (RDFS) [Brickley and Guha, 2004] provides a richer modeling language on
top of RDF. RDFS adds new modeling primitives by introducing RDF resources that
have additional semantics (in the previous section we already mentioned rdfs:Resource
and rdfs:Literal). If one chooses to discard this special semantics, RDFS models can be
viewed as (plain) RDF models.

The RDFS type system is built using the following primitives: rdfs:Resource, rdf :type,
rdf :Property, rdfs:Class, rdfs:Literal, rdfs:subClassOf , rdfs:subPropertyOf , rdfs:do-
main, and rdfs:range. The distinction between rdf and rdfs namespaces to be used for
different resources is more due to historical reasons (RDF was developed before RDFS)
than due to semantical ones. Figure 5.1 depicts graphically these RDF/RDFS primitives.

The inheritance mechanism incorporated in RDFS supports taxonomies at class level
(using the rdfs:subClassOf property) and at property level (using the rdfs:subPropertyOf
property). It also defines constraints: names to be used for properties, domain and range
for properties, etc. These constraints need to be fulfilled by RDF descriptions (later on
called instances) in order to validate these instances according to the associated schema.

Every resource that has the rdf :type property equal to rdfs:Class represents a type (or
class) in the RDF(S) type system. Types can be classified as primitive types (rdfs:Resource,



8 CHAPTER 5. QUERY OPTIMIZATION IN HERA

rdfs:Resource

rdf:Property rdfs:Class

rdf:type

rdfs:Literal

rdfs:subClassOf

rdfs:subPropertyOf rdfs:range

rdfs:domain

rdfs:subClassOf
rdf:type

Figure 5.1: RDF/RDFS primitives.

rdf :Property, rdfs:Class, or rdfs:Literal) or as user-defined types (those are resources
defined explicitly by a particular RDF model to have the rdf :type property equal to
rdfs:Class). The type of the resource rdfs:Class is defined reflexively to be rdfs:Class.
The resource rdfs:Class contains all the types, which is not the same thing as saying that
it includes all the values (instances) represented by these types.

We extend the data model with the set C (set of classes). At RDFS level the following
holds: C ⊂ R, rdfs:Resource ∈ C, rdf :Property ∈ C, rdfs:Class ∈ C, and rdfs:Literal ∈
C.

Definition 6 The set of classes of an RDF model M is

C = { c | (c, rdf :type, rdfs:Class) ∈ M}

The most general types are rdfs:Resource and rdfs:Literal which represent all re-
sources and literals, respectively. According to the data model these types are disjoint.
Subclasses of the class rdfs:Resource are rdfs:Class and rdfs:Property, rdfs:Class rep-
resenting all types (already stated above), and rdfs:Property containing all properties.
The distinction between properties and resources is not a clear cut one as properties are
resources with some additional (edge) semantics associated to them. A property (edge)
can be used repetitively between nodes (similar in a way to repeating a particular type in
the definition of its instances) which justifies the existence of an extent function (defined
later on) for properties, as well as for classes. Moreover, property instances can have the
rdfs:subPropertyOf property defined in the same way as one can use the rdfs:subClassOf
property for classes.



5.3. DATA MODEL 9

The most important properties (each instance of rdf :Property) are: rdfs:subClassOf ,
rdfs:subPropertyOf , rdfs:domain, and rdfs:range. The properties rdfs:subClassOf and
rdfs:subPropertyOf are used to define inheritance relationships between classes and prop-
erties, respectively. Based on the RDF Test Cases [Grant and Beckett, 2004] the properties
rdf :subClassOf and rdf :subPropertyOf can produce cycles, a useful mechanism if we
think about class or property equivalence. A resource of type rdf :Property may define the
rdfs:domain and the rdfs:range associated to that property: the type of the subject and
object nodes of the property edge. Inspired by ontology languages, like OWL [van Harme-
len et al., 2003], rdfs:domain and rdfs:range can be multiply defined for one particular
property and will have conjunctive semantics.

There is one particular class called rdfs:Literal that represents all strings. Note that
the RDF Semantics [Hayes, 2004] identifies two types of literals: plain literals and type
literals. A plain literal is a 2-tuple (lexical form, language identifier) and a typed literal is
a 3-tuple (lexical form, language identifier, datatype URI). The datatype URI is an XML
Schema datatype [Biron and Malhotra, 2001] or rdf :XMLLiteral for XML content. In
the data model we simplify the literal definition considering just the character string (the
lexical form) for literals. Note that literals are not resources, i.e., one cannot associate
properties to them. On the other hand, there are resources that have type rdfs:Literal
and thus can have properties attached to them. Nevertheless one cannot say which literal
this resource denotes. RDF defines also the container classes rdf :Seq, rdf :Bag, and rdf :Alt
to model ordered sequences, sets with duplicates, and value alternatives. The properties
rdf :rdf 1, rdf :rdf 2, rdf :rdf 3, etc., refer to container members.

5.3.4 Class and Property Nodes

As shown in Table 5.3 each node representing a class has three schema properties. Schema
properties associated to nodes are short notations (like a macro) for expressions doing the
same computation based only on basic properties. The type of a class node is rdfs:Class.
The set of superclasses (classes from which the current class node is inheriting prop-
erties) is given by subClassOf . RDFS allows multiple inheritance for classes because
rdfs:subClassOf (as any other property) can be repeated on a particular class. The
extent of a class node is the set of all instances of this class.

Schema property Result
type rdfs:Class
subClassOf S with S ⊂ C
extent R′ with R′ ⊂ R

Table 5.3: Schema properties for class nodes.

Each node representing a property has five schema properties as shown in Table 5.4.
The type of a property node is rdf :Property. The set of superproperties (properties which
the current property is specializing) is given by subPropertyOf . Note that the domain or



10 CHAPTER 5. QUERY OPTIMIZATION IN HERA

range of a superproperty should be superclasses for the current property’s domain or range,
respectively. The domain and range return sets of classes that represent the domain and
the range, respectively, of the property node. The extent of a property node is the set of
resource pairs linked by the current property: this set of pairs is a subset of the Cartesian
product between the associated domain and range extents.

Schema property Result
type rdf :Property
subPropertyOf S with S ⊂ P
domain D with D ⊂ C
range R with R ⊂ C
extent E with E ⊂ ∩d∈domainextent(d) × ∩r∈rangeextent(r)

Table 5.4: Schema properties for property nodes.

One should note that we assume in the data model that there can be several edges
having the same name but linking different pairs of resources. All these properties can be
seen as “instances” (abusing the term “instance” previously referring to resource instances
of a particular class) of the property node with the id value equal to their common name.

In absence of a schema, all RDF properties have type rdf :Property, domain R, and
range R∪L. In this way one can define the extent of an RDF property even if the property
is not explicitly defined in a schema. In a schemaless RDF graph all resources are assumed
to be of type rdfs:Resource.

5.3.5 Complete Models

The RDF Semantics [Hayes, 2004] defines the RDF-closure and RDFS-closure of a certain
model M by adding new triples to the model M according to a collection of given infer-
ence rules. We refer to the original model M as the extensional data and to the newly
generated triples as the intensional data. There are two inference rules for RDF-closure
and nine inference rules for RDFS-closure. The inference rules for RDF-closure add for
all properties in the model the rdf :type property (pointing to rdf :Property). Examples of
inference rules for RDFS-closure are the transitivity of rdfs:subClassOf , the transitivity
of rdfs:subPropertyOf , and the rdf :type inference for an rdf :type edge that follows after
an rdfs:subClassOf edge. One should note that the resulting output of applying these
inference rules may trigger other rules. Nevertheless the rules will terminate for any RDF
input model M , as there is only a finite number of triples that can be formed with the
finite vocabulary of M .

Definition 7 An RDF model M is complete if it contains both its RDF-closure and RDFS-
closure.



5.4. BASIC RAL OPERATORS 11

In the proposed data model we consider complete models and we neglect reification and
the properties rdfs:seeAlso, rdfs:isDefinedBy, rdfs:comment, and rdfs:label without
loosing generality.

5.4 Basic RAL Operators

The purpose of defining RAL is twofold: to provide a reference mathematical study for
RDF query languages and to enable algebraic manipulations for RDF query optimization.
RAL is an algebra for RDF defined from a database perspective, some of its operators
being inspired by their relational algebra counterparts. We used a similar approach in
developing XAL [Frasincar et al., 2002], an algebra for XML query optimization.

During the presentation of RAL operators we will use the RDF data from the example
in Figure 5.2 as input for the operators. It is assumed that all operators know about the
complete RDF model as it was defined in Definition 7. That means that they all have the
complete knowledge (both extensional and intensional data) present in the given model.
Variants of the proposed operators can be defined using the suffix “ˆ” which will make
the operators neglect the intensional data, i.e., data derived by applying RDF(S) inference
rules to the input model is neglected (similar to RQL’s “strict interpretation”).

Figure 5.2 is an excerpt from the RDF schema and RDF instance of some Web data
describing different painting techniques. For reasons of simplicity we consider only one
painting technique (“Chiaroscuro”), one painter (“Rembrandt”), and two paintings of
the same painter (“StoneBridge” and “SelfPortrait”). The figure does not present the
RDFS primitives rdfs:Resource, rdf :Property, rdfs:Class, and rdfs:Literal from which
all the resources and literals are derived. In order to simplify Figure 5.2 we chose to present
only the extensional data and just one intensional data element given by the inferred edge
rdf :type between r4 and Creator. For the same reasons we omit from the figure edges
representing the inverse properties exemplifies and painted by between instances (e.g.,
the edge labeled painted by between r2 and r4) that are nevertheless part of the data
model.

We define RDF collections to be sets of nodes (resources/literals). A collection is de-
noted as {e1, e2, ...en} where e1, e2, ...en are the nodes in the collection. A node, a unique
element in the RDF graph, is also a unique element in a collection that contains it. The
collections (sets) of nodes are closed under all operators, which implies that RAL expres-
sions can be easily composed. The collection concept is similar to the monad concept from
mathematics [Wadler, 1992]. A monad is defined over a certain type M . In contrast to the
monad, RAL collections are more liberal in the sense that they are not restricted to a par-
ticular type M . A RAL collection can contain both literals and resources of different types.
A monad is defined as a triple of functions (mapM, unitM, joinM). RAL also has the map
operation defined and the monad join operation is equivalent to RAL’s union operation.
In RAL there is no unit operation as the singleton collection {n} is written in the same
way as the single node n. Based on the similarities between monads and RAL collections,
one can reuse the three monad laws (left unit law, right unit law, and associativity law)



12 CHAPTER 5. QUERY OPTIMIZATION IN HERA

Technique Artifact

Painting

CreatorLiteral

Literal Literal

r2http://example.com/sb.jpg

schema

creates

created_byexemplified_by

paints

painted_by

exemplifies Literal

Painter

Image

"Self Portrait""Stone Bridge" "1628""1638"

r3 http://example.com/sp.jpg

"Rembrandt"

image

name

instance

image

paints

rdfs:subClassOf
rdfs:subPropertyOf

year year

year

rdf:Property

image

r1"Chiaroscuro"
exemplified_by

r4
paintsexemplified_by

inferred rdf:type
rdf:type

tname

tname

cname

cname

aname aname

aname

Figure 5.2: Example schema and instance.

as equivalence rules in RAL (see the first three RAL laws from Section 5.6). The fact that
RAL collections are not ordered enables the commutativity law of some binary operations
(e.g., Law 11 from Section 5.6). In comparison with the relational algebra, RAL is more
powerful as binary operations like union do not have to meet the “compatibility” condition
from the relational algebra.

RAL operators come in three flavors: extraction operators retrieve the needed resources
from the input RDF model, loop operators support repetition, and construction operators
build the resulting RDF model. The RAL philosophy is based on the fact that the collection
of nodes represents a collection of graph components that contain these nodes. Using
the extraction operators a subgraph of the original graph is selected. The construction
operators build a new model by creating nodes/edges as well as reusing old nodes (possibly
without some edges) and old edges.

The general form of the operators is

o[f ](x1, x2, . . . xn : expression)

Informally, this form represents the following. For each binding of x to a tuple from the



5.4. BASIC RAL OPERATORS 13

input collections, f(x) is computed. A tuple is formed by taking one element from each
input collection: x1, x2, . . . xn. Note that x1, x2, . . . xn are algebra expressions that return
collections. f is a function that may use basic/derived properties or one of the proposed
operators. Based on the semantics of operator o a partial result for the application of o to
f(x) is computed for each binding x. The operator result is obtained by combining (through
set union) all partial results. All unary operators use this implicit union mechanism, the
map operator, to compute the result. In the operator’s general form, the function f is
optional. For readability reasons we use for binary operators the infix notation.

RAL operators are defined to work on any RDF description, with or without an ex-
plicit schema. Note that implicitly there is always a default schema based on the follow-
ing RDFS primitives: rdfs:Resource, rdf :Property, rdfs:Class, and rdfs:Literal. These
RDFS primitives can be used to retrieve a particular schema in case that such information
is not known in advance. Once the application schema is known, one can formulate queries
to return instances from the input model.

5.4.1 Extraction Operators

The extraction operators retrieve the resources/literals of interest from the input collection
of nodes. If the operator is not defined on nodes that represent literals, these nodes are
simply neglected.

In the examples that illustrate the operators we will use expressions that return col-
lections of resources from the example RDF model m of Figure 5.2. The expression c
represents the collection (set) of all resources present in model m.

Projection

π[re name](e : expression)

The input of the projection is a collection of nodes (specified by the expression e) and
the projection operator computes the values (objects) of the properties with a name given
by the regular expression re name over strings. The symbol # represents the wildcard
that matches any string.

Example 1 π[exemplified by](r1) returns the collection of artifacts that exemplify the
painting technique r1 from the input model (depicted in Figure 5.2): r2 and r3.

Example 2 π[(P |p)aint[s]#](r4) returns the collection of paintings painted by r4: r2 and
r3.

Example 3 π[rdf :type](r4) returns the collection of resources representing a type of r4:
Painter, Creator, and rdf :Resource.



14 CHAPTER 5. QUERY OPTIMIZATION IN HERA

Selection

σ[condition](e : expression)

In a selection the condition is a Boolean function that uses as constants URIs and/or
strings. The operators allowed in the condition are RAL operators, the usual comparison
operators (=, >=, <=, <, >, <>), and logical operators (and, or, not). The input of the
selection is a collection of nodes and the operator selects only the nodes that fulfill the
condition.

Example 4 σ[π[tname] = “Chiaroscuro”](c) is a selection operation applied to the col-
lection c of all resources in the input model. The expression returns the resource(s) repre-
senting the painting technique with the name “Chiaroscuro” (i.e., r1).

Example 5 σ[π[rdf :type] = Creator]({r3, r4}) returns resources from the input model
with the value of rdf :type being Creator: r4, since r4 is a resource of type Painter and
Painter is a subclass of Creator.

Example 6 σˆ[π[rdf :type] = Creator]({r3, r4}) (different from the selection in the pre-
vious example, as “ˆ” implies the use of only the extensional data) returns the empty
collection, as the inferred rdf :type of r4 (i.e., Creator) from the input model will not be
available to the operator.

Cartesian Product

(x : expression) × (y : expression)

The Cartesian product takes as input two collections of nodes on which it performs
the set-theoretical Cartesian product. Each pair of nodes is used to build an anonymous
resource that has all the properties of the original resources. Thus, this newly built re-
source will have all the types of the original two resources (RDF multiple classification of
resources). The final output is the collection of all those anonymous resources.

Example 7 σ[π[rdf :type] = Technique](c) × σ[π[rdf :type] = Painter](c) where c repre-
sents the collection of all resources in the input model, returns one anonymous resource
having all the properties of the only technique r1 and the only painter r4. As a consequence
this anonymous resource has both types Technique and Painter.

Join

(x : expression) ./ [condition] (y : expression)

The join expression is defined to be a Cartesian product followed by a selection, so
equivalent to

σ[condition](x × y)



5.4. BASIC RAL OPERATORS 15

The expression has as input two collections of resources that have their elements paired
only if they fulfill the condition (referring to the left and right operands). Anonymous
resources are built for each such pair. The output is the collection of all those anonymous
resources.

Example 8 (t := σ[π[rdf :type] = Technique](c)) ./ [π[exemplified by](t) = π[paints](p)]
(p := σ[π[rdf :type] = Painter](c)) where c represents the collection of all resources in the
input model, returns an anonymous resource having all the properties of r1 and r4. Note
that in this expression r1 and r4 are paired because there is a painting (e.g., r2) that
exemplifies r1 and is painted by r4.

Union

(x : expression) ∪ (y : expression)

The union operator combines two input collections of nodes reflecting the set-theoretical
union.

Difference

(x : expression) − (y : expression)

The difference operator returns the nodes present in the first input collection but not
in the second input collection.

Intersection

(x : expression) ∩ (y : expression)

The intersection operator returns the nodes present in both input collections.

5.4.2 Loop Operators

Loop operators are used in RAL to control the repetitive application of a function or
operator. They express repetition at input and/or function/operator level.

Map

map[f ](e : expression)

The map operator is defined as

∪(f(e1), f(e2), ...f(en))

if the collection e contains the elements e1, e2, ...en. So, the map operator expresses repe-
tition at input level. The results of applying the function/operator f to each element in
the input collection are combined (through set union) to obtain the final result. All unary
extraction operators have an implicit map operator associated with them.



16 CHAPTER 5. QUERY OPTIMIZATION IN HERA

Example 9 map[id](c) where c represents the collection of all resources in the input model,
computes the labels of all the non-blank nodes in the input model, i.e., the labels of all
resources having an id property.

Kleene Star

∗[f ](e : expression)

The Kleene star operator is defined as

e ∪ f(e) ∪ ...f(f(...(f(f(e)))...)) ∪ ...

So, the Kleene star operator expresses repetition at function/operator level. It repeats the
application of the function/operator f on the given input for possibly an infinite number
of times. For each iteration the result is obtained by combining (through set union) the
output of applying the function/operator on the input with the input. If after an iteration
the result is the same as the input, a fixed point is reached and the repetition stops. In order
to ensure termination, a variant of this operator that specifies the number of iterations n
is defined below:

∗[f, n](e : expression)

Note that the map operator does not include the input in the result, while the Kleene
star operator does.

Example 10 map[id](∗[π[rdfs:subClassOf ]](Painting)) gives the id of all ancestor classes
in the type hierarchy starting with Painting. For our example the result will contain three
labels denoting the types Painting, Artifact, and rdfs:Resource. If there would have been
loops made by the rdfs:subClassOf property in the input model, the above example would
still have terminated. The fact that the input model has a finite number of classes implies
that at a certain moment a fixed point is reached (we obtain the same output collection as
for the previous iteration) and thus the Kleene star operator terminates.

5.4.3 Construction Operators

Querying an RDF model implies not only extracting interesting nodes from the input model
but also constructing an output model by deleting nodes/edges from the extracted graph
and by creating new nodes/edges.

Before actually committing a construction operation, the RDF constraints are checked
on the output model. If these constraints are not met, the operation aborts. Examples of
RDF constraints are: resource identifiers have to be unique, the value of rdf :type cannot
be a literal, literals cannot have properties, etc.



5.4. BASIC RAL OPERATORS 17

Create Node

cnode[type, id]()

The create node operator possibly adds a new node to the graph. The input collection
is not used in the operator semantics. The type of the new node, specified by type, is
a resource of type rdfs:Class. The id is a resource identifier if the node represents a
resource, or a string if the node represents a literal. The id is used as input in the system’s
new id generator (nig) skolem function. This function returns the unique nodeID. The
nodeID is equal to id if id is given or it is a new unique identifier if id is empty. In the
first case an old node identifier is returned if id is already used as a nodeID in the data
model. In the second case a blank node is assigned a new nodeID. Note that the function
nig is injective. As a side effect of this operator, an edge representing the type property
is added between the newly created resource and its associated type resource. The create
node operator returns the created node (a collection containing one node).

Example 11 cnode[Painter]() creates a blank node of type Painter, while cnode[Literal,
“Caravagio”]() creates a Literal node representing the string “Caravagio”.

Create Edge

cedge[name, subject](object : expression)

The create edge operator possibly adds new edges (properties) to the graph. The name
(label) of the edges, as specified by name, is the id of a resource of type rdf :Property (the
id of a property resource). The subject and the object must have types complying with
the domain and the range of the property resource indicated by name. If there is already
an edge between subject and object with the label given by name then there is no need to
create a new edge. Recall that the RDF semantics doesn’t allow the presence of two edges
that share the same label between the same two nodes.

The subject is one node (or singleton collection) in the graph. The object can be
a collection of nodes. Note that in the above description object denotes a node from
the input collection. The edges are created between the subject node and the object
node(s). The create edge operator returns the subject node (a collection containing one
node). This operation can be generalized after introducing variables in RAL as shown in
Subsection 5.5.1.

Example 12 If n1 and n2 are the two nodes constructed in Example 11, n1 denoting the
blank node and n2 denoting the literal node, cedge[name, n1](n2) creates an edge labeled
name between the nodes n1 and n2.

Delete Node

dnode(e : expression)



18 CHAPTER 5. QUERY OPTIMIZATION IN HERA

The delete node operation deletes nodes from the graph. The input collection gives the
nodes that are removed. The operation returns the empty collection. As a side effect the
edges connected to these nodes as subject or object are also deleted.

Example 13 dnode({r2, r3}) deletes the nodes r2 and r3, and all the edges connected to
r2 or r3. For the given model this implies the elimination of the two resources representing
paintings and their associated edges.

Delete Edge

dedge[re name, subject](object : expression)

The delete edge operation deletes edges from the graph. The edges that are deleted
have to start in the subject node and to end in one of the nodes from the object collection.
The name (label) of the edges to be deleted is given by the regular expression re name,
a regular expression over strings. If the subject and/or the object expressions are empty
the edges to be deleted are identified by the remaining input arguments. The operation
returns the subject input.

Example 14 dedge(#, r1)({r2, r3}) deletes the edges between r1 and r2, and between r1
and r3, irrespective of their name. In the concrete example the information that two
paintings exemplify the painting technique (r1) is removed.

5.5 Additional RAL Features

5.5.1 Variables

A variable is a substitute for a collection of nodes (possibly) resulting from an evaluation
of an algebraic expression. A variable thus serves as a shortcut of such an expression
that can be used in more complex algebraic expressions. There are several reasons for
introducing variables. First, as we already saw in the definition of the join operator, the
join’s selection condition may need a reference mechanism for the two operands (input
collections). Second, variables can be very useful in expressing complex expressions in
which a collection is used repeatedly. The third reason is related to the fact that query
languages like RQL give their results in terms of a table that has as columns variables
and as rows bindings of these variables. If one would like to use RAL to implement RQL
expressions this compatibility feature should be met.

Example 15 y := π[paints](x := r4) instantiates x with r4 and y with r2 and r3. If one
wants to export these variables, the result will be a table, similar to a table returned by
RQL, with two columns x and y, and two rows: the first row contains r4 and r2 and the
second row contains r4 and r3.



5.5. ADDITIONAL RAL FEATURES 19

The last reason for having variables is the fact that it has a nice application for the
construction operators. If the extracted nodes are bound to variables, these variables can be
elegantly used in the construction part of RAL. The create edge operation can be extended
by allowing a collection of nodes not only in the object part but also in the subject part
by representing both parts with variables. The semantics of this construction operator is
that for each variable binding an edge will be created between the corresponding nodes.

Example 16 Consider the variable bindings from the previous example y := π[paints](x :=
r4). The expression cedge[peind, x](y) will add two edges with the label peind (the French
translation of paints) to the model, one between r4 and r2, and one between r4 and r3.

y1

x1

p1

z3

z2

z1

p2 y2

z4

p x y

e2
e1

e3

e1 e2

e3

e3

e3

e3

z

Figure 5.3: Variable bindings.

As shown in the previous example the value of the inner variable (x) is associated with
two values of the outer variable (y). The two pairs (r4,r2) and (r4,r3) created by the
projection operator can be seen as two 2-tuples similar to those from the relational model.

Generalizing this we can say that n-1 nested projections create a set of sets of sets ...
of sets (n times) of variable bindings or in other words they generate n-tuples.

Example 17 To illustrate the above consider the tuple bindings for the following expres-
sion operating over the RDF graph depicted in Figure 5.3: z := π[e3](y := π[e2](x :=
x1)). The resulting bindings are the following 3-tuples: (x1,y1,z1), (x1,y1,z2), (x1,y1,z3),
(x1,y2,z3), and (x1,y2,z4).

Note that by generating these tuple bindings we possibly generate duplicates at the
variable level (the variable x is bound five times to the same value x1 in the above example).
These duplicates are removed prior to applying variable bindings as input for an operator
in order to assure “duplicate-free” collections.

In order to be able to compare results with RDF query languages that use as their
output tables of tuples, RAL provides a mechanism to export tuple bindings. This is



20 CHAPTER 5. QUERY OPTIMIZATION IN HERA

achieved simply by specifying the variable names participating in the tuple, separated by
“,”. For instance x,y,z exports the five tuples from the previous example. Note that if we
export only one variable, say x, there will still be five 1-tuples (five times x1), i.e., export
does not remove duplicates.

So far we discussed only variables which were bound during the multiple application of
the projection operator, i.e., they occurred on the same path in the graph. These variables
are dependent in the sense that the value of the next variable(s) depends on the binding of
the previous ones. There might be, however, variables that do not depend on each other,
i.e., they do not appear on the same path in the graph. In case of exporting independent
variables export performs a cross product of their bindings.

Example 18 The variable p from p := π[e1](x1) is independent from the variables in-
troduced in the previous example. Exporting p, y, z results in the following tuple bind-
ings: (p1,y1,z1), (p1,y1,z2), (p1,y1,z3), (p1,y2,z3), (p1,y2,z4), (p2,y1,z1), (p2,y1,z2),
(p2,y1,z3), (p2,y2,z3), and (p2,y2,z4).

5.5.2 Additional Operators

Sort

Σ[value expression(e)](e : expression)

The sort operator orders alphabetically a collection based on value expression. This
value expression is an expression that returns a collection of strings (literals or URI ref-
erences). The value expression is applied for each node in the input collection and the
original nodes are ordered alphabetically based on the computed values.

Note that RAL collections are sets, i.e., they are not ordered. Nevertheless it is useful
to be able to output ordered collections, as a last operator to be possibly used in a RAL
expression.

Example 19 Σ[π[name]](π[paints](r4)) orders alphabetically the resources representing
r4’s paintings based on their names.

5.5.3 RQL and RAL

RQL [Karvounarakis et al., 2002] is the most advanced RDF(S) query language to date
and RAL was designed taking into consideration RQL’s power of expression. RQL path
expressions from the FROM clause and RQL conditions from the WHERE clause can easily be
converted in RAL expressions using RAL operators. The vice versa conversion is not always
possible as there are RAL expressions (e.g., expressions with construction operators) that
are not expressible in RQL. Unlike RAL, RQL is not a closed query language; it takes as
input an RDF graph and it returns a table of variable bindings. Since this table does not
represent an RDF graph (just values of some variables) it cannot be used again as input
for the next query. As a consequence, views are not supported. Nevertheless, RQL offers
some degree of nesting queries in the FROM and WHERE clauses.



5.6. RAL EQUIVALENCE LAWS 21

Example 20 Find the name of all painting techniques and the name of the painters who
used these techniques. In RQL this query looks as follows:

SELECT Xtn, Zcn

FROM {X:Technique}exemplified_by.painted_by{Z}.cname{Zcn},

{M}tname{Xtn}

WHERE X=M

In our concrete example this query returns two identical rows. The pair Chiaroscuro,
Rembrandt appears twice as a result since there are two paintings (r2 and r3) that exem-
plify the Chiaroscuro technique and are painted by Rembrandt (r4).

The following RAL program exports the same variable bindings of Xtn and Zcn as the
above RQL query:

z := π[painted by](π[exemplified by](x := σ[π[rdf :type] = Technique]
(c))); Xtn := π[tname](x); Zcn := π[cname](z); Xtn, Zcn

Instead of just outputting variable values in a table-like fashion the construction oper-
ators of RAL allow for constructing a full-fledged RDF graph. For instance the following
expression connects all painters from the previous query to the techniques they were using
by adding a ptechnique edge: cedge[ptechnique, z](x).

5.6 RAL Equivalence Laws

One of the advantages of using an algebra expression for a query is the ability to rewrite
this expression in a form that satisfies certain needs. For example an automatic translator
from RQL to RAL can use RAL equivalence laws to rewrite algebra expressions for query
optimization purposes.

The proposed set of equivalence laws is inspired by the monad laws [Wadler, 1992], and
the relational algebra’s equivalence laws [Ullman, 1989]. In [Beeri and Kornatzky, 1993] it
was shown how relational equivalence laws can be reused (redefined) in an object-oriented
context.

Law 1 (Left unit) If e1 is of unit type (singleton collection), i.e., e1 = {n}, then

e2(e1) = e2(n)

Law 2 (Right unit) If e2 is the identity function, i.e., e2(e) = e, then

e2(e1) = e1

Law 3 (Empty collection) If e2 is the empty function, i.e., e2(e) = (), then

e2(e1) = ()



22 CHAPTER 5. QUERY OPTIMIZATION IN HERA

Law 4 (Decomposition of ./)

e1 ./ [condition] e2 = σ[condition](e1 × e2)

Law 5 (Decomposition of π) If name is a regular expression that can be decomposed
in several regular expressions name1, ... namen then

π[name](e) = π[name1](e) ∪ ...π[namen](e)

Law 6 (Cascading of σ)

σ[c1 ∧ ...cn](e) = σ[c1](...(σ[cn](e))...)

Law 7 (Commutativity of σ)

σ[c1](σ[c2](e)) = σ[c2](σ[c1](e))

Law 8 (Commutativity of σ with π) If the condition c involves solely nodes that have
incoming edges named by the regular expression name, then

π[name](σ[c(π[name])](e)) = σ[c](π[name](e))

Law 9 (Commutativity of σ with ×) If the condition c involves solely nodes from e1,
then

σ[c](e1 × e2) = σ[c](e1) × e2

Law 10 (Commutativity of σ with ∪, ∩, −) If θ is one of the operators ∪, ∩, and −,
then

σ[c](e1 θ e2) = σ[c](e1) θ σ[c](e2)

Law 11 (Commutativity of ∪, ∩, ×) If θ is one of the operators ∪, ∩, and × then

e1 θ e2 = e2 θ e1

Law 12 (Commutativity of π with ×) If name is a regular expression that can be de-
composed in two regular expressions name1 and name2, and if name1 involves solely nodes
in e1, and name2 involves solely nodes in e2, then

π[name](e1 × e2) = π[name1](e1) × π[name2](e2)

Law 13 (Commutativity of π with ∪)

π[name](e1 ∪ e2) = π[name](e1) ∪ π[name](e2)

Law 14 (Associativity of ∪, ∩, ×) If θ is one of the operators ∪, ∩, and × then

(e1 θ e2) θ e3 = e1 θ (e2 θ e3)



5.6. RAL EQUIVALENCE LAWS 23

In order to illustrate the usefulness of the above laws for query optimization we use an
example. The query optimization heuristics is based on pushing the selections/projections
down as far as possible and applying the most restrictive selections first as it was done
similarly in the relational algebra context. The example schema is given in Figure 5.4.
It is a slightly modified example compared to the one from Figure 5.2 in the sense that
the properties between concepts are replaced by literal (value) properties that function as
concept identifier locators. This new example comes from a Web data integration exercise
in which different schemas need to be merged “by value”. We chose this schema example
as it better (compared with the example from Figure 5.2) illustrates the proposed query
optimization.

Painting

Literal

Technique

LiteralLiteralLiteralLiteral Literal

Painter

Image

tname painting painter cname nationalityimage aname

Figure 5.4: Example schema.

The query under investigation is: Return in alphabetical order the nationalities of the
painters that used the Chiaroscuro painting technique. A query parser will produce the
initial query tree given in Figure 5.5. In all query trees a represents the collection of all
resources in the input model classified under the schema from Figure 5.4.

z := σ[π[rdf :type] = Technique](a)

×

×

π[nationality]

σ[π[tname] = “Chiaroscuro”]

y := σ[π[rdf :type] = Painting](a)

Σ

x := σ[π[rdf :type] = Painter](a)

σ[π[cname](x) = π[painter](y) ∧ π[aname](y) = π[painting](z)]

Figure 5.5: First (initial) query tree.



24 CHAPTER 5. QUERY OPTIMIZATION IN HERA

A query execution module will process a node in a query tree as soon as the operands
are available. Such a node will be replaced by the collection that results from executing the
node’s associated expression. The execution terminates when the root node is processed.
The final query result is the collection obtained from processing the root node.

In the example, during the execution of the initial query tree a very large Cartesian
product between all painters, paintings, and techniques is generated. By pushing the
selections down (using Law 6, Law 7, and Law 9) one can get the query tree in Figure 5.6.

σ[π[rdf :type] = Technique](a)

z := σ[π[tname] = “Chiaroscuro”]

π[nationality]

σ[π[aname](w) = π[painting](z)]

×

×

Σ

x := σ[π[rdf :type] = Painter](a) y := σ[π[rdf :type] = Painting](a)

w := σ[π[cname](x) = π[painter](y)]

Figure 5.6: Second query tree.

A further improvement is obtained by applying the most restrictive selections first
(using Law 7, Law 9, Law 11, and Law 14). The resulting query tree is given in Figure 5.7.
So, with the aid of RAL laws three equivalent query trees were obtained.



5.7. CONCLUSIONS 25

z := σ[π[tname] = “Chiaroscuro”]

π[nationality]

σ[π[rdf :type] = Technique](a)

σ[π[cname](x) = π[painter](w)]

w := σ[π[painting](z) = π[aname](y)]

×

×

Σ

y := σ[π[rdf :type] = Painting](a)

x := σ[π[rdf :type] = Painter](a)

Figure 5.7: Third query tree.

In order to better understand why it is more efficient to execute the last query tree,
we will give a quantitative dimension to our example. Suppose that the instance of the
proposed schema example has 5 painting techniques, 100 painters, and 1000 paintings.
Only 100 of all paintings use the Chiaroscuro painting technique. Let’s compute now the
number of elements generated by the Cartesian products for each query tree. For the
first query tree we have 100 x 1000 + 5 x 100 x 1000 = 600,000 elements, for the second
query tree 100 x 1000 (painters are matched to their paintings) + 1000 x 1 (paintings
are matched to the Chiaroscuro painting technique) = 101,000 elements, and for the last
query tree 1 x 1000 (paintings are matched to the Chiaroscuro painting technique) + 100 x
100 (paintings that use the Chiaroscuro technique are matched to their painters) = 11,000
elements. The most efficient to execute is the last query tree as its Cartesian products
produce the smallest number of elements.

5.7 Conclusions

RAL is an RDF algebra defined to support the formal specification of an RDF query
language. It presents a set of operations to be used in both the extraction and construction
parts of a formally defined RDF query language. It is one of the first RDF algebras
developed from a database perspective. Compared with existing RDF query languages,
the construction phase is not neglected and is part of the language specification.



26 CHAPTER 5. QUERY OPTIMIZATION IN HERA

Besides being a reference language for RDF query languages, RAL can also be used for
RDF query optimization. Based on RAL equivalence laws we propose a heuristic algorithm
for RDF query optimization inspired by the one found in relational algebra (i.e., pushing the
selections/projections down as far as possible and applying the most restrictive selections
first).

As future work we will analyze the expressive power of RAL with respect to existing
RDF query languages. Comparing the expressive power of RAL to that of other algebras,
like relational algebra or object algebra, gives some insight into the real strength of the
language, but the true test is the comparison with other existing query languages for RDF.

We would like to further investigate optimization laws that enable algebraic manipu-
lations for query optimization. The lack of order (between resources) in RDF models and
RAL collections, as well as the simplicity and composability of RAL operators (similar
to the relational algebra ones) seem to foster the definition of RAL optimization laws. A
translator from a popular RDF query language (e.g., RQL) to RAL and a RAL engine will
enable us to experiment with different aspects of RDF query optimization.



Bibliography

Allsopp, D., Beautement, P., Carson, J., and Kirton, M. (2002). Towards semantic in-
teroperability in agent-based coalition command systems. In The First Semantic Web
Working Symposium. IOS Press.

Beckett, D. (2003). Redland rdf application framework. http://www.redland.

opensource.ac.uk.

Beckett, D. (2004). Rdf/xml syntax specification (revised). W3C Recommendation 10
February 2004. http://www.w3.org/TR/rdf-syntax-grammar/.

Beeri, C. and Kornatzky, Y. (1993). Algebraic optimization of object-oriented query lan-
guages. Theoretical Computer Science, 116(1&2):59–94.

Berglund, A., Boag, S., Chamberlin, D., Fernandez, M. F., Kay, M., Robie, J., and Simeon,
J. (2005). Xml path language (xpath) 2.0. W3C Working Draft 04 April 2005. http:

//www.w3.org/TR/xpath20/.

Berners-Lee, T. (1998). What the semantic web can represent. W3C 1998. http://www.

w3.org/DesignIssues/RDFnot.html.

Biron, P. V. and Malhotra, A. (2001). Xml schema part 2: Datatypes. W3C Recommen-
dation 02 May 2001. http://www.w3.org/TR/xmlschema-2/.

Boag, S., Chamberlin, D., Fernandez, M. F., Florescu, D., Robie, J., and Simeon, J.
(2005). Xquery 1.0: An xml query language. W3C Working Draft 04 April 2005.
http://www.w3.org/TR/xquery/.

Brickley, D. and Guha, R. (2004). Rdf vocabulary description language 1.0: Rdf schema.
W3C Recommendation 10 February 2004. http://www.w3.org/TR/rdf-schema/.

Catell, R. G. G., Barry, K. D., Berler, M., Eastman, J., Jordan, D., Russell, C., Schadow,
O., Stanienda, T., and Velez, F. (2000). The Object Data Standard: ODMG 3.0. Morgan
Kaufmann.

Connolly, D., van Harmelen, F., Horrocks, I., McGuinness, D. L., Patel-Schneider, P. F.,
and Stein, L. A. (2001). Daml+oil (march 2001) reference description. W3C Note 18
December 2001. http://www.w3.org/TR/daml+oil-reference.

27



28 BIBLIOGRAPHY

Decker, S., Brickley, D., Saarela, J., and Angele, J. (1998). A query and inference service for
rdf. In The W3C Query Languages Workshop. http://www.w3.org/TandS/QL/QL98/

pp/queryservice.html.

Decker, S., Melnik, S., Van Harmelen, F., Fensel, D., Klein, M., Broekstra, J., Erdmann,
M., and Horrocks, I. (2000). The semantic web: The roles of xml and rdf. IEEE Internet
Computing, 4(5):63–74.

Frasincar, F., Houben, G. J., and Pau, C. (2002). Xal: an algebra for xml query opti-
mization. In Database Technologies 2002, Thirteenth Australasian Database Conference
(ADC 2002), volume 5 of Conferences in Research and Practice in Information Tech-
nology, pages 49–56. Australian Computer Society Inc.

Grant, J. and Beckett, D. (2004). Rdf test cases. W3C Recommendation 10 February
2004. http://www.w3.org/TR/rdf-testcases/.

Guha, R. V. (2000). Rdfdb query language. http://www.guha.com/rdfdb/query.html.

Guha, R. V., Lassila, O., Miller, E., and Brickley, D. (1998). Enabling inferencing. In The
W3C Query Languages Workshop. http://www.w3.org/TandS/QL/QL98/pp/enabling.
html.

Hayes, P. (2004). Rdf semantics. W3C Recommendation 10 February 2004. http://www.
w3.org/TR/rdf-mt.

Intellidimension Inc (2002). Rdfql query language reference. http://www.

intellidimension.com/RDFGateway/Docs/querying.asp.

Karvounarakis, G., Alexaki, S., Christophides, V., Plexousakis, D., and Scholl, M. (2002).
Rql: a declarative query language for rdf. In Eleventh International World Wide Web
Conference (WWW2002), pages 592–603. ACM.

Kay, M. (2005). Xsl transformations (xslt) version 2.0. W3C Working Draft 11 February
2005. http://www.w3.org/TR/xslt20/.

Klyne, G. and Carroll, J. J. (2004). Resource description framework (rdf): Concepts and
abstract syntax. W3C Recommendation 10 February 2004. http://www.w3.org/TR/

rdf-concepts/.

Kokkelink, S. (2001). Transforming rdf with rdfpath. Working Draft. http://zoe.

mathematik.Uni-Osnabrueck.DE/QAT/Transform/RDFTransform.pdf.

Lassila, O. (2001). Enabling semantic web programming by integrating rdf and common
lisp. In The First Semantic Web Working Symposium (SWWS 2001), pages 403–410.
Stanford.



BIBLIOGRAPHY 29

Lassila, O. and Swick, R. R. (1999). Resource description framework (rdf) model and
syntax specification. W3C Recommendation 22 February 1999. http://www.w3.org/

TR/1999/REC-rdf-syntax-19990222.

Malhotra, A. and Sundaresan, N. (1998). Rdf query specification. In The W3C Query
Languages Workshop. http://www.w3.org/TandS/QL/QL98/pp/rdfquery.html.

Marchiori, M. and Saarela, J. (1998). Query + metadata + logic = metalog. http:

//www.w3.org/TandS/QL/QL98/pp/metalog.html.

McBride, B. (2001). Jena: Implementing the rdf model and syntax specification. In
Second International Workshop on the Semantic Web (SemWeb 2001), volume 40 of
CEUR Workshop Proceedings, pages 23–28.

Melnik, S. (1999). Algebraic specification for rdf models. Working Draft. http:

//www-diglib.stanford.edu/diglib/ginf/WD/rdf-alg/rdf-alg.pdf.

Melnik, S. (2001). Rdf api draft. http://www-db.stanford.edu/∼melnik/rdf/api.html.

Miller, L. (2002). Inkling: Rdf query using squishql. http://swordfish.rdfweb.org/

rdfquery.

Prud’hommeaux, E. (2002). Algae howto. W3C. http://www.w3.org/1999/02/

26-modules/User/Algae-HOWTO.html.

Seaborne, A. (2001). Rdql - a data oriented query language for rdf models. HP Labs.
http://www.hpl.hp.com/semweb/rdql.html.

Sintek, M. and Decker, S. (2002). Triple - an rdf query, inference, and transformation
language. In First International Semantic Web Conference (ISWC 2002), volume 2342
of Lecture Notes in Computer Science, pages 364–378. Springer.

Thompson, H. S., Beech, D., Maloney, M., and Mendelsohn, N. (2001). Xml schema
part 1: Structures. W3C Recommendation 02 May 2001. http://www.w3.org/TR/

xmlschema-1/.

Ullman, J. D. (1989). Principles of Database and Knowlwdge-Base Systems, volume 1&2.
Computer Science Press.

van Harmelen, F., Hendler, J., Horrocks, I., McGuinness, D. L., Patel-Schneider, P. F., and
Stein, L. A. (2003). Web ontology language (owl) reference version 1.0. W3C Working
Draft 21 February 2003. http://www.w3.org/TR/owl-ref/.

Wadler, P. (1992). Comprehending monads. Mathematical Structures in Computer Science,
2(4):461–493.


